
Journal of Grid Computing (2021) 19:47
https://doi.org/10.1007/s10723-021-09589-5

MiCADO-Edge: Towards an Application-level
Orchestrator for the Cloud-to-Edge Computing
Continuum

Amjad Ullah ·Huseyin Dagdeviren ·
Resmi C. Ariyattu · James DesLauriers ·
Tamas Kiss · James Bowden

Received: 3 November 2020 / Accepted: 17 September 2021
© The Author(s) 2021

Abstract Automated deployment and run-time man-
agement of microservices-based applications in cloud
computing environments is relatively well studied
with several mature solutions. However, managing
such applications and tasks in the cloud-to-edge con-
tinuum is far from trivial, with no robust, production-
level solutions currently available. This paper presents
our first attempt to extend an application-level cloud
orchestration framework called MiCADO to utilise
edge and fog worker nodes. The paper illustrates
how MiCADO-Edge can automatically deploy com-
plex sets of interconnected microservices in such

A. Ullah (�)
School of Computing, Edinburgh Napier University,
Edinburgh, UK
e-mail: a.ullah@napier.ac.uk

H. Dagdeviren · R. C. Ariyattu · J. DesLauriers · T. Kiss
School of Computer Science and Engineering,
University of Westminster, London, UK

H. Dagdeviren
e-mail: H.Dagdeviren@westminster.ac.uk

R. C. Ariyattu
e-mail: R.Ariyattu@westminster.ac.uk

J. DesLauriers
e-mail: J.Deslauriers@westminster.ac.uk

T. Kiss
e-mail: T.Kiss@westminster.ac.uk

J. Bowden
Hochschule für Technik und Wirtschaft, Berlin, Germany
e-mail: bowden@htw-berlin.de

multi-layered cloud-to-edge environments. Addition-
ally, it shows how monitoring information can be
collected from such services and how complex, user-
defined run-time management policies can be enfor-
ced on application components running at any layer of
the architecture. The implemented solution is demon-
strated and evaluated using two realistic case studies
from the areas of video processing and secure health-
care data analysis.

Keywords Application-level orchestration ·
Cloud-Fog-Edge ecosystems · Cloud-to-Edge
continuum · IoT applications orchestration ·
Orchestration of microservices · Deployment and
run-time management

1 Introduction

1.1 Background and Motivation

Cloud computing has immensely changed the pro-
vision of computing, both for personal and business
users. Since its inception, adoption of cloud services
has continued to grow and it is expected that world-
wide public cloud service revenue will grow by 33
percent, from 266.4 billion dollars in 2020 to 354.6
billion dollars in 2022 [1]. This is not surprising con-
sidering the inherent characteristics of cloud comput-
ing that offer economic benefits as well as operational
efficiencies to enterprises [2]. Given its benefits and

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-021-09589-5&domain=pdf
http://orcid.org/0000-0002-2407-4480
mailto:a.ullah@napier.ac.uk
mailto:H.Dagdeviren@westminster.ac.uk
mailto:R.Ariyattu@westminster.ac.uk
mailto:J.Deslauriers@westminster.ac.uk
mailto:T.Kiss@westminster.ac.uk
mailto:bowden@htw-berlin.de

 47 Page 2 of 28 J Grid Computing (2021) 19:47

wide-spread adoption, cloud computing is regarded
today as mainstream by many developers. Therefore,
we find that new research and developments in IT are
often ‘cloud-enhanced’ in the sense that they build on
or extend the capabilities of the cloud platform (or vice
versa) to deliver new solutions [1]. Recently, the focus
of one such enhancement has been to bridge the gap
between the cloud and devices located at the edge of
the network [3–6]. The need for developing this capa-
bility has emerged from the proliferation of connected
devices via the Internet, known as Internet of Things
(IoT), which in turn has caused exponential growth
in data that needs processing, storing and analysing.
The number of connected IoT devices worldwide are
expected to grow up to 36 billion by 2025 [7, 8] and
they are expected to generate 79.4 ZB of data [9].

The introduction of IoT has fuelled a new breed of
applications in various domains such as healthcare, man-
ufacturing and transport, which are often referred to as
IoT applications. These applications require IoT devi-
ces to capture and possibly process data from the envi-
ronment. With IoT devices becoming more prevalent,
the data they send to the cloud will continue to grow at
a rapid rate. A traditional cloud computing architecture
is impractical, if not inadequate, to run IoT applica-
tions due to its centralised approach, which results in
the following two issues: i) the network and the respon-
se time slows, and ii) the cost for businesses increases
due to network charges. These issues call for more data
processing and computation to be done at or near the
edge of the network with data only being sent to the
cloud when required. This gives rise to two new archi-
tectural solutions called fog computing and edge com-
puting, which aim to address the aforementioned issues.

The terms fog computing and edge computing are
often used interchangeably to loosely refer to mov-
ing processing or computation away from the central
cloud to nodes that are closer to endpoints at the
network edge. Though they both aim to reduce the
amount of data sent to the cloud in data-dense appli-
cations, there are subtle differences between the two.
As shown in Fig. 1, fog computing is an intermedi-
ate layer between cloud and edge that represents the
nodes between the cloud to the IoT sensors and actu-
ators, possibly spanning across multiple layers of the
network topology. In contrast, in edge computing, the
nodes where the computation takes place are normally
very close to the IoT devices in terms of network prox-
imity, often only one or a few hops away from the

IoT devices, or even embedded within the connected
device [10].

One of the key research challenges in the cloud-
to-edge continuum is resource orchestration. The term
refers to the automation of the deployment and exe-
cution of an application in an efficient way while
considering the available resources and various Qual-
ity of Service (QoS) requirements. It involves the
coordination of computing tasks, usually in a unified
workflow, and the automation of allocating appropri-
ate resources to the tasks considering the defined QoS
requirements to fulfil the required service-levels.

In recent years, a number of commercial and open-
source cloud orchestration solutions have emerged
that are considered to be mature and reliable. At
the level of application containers, Kubernetes [11]
and Docker Swarm [12] are two well-known and
widely-used solutions for cloud orchestration. There
are also a number of higher-level frameworks such
as Apache Brooklyn [13], Cloudify [14], Cloudi-
ator [15], Alien4Cloud [16], MODAClouds [17]
and MiCADO [18] that support automated applica-
tion deployment and run-time orchestration. Further-
more, major cloud providers also offer specific tools
for orchestration, such as Amazon’s AWS Cloud-
Formation [19], OpenStack HEAT [20], Microsoft
Azure’s Resource Manager (ARM) templates [21],
and Google’s Deployment Manager [22]. These solu-
tions improve resource utilisation and introduce a
great deal of agility by making application develop-
ment, deployment, execution and maintenance easier
in cloud environments.

While cloud orchestration is a mature research
area, orchestration in the cloud-to-edge computing
continuum is less well studied [23]. Current cloud
orchestration solutions have not been designed with
edge and fog computing in mind, hence, there is a
lack of solutions that can support the orchestration
of applications in an extended cloud-to-edge environ-
ment. In such environments, applications are deployed
in a more complex and heterogeneous infrastructure,
where the computing nodes are not just located in a
central cloud but are distributed across discrete net-
works that span multiple layers of a topology in the
cloud-to-edge continuum. Therefore, there is a need
to re-engineer the existing orchestration solutions in
order to extend their capabilities towards the edge of
the network. To the best of our knowledge, there is
currently no production quality, robust, comprehen-

J Grid Computing (2021) 19:47 Page 3 of 28 47

Fig. 1 A generic architecture for cloud-to-edge environments

sive and efficient solution available that supports the
automated deployment and run-time management of
applications spanning all layers from cloud, to fog
and the edge. Our research aims to provide such a
solution by extending an existing mature application-
level cloud orchestration framework, calledMiCADO,
towards fog and edge devices.

1.2 Requirements and Contributions

Detailed requirements towards the proposed solution
have been derived from real-life case studies imple-
mented within the framework of two currently active
research projects funded by the European Commis-
sion: DIGITbrain and ASCLEPIOS.

The DIGITbrain project [24] aims to extend the
traditional digital twin concept towards the Digital
Product Brain that steers the behaviour and perfor-

mance of an industrial product (mechatronic system
or manufacturing machine) by coalescing its phys-
ical and digital dimensions and by memorising the
occurred (physical and digital) events throughout its
entire life-cycle. Twenty one application experiments
are implemented within the project, involving over
sixty manufacturing and technology companies (inde-
pendent software vendors and consultancy companies)
from Europe. A common feature of these applications
is that large amounts of data are collected using var-
ious sensors on factory floor, processed locally by
edge and fog nodes, and if necessary parts of this data
are transferred to the cloud for further computation
(e.g. to run computation intensive machine learning
algorithms).

The vision of the ASCLEPIOS (Advanced Secure
Cloud Encrypted Platform for Internationally Orches-
trated Solutions in Healthcare) project [25] is to

 47 Page 4 of 28 J Grid Computing (2021) 19:47

maximise and fortify the trust of users in cloud-
based healthcare services by exploiting modern cryp-
tographic approaches to build a cloud-based eHealth
framework that protects users’ privacy and pre-
vents both internal and external attacks. ASCLEPIOS
demonstrates the applicability of the developed solu-
tion on healthcare applications provided by three
European hospitals, with the intention of deploying
these applications alongside the ASCLEPIOS frame-
work in a multi-cloud testbed. The ASCLEPIOS cloud
testbed features a mix of private (at the University
of Westminster and at the Norwegian Centre for E-
Health Research) and public (Amazon Web Services
and Microsoft Azure) clouds. Facilitating portability
and multi-cloud support plays an important role in the
development of both the ASCLEPIOS framework and
the healthcare applications it is designed to support.
Additionally, deploying and managing applications
that collect and process data using edge devices, such
as smart watches and contactless sensors for mon-
itoring sleep patterns in outpatient settings, will be
considered in the future.

During the requirements collection phase of these
projects, the following requirements, highlighting a
number of features, have emerged for an orchestrator
intended for the cloud-to-edge computing continuum:

R1. The orchestrator should be able to automati-
cally deploy applications that are composed
of multiple interconnected microservices on
resources that are spanning cloud, edge and
fog nodes. The deployment should be auto-
mated in the sense that a single deployment
descriptor should be sufficient to execute a
complex application. This requirement is com-
mon in both projects with several applica-
tion scenarios in manufacturing and healthcare
demanding such a feature. DIGITbrain espe-
cially aims to support its end users with the
capability of dynamically composing digital
twins from data, model and algorithm tuples and
deploying such applications on demand.

R2. The orchestrator should be agnostic to tech-
nological solutions implementing the cloud,
edge and fog layers. Therefore, it should not
tie in with one particular cloud, edge or fog
technology and should support easy portability
of applications from one technology provider
to another. This requirement is also common

in both projects. Application developers and
providers do not want to be locked in to one
particular cloud technology or edge device, and
require easy portability of their solution in
the future. This portability may be required,
for example, in case of new features emerging
in one cloud/edge technology that is not sup-
ported by others, or because of specific security
requirements that can only be fulfilled by private
cloud solutions.

R3. The orchestrator should support multi-cloud
applications where microservices of the same
application can be deployed on resources oper-
ated by various cloud service providers. This
requirement emerged in ASCLEPIOS where
certain features, for example supporting specific
implementations of security solutions, were not
available in the cloud where the core part of the
application was running.

R4. The orchestrator should support the run-
time management and optimisation of the
deployed applications. Application develop-
ers/owners should be able to define a set of
policies that describe and govern the desired
behaviour of the deployed application, and the
orchestrator should be able to execute changes
in the application’s setup/deployment based on
such dynamically changing requirements. For
example, the orchestrator should be able to scale
up computing nodes in all (cloud, edge, fog) lay-
ers of the architecture, or migrate computation
between nodes and layers in order to facili-
tate more efficient application execution. This
requirement comes from DIGITbrain where
complex simulation and machine learning appli-
cations are executed in a multi-tiered infrastruc-
ture, and where the initial resource requirements
of such applications may be unknown or unde-
cided.

R5. Types of policies supported by the orchestrator
should be as flexible and extendable as possi-
ble. In other words, the policies should not be
hard-coded and application developers/owners
should have the means of implementing cus-
tom policies on-demand. Therefore, the solu-
tion should support automated scaling and
reconfiguration of applications using dynami-
cally defined policies. This requirement is also
primarily emerged in DIGITbrain where, due to

J Grid Computing (2021) 19:47 Page 5 of 28 47

the complex nature of the targeted applications,
a wide variety of policies may be required. An
example of such complex policies include sim-
ulation experimentation where a large number
of simulation runs need to be completed by a
certain deadline, and where resources need to
be dynamically allocated to meet this deadline
while minimising costs.

R6. Both deployment and scaling should support
containerised applications. However, support
for virtual machines (VM) is also a strong
requirement as with many application scenarios,
the containers are deployed in VMs. Addition-
ally, some applications (e.g. complex Windows-
based applications) may not be suitable for
containerisation at all and require deployment
and run-time management inVM only environ-
ments. Finally, some edge or fog devices may
not support virtual machines, but are able to
execute containers directly on the hardware.
Both projects are dealing with a large variety of
applications, and as a consequence, supporting
both containers and virtual machines is a strong
requirement, coming from both projects.

R7. The resulting solution should be robust and
production quality. Especially, security and
reliability of the orchestrator are crucial fea-
tures, demanded by the real-life application sce-
narios in both healthcare (ASCLEPIOS) and
manufacturing (DIGITbrain).

Based on the requirements above, in this paper,
we present a framework, called MiCADO-Edge, that
facilitates the application deployment and run-time
orchestration in the cloud-to-edge continuum. More
specifically, our contributions include the following:

1. Evaluate a wide range of existing cloud-to-edge
orchestration solutions against a well-defined set
of requirements collected from realistic IoT appli-
cations.

2. Provide a novel orchestration framework that sup-
ports the deployment and run-time management
of IoT applications in heterogeneous computa-
tional environments which can be comprised of
different cloud, fog and edge resources.

3. Provide a high level abstraction layer, using a
standardised description language called TOSCA
(Topology and Orchestration Specification for
Cloud Applications [26]), to support appli-

cation developers with describing their appli-
cation topology and the required computational
resources independently from cloud vendors.

4. Provide an automated method for the seamless
integration of non-cloud resources into the cen-
tralised cluster and further facilitate the descrip-
tion of those resources via the TOSCA-based
abstraction layer, giving application developers a
unified interface for describing the overall IoT
application.

5. Provide a policy-based method to automate the
scaling and reconfiguration of applications in the
cloud-to-edge continuum by enabling application
developers to define high-level dynamic scaling
policies through the TOSCA interface.

6. To demonstrate the applicability of our proposed
solution, the implementation of the following two
realistic application scenarios using MiCADO-
Edge are presented: (i) a real-time face detection
application is deployed and scaled on cloud, fog
and edge nodes, and (ii) a healthcare applica-
tion requiring specific resources from multiple
different clouds is deployed.

The rest of this paper is organised as follows. Section 2
discusses the MiCADO framework upon which our
solution and contribution is based. Section 3 details
the technical work undertaken to extend MiCADO.
Section 4 presents the results achieved via the appli-
cation scenarios. Section 5 looks at related work in
the orchestration sphere related to the cloud-to-edge
ecosystem. Finally, Section 6 describes conclusions
and future work.

2 MiCADO Framework

MiCADO [18] is an application-level cloud agnos-
tic orchestration and auto-scaling framework that was
developed in the European COLA (Cloud Orches-
tration at the Level of Application) Project [28]. A
number of cloud service providers and middlewares
are supported by MiCADO, including both commer-
cial clouds such as Amazon AWS, Microsoft Azure,
Google Cloud Platform, or Oracle Cloud Services, as
well as private cloud systems based on OpenStack
or OpenNebula. MiCADO is fully open source and
implements a microservices architecture in a modular
way. The modular design [29] supports varied imple-

 47 Page 6 of 28 J Grid Computing (2021) 19:47

mentations where any of the components can easily
be replaced with a different realisation of the same
functionality. The concept of MiCADO is described
in detail in [30]. In this section only a high-level
overview of the framework is provided to explain its
architecture, building blocks and modular implemen-
tation.

The cloud agnostic design of MiCADO is based
on two major principles. First is the need for a
generic orchestration framework providing support
for launching and managing applications in various
clouds. Therefore, the framework is tied to no specific
cloud service provider and supports a mix of public,
private and community clouds. It also provides flexi-
bility at the application level, regardless of the under-
lying cloud. This includes automated deployment and
optimised run-time orchestration with features such as
automated scaling and enhanced security. Second, a
single generic interface to this framework is required.
The interface acts as an abstraction layer over the
various underlying components of the framework and
describes the application, its cloud resources and any
policies which govern performance, cost, security or
other non-functional application requirements.

The high-level architecture of MiCADO is pre-
sented in Fig. 2. The input to MiCADO is a TOSCA-
based Application Description Template (ADT) [27]
defining the application topology (containers, virtual
machines and their interconnection) and the various
policies [31] (e.g. scaling and security policies) that
govern the full life-cycle of the application. MiCADO
consists of two main logical components: Master
Node and Worker Node(s). The Submitter component
on the MiCADO Master receives and interprets the
ADT as input. Based on this input, the Cloud Orches-
trator creates the necessary virtual machines in the
cloud as MiCADO Worker Nodes and the Container
Orchestrator deploys the application’s microservices
in Docker containers on these nodes. After deploy-
ment, the MiCADO Monitoring System monitors the
execution of the application and the Policy Keeper
performs scaling decisions based on the monitoring
data and the user-defined scaling policies. Optimiser is
a background microservice performing long-running
calculations on demand for finding the optimal setup
of both cloud resources and container infrastructures.

Currently there are various implementations of
MiCADO based on its modular architecture, which
enables changing and replacing its components with

different tools and services. As Cloud Orchestrator,
the latest implementation of MiCADO can utilise
either Occopus [32] or Terraform [33]. These both
are capable of launching virtual machines on var-
ious private or public cloud infrastructures. How-
ever, as the clouds supported by these two orches-
trators differ, MiCADO can support a wider variety
of targeted resources. For Container Orchestration,
MiCADO uses Kubernetes [11]. The monitoring com-
ponent is based on Prometheus [35], a lightweight,
low resource consuming, but powerful monitoring
tool. The MiCADO Submitter, Policy Keeper [36] and
Optimiser components were custom implemented for
MiCADO during the COLA project.

In its original design and implementation,
MiCADO was intended to orchestrate applications
on cloud resources only. However, due to its mod-
ular structure, MiCADO is a good candidate to be
extended towards the cloud-to-edge continuum. Such
an extension, which completely changes the scope of
orchestration and enables automated deployment and
run-time application management utilising fog and
edge nodes, is explored in this paper.

3 Multi-Level Orchestration for Cloud-To-Edge
Ecosystem: MiCADO-Edge

This section introduces the key contributions of our
research work including the necessary enhancements
to the MiCADO framework that extend its capa-
bilities to perform orchestration and the run-time
management of IoT applications in the cloud-fog-
edge ecosystem. The following paragraphs discuss the
architecture of our proposed extension and provide
details of the enhancements.

3.1 Architecture

Figure 3 depicts the proposed high level architec-
ture of MiCADO-Edge, the extended version of
MiCADO that supports multi-level orchestration and
run-time management for the cloud-to-edge ecosys-
tem. MiCADO-Edge does not differentiate between
fog and edge layers, but rather generalises these layers
as non-cloud layer, which represents both edge and/or
fog workers. From MiCADO’s perspective, both edge
and fog workers are implemented and connected to the
MiCADO Master node in a uniform way and hence-

J Grid Computing (2021) 19:47 Page 7 of 28 47

Fig. 2 High-level architecture of MiCADO

forth these workers will be referred to as non-cloud
workers.

The extended architecture accepts the application
description in the form of an ADT, just as in the
original implementation of MiCADO. The MiCADO

Master node, having received the ADT, is responsible
for deploying the application on cloud and non-cloud
workers based on the application topology described
in the ADT. MiCADO uses Kubernetes for the
automatic deployment, scaling, and management of

MiCADO Master (MM)

Kubernetes Cloud-core

Cloud workers

E
d

g
e-

co
re

Edge workers Edge workers

Fog workers

(A
)

-
C

lo
u

d
-E

d
g
e

S
ce

n
ar

io

(B
)

C
lo

u
d

-F
o
g

-E
d

g
e

S
ce

n
ar

io

MM components
App components

TOSCA ADT

Node/container

Monitoring

E
d

g
e-

co
re

Virtual machine

Container

Physical node

Non container

component

Legend

App components

Node/container

Monitoring

App components

Node/container

Monitoring

E
d

g
e-

co
re

App components

Node/container

Monitoring

Cloud layer

Non-cloud layer

Fig. 3 High level architecture of the proposed solution

 47 Page 8 of 28 J Grid Computing (2021) 19:47

application containers across a cluster of cloud nodes.
Performing such activities on non-cloud workers (in
combination with the cloud) requires a mechanism
that extends the current Kubernetes cluster towards
non-cloud workers. There are several open-source ini-
tiatives that aim to provide such an extension. One of
those solutions is KubeEdge, which was selected for
our implementation based on its current relative matu-
rity. However, due to the modular architecture applied,
KubeEdge can be easily replaced with other solutions
providing the same functionality, if required in the
future. KubeEdge is built upon Kubernetes and facil-
itates the extension of the orchestration capabilities
of Kubernetes to host containerised applications on
non-cloud workers. The main motivations for select-
ing KubeEdge for our implementation include the
following:

– It extends a Kubernetes cluster towards non-cloud
workers.

– It enables the seamless and automatic config-
uration of non-cloud workers when joining the
central Kubernetes cluster.

– It is an open source solution with a signifi-
cant community behind it , which is in-line with
the generic modular open source nature of the
MiCADO framework.

– It provides support for heterogeneous edge
devices such as the Raspberry Pi, and also for fog
nodes such as a laptop or a PC outside a central
cloud.

KubeEdge consists of two main components,
Cloud-core and Edge-core. These components, as
illustrated in Fig. 3, are integrated into our architec-
ture. The Cloud-core runs on the Kubernetes mas-
ter node (in the cloud) that manages the entire
Kubernetes cluster. Edge-core, on the other hand,
runs separately on each individual non-cloud worker.
These KubeEdge components facilitate the underlying
infrastructure support for network, application deploy-
ment and synchronisation of metadata between cloud
and non-cloud workers.

In addition to deployment, MiCADO is also
responsible for managing the application’s life cycle,
including any run-time reconfiguration, if required.
Such reconfigurations are based on user defined poli-
cies provided in the ADT and/or on any manual update
from users (application owners) during the applica-
tion’s life cycle. For such run-time management of

applications, the MiCADOMaster constantly requires
updated monitoring information from the worker
nodes. MiCADO supports Prometheus based met-
rics collection. For this purpose, MiCADO deploys
monitoring services including cAdvisor and Node
Exporter on each worker. Furthermore, if required,
any other application specific Prometheus-based mon-
itoring service (often referred to as a Prometheus
exporter) can also be utilised. The Node/container
monitoring label in Fig. 3 represents such compo-
nents. The deployed monitoring services on each
worker node become targets for the Prometheus
server. Prometheus regularly pulls the updated infor-
mation from all workers, which is then processed by
the Policy Keeper to make reconfiguration decisions.
Utilising KubeEdge, these monitoring and run-time
management capabilities of MiCADO can also be
extended to the non-cloud layers of the architecture.

The implementation of the proposed extended
architecture involved the following three key chal-
lenges:

1. The automation of the seamless integration of
non-cloud resources to the centralised cluster.

2. The definition of non-cloud workers and the descrip-
tion of application components in the ADT.

3. The automated deployment and run-time manage-
ment of application microservices on non-cloud
workers.

The following sections discuss each of these chal-
lenges and the way they have been addressed.

3.2 Integration of Non-Cloud Resources
to the Centralised Cluster

IoT applications typically need computational
resources from both cloud and fog/edge environments.
Therefore, for the deployment of such applications,
the orchestrator needs access to the hybrid - cloud and
non-cloud - set of resources. The cloud resources are
usually created by the orchestrator at run-time. How-
ever, the non-cloud resources are physical nodes that
are already available. Before deploying the IoT appli-
cation, these resources must join the set of resources
created by the orchestrator. In MiCADO-Edge, the
integration of these resources to the centralised
cluster are handled through KubeEdge. This inte-
gration involves the completion of the following
tasks:

J Grid Computing (2021) 19:47 Page 9 of 28 47

• The automatic setup and execution of the Cloud-
core part on the MiCADOMaster node, involving
configuration of its Kubernetes cluster.

• The automatic setup and joining of non-cloud
workers to the Kubernetes cluster running on the
MiCADO Master node.

The aforementioned tasks are achieved during the
setup of the MiCADO Master node. MiCADO uses
Ansible Playbooks [37] to prepare and configure the
Master node. Ansible Playbooks facilitate configura-
tion management on multiple machines. During the
MiCADO Master installation process, all non-cloud
workers are specified using the Ansible Playbook
inventory file. The code snippet in Fig. 4 shows an
example of such a file. The micado-target, in this
example, represents the machine of the MiCADO
Master node, whereas edge-device-A and edge-device-
B are the two edge (non-cloud) nodes. The installation
process will first set up theMiCADOMaster, followed
by the installation and configuration of the Cloud-
core part. Finally, the non-cloud workers are config-
ured and automatically join the Kubernetes cluster.
The non-cloud workers must be provided with unique
names, which will be referenced during the authoring
of the ADT in the application deployment phase to
indicate hosts for application components. The com-
plete scripts containing the Ansible tasks for setting

Fig. 4 Example of MiCADO installation hosts/inventory file

up the Cloud-core and the Edge-core components are
available in the MiCADO GitHub repository [38].

3.3 Description of Non-Cloud Nodes and Application
Components - TOSCA ADT Enhancements

TOSCA is an OASIS [39] standard for describing
complex application topologies in the cloud [26]. A
standard TOSCA template in YAML defines the var-
ious components of a cloud application (software,
storage, networks, virtual machines) as nodes, which
may have requirements for, or share relationships
with, other nodes in the template. TOSCA also sup-
ports policies for defining rules for scalability, mon-
itoring, placement or security that will govern appli-
cation behaviour at run-time. MiCADO has adopted
TOSCA-based ADTs as its interface for defining the
application containers, cloud compute resources, and
scaling and security policies that describe a complete
application.

At the time of writing, the current version of
the TOSCA standard (v1.3) has yet to formally
include representations of fog, edge or IoT devices
within the specification. To extend MiCADO to
support orchestration at the edge, a new type –
tosca.nodes.MiCADO.Edge – has been introduced.
Defined nodes of this type support relationships with
the other nodes in the ADT – for example, an appli-
cation container may have a HostedOn relationship
with an edge (non-cloud) node, which MiCADO can
enforce at run-time to ensure that a given applica-
tion component runs only on a specific edge device.
Nodes of the Edge type have a single optionally-
defined property: public ip. If the public IP of an edge
device (non-cloud node) is defined, MiCADO can
automatically configure ingress to certain application
containers running on that edge device. This specific
feature of the ADT is currently used to automate mon-
itoring of Prometheus metrics on non-cloud nodes,
which would otherwise require manual configuration
from the user. The code snippet in Fig. 5 provides an
example of ADT. The first few lines define the nec-
essary metadata for the template. Then, user-defined
inputs are described, followed by the nodes that make
up the application – in this case an edge device, and an
application container with a requirement for the edge
device as its host.

In the context of the cloud-to-edge ecosystem, in
addition to the definition of a new edge type, it may

 47 Page 10 of 28 J Grid Computing (2021) 19:47

Fig. 5 Sample MiCADO ADT for orchestration of a container
on an edge device

also be required to define multiple instances of the
same TOSCA node, where each instance may require
a different set of values. An example of this could be a
streaming client application that needs to be deployed
on multiple edge devices, with each edge device
sending the streamed data to a different receiver.
Although defining such an application topology in an
ADT could be achieved by manually copying a node
and modifying the single required property value, it
resulted in repetition and made it difficult to intro-
duce policies on a particular node type (since each
copy became a different node type). Therefore, to sim-
plify the description of such applications, the support
to dynamically assign values to various parameters of
the same TOSCA node from a configurable range of
values was required.

The latest standard of the TOSCA specification,
i.e. v1.3, introduced such a feature. According to this,
multiple instances of a TOSCA node can be defined,
whose properties could be dynamically assigned val-
ues from a user-defined array. However, currently the
OpenStack TOSCAParser [40], i.e. the parser used by
MiCADO, only supports TOSCA versions 1.0 - 1.2.
Hence, to support the aforementioned feature, an addi-
tional wrapper was implemented in MiCADO. This
wrapper validates the ADT and deals with this unsup-
ported feature of TOSCA. An example of applying
this feature can be seen in Fig. 5. The feature is sup-
ported by the following TOSCA concepts within the
definition of a node:

– inputs: User-defined inputs that can receive
assigned values at deployment time,

– occurrences: The lower and upper bounds of the
number of instances of the defined node,

– instance-count: The desired number of instances
of the defined node,

– get-input by INDEX: Reference to the user-
defined array to pick and assign values from.

3.4 Automated deployment and run-time
management of microservices on non-cloud nodes

Sections 3.2 and 3.3 described how to integrate non-
cloud workers to the centralised cluster and how to
describe the extended topology in an ADT. These
are all necessary steps to set up the infrastructure.
This section focuses on the process of automated
deployment, monitoring and run-time management of
microservices running on edge nodes.

3.4.1 Deployment of Microservices on Edge Nodes

Figure 6 presents an integrated view of the neces-
sary parts of MiCADO and their interactions with
the KubeEdge architecture [41]. The aim of Fig. 6
is to explain how MiCADO-Edge, with the help of
KubeEdge, achieves the deployment and run-time
management of the application’s microservices on
non-cloud nodes. The MiCADO Submitter translates
the provided ADT. If the application requires cloud
workers (virtual machines), the Submitter instructs
the Cloud Orchestrator to dynamically create those
worker nodes on the specified cloud. Once created,
the worker nodes automatically join the MiCADO
Kubernetes cluster. On the other hand, the non-cloud
workers are already part of the cluster, set up before-
hand by the Ansible Playbook according to the process
explained in Section 3.2. Once the infrastructure is
ready, the Submitter instructs Kubernetes to deploy the
application’s microservices. The core Kubernetes han-
dles scheduling of microservices across cloud work-
ers, while the EdgeController inside Cloud-core takes
care of microservices scheduling on non-cloud work-
ers.

The EdgeController is an extended Kubernetes
controller that is responsible for managing the edge
nodes connected to the cluster, as well as their pods’
metadata. Any change on the Kubernetes side is
recognised by EdgeController, which directs it to the

J Grid Computing (2021) 19:47 Page 11 of 28 47

Fig. 6 Detailed architecture of KubeEdge in interaction with the relevant components of MiCADO

specific edge nodes. These changes are performed
by the CloudHub module, which is a web socket
server responsible for facilitating necessary caching,
and sending/receiving messages to/from the EdgeHub
module of Edge-core running on the non-cloud nodes.

EdgeHub is the corresponding web socket client
module of the Edge-core that is responsible for com-
municating with the CloudHub module for sync-
ing updates across cloud and edge. Any pod-related
updates from the cloud side are passed to the Meta-
Manager, while device-related updates are passed to
the EventBus module. At the current stage of the
integration, MiCADO-Edge only extends the deploy-
ment and run-time management of pods to the edge.
Therefore, any details of device-related activities are
outside the scope of this paper. The MetaManager
module of Edge-core is responsible for two key activ-
ities: (i) it stores/retrieves pod metadata in/from a
SQLite database running on the non-cloud node, and
(ii) it mediates messages between EdgeHub and the

Edged module, which is responsible for the manage-
ment of pods using a container run-time (e.g. Docker
[34]). Changes initiated on non-cloud nodes automat-
ically trigger reactions on the cloud side, using the
aforementioned process in reverse order.

3.4.2 Collecting Monitoring Information
from Non-Cloud Nodes

MiCADO uses the Prometheus monitoring system to
collect metrics from cloud workers. Monitoring in
MiCADO can be enabled or disabled from the ADT
based on the requirements of an application. If mon-
itoring is enabled, the cAdvisor and Node exporter
services are deployed on each worker. These ser-
vices enable the Prometheus server to automatically
gather monitoring information from the target worker
nodes at regular (but configurable) intervals. Similar
to the cloud worker nodes, this functionality of collect-
ing monitoring information has been extended to the

 47 Page 12 of 28 J Grid Computing (2021) 19:47

non-cloud nodes. However, the procedure for collect-
ing monitoring information from cloud and non-cloud
workers is different.

In the case of cloud workers, targets are registered
in Prometheus using a Pod IP that is automatically
assigned to each container by the container network-
ing interface (CNI) in Kubernetes. These Pod IPs are
allocated from a single subnet for all cloud work-
ers, so monitoring services deployed to cloud workers
are directly accessible via their respective Pod IPs.
KubeEdge, on the other hand, does not support CNI,
so containers deployed to non-cloud workers are not
assigned a Pod IP in the same subnet as contain-
ers on cloud workers. Therefore, containers across
cloud and non-cloud nodes cannot communicate over
these IPs, so monitoring services cannot be regis-
tered with Prometheus in the same way as above. To
resolve this problem the following two options are
considered:

1. Non-cloud nodes push the generated metrics to
the MiCADO Master node at regular intervals.

2. The metrics are gathered by the Prometheus
server running on the MiCADO Master node, as
is done in the case of the cloud workers (but using
the public IPs of the non-cloud nodes).

MiCADO-Edge adopted the second method due
to its similarity with the existing MiCADO solution.
Furthermore, its implementation required only mini-
mal changes, which involved the registration of the
public IPs of non-cloud nodes and the target ports
used by the monitoring services, with the Prometheus
server. The only drawback to this approach is that
read-only monitoring information is now accessible to
any actor with the public IPs and the specific ports
of the monitoring services. However, this problem can
be solved by establishing mutual client authentica-
tion between the Prometheus server and the moni-
toring services deployed in non-cloud nodes, which
will restrict access to monitoring information to the
Prometheus server only. Such a feature will be added
to MiCADO-Edge as future work, unless KubeEdge
addresses the extension of CNI to edge nodes, which
will automatically resolve this issue. The code snip-
pet in Fig. 7 presents an example of using a public
IP (x.y.138.187) that is statically provided as the tar-
get source to the Prometheus server in order to collect
monitoring information.

3.4.3 Run-time Management

In addition to automated deployment, MiCADO
also supports the run-time management of appli-
cations. This includes complying with the policies
defined in the ADT, and modifying/re-configuring the
application’s microservices accordingly. Policies in
MiCADO support automated scaling of applications
(e.g. allocating more or fewer containers and/or vir-
tual machines to run the application’s microservices),
or dynamically re-configuring security settings. Addi-
tionally, MiCADO also handles re-deployment in the
case of any failure, e.g. when a particular service (or
worker node) crashes. All these features have been
extended to the cloud-to-edge ecosystem and imple-
mented for non-cloud workers. The major challenge
in this case was to enforce configuration changes in
non-cloud nodes based on user-defined policies.

In the MiCADO framework, the Policy Keeper
component is responsible for the execution and
enforcement of application policies. Although policy
enforcement has been extended to non-cloud worker
nodes, the implementation of the Policy Keeper itself
did not require any modification. This is due to the
generic and modular nature of the MiCADO frame-
work. Once a worker node (either cloud or non-cloud
worker) joins the cluster and containers are deployed
on it, the Policy Keeper does not differentiate between
the different types of workers and the containers run-
ning on it. At run-time, the Policy Keeper periodically
evaluates the policies defined in the ADT and triggers
the required changes in the Kubernetes API Server
using theMiCADOKubernetes Adapter, as it is shown
in Fig. 6. If changes are required in edge nodes,
these can be propagated by the main CloudHub mod-
ule to the EdgedHub module running on the specific
non-cloud nodes, similar to how it was described in
Section 3.4.1. A further demonstration of MiCADO’s
run-time management capabilities in the case of non-
cloud worker nodes will be provided in Section 4.1.

A specific challenge to address in the case of
non-cloud workers is that of handling their volatile
nature, meaning that such workers can be unreliable
and may lose connectivity with the central cloud clus-
ter. In such scenarios, the remote node has the ability
to automatically rejoin the cluster, once connectiv-
ity is reestablished. This automatic rejoining to the
cluster is an inherent characteristic of the KubeEdge

J Grid Computing (2021) 19:47 Page 13 of 28 47

Fig. 7 An example for the
use of Edge node public IP
as a target source for
collecting monitoring
information

architecture, as its components (from cloud-to-edge)
constantly synchronise information with each other.
As a result, at any point in time, if a non-cloud node
becomes unavailable, the central cloud cluster auto-
matically removes it from the set of available worker
nodes. On the edge side, the Edge-core, responsible
for the management of application containers on the
non-cloud node, does not interrupt the running com-
ponents. However, once the connection is restored,
the non-cloud node automatically joins the central
cluster and synchronises information with the cloud
side.

4 Case Studies and Results

This section demonstrates the proposed MiCADO-
Edge framework using two realistic case studies. The
following subsections briefly explain these case stud-
ies and provide details of how MiCADO-Edge can
be utilised to deploy and manage these applications.
These case-studies represent two widely different sce-
narios.

The first case study illustrates how a realistic appli-
cation consisting of a number of microservices can
be automatically deployed in the targeted cloud-to-
edge ecosystem and how this application can be
managed and scaled by MiCADO at run-time. This
case study demonstrates evidence that MiCADO-Edge
fulfills requirements R1 (microservices are deployed
automatically in the cloud-to-edge continuum), R4
(scaling policies are used to increase the number
of processing nodes in case the load increases),
R5 (scaling policies are defined by the applica-
tion developer at the time of deployment), and R6
(containers and virtual machines are both used for
the deployment and run-time management of the
application).

The second case study, a demonstrator application
for the H2020 ASCLEPIOS [25] project, shows how
real multi-cloud scenarios, where different microser-
vices of the same application run simultaneously in
different clouds and administrative domains, can also
be achieved. While this scenario does not include
actual edge devices, it demonstrates the multi-cloud
capabilities of MiCADO-Edge for microservices of
the same application, a feature that was not available
in MiCADO. This case study provides evidence for
fulfilling requirements R1 (the application’s microser-
vices are deployed automatically), R2 (various cloud
service providers and middleware are utilised by the
application), R3 (microservices of the application are
running in different clouds), and R6 (the deployment
utilises both containers and VMs).

These two case studies demonstrate that the
requirements R1 to R6 have been fulfilled. However,
neither of the case studies dealt with R7. The require-
ment R7 mostly focuses on the security aspects. In
general, the MiCADO framework facilitates various
security enablers that guarantee the security of the
system against different attack scenarios within the
cloud environment. However, the extension of security
enablers towards edge nodes are not yet explored, but
will be considered in future work.

4.1 Real-time Face Detection

The Real-time Face Detection (FD) application cap-
tures a video stream via cameras, e.g. CCTV footage,
and processes it to detect faces. In the context of IoT
applications, this case study has been previously used
by Wang, et al. in [42] and McChesney, et al. in [43]
as a benchmark application.

The original implementation, which is open source
and available on GitHub [44], consists of the following
three components:

 47 Page 14 of 28 J Grid Computing (2021) 19:47

– Client: The Client, running on an edge device,
captures a video stream and sends it to the Pre-
processor component.

– Pre-processor: The Pre-processor, running on a
fog node closer to the edge device, receives the
incoming stream, converts it to a greyscale image
and sends it to a Cloud server. The conversion to
greyscale reduces the size of the image by one-
third, thereby reducing the overall communication
overhead.

– Cloud server: The Cloud server, running in a vir-
tual machine in the cloud, receives the greyscale
images and detects faces in them.

For the purposes of this paper, the aforementioned
implementation has been adopted with the following
changes. These changes are performed to demonstrate
the capabilities of the proposed multi-level orchestra-
tion framework using realistic settings. The updated
implementation is available in GitHub [45].

– All components are implemented as Docker con-
tainers.

– The face detection functionality has been moved
from the Cloud server to the Pre-processor. This
can further reduce the traffic to the central cloud
by ignoring those images that do not contain any
faces. The new Cloud server implementation is
only used for storing the greyscale images that
contain faces.

– The functionalities of the Pre-processor com-
ponent are distributed into three components,
namely Receiver, Processor, and Sender. Such
distribution enables independently applying dif-
ferent policies to each service. For example, it
enables running multiple instances of the Receiver
service to receive video streams from different
edge devices, or introducing scaling policies only
for the Processor component.

The following paragraphs discuss the details of
the experimental setup, important aspects from the
deployment perspective, and the obtained computa-
tional results.

4.1.1 Experimental Setup

The aim of the experiment is to demonstrate the auto-
matic deployment and run-time management of the
following application scenario:

There are N number of edge devices, a fog node,
and a cloud-based storage. The edge devices cap-
ture video streams and send them to the fog node.
The fog node runs N instances of the Receiver, one
instance of the Sender, and at least one instance
of the Processor service. The Processor is bound
by a scaling policy that determines the number of
instances based on the network bytes received by all
instances of the Receiver service. Lastly, the cloud
storage - running on a dynamically created virtual
machine in the cloud - is responsible for storing the
received greyscale images that contain faces. Figure 8
depicts this scenario in the context of the MiCADO
framework.

For this experiment, the following settings were
applied for the various nodes of the case study, as
introduced in Fig. 8. In this particular scenario, the
monitoring services, i.e. node and container exporters,
are only deployed on the cloud and fog nodes (as
can be seen in the figure). Monitoring on these
nodes is required for enforcing the applied scaling
policy (see Section 4.1.3). However, such monitor-
ing is not required on the edge devices because
they are not expected to be bound by any scaling
policy.

– Edge layer: One Raspberry Pi with a plugged-in
camera with [ARMv7 Processor rev 3, Model 4, 4
GB RAM] as the edge device.

– Fog layer: A laptop with [4 CPUs, 12GB RAM,
and Ubuntu 18.04] as the fog node.

– Cloud layer: Two virtual machines, i.e. MiCADO
Master and a cloud worker, on Amazon. The
specification of these machines are [2GHz CPU,
3GB RAM, 15GB DISK, and Ubuntu 18.04] and
[1GHz CPU, 2GB RAM, 8GB DISK, and Ubuntu
18.04] respectively.

4.1.2 ADT and Deployment (Requirements R1 and R6)

Figure 9 presents some of the important segments
from the ADT of the FD application deployment. The
complete ADT can be found in the MiCADO TOSCA
GitHub repository [46]. Figure 9a shows the defini-
tion of the fog node and an edge device. The names
of these nodes, e.g. hpfog, and piedge, must match
the names of the hosts provided at the time of the
MiCADO installation (see Section 3.2). Figure 9b
shows some of the inputs in the ADT. The inputs allow

J Grid Computing (2021) 19:47 Page 15 of 28 47

Cloud worker

Edge-core

F
o
g
 n

o
d
e

TOSCA ADT

Receiver 1 Receiver N SenderProcessor

MiCADO Master
FD-Cloud

Edge-core

Client

Edge-core

Client

E
d
g
e

d
ev

ic
e

1

E
d
g
e

d
ev

ic
e

N

Virtual machine

Container

Physical node

Raw images

Non container

component

Greyscale images

Legend

Node/container

Monitoring

Node/container

Monitoring

Fig. 8 Architecture of Real-time Face Detection case study in the context of the MiCADO-Edge framework

the definition of lists that can be used for compo-
nents that require the creation of multiple instances,
where each instance requires a different set of values
(discussed earlier in Section 3.3), e.g. the definitions
of fd-pi-client and fd-receiver components provided
in Fig. 9c and d respectively. The fd-receiver com-
ponent, in this case, requires exactly six instances.
Each instance is responsible for listening on a specific
port to receive data from a different streaming client.
The port assignment for each instance is automatically
handled by MiCADO using the ports list. Similarly,
MiCADO creates multiple instances (based on the
value of the clientcount variable) of the fd-pi-client.
MiCADO deploys these instances to the respective
edge nodes, i.e. from the clienthosts list, by passing a
different port value (obtained from the ports list) as an
environment variable to each instance. In fact, using
this topology, MiCADO creates a one to one link from
each instance of the Client to a corresponding instance
of the Receiver component.

4.1.3 User-Defined Auto-Scaling Policy
(Requirements R4 and R5)

MiCADO empowers application developers to define
custom scaling policies for their applications using
the Python programming language. These policies are
defined in the ADT. This section, in the context of the
FD case study, presents an example for the container
level scaling of the Processor service. The code snip-
pet in Fig. 10 shows the relevant segment of the policy.
Based on this policy, Section 4.1.4 will further discuss
and present the results obtained at run-time.

The targets tag in Fig. 10 indicates that the pol-
icy applies to the fd-processor service. The sources
tag informs the Prometheus server, running on the
MiCADOMaster node, of the target IPs and port num-
bers for the collection of monitoring information. The
sources, in this case, includes the fog node that hosts
the fd-processor, fd-receiver and fd-sender services.
The constants tag allows application developers to

 47 Page 16 of 28 J Grid Computing (2021) 19:47

Fig. 9 ADT Segments of FD case study

define any constants, (e.g. COOLDOWN in this case)
that can be used inside the Python based scaling code.
The queries section can include any Prometheus based
queries/expressions to obtain (and/or compile) infor-
mation from the gathered monitoring data of worker
(both cloud and edge) nodes. In this particular case,
the query labelled as RCVDBYTES calculates the total
network bytes received by all instances of fd-receiver
service in the last 2 minutes. The min instances and

max instances indicate the minimum and maximum
allowed instances of the fd-processor service that the
policy will enforce at run-time.

The scaling policies from the ADT are itera-
tively executed by the Policy Keeper component of
MiCADO. In each iteration, the Policy Keeper exe-
cutes the queries to get up-to-date monitoring infor-
mation and runs the user provided scaling code. The
scaling logic in this particular example is expressed in

Fig. 10 Auto-scaling
policy for the FD case study

J Grid Computing (2021) 19:47 Page 17 of 28 47

(1), i.e. the required number of fd-processor instances
at any point in time is proportional to the size of
received network bytes by all instances of fd-receiver
service.

m container count = ceil

(
rcv bytes inMB

2

)

(1)
The rcv bytes inMB in the above equation repre-
sents the value of received network bytes in Mega
Bytes, ceil returns the smallest integer value that is
bigger than or equal to the value result from the divi-
sion, and m container count is the required number
of fd-processor containers at that point in time.

4.1.4 Computational Results

The demonstrator application was deployed in the pre-
viously described testbed using the presented ADT
(demonstrating the fulfillment of requirements R1
and R6), and its auto-scaling behaviour was observed
based on various input loads (providing evidence for
fulfilling requirements R4 and R5). The results are
presented in Fig. 11. Figure 11a shows the network
traffic received by all instances of the Receiver ser-
vice, Fig. 11b tracks the number of instances of the
Processor service, and finally Fig. 11c shows the
network traffic received by the cloud storage service.

The experiment starts with one instance of the
Client service running on a Raspberry Pi. The Client
continuously captures the video stream and sends still
images from the stream to the Receiver service. The
incoming traffic from one client averages around 750
Kilo Bytes per second (KB/s). To demonstrate the
effect of the scaling policy, the Client instances are
manually increased from 1 to 6 at the following times
to generate additional network traffic: 12:54, 13:02,
13:12, 13:20, and 13:26. This results in increased net-
work traffic on the Receiver service from ≈ 750 KB/s
to ≈ 4.8 Mega Bytes per second(MB/s). During this
increase, based on the scaling policy, MiCADO auto-
matically increased the number of Processor instances
from one to two at 13:02, when the received net-
work traffic exceeded 2 MB/s, as can be seen in
Fig. 11b. Similarly, another scale-up can be observed
at approximately 13:24, when the received network
traffic became higher than 4 MB/s. The increase in
network traffic (i.e. the number of streamed images)
has a proportional impact on the number of greyscale
images being sent to the cloud storage service. This

is evident from Fig. 11c at 12:54 and 13:02, i.e. when
the number of Client instances are increased from one
to two and then from two to three. The network traf-
fic received by the cloud storage service after 13:17
remains steady because there were many greyscale
images still to be sent by the Sender service.

Figure 11b shows a scale down action at ≈ 13:28,
when the network traffic is reduced to less than 4
MB/s. A few moments later, the traffic suddenly
increased and again reached higher than 4 MB/s. This
situation, as per the applied policy, required another
scale-up. However, it only happened with some delay
(and not immediately), at 13:31. The delay is due to
the applied cool-down period of 3 minutes. The cool-
down period, in general, is referred to as the minimum
duration that is applied between two consecutive scal-
ing actions to avoid the oscillating behaviour, where
constant scale-up/down operations are performed one
after the other [47]. MiCADO empowers application
developers to use any custom cool-down period within
their scaling policy in the ADT. An example of this is
the use of the COOLDOWN constant in Fig. 10, which
is then further used in the scaling logic part of the pol-
icy and enforces that no consecutive scaling actions
can be performed within 180 seconds.

Finally, to experience the reaction of MiCADO
in case of a decrease in network traffic, two Client
instances are manually stopped at 13:35 and 13:40.
These changes are picked up by MiCADO automati-
cally and are followed by the execution of necessary
scale-down actions, as can be seen in Fig. 11b, at
13:38 and 13:44 respectively.

4.2 Sleep Healthcare: a Case Study for Multi-Cloud
Usage

The case study described in Section 4.1 demon-
strated how MiCADO-Edge can be utilised to deploy
and manage applications in multi-level cloud-to-edge
environments. However, the developed solution also
enables MiCADO to deploy and manage applica-
tions where the various interacting microservices are
deployed in different clouds. Multi-cloud deployment
may be necessary when some specific and required
services are only provided by one particular cloud
service provider. Such a scenario, the Sleep Health-
care application, is described below, followed by
the detailed description of its implementation based
on MiCADO-Edge. The motivation for multi-cloud

 47 Page 18 of 28 J Grid Computing (2021) 19:47

Fig. 11 Computational results from the FD case study

deployment in this particular case was the fact that
certain components of the application needed to be
deployed in virtual machines supporting Intel Soft-
ware Guard Extensions (SGX) [48]. As such specific
VMs are not available in the private cloud environ-
ment where the application is currently deployed,
adding VMs from Microsoft Azure (with SGX sup-
port) was necessary.

4.2.1 Sleep Healthcare

Sleep Healthcare is one of the demonstrator appli-
cations within the H2020 ASCLEPIOS project [25].
The Sleep Healthcare application aims at bringing

data sharing and analysis capabilities on inpatient and
outpatient sleep medicine to the cloud. Using the
cloud for storing and processing the different sleep
measurements can be highly beneficial.

However existing solutions such as [50, 51] suffer
from security and privacy failings [49] that make them
ill-suited for cloud deployment. Searchable Encryp-
tion (SE) is a promising new technology that allows
queries on encrypted data in a way that the cloud
provider can neither reveal the metadata search term,
nor the query result. In the context of the Sleep
Healthcare application, SE technologies would allow
medical professionals to manage biosignal record-
ings from different inpatient and outpatient settings

J Grid Computing (2021) 19:47 Page 19 of 28 47

to enhance both the process and the precision of
sleep diagnosis and therapy control, while preserving
patient data privacy. Sleep Healthcare utilises one such
SE technology called Symmetric Searchable Encryp-
tion (SSE).

The SSE scheme, [52] also developed within the
scope of the ASCLEPIOS project, enables searches on
outsourced encrypted data while preserving the pri-
vacy of both the data and any search queries. The
SSE scheme mainly consists of two core components,
i.e a Trusted Authority (TA) and an SSE Server. The
SSE Server facilitates storage of the encrypted data,
whereas the TA is responsible for storing the meta-
data that is required for the facilitation of searching
the encrypted data.

For the sake of security, the TA and SSE Server
components must be executed in a Trusted Execu-
tion Environment (TEE) [53], for example with Intel
SGX [48] capabilities. Based on this restriction, the
Sleep Healthcare application has the realistic require-
ment to use Microsoft Azure - being the only cloud
with support for SGX - to deploy the two SSE com-
ponents. However, such a restriction is not mandatory
for the other components, (i.e. xnat, keycloak) of the
application. Therefore, the Sleep Healthcare demon-
strator needs to deploy only the SSE components
in Microsoft Azure, while the other components can
be deployed to an in-house private cloud to save on
operating costs.

4.2.2 Multi-cloud Sleep Healthcare Test-bed Setup

Figure 12 depicts the overall architecture of using
MiCADO-Edge for the deployment and run-time
management of the Sleep Healthcare use case across
two different cloud environments. Such multi-cloud
deployment was not supported by the original imple-
mentation of MiCADO. However, using the edge
extension described earlier in this paper, it is possi-
ble to add worker nodes to a MiCADO deployment,
even if they are running on a different cloud than
the MiCADO Master, and to deploy and manage con-
tainers within these VMs. In such deployments, the
workers running on the external cloud will act as
non-cloud workers and will connect to the MiCADO
master node via KubeEdge.

In the case of the Sleep Healthcare application, as
it is illustrated in Fig. 12, the Application Server com-
ponent runs on the primary cloud (in this case the

University of Westminster private OpenStack cloud),
where the MiCADO Master node is also deployed.
This VM and its containers are deployed and man-
aged by MiCADO-Edge as in the original MiCADO
implementation. On the other hand, the SSE Server
and TA Server components are deployed to a cloud
that is remote from where the MiCADO Master is
running (in this case on the Microsoft Azure pub-
lic cloud). While MiCADO was capable of deploying
these VMs on this remote cloud previously (by spec-
ifying the requirements of VMs running across mul-
tiple clouds in the ADT), connecting these VMs and
their containers to the Kubernetes cluster only became
possible through the use of KubeEdge. The worker
nodes running on the remote cloud are all configured
as non-cloud nodes, running the Edge-core component
of KubeEdge.

– Primary cloud: University of Westminster private
OpenStack (Nova Compute). One VM [2 CPUs,
4GB RAM, 40GB DISK and Ubuntu 18.04] as
the MiCADO Master node, and one VM [1 CPU,
2GB RAM, 40GB DISK, and Ubuntu 18.04] as
the Application Server node.

– Remote cloud: Microsoft Azure public cloud.
Two VMs [2 CPUs, 8GB RAM, 16GB DISK, and
Ubuntu 18.04] as the SSE Server and TA Server
nodes, respectively.

4.2.3 Multi-cloud Sleep Healthcare ADT

The code snippets in Fig. 13 highlight the dis-
tinction between a normal MiCADO worker, which
is to be launched on the primary cloud versus
the worker node that must be launched on the
other cloud (i.e. Microsoft Azure in this case).
The node type tosca.nodes.MiCADO.Nova.Compute
in (Fig. 13a), informs MiCADO to dynamically
create a worker with the given specification on
OpenStack. On the other hand, the node type
tosca.nodes.MiCADO.Edge.Azure in Fig. 13b informs
MiCADO that a worker node is required on the other
cloud (i.e. onMicrosoft Azure). In this case, MiCADO
will dynamically create a virtual machine with the
required specification. In addition, the Edge-core
component will also be installed and automatically
configured on this external node. This configura-
tion will lead the newly created virtual machine to
join the MiCADO cluster and run the specified con-

 47 Page 20 of 28 J Grid Computing (2021) 19:47

MiCADO Master (MM)

Kubernetes Cloud-core

MM components

TOSCA ADT

Primary cloud

UoW OpenStack

Microsoft Azure

Nginx

Xnat

Certbot

Keycloak

Slapd

Phpldapadmin

Encrypted data

Meta data

MiCADO worker: Sleep Healthcare Application Server

Edge-core

SSE-Server SSE-db

MiCADO worker: SSE Server

Edge-core

SSE-Server SSE-db

MiCADO worker: TA Server

Node/container

Monitoring

Node/container

Monitoring

Node/container

Monitoring

Virtual machine

Container

Non container

component

Legend

Database container

Keycloak-db Xnat-db

Fig. 12 Architecture of Sleep Healthcare in integration with the SSE scheme in the context of MiCADO-Edge framework

tainers. The full ADT, which includes the description
of the required resources and overall application topol-
ogy of the Sleep Healthcare application is available in
the MiCADO TOSCA GitHub repository [54].

4.2.4 Multi-cloud Sleep Healthcare Deployment
& Results

Once the ADT is finalised and submitted to MiCADO,
it deploys the Sleep Healthcare application along
with the necessary SSE components across both
cloud environments. After the deployment is com-
plete, MiCADO starts managing the application. The
monitoring information from the SSE components
deployed on Azure can be gathered in a similar way

to how it was done for edge nodes, as described in
Section 3.4. Figure 14 presents some examples of the
obtained monitoring information from the experiment.
Figure 14a shows the CPU utilisation of the three
deployed VMs on the Azure and OpenStack clouds
(see Fig. 12). In Fig. 14a, the VMs indicated by labels
51.134.4.182 and 51.140.51.82 are the ones that run
on Azure, while the third VM runs on OpenStack.
Figure 14b, on the other hand, presents the CPU usage
of each application container running on the afore-
mentioned three VMs. Containers with labels starting
with sse or ta are running on the Azure VMs, while
the rest runs on OpenStack. Using the obtained moni-
toring information, MiCADO can perform any recon-
figuration operation on either cloud, as required. This

Fig. 13 Distinction between primary cloud worker and Azure cloud worker

J Grid Computing (2021) 19:47 Page 21 of 28 47

Fig. 14 Computational results from the Sleep Healthcare case study

setup is a strong evidence that MiCADO-Edge fulfills
requirement R3 (support for multi-cloud applications),
as well as R1 (automated deployment of microservices
using a single ADT), R2 (cloud-agnostic nature as
two different cloud technologies were applied) and R6
(applications deployed in containers hosted by virtual
machines).

5 Related Work

Existing cloud-to-edge orchestration solutions can
be divided into two major categories. There are
infrastructure-level solutions that often act as middle-
wares by allowing access to microservices running in
the edge and fog layers and connecting these with
components executed in the central cloud. While such
solutions are essential for the presented MiCADO-

Edge implementation, these are not direct competitors
of our work. However, such solutions are necessary for
extending MiCADO to the edge and can be reused and
integrated with the proposed architecture. On the other
hand, there are some significant and notable efforts
to create comprehensive, application-level cloud-to-
edge orchestrators. These orchestrators can be directly
compared to MiCADO-Edge. The rest of this section
provides a short overview of the most prominent
research efforts in both categories and puts these into
the context of our proposed solution.

5.1 Infrastructure-Level Solutions to Access the Fog
and Edge Layers

There are a number of proprietary and open source ini-
tiatives offering capabilities to run applications in the
cloud-to-edge continuum. These infrastructure-level

 47 Page 22 of 28 J Grid Computing (2021) 19:47

solutions provide an important bridge for connect-
ing nodes in the edge and fog layers with nodes in
the cloud layer. Some notable initiatives from this
category include the following:

Cloud vendor specific propriety solutions All major
cloud vendors offer proprietary solutions, often in
the form of a middleware, for application deploy-
ment in the cloud-to-edge continuum. Such examples
include Amazon GreenGrass [55], Microsoft’s Azure
IoT core [56] and Google’s Cloud IoT Core [57].
These solutions make it possible to run local compute,
messaging, management, monitoring, synchronisation
and machine learning interface capabilities on con-
nected devices in a secure way. The application mod-
ules are executed locally as Docker containers, making
the deployment and orchestration easier. However, all
three solutions have been developed with their respec-
tive cloud platforms in mind. Hence, they are not
cross-platform solutions and will cause some degree
of vendor lock-in.

Open source cloud agnostic solutions Project
EVE [4], a Linux Foundation Edge (LF Edge) project,
provides a flexible foundation for IoT edge deploy-
ments with the choice of any hardware, application
and cloud. EVE supports both virtual machines (VMs)
and containers. The orchestration of the underlying
hardware and installed software is achieved through
the open EVE API. EVE is complementary to other
LF Edge application frameworks such as EdgeX
Foundry [60] and Fledge [5]. The aim of EdgeX
Foundry is the simplification and standardisation of
the foundation for edge computing architectures in the
Industrial IoT market, while Fledge is a Kubernetes
compatible container orchestrator for edge devices.
Fledge works closely with Project EVE to provide
system and orchestration services and a container
run-time for Fledge applications and services.

Other notable open source initiatives include
KubeEdge [3], Kubefed [58] and Submariner [59].
All these solutions built upon Kubernetes and aim
to extend native containerised application orchestra-
tion capabilities to hosts at the edge of the network
by providing fundamental infrastructure support for
network, application deployment and metadata syn-
chronisation between cloud and edge. These solu-
tions provide almost similar features, however, there
exists fundamental difference in their architectures.

The KubeEdge architecture is based on a centralised
approach, where every non-cloud node joins the cen-
tralised cluster. In contrast, Kubefed and Submariner
follow a federated approach, where the non-cloud
workers formulate a sub-cluster of their own.

In the context of this paper, the above-mentioned
Infrastructure-level solutions are important and related
because MiCADO-Edge requires such solutions as
a component to access and manage fog and edge
resources. However, in comparison with MiCADO-
Edge, these are lower-level solutions in the sense
that they do not offer policy-based scaling and auto-
mated deployment of complex microservices archi-
tectures. Moreover, these solutions also lack the high
level abstraction layer for describing application and
computational resources using a standardised high-
level description language. Such an abstraction layer
improves re-usability, portability and helps in avoiding
the issue of vendor lock-in.

5.2 Application-Level Cloud-to-Edge Orchestration

This sub-section provides an overview of the most
related application-level cloud-to-edge orchestrator
solutions and compares them to the proposed
MiCADO-Edge framework.

Reference architectures At a conceptual level, several
reference architectures for fog and edge computing
have been proposed (e.g. [61] and [62]) that highlight
the necessary functional layers required for orches-
tration. While these studies provide important input
and a starting point for our work, they only present
high-level descriptions of the applied concepts and
principles, when compared to a working reference
implementation of a framework, such as MiCADO-
Edge.

Orchestration solutions with reference implementa-
tions At the level of more concrete reference imple-
mentations, there are several research efforts that con-
centrate on the orchestration of microservices for the
fog and edge layers. Notable examples include [63–
69]. These efforts typically apply Docker containers to
deliver services and utilise either Docker Swarm [63,
64] or Kubernetes for container orchestration [66].
The authors in [65] present an ad-hoc OpenStack-
based Heat Orchestration Template (HOT) service
manifest for deploying microservices to selected fog

J Grid Computing (2021) 19:47 Page 23 of 28 47

computing nodes. However, unlike MiCADO-Edge,
this solution does not support run-time management
of resources and services. The ENORM framework
[67], on the other hand, provides comprehensive
autoscaling features. However, automated deployment
of complex architectures is not supported. Moreover,
ENORM autoscaling is based on predefined policies
instead of the dynamic user defined policies supported
by MiCADO-Edge. Lastly, the solutions described
in [68] and [69] are both similar to MiCADO-
Edge as they also offer deployment, orchestration
and auto-scaling of edge resources. However, they
support orchestration only at the container level, as
opposed to the VM/container orchestration supported
by MiCADO-Edge. Moreover, these solutions are all
specific to a particular cloud environment in their pre-
sented implementations (e.g. both [68] and [69] are
implemented specifically in OpenStack and support
only specific types of applications and experimen-
tal testbeds). In comparison, MiCADO-Edge is cloud
agnostic and supports flexible application deployment
and user-defined scaling policies that are not specific
to middleware or to application type.

Offloading specific orchestration solutions While
the previously mentioned solutions concentrate on
microservice orchestration for the fog and edge layers,
there are also several orchestration solutions [70–74]
that focus primarily on offloading workloads from
edge/fog nodes to the cloud and Quality of Service
(QoS) optimisation. Foggy [71] and FORCH [73]
facilitate dynamic resource provisioning and auto-
mated application deployment in fog computing archi-
tectures. They minimise the developer effort required
to deploy, update, and maintain large-scale geo-
distributed IoT applications. However, Foggy only
seems to focus on application placements and does not
appear to support auto-scaling of applications during
run-time, while FORCH does not deal with offload-
ing or scaling of applications. Taherizadeh et al. [70]
propose a new distributed computing architecture
that performs offloading from edge to cloud nodes
and supports smart applications where IoT devices
dynamically move from one geographic location to
another. The main focus of this work is on application
offloading and in their testbed application they appear
to set up application deployment in a custom way.
Orchestration frameworks ISYMPHONY [72] and
PiCasso [74] consider orchestration in the edge layer

only, and not in the entire cloud-to-edge continuum.
Their orchestration engine component deploys ser-
vices based on the required QoS specifications and the
status of the resources of the hosting devices. These
solutions are all based on lightweight Dockerised ser-
vices and do not support virtual machine level orches-
tration. Moreover, their major focus is computation
offloading from fog/edge nodes towards the cloud, and
they do not provide automated, dynamic policy-based
scaling or full life-cycle management of intercon-
nected microservices in the way that MiCADO-Edge
does.

Table 1 presents a comparison of the aforemen-
tioned related works with MiCADO-Edge, based on
a number of attributes that are derived from require-
ments R1 to R7 presented in Section 1.2. These
attributes are more granular and make comparison
easier by focusing on a single easily identifiable char-
acteristic. The attributes are defined below. At this
point, we should emphasise that our goal has been
to design an orchestration framework that fulfils all
seven requirements with the support for the derived
attributes we present. We do not necessarily claim that
our solution is superior to all related solutions, we
merely present that MiCADO-Edge is the only solu-
tion that satisfies the requirements that emerged from
the DIGITbrain and ASCLEPIOS projects. The vari-
ous attributes used for comparison in Table 1 and their
meaning are as follows:

1. High-level abstraction layer - The support
for defining application and computational
resources using a standardised high-level
description language such as TOSCA [26] or
CAMP [75].

2. Cloud agnostic - The ability of an orchestration
solution to operate seamlessly between different
cloud platforms.

3. Multi-cloud - The support for deploying and
managing application workloads across multiple
cloud environments simultaneously.

4. Extendable cloud middle-ware support - The
support for facilitating the addition of new cloud
service providers.

5. Modular design - The flexibility in the context
of replacing parts of its implementation with a
different realisation of the same functionality.

6. Virtual Machine support - The support for
dynamically provisioning and management of

 47 Page 24 of 28 J Grid Computing (2021) 19:47

Ta
bl
e
1

C
om

pa
ra
tiv

e
su
m
m
ar
y
of

th
e
or
ch
es
tr
at
io
n
so
lu
tio

ns
in

th
e
cl
ou
d-
to
-e
dg
e
ec
os
ys
te
m

O
rc
he
st
ra
tio

n
so
lu
tio

ns

A
ttr
ib
ut
es

R
el
ev
an
t

E
no
rm

C
lo
ud
4I
oT

Z
an
ni

Fo
rc
h

B
ri
to

A
la
m

V
ill
ar
i

Fo
gg
y

IS
Y
M

PH
O
N
Y
[7
2]

Ta
he
ri
za
de
h

M
iC
A
D
O
-

re
qu
ir
em

en
ts

[6
7]

[6
9]

et
al
.[
68
]

[7
3]

et
al
.[
63
]

et
al
.[
64
]

et
al
.[
65
]

[7
1]

Pi
C
as
so

[7
4]

et
al
.[
70
]

E
dg
e

1.
H
ig
h-
le
ve
la
bs
tr
ac
tio

n
la
ye
r

R
1,

R
2

x
x

x

2.
C
lo
ud

ag
no
st
ic

R
2

x
x

x
x

x
x

x
x

3.
M
ul
ti-
cl
ou
d

R
3

x

4.
E
xt
en
da
bl
e
cl
ou

d
m
id
dl
e-

w
ar
e
su
pp
or
t

R
2,

R
3

x

5.
M
od
ul
ar

de
si
gn

R
2

x
x

x
x

6.
V
ir
tu
al
M
ac
hi
ne

su
pp
or
t

R
6

x

7.
C
on
ta
in
er

su
pp
or
t

R
6

x
x

x
x

x
x

x
x

x
x

x

8.
Se
am

le
ss

in
te
gr
at
io
n
of

no
n-

cl
ou
d
(f
og
/e
dg
e)

re
so
ur
ce
s

R
1,

R
2

x

9.
A
ut
om

at
ed

de
pl
oy
m
en
t

R
1

x
x

x
x

x
x

x
x

x
x

x

10
.R

un
-t
im

e
m
an
ag
em

en
t

R
4

x
x

x
x

x
x

x
x

x
x

x

11
.R

ec
on
fi
gu
ra
tio

n
R
4

x
x

x
x

x
x

x

12
.A

ut
o-
sc
al
in
g

R
4

x
x

x
x

x

13
.D

yn
am

ic
an
d
us
er
-d
ef
in
ed

au
to
-s
ca
lin

g
po
lic
ie
s

R
5

x

14
.S

ec
ur
ity

ha
nd
lin

g
R
7

x
x

15
.D

yn
am

ic
an
d
us
er
-d
ef
in
ed

ne
tw
or
ki
ng

an
d
se
cu
rit
y
po
lic
ie
s

R
7

x

16
.H

et
er
og
en
ei
ty

R
7

x
x

17
.F

au
lt
di
ag
no
si
s

R
7

x
x

x
x

x

18
.
A
ut
om

at
ic

re
-c
on
ne
ct
iv
ity

of
no
n-
cl
ou
d
vo
la
til
e
no
de
s

R
7

x
x

x

19
.S

up
po
rt
fo
r
st
an
da
rd
is
ed

m
on
ito

ri
ng

m
ec
ha
ni
sm

R
3,

R
4

x
x

x
x

x

J Grid Computing (2021) 19:47 Page 25 of 28 47

virtual machines, as well as the support for
the deployment and management of application
components on virtual machines (with or with-
out containerisation).

7. Container support - The support for the deploy-
ment and management of application compo-
nents through containers.

8. Seamless integration of non-cloud (fog/edge)
resources - The support for an automated method
through which an orchestrator facilitates appli-
cation owners the integration of non-cloud
(fog/edge) resources with the centralised cluster.

9. Automated deployment - The support for the
automated deployment and configuration of
applications across (multi-)cloud and non-cloud
resources.

10. Run-time management - The support for the run-
time management of applications across (multi)-
cloud and non-cloud resources.

11. Reconfiguration - The support for a method
that enables making changes to an already run-
ning application. The method can be manual,
e.g. where amendments to application topolog-
ical structure can be manually resubmitted by
the application owners, or automatic, e.g. where
migration of certain components can be made
possible based on the fulfilment of some run-
time rules.

12. Auto-scaling - The support for the automated
scaling of computational resources based on
some pre-defined elasticity policies, e.g. system
state specific rule-based scaling policies.

13. Dynamic and user-defined auto-scaling poli-
cies - The support for dynamic and complex
user-defined policies based on a large range of
system- or application-level metrics (as opposed
to the pre-defined policies in attribute 12). Such
a feature aim to enable application owners the
freedom to write their scaling policies without
any restriction in comparison to the pre-defined
scaling policies where the users are usually
restricted to provide threshold values based on
some already established criteria.

14. Security handling - The support for security
enforcement enablers that provide security guar-
antees of the overall system against different
attack scenarios in relation to the orchestration
frameworks [76].

15. Dynamic and user-defined network and security
policies - The support for user-defined network
and security policies related to their applications
at the time of deployment. Examples of such
policies could be application level port filtering
and firewall rules, TLS control, proxy settings,
secret provisioning, etc.

16. Heterogeneity - The support for the simultane-
ous use of cloud and non-cloud computational
resources that are different in terms of under-
lying hardware, architecture, and/or operating
systems.

17. Fault diagnosis - The support for detection of
system and/or application level faults at run-
time, e.g. unexpected termination of a virtual
machine due to fault in cloud provider system, an
application level un-handled run-time exception
forced to stop a container, a volatile edge node
lost connection to the centralised cluster, etc.

18. Automatic re-connectivity of non-cloud volatile
nodes - Continuous Internet connectivity can
not be guaranteed in the cloud-to-edge envi-
ronment and therefore, non-cloud workers may
lose connection to the centralised cluster. In
this regard, this attribute represents the sup-
port for the automatic re-connectivity of volatile
non-cloud workers to the centralised cluster in
case Internet connectivity is lost and then later
restored.

19. Support for standardised monitoring mechanism
- The support for gathering system-level (e.g.
cpu/memory utilisation) and application-level
metrics (e.g. number of active http requests)
from both cloud and non-cloud workers, as well
as the ability to define custom metrics for col-
lection (e.g. number of running jobs in a batch
processing application).

6 Conclusions and Future Work

This paper explored how an existing application level
cloud orchestrator can be extended to support the
cloud-to-edge computing continuum. Although spe-
cific technologies were used for the implementation
(i.e MiCADO and KubeEdge), the presented solution
is generic in the sense that the applied principles can
be utilised for other similar software solutions. More-

 47 Page 26 of 28 J Grid Computing (2021) 19:47

over, due to the highly modular nature of the imple-
mentation, any component can be easily replaced in
the future with a different implementation if neces-
sary. The capabilities of the resulting cloud-fog-edge
orchestrator were illustrated with two realistic case
studies. One of these case studies also demonstrated
how the implemented solution can be used to support
multi-cloud scenarios.

Further development of MiCADO-Edge is cur-
rently ongoing within the DIGITbrain and ASCLE-
PIOS projects. Following requirements collection,
DIGITbrain has designed the concept of a generic
platform that supports the execution of digital twin
instances that are dynamically generated from data,
model and algorithm tuples. The execution mech-
anism of the platform is based on MiCADO-Edge
and supports the automated deployment and run-time
management of digital twins throughout the cloud-
to-edge continuum. Based on the proof of concept
prototype described in this paper, MiCADO-Edge is
being developed into a production quality solution and
will also be extended on demand with specific features
required by the application experiments (e.g. support
for Windows applications and data streaming). Addi-
tionally, it is also envisaged that MiCADO-Edge will
be integrated with FIWARE [77] and more specifically
with its context broker in order to further facilitate
and automate the connection of various edge and fog
nodes to the orchestrator. In parallel, ASCLEPIOS is
concentrating on specific security requirements raised
by healthcare application scenarios. In this context,
MiCADO-Edge should facilitate the deployment and
management of application microservices that are exe-
cuted in Trusted Execution Environments, such as
Intel SGX. Therefore, integration of MiCADO with
such deployment mechanisms is currently ongoing.

Acknowledgements This work was funded by the follow-
ing projects: ASCLEPIOS – Advanced Secure Cloud Encrypted
Platform for Internationally Orchestrated Solutions in Health-
care – project, No. 826093, European Commission (EUH2020);
DIGITbrain - Digital twins bringing agility and innovation to
manufacturing SMEs, by empowering a network of DIHs with
an integrated digital platform that enables Manufacturing as
a Service – project, No. 952071, European Commission (EU
H2020).

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to

the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated oth-
erwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

References

1. Gartner forecasts worldwide public cloud revenue to
grow 17% in 2020 (2019). https://www.gartner.com/
en/newsroom/press-releases/2019-11-13-gartner-forecasts-
worldwide-public-cloud-revenue-to-grow-17-percent-in-2020,
Accessed 5 Oct 2020

2. Marston, S., Li, Z., Bandyopadhyay, S., Ghalsasi, A.: Cloud
computing - the business perspective. In: 2011 44th Hawaii
International Conference on System Sciences, pp. 1–11
(2011)

3. Kubeedge (2020). https://kubeedge.io/en/, Accessed 4 Oct
2020

4. Project eve (2020). https://www.lfedge.org/projects/eve/,
Accessed 4 Oct 2020

5. Goethals, T., De Turck, F., Volckaert, B.: Fledge: Kuber-
netes compatible container orchestration on low-resource
edge devices. In: Internet of vehicles : technologies and
services toward smart cities, 6th International Conference,
IOV 2019, Proceedings, pp. 174–189. Springer (2020)

6. Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali,
F., Niakanlahiji, A., Kong, J., Jue, J.P.: All one needs to
know about fog computing and related edge computing
paradigms: A complete survey. J. Syst Architect. 98, 289–
330 (2019). https://doi.org/10.1016/j.sysarc.2019.02.009

7. Mercer, D.: Global connected and iot device forecast
update. https://www.strategyanalytics.com/access-services/
devices/connected-home/consumer-electronics/reports/report-
detail/global-connected-and-iot-device-forecast-update (2019)

8. Columbus, L.: Roundup of internet of things forecasts and
market estimates, 2016. Forbes Magazine. https://www.
forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-int
ernet-of-things-forecasts-and-market-estimates-2016/#6a5
58beb292d (2016)

9. The growth in connected iot devices is expected to
generate 79.4zb of data in 2025, according to a
new idc forecast (2019). https://www.idc.com/getdoc.jsp?
containerId=prUS45213219

10. IEEE standard for adoption of openfog reference architec-
ture for fog computing. IEEE Std 1934-2018, pp. 1–176
(2018)

11. Kubernetes : Production-grade container orchestration
(2020). https://kubernetes.io/, Accessed 4 Oct 2020

12. Docker swarm (2020). https://docs.docker.com/engine/
swarm/, Accessed 4 Oct 2020

13. Apache brooklyn (2020). http://brooklyn.apache.org/,
Accessed 4 Oct 2020

14. Cloudify orchestration platform - multi cloud, cloud native
& edge (2020). https://cloudify.co/, Accessed 4 Oct 2020

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020
https://kubeedge.io/en/
https://www.lfedge.org/projects/eve/
https://doi.org/10.1016/j.sysarc.2019.02.009
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-internet-of-things-forecasts-and-market-estimates-2016/#6a558beb292d
https://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-internet-of-things-forecasts-and-market-estimates-2016/#6a558beb292d
https://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-internet-of-things-forecasts-and-market-estimates-2016/#6a558beb292d
https://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-internet-of-things-forecasts-and-market-estimates-2016/#6a558beb292d
https://www.idc.com/getdoc.jsp?containerId=prUS45213219
https://www.idc.com/getdoc.jsp?containerId=prUS45213219
https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
http://brooklyn.apache.org/
https://cloudify.co/

J Grid Computing (2021) 19:47 Page 27 of 28 47

15. Cloudiator (2020). http://cloudiator.org/, Accessed 4 Oct
2020

16. Alien 4 cloud (2020). https://alien4cloud.github.io/,
Accessed 4 Oct 2020

17. Modaclouds multi-cloud devops alliance: Modaclouds
releases multi-cloud devops toolbox (2020). http://
multiclouddevops.com/, Accessed 4 Oct 2020

18. Micadoscale (2020). https://micado-scale.eu/, Accessed 4
Oct 2020

19. Amazon: Aws cloudformation: Speed up cloud provision-
ing with infrastructure as code. https://aws.amazon.com/
cloudformation/, Accessed 18 Oct 2020 (2020)

20. OpenStack: Openstack orchestration. https://wiki.
openstack.org/wiki/Heat, Accessed 18 Oct 2020 (2020)

21. Azure resource manager (arm) templates (2020). https://
docs.microsoft.com/en-us/azure/azure-resource-manager/
templates/overview, Accessed 19 Oct 2020

22. Google cloud depyment manager (2020). https://cloud.
google.com/deployment-manager, Accessed 19 Oct 2020

23. Ghobaei-Arani, M., Souri, A., Rahmanian, A.A.: Resource
management approaches in fog computing: a comprehen-
sive review. J. Grid Comput, 1–42 (2019)

24. Digitbrain h2020 project (2020). https://digitbrain.eu/,
Accessed 4 Oct 2020

25. Asclepios eu h2020 project (2020). https://www.
asclepios-project.eu/, Accessed 4 Oct 2020

26. Oasis topology and orchestration specification for cloud
applications (2020). www.oasis-open.org/committees/
tosca, Accessed 4 Oct 2020

27. Pierantoni, G., Kiss, T., Terstyanszky, G., DesLauriers, J.,
Gesmier, G., Dang, H.-V.: Describing and processing topol-
ogy and quality of service parameters of applications in the
cloud. J. Grid Comput., 1–18 (2020)

28. Cola - cloud orchestration at the level of application, h2020
eu project (2020). https://project-cola.eu/, Accessed 4 Oct
2020

29. DesLauriers, J., Kiss, T., Ariyattu, R.C., Dang, H.-V., Ullah,
A., Bowden, J., Krefting, D., Pierantoni, G., Terstyánszky,
G.: Cloud apps to-go: Cloud portability with tosca and
micado. Concurrency and Computation: Practice and Expe-
rience, Accepted (2020)

30. Kiss, T., Kacsuk, P., Kovács, J., Rakoczi, B., Hajnal,
Á., Farkas, A., Gesmier, G., Terstyánszky, G.: Micado
- microservice-based cloud application-level dynamic
orchestrator. Fut. Gener. Comput. Syst. 94, 937–946 (2019)

31. Kiss, T., DesLauriers, J., Gesmier, G., Terstyánszky, G.,
Pierantoni, G., Oun, O.A., Taylor, S.J.E., Anagnostou, A.,
Kovács, J.: A cloud-agnostic queuing system to support
the implementation of deadline-based application execution
policies. Future Gener. Comput. Syst. 101, 99–111 (2019).
https://doi.org/10.1016/j.future.2019.05.062

32. Kovács, J., Kacsuk, P.: Occopus: a multi-cloud orchestrator
to deploy and manage complex scientific infrastructures. J.
Grid Comput. 16(1), 19–37 (2018)

33. Terraform (2020). www.terraform.io, Accessed 4 Oct 2020
34. Docker (2020). www.docker.com, Accessed 4 Oct 2020
35. Prometheus (2020). https://prometheus.io/, Accessed 4 Oct

2020
36. Kovács, J.: Supporting programmable autoscaling rules for

containers and virtual machines on clouds. J. Grid Comput.
17(4), 813–829 (2019)

37. Ansible documentation (2020). https://docs.ansible.com/
ansible/latest/index.html, Accessed 19 Oct 2020

38. Micado - autoscaling framework for docker services
on cloud (2020). https://github.com/micado-scale/
ansible-micado/tree/edge, Accessed 19 Oct 2020

39. Oasis (2020). https://www.oasis-open.org/, Accessed 30
Oct 2020

40. Openstack parser (2020). https://github.com/openstack/
tosca-parser, Accessed 4 Oct 2020

41. Kubeedge (2020). https://github.com/kubeedge/kubeedge,
Accessed 19 Oct 2020

42. Wang, N., Matthaiou, M., Nikolopoulos, D.S., Varghese,
B.: Dyverse: Dynamic vertical scaling in multi-tenant edge
environments. Future Generation Computer Systems (2020)

43. McChesney, J., Wang, N., Tanwer, A., de Lara, E., Vargh-
ese, B.: Defog: fog computing benchmarks. In: Proceedings
of the 4th ACM/IEEE Symposium on Edge Computing,
pp. 47–58 (2019)

44. Dyverse - dynamic vertical scaling in multi-tenant
edge environments (2020). https://github.com/qub-blesson/
DYVERSE, Accessed 19 Oct 2020

45. Real time face detection (fd) demo application (2020).
https://github.com/UoW-CPC/DYVERSE, Accessed 19
Oct 2020

46. Micado tosca adt repository (2020). https://github.com/
micado-scale/tosca/tree/develop/ADT/edge-fog, Accessed
19 Oct 2020

47. Ullah, A.: Towards a novel biologically-inspired cloud elas-
ticity framework. Ph.D. Thesis, University of Stirling, UK
(2017)

48. Costan, V., Devadas, S.: Intel sgx explained. IACR Cryptol.
ePrint Arch. 2016(86), 1–118 (2016)

49. Sweeney, L.: k-anonymity: A model for protecting privacy.
Int. J. Uncertain. Fuzz. Knowl.-Based Syst. 10(05), 557–
570 (2002)

50. Beier, M., Jansen, C., Mayer, G., Penzel, T., Rodenbeck,
A., Siewert, R., Witt, M., Wu, J., Krefting, D.: Multicenter
data sharing for collaboration in sleep medicine. Fut. Gener.
Comput. Syst. 67, 466–480 (2017)

51. Beier, M., Penzel, T., Krefting, D.: A performant web-
based visualization, assessment and collaboration tool for
multidimensional biosignals. Front. Neuroinform. 13, 65
(2019)

52. Bakas, A., Michalas, A.: Power range: Forward private
multi-client symmetric searchable encryption with range
queries support (2020)

53. Sabt, M., Achemlal, M., Bouabdallah, A.: Trusted execu-
tion environment: what it is, and what it is not. In: 2015
IEEE Trustcom/BigDataSE/ISPA, vol. 1, pp. 57–64, IEEE
(2015)

54. Asclepios adt repository (2020). https://github.com/
micado-scale/tosca/tree/asclepios/ADT/sleep, Accessed 19
Oct 2020

55. Amazon greengrass (2020). https://aws.amazon.com/
greengrass/, Accessed 4 Oct 2020

56. Microsoft azure iot (2020). https://azure.microsoft.com/
en-gb/overview/iot/, Accessed 4 Oct 2020

57. Google cloud iot (2020). https://cloud.google.com/iot-core,
Accessed 4 Oct 2020

58. Kubernetes federation project (2020). https://github.com/
kubernetes-sigs/kubefed, Accessed 4 Oct 2020

http://cloudiator.org/
https://alien4cloud.github.io/
http://multiclouddevops.com/
http://multiclouddevops.com/
https://micado-scale.eu/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://wiki.openstack.org/wiki/Heat
https://wiki.openstack.org/wiki/Heat
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://cloud.google.com/deployment-manager
https://cloud.google.com/deployment-manager
https://digitbrain.eu/
https://www.asclepios-project.eu/
https://www.asclepios-project.eu/
www.oasis-open.org/committees/tosca
www.oasis-open.org/committees/tosca
https://project-cola.eu/
https://doi.org/10.1016/j.future.2019.05.062
www.terraform.io
www.docker.com
https://prometheus.io/
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://github.com/micado-scale/ansible-micado/tree/edge
https://github.com/micado-scale/ansible-micado/tree/edge
https://www.oasis-open.org/
https://github.com/openstack/tosca-parser
https://github.com/openstack/tosca-parser
https://github.com/kubeedge/kubeedge
https://github.com/qub-blesson/DYVERSE
https://github.com/qub-blesson/DYVERSE
https://github.com/UoW-CPC/DYVERSE
https://github.com/micado-scale/tosca/tree/develop/ADT/edge-fog
https://github.com/micado-scale/tosca/tree/develop/ADT/edge-fog
https://github.com/micado-scale/tosca/tree/asclepios/ADT/sleep
https://github.com/micado-scale/tosca/tree/asclepios/ADT/sleep
https://aws.amazon.com/greengrass/
https://aws.amazon.com/greengrass/
https://azure.microsoft.com/en-gb/overview/iot/
https://azure.microsoft.com/en-gb/overview/iot/
https://cloud.google.com/iot-core
https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed

 47 Page 28 of 28 J Grid Computing (2021) 19:47

59. Submariner, connected kubernetes overlay networks
(2020). https://github.com/submariner-io/submariner,
Accessed 4 Oct 2020

60. Edgex foundry (2020). https://www.edgexfoundry.org,
Accessed 4 Oct 2020

61. Ostberg, P., Byrne, J., Casari, P., Eardley, P., Anta, A.F.,
Forsman, J., Kennedy, J., Le Duc, T., Marino, M.N.,
Loomba, R., Lopez Pena, M.A., Veiga, J.L., Lynn, T., Man-
cuso, V., Svorobej, S., Torneus, A., Wesner, S., Willis,
P., Domaschka, J.: Reliable capacity provisioning for dis-
tributed cloud/edge/fog computing applications. In: 2017
European Conference on Networks and Communications
(EuCNC), pp. 1–6 (2017)

62. Velasquez, K., Abreu, D.P., Gonçalves, D., Bittencourt, L.,
Curado, M., Monteiro, E., Madeira, E.: Service orches-
tration in fog environments. In: 2017 IEEE 5th Interna-
tional Conference on Future Internet of Things and Cloud
(FiCloud), pp. 329–336 (2017)

63. de Brito, M.S., Hoque, S., Magedanz, T., Steinke, R., Will-
ner, A., Nehls, D., Keils, O., Schreiner, F.: A service orches-
tration architecture for fog-enabled infrastructures. In: 2017
Second International Conference on Fog and Mobile Edge
Computing (FMEC), pp. 127–132 (2017)

64. Alam, M., Rufino, J., Ferreira, J., Ahmed, S.H., Shah,
N., Chen, Y.: Orchestration of microservices for iot using
docker and edge computing. IEEE Commun. Mag. 56(9),
118–123 (2018)

65. Villari, M., Celesti, A., Tricomi, G., Galletta, A., Fazio,
M.: Deployment orchestration of microservices with geo-
graphical constraints for edge computing. In: 2017 IEEE
Symposium on Computers and Communications (ISCC),
pp. 633–638 (2017)

66. Pahl, C., Helmer, S., Miori, L., Sanin, J., Lee, B.: A
container-based edge cloud paas architecture based on rasp-
berry pi clusters. In: 2016 IEEE 4th International Confer-
ence on Future Internet of Things and Cloud Workshops
(FiCloudW), pp. 117–124 (2016aug)

67. Wang, N., Varghese, B., Matthaiou, M., Nikolopoulos, D.:
Enorm: A framework for edge node resource management.
IEEE Trans. Serv. Comput. PP (2017)

68. Zanni, A., Forsstrom, S., Jennehag, U., Bellavista, P.: Elas-
tic provisioning of internet of things services using fog

computing: An experience report. In: 2018 6th IEEE Inter-
national Conference on Mobile Cloud Computing, Ser-
vices, and Engineering (MobileCloud), pp. 17–22 (2018)

69. Pizzolli, D., Cossu, G., Santoro, D., Capra, L., Dupont, C.,
Charalampos, D., De Pellegrini, F., Antonelli, F., Cretti,
S.: Cloud4iot: A heterogeneous, distributed and autonomic
cloud platform for the iot, pp. 476–479 (2016)

70. Taherizadeh, S., Stankovski, V., Grobelnik, M.: A capil-
lary computing architecture for dynamic internet of things:
Orchestration of microservices from edge devices to fog
and cloud providers. Sensors 18 (2018)

71. Yigitoglu, E., Mohamed, M., Liu, L., Ludwig, H.: Foggy:
A framework for continuous automated iot application
deployment in fog computing. In: 2017 IEEE International
Conference on AI Mobile Services (AIMS), pp. 38–45
(2017)

72. Yigitoglu, E., Liu, L., Looper, M., Pu, C.: Distributed
orchestration in large-scale iot systems. In: 2017 IEEE
International Congress on Internet of Things (ICIOT),
pp. 58–65 (2017)

73. Davoli, G., Borsatti, D., Tarchi, D., Cerroni, W.: Forch:
An orchestrator for fog computing service deployment. In:
2020 IFIP Networking Conference (Networking), pp. 677–
678 (2020)

74. Lertsinsrubtavee, A., Ali, A., Molina-Jimenez, C., Sathi-
aseelan, A., Crowcroft, J.: Picasso: A lightweight edge
computing platform. In: 2017 IEEE 6th International Con-
ference on Cloud Networking (CloudNet), pp. 1–7 (2017)

75. Cloud application management for platforms version
1.1 (2020). http://docs.oasis-open.org/camp/camp-spec/v1.
1/camp-spec-v1.1.html, Accessed 1 Feb 2020

76. Paladi, N., Michalas, A., Dang, H.-V.: Towards secure cloud
orchestration for multi-cloud deployments. In: Proceed-
ings of the 5th Workshop on CrossCloud Infrastructures &
Platforms, pp. 1–6 (2018)

77. Fiware: The open source platform for our smart digital fu-
ture (2020). https://www.fiware.org/, Accessed 19 Oct 2020

Publisher’s Note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and institu-
tional affiliations.

https://github.com/submariner-io/submariner
https://www.edgexfoundry.org
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.html
https://www.fiware.org/

	MiCADO-Edge: Towards an Application-level Orchestrator for the Cloud-to-Edge...
	Abstract
	Introduction
	Background and Motivation
	Requirements and Contributions

	MiCADO Framework
	Multi-Level Orchestration for Cloud-To-Edge Ecosystem: MiCADO-Edge
	Architecture
	Integration of Non-Cloud Resources to the Centralised Cluster
	Description of Non-Cloud Nodes and Application Components - TOSCA ADT Enhancements
	Automated deployment and run-time management of microservices on non-cloud nodes
	Deployment of Microservices on Edge Nodes
	Collecting Monitoring Information from Non-Cloud Nodes
	Run-time Management

	Case Studies and Results
	Real-time Face Detection
	Experimental Setup
	ADT and Deployment (Requirements R1 and R6)
	User-Defined Auto-Scaling Policy (Requirements R4 and R5)
	Computational Results

	Sleep Healthcare: a Case Study for Multi-Cloud Usage
	Sleep Healthcare
	Multi-cloud Sleep Healthcare Test-bed Setup
	Multi-cloud Sleep Healthcare ADT
	Multi-cloud Sleep Healthcare Deployment & Results

	Related Work
	Infrastructure-Level Solutions to Access the Fog and Edge Layers
	Cloud vendor specific propriety solutions
	Open source cloud agnostic solutions

	Application-Level Cloud-to-Edge Orchestration
	Reference architectures
	Orchestration solutions with reference implementations
	Offloading specific orchestration solutions

	Conclusions and Future Work
	References

