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Abstract 

Background: Chlamydia-like organisms (CLO) have been found to be present in many environmental niches, includ-
ing human sewage and agricultural run-off, as well as in a number of aquatic species worldwide. Therefore, monitor-
ing their presence in sentinel wildlife species may be useful in assessing the wider health of marine food webs in 
response to habitat loss, pollution and disease. We used nasal swabs from live (n = 42) and dead (n = 50) pre-weaned 
grey seal pups and samples of differing natal substrates (n = 8) from an off-shore island devoid of livestock and per-
manent human habitation to determine if CLO DNA is present in these mammals and to identify possible sources.

Results: We recovered CLO DNA from 32/92 (34.7%) nasal swabs from both live (n = 17) and dead (n = 15) seal pups 
that clustered most closely with currently recognised species belonging to three chlamydial families: Parachlamy-
diaceae (n = 22), Rhabdochlamydiaceae (n = 6), and Simkaniaceae (n = 3). All DNA positive sediment samples (n = 7) 
clustered with the Rhabdochlamydiaceae. No difference was found in rates of recovery of CLO DNA in live versus dead 
pups suggesting the organisms are commensal but their potential as opportunistic secondary pathogens could not 
be determined.

Conclusion: This is the first report of CLO DNA being found in marine mammals. This identification warrants further 
investigation in other seal populations around the coast of the UK and in other areas of the world to determine if 
this finding is unique or more common than shown by this data. Further investigation would also be warranted to 
determine if they are present as purely commensal organisms or whether they could also be opportunistic pathogens 
in seals, as well as to investigate possible sources of origin, including whether they originated as a result of anthropo-
genic impacts, including human waste and agricultural run-off.
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Background
Environmental contamination of coastal land and inshore 
waters is commonly associated with municipal waste, 
sewage and agricultural run-off, and several studies 
have shown that marine wildlife can become infected 
with bacterial organisms of terrestrial origin [1–3]. As a 
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top-tier aquatic predator and inhabitant of inshore eco-
systems shared by man, grey seals (Halichoerus grypus) 
can act as a potential environmental sentinel for humans 
and the wider health of marine food webs in response to 
habitat loss, pollution and disease [4]. Chlamydia-like 
organisms (CLO; also known as Chlamydia-related bac-
teria) are obligate intracellular bacteria that have been 
associated with pneumonia and adverse reproductive 
outcomes in humans [5–7] and have also been recog-
nized as respiratory pathogens in fish affecting aquacul-
ture around the globe [5, 8–10]. Studies have also shown 
an association of CLOs with free-living amoeba present 
in salt and fresh water [11, 12], suggesting that they may 
be a reservoir for transmission to other aquatic species. 
Other studies have revealed a high prevalence of CLO 
in ruminant species, particularly cattle, suggesting that 
they are ubiquitous in the environment and possibly act 
as commensals that may become abortigenic pathogens 
under certain conditions [13–18].

The aim of this study was to determine whether any 
CLO DNA could be detected in the nasal cavities of pre-
weaned grey seal pups and their differing natal substrates 
in a breeding colony on an island (Isle of May; 56.18° N 
2.55° W), just off the coast of Edinburgh, in Scotland, in 
the UK as a preliminary speculative investigation to see if 
CLOs are present. To this end, pre-existing samples that 
had been collected as part of a PhD project investigating 
pathology in this seal population were investigated in this 
study [19].

Results
In this study, PCR fragments of CLO DNA extracted 
from 92 nasal swab samples obtained from live (CL, 
n = 42) and dead (CD, n = 50) seal pups found on the 
island in the three main breeding areas were sequenced. 
These breeding areas were located in sites differing 
widely in substrate, which were also sampled, and DNA 
extracted for PCR analysis. The substrates sampled in 
the three areas were from tidal boulder beach at Pilgrim’s 
Haven (TBB, n = 3), a muddy grassy slope at Tarbet Slope 
(MGS, n = 3), and a rocky stagnant pool at Rona Rocks 
(RSP, n = 2) (Fig. 1). Good quality sequence information 
was obtained successfully for 32 (CL; n = 17, CD; n = 15) 
of the 92 (34.7%) nasal swab samples tested (sequences 
submitted to GenBank under accession numbers 
KT258813-KT258862) and for seven of the eight (77.7%) 
environmental sediment samples tested (GenBank acces-
sion numbers KT258863-KT258870); amplified products 
ranged in size from 261 bp to 277 bp. There was no sig-
nificant difference in recovery rates of CLO DNA from 
nasal swabs from CL versus CD seal pups (p = 0.41).

All CLO DNA positive nasal swab samples, except ten, 
grouped closely with members of the Parachlamydiaceae 

cluster following BLAST analysis (Fig. 2). The remaining 
sequences grouped into three clusters (Fig. 2); three most 
closely with the Simkaniaceae (CD21, CL49 and CL66) 
and six with the Rhabdochlamydiaceae (CD15, CL16, 
CD17, CD41, CD49 and CL60), which also contained all 
of the seven positive sediment samples. The remaining 
sample, nasal swab CD37, appeared distinct compared to 
all the other samples and grouped most closely with the 
Candidatus (Ca.) Clavichlamydiaceae and Ca. Amphibi-
ichlamydiaceae families, which are associated with CLO 
found in aquatic species [9, 21].

Discussion
To our knowledge, this is the first report of Chlamydia-
like organisms in any marine mammal, perhaps surpris-
ing given the abundant and diverse nature of Chlamydiae 
present in the environment [22, 23], marine sediment 
[24], marine fish that grey seals are known to eat [5, 8, 
9, 25], freshwater turtles [26] and also livestock [15, 17] 
with inevitable run-off from agricultural land into coastal 
waters [1]. Given that grey seals spend most of their lives 
at sea, but come ashore and form dense colonies, princi-
pally to moult, breed and give birth [27], the potential for 
CLO to circulate between them and their environment 
during these times may signify an important but, as yet, 
unrecognized mode of transmission and dissemination 
for these bacteria. However, as the sampling site for this 
work was an island 8 km offshore from the Scottish main-
land and the animals sampled were pre-weaned pups that 
had not been to sea, this raises questions of how the CLO 
were transported to and maintained on an island devoid 
of livestock and where two of the main sites (Tarbet Slope 
and Rona Rocks in Fig. 1) are sufficiently far from the sea 
that they are well above the highest tidal zone.

Rhabdochlamydiaceae accounted for the DNA of CLO 
in all the sediment samples and are frequently associ-
ated with arthropods [28–32] which are abundant on the 
island due to nesting seabirds, which carry Ixodes uriae, 
and there is an abundance of rabbits and mice that would 
maintain any Ixodes ricinus introduced when livestock 
were on the island during the 19th and early 20th Centu-
ries. Nasal swabs from six grey seal pups contained Rhab-
dochlamydiaceae DNA suggesting the latter may simply 
be environmental contamination due to inhalation of, or 
nasal immersion by the pup in, the underlying substrate. 
DNA sequences from a further three samples (CL66, 
CL49 and CD21) formed a distinct clade, clustering with 
both Rhabdochlamydiaceae and Simkaniaceae (genus 
Ca. Syngnamydia) species, the latter also being associ-
ated with epitheliocystis in fish [33–35], and suggesting 
increased diversity and perhaps an as yet undefined new 
family of related organisms.
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The majority of the sequences obtained from seal 
pups with nasal swabs positive for CLO clustered most 
closely with Parachlamydiaceae species, forming sepa-
rate and distinct clades perhaps representing new diver-
sity and new family lineages. However, these sequences 
were distinct from those obtained from the limited 

number of sediment samples, suggesting that they could 
be commensal in the upper respiratory tract of grey seals. 
Parachlamydia species were initially described as endos-
ymbionts of Acanthamoeba [11]. They have been identi-
fied in amoeba derived from a diverse range of sources, 
including sewage sludge, water treatment plants, fresh 

Fig. 1 Map of Isle of May and location of seal breeding areas. Map showing the locations of the three main pupping sites (grey circles), where 
live grey seal pups (CL) were sampled, each comprised of a highly different substrate; a tidal boulder beach (Pilgrim’s Haven), a muddy grassy 
slope (Tarbet Slope) and rocky stagnant pools (Rona Rocks). Red circles represent locations where sampled dead grey seal pups were found. This 
illustration was computer generated using the R software environment for statistical computing and graphics [20]

(See figure on next page.)
Fig. 2 PhyML tree demonstrating the relationship between the DNA of chlamydial organisms isolated from the nasal cavities of live (CL, n = 17, in 
blue) and dead (CD, n = 15, in red) seal pups and three different associated substrates (tidal boulder beach [TBB, n = 3, in magenta], muddy grassy 
slope [MGS, n = 3, in green] and rocky stagnant pools [RSP, n = 1, in maroon]) on the Isle of May in Scotland, with known chlamydial species in the 
NCBI public database. Chlamydial Families are indicated to the right of the figure. Note there was no partitioning between live or dead seal with 
respect to the CLO species DNA recovered and all sediment samples contained Rhabdochlamydiaceae DNA which was present in nasal swabs from 
only six grey seal pups
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Fig. 2 (See legend on previous page.)
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and salt water environments [16, 23], as well as being 
successfully isolated from them [12, 36]. It is this resist-
ance to digestion by amoeba that provides a possible 
aquatic reservoir for transmission of CLO to a variety 
of aquatic species. Therefore, it would not be unreason-
able to speculate that transmission to the adult seals 
is via this route direct from sea water or via their diet. 
Furthermore, we have previously shown that DNA from 
these organisms can be detected in bulk milk tank sam-
ples taken from dairy cows [13], so this could also then 
suggest that milk is a possible natural route of transmis-
sion from adults to the pre-weaned pups, but this would 
require investigation.

Although CLO species from the Parachlamydiaceae 
family are ubiquitous in both fresh water and marine 
environments, they are also known to be pathogenic 
causing human adult and neonatal respiratory disease 
[5]. Additionally, it has been suggested they have the 
capacity to cross the human placenta and infect the foe-
tus [5] and are proposed abortifacients in cattle [15, 17]. 
The pathogenicity in seals remains unknown despite 
comprehensive necropsies carried out on the dead seals 
sampled in this study for which the cause of death was 
attributed to starvation, omphalitis-peritonitis, septicae-
mia, stillbirth and trauma [19]. In this study, the lack of 
difference in CLO DNA recovery rates from live versus 
dead seals suggests they are commensal, although Para-
chlamydia spp. may have the potential to be opportun-
istic pathogens in conjunction with co-factors such as 
environmental stressors, exposure to pollutants, pau-
city of food and/or as a result of co-infection with other 
known pathogens.

Chlamydiaceae family members of the Chlamydiales 
order are well established pathogens causing disease 
in their human and animal hosts [37], including fish 
[5, 8]. Ca. Piscichlamydia salmonis and Ca. Clavichla-
mydia salmonicola are now regarded as etiological 
agents in complex gill disease in both salt and fresh 
water farmed salmonids [5, 8, 25]. Given the above, it 
is possible that such pathogenic potential could also 
be extended to the novel Parachlamydiales species 
identified through this work. Therefore, the relatively 
high frequency of CLO in the nasal cavities of grey seal 
pups justifies further investigation in cases of respira-
tory and reproductive diseases. However, such investi-
gations would need to be targeted, due to the specific 
requirements for the recovery and identification of 
these organisms, as they will not be detected using the 
standard diagnostic bacteriological techniques cur-
rently employed by EU based marine mammal strand-
ing schemes [38].

As humans and animals share health risks from chang-
ing environments, further studies are warranted to 

improve our understanding of the incidence and patho-
genic potential of these organisms in both humans and 
in sentinel animals such as the grey seals in this study. 
Even more so, as the latter are exposed to marine and 
coastal environments directly, and to agricultural and 
urban locations due to run-off through watercourses and 
discharge of resultant effluent from sewage treatment 
plants. Such studies should include further molecular 
epidemiological evaluation, as well as detailed histologic/
immunohistochemical investigation of archival and pro-
spective tissue samples to determine if these organisms 
are lesion-associated. To determine any disease causa-
tion, it will be important to recover live organisms using 
established amoebal co-culture techniques and conduct 
specific challenge studies.

Conclusions
This study has identified the presence of 16S rDNA 
of CLOs on nasal swabs taken from pre-weaned grey 
seal pups, as well as from their natal substrates. The 
sequences clustered with three Parachlamydiaceae fami-
lies that are found in other aquatic species and which 
have been associated with various pathologies. The iden-
tification of CLO DNA in these animals before they go 
to sea indicates a probable direct acquisition from the 
mothers, diet or natal substrate, and may be indicative of 
a wide occurrence of these organisms in both aquatic and 
land environments resulting from environmental pollu-
tion due to anthropogenic activities such as sewage dis-
charge and agricultural run-off. However, grey seals from 
the Isle of May forage over large areas visiting the coastal 
communities of other countries where they could dis-
seminate CLO from the UK or acquire those originating 
in other countries.

Methods
Sample Collection
Between October and December 2011, nasal swabs 
(346C, Sterilin, Newport, UK) were taken from live 
(CL, n = 42) and dead (CD, n = 50) pups, approximately 
28 days old on average, along with sediment samples 
(n = 8) from three main sites on the island populated by 
the breeding seals and where the CL pups were located 
(Fig.  1). The sediment samples were taken from three 
very different substrates: tidal boulder beach (TBB, n = 3) 
at Pilgrim’s Haven (56.1815° N 2.5511° W); muddy grassy 
slope (MGS, n = 3) at Tarbet Slope (56.19° N 2.5621° 
W); and rocky stagnant pools (RSP, n = 2) at Rona Rocks 
(56.1909° N 2.5618° W). Swabs were placed immediately 
into universal transport medium (UTM, Sterilin, New-
port, UK) for transport back to the laboratory, stored ini-
tially at 4 °C and frozen at −80 °C within 12 h of collection 
for downstream processing and analysis.
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Sample extraction
Thawed swabs were placed in a sonicating bath for 
30s and then centrifuged at 2000 x g for 10 min at 4 °C. 
Nucleic acids were extracted from nasal swab superna-
tants using a NorDiagViral NA Arrow automated extrac-
tion robot (Isogen Life Science, De Meern, Netherlands) 
and from sediment samples using a Power Soil DNA iso-
lation kit (Qiagen, Manchester, UK), in accordance with 
manufacturers’ instructions.

PCR, cloning and sequencing
A Pan-Chlamydiales/Parachlamydiales ‘touch down’ 
PCR targeting the 16S rRNA gene was performed using 
primers CHL16SFOR2 [5′-GTG GAT GAG GCA TGC 
AAG TCGA-3′] and CHL16SREV2 [5′-CAA TCT CTC 
AAT CCG CCT AGA CGT CTTAG-3′], as previously 
described [39], to generating amplicons of approximately 
260 bp. Negative-control reactions contained DNA-free 
water in place of extracted DNA. Each reaction included 
25 μl of PCR BioMix buffer (BIO-25012, London UK), 
5 μl of extracted DNA and 2.5 μl of each primer (0.5 pmol 
final concentration) made up to a final volume of 50 μl in 
water. Amplified products were electrophoresed on a 2% 
agarose gel, gel purified (GeneJET PCR purification Kit, 
Thermo Fisher Scientific, Loughborough, UK), ligated 
into general cloning vector pGEMT-Easy (Promega 
UK Ltd., Southampton, UK) and transformed into NEB 
5-alpha Competent Subcloning Efficiency E. coli cells 
(New England BioLabs, Hitchin, UK). Successfully trans-
formed cells were selected by ampicillin resistance and 
blue–white colony selection, according to standard pro-
cedures. The insertion of PCR products (as determined 
by an increase in fragment size following gel electro-
phoresis) was confirmed by colony PCR using univer-
sal sequencing primers T7 and SP6. Plasmid DNA was 
prepared from each clone (QIAprep Spin Miniprep Kit, 
Qiagen, UK) and sequenced on an ABI 3730xl DNA Ana-
lyzer (MWG Operon, Ebersberg, Germany) using T7 and 
SP6 universal sequencing primers.

Sequence analysis
For each sample which yielded sequence informa-
tion, paired reads were trimmed (DNASTAR Lasergene 
SeqMan Pro software, DNASTAR, Inc., USA) to gen-
erate a single consensus sequence and aligned to a rep-
resentative set of 45 Chlamydiales/Parachlamydiales 
16S rDNA sequences identified by BLAST analysis; 
plus an out-group of eight non-Chlamydiales sequences 
(broad representatives of the bacterial kingdom includ-
ing the closely related Verrucomicrobia species) (Fig. 2). 
Using RFold as the structure predictor [40] and R-Cof-
fee Instance for alignment [41], a PhyML inference tree 

was estimated (midpoint rooted tree; settings: substitu-
tion model general time reversible + gamma (GTR + G); 
100 bootstrap runs) using the PhyML program launched 
from the TOPALi v2 package [42].

Statistical analyses
Rates of recovery of CLO DNA from nasal swabs between 
CL and CD seal pups were compared by the Chi-squared 
test with Yates’ continuity correction using R version 
3.6.3 [20]. Statistical significance was set at p ≤ 0.05.
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