
The Teallach Tool:
Using Models for Flexible User Interface Design

Peter J. Barclay2, Tony Griffiths1, Jo McKirdy3 , Norman W. Paton1, Richard
Cooper3, Jessie Kennedy2

1Department of Computer Science, University of Manchester,
Oxford Road, Manchester M13 9PL, UK.
Email: { griffitt, norm } @cs.man.ac.uk

2Department of Computing Studies, Napier University,
Canal Court, 42 Craiglockhart Avenue, Edinburgh EH14 1LT, UK.
Email: { pjb, jessie} @dcs.napier.ac.uk

3Department of Computing Science, University of Glasgow,
Glasgow G12 8QQ, UK.
Email: { jo, rich} @dcs.gla.ac.uk

http://www.dcs.gla.ac.uk/research/teallach/

Abstract Model-based user interface development environments aim to provide
designers with a more systematic approach to user interface development
using a particular design method. This method is realised through tools which
support the construction and linkage of the supported models. This paper
presents the tools which support the construction of the Teallach models in the
context of the Teallach design method. Distinctive features of the Teallach
tool include comprehensive facilities for relating the different models, and the
provision of a flexible design method in which models can be constructed and
related by designers in different orders and in different ways.

1. INTRODUCTION

The development and maintenance of user interface software is
challenging. Although interface development environments provide facilities
that allow individual components within an interface to be constructed
without recourse to programming, the behaviour of user interfaces is

The Teallach Tool

generally implemented by complex, hand crafted software systems.
Although design patterns can be used to provide an organisational
framework for interface software, it is still the case that user interface
software is intrinsically complex, and that changing an existing interface to
reflect changing requirements and to take account of user feedback is a
laborious and often somewhat ad-hoc process.

Model-based user interface development environments (MB-UIDEs)
have been developed with a view to providing a more systematic approach to
user interface development, building in particular on abstract models of
different aspects of user interface functionality (e.g., TADEUS [11], FUSE
[7] and MOBI-D [10]). Typically, a MB-UIDE will include domain, task,
dialogue and presentation models. The benefits that it is hoped will arise
from the use of MB-UIDEs include the generation of interface software
based on the abstract models, and more seamless integration of the interface
design and implementation processes.

 However, although MB-UIDEs have a range of promising characteristics
for easing user interface development, they introduce a number of new
challenges. The development of effective tools for the construction and
linking of a collection of abstract models is itself a substantial challenge,
which must be addressed in the context of a design method that directs the
interface developer in the construction of a coherent collection of models.
This paper seeks to address these two issues – tools for model construction
and tool support for a design method – in the context of the Teallach MB-
UIDE [6]. Distinctive features of the Teallach tool include comprehensive
facilities for relating the different models, and the provision of a flexible
design method in which models can be constructed and related by designers
in different orders and in different ways.

 The paper is structured as follows. Section 2 sets the scene by
introducing the Teallach system. Section 3 describes a case study that will be
used throughout the paper. Section 4 outlines the flexible design method
supported by Teallach, and which must be accounted for in the tool. Section
5 describes the facilities provided by the tool for editing and relating the
Teallach models. Section 6 presents some conclusions.

2. TEALLACH BACKGROUND AND MOTIVATION

The Teallach MB-UIDE is primarily concerned with constructing user-
interfaces to object oriented databases. The Teallach user is the designer of
interfaces to database applications, not the end-user of these interfaces. In
order to meet the needs of such design efforts, Teallach provides three

Barclay, Griffiths, McKirdy, Paton, Cooper & Kennedy

models: a domain model, a task model, and a presentation model. These
models are described in detail in [6].

The presence of underlying models gives some advantages to an
interface-building tool, such as a clear semantics for the interface under
construction, and facilities for the automatic checking of consistency in the
models (and hence in the resulting interfaces), together with support for
‘help’ and ‘undo’ functionality. However, we have identified a number of
weaknesses in existing MB-UIDEs. Some of these are described below; for
more details, the reader is referred to [4].
• Some systems impose a rigid methodology on the interface-designer.
• Most systems do not provide the facilities to work with database-specific

concepts, such as transactions.
• Many systems have a fixed set of widgets from which interfaces can be

constructed, thereby disallowing the use of application specific widgets
which may be required in some domains.

• Few systems have a clear method for representing flow of state
information within the interface to be generated.

One of the goals of the Teallach project is to develop models that address
some of these shortfalls, and to build a prototype tool that illustrates our
solutions. In particular, we do not wish to impose a particular style of
working on the interface designer. For example, one designer may wish to
proceed from specifications to implementations, whereas another may wish
first to sketch forms to be used in the interface, and then connect these to
application functionality. Both these approaches, and others, are allowed by
Teallach. This is achieved by 1) treating all of the models in an even-handed
manner, and 2) performing consistency checking as late as possible, so that
the designer is free to work through ‘inconsistent’ designs towards consistent
ones. In particular, automatic generation of model components may be used
as the designer desires: it is possible to generate large parts of the interface
automatically (and optionally modify these generated components), or to
‘wire together’ user-built substructures with no use of automatic generation.

Teallach’s interfaces are realised as compiled Java applications, giving
the efficiency of compiled code while running on any major platform. The
widgets used are taken from Java’s Swing widget set [2], but additional user-
supplied widgets may be added to the toolkit and used at any time. Access to
database-specific concepts is supplied through Teallach’s ODMG-style [1]
domain model.

The Teallach Tool

3. CASE STUDY

To provide a tangible explanation of the manner in which the Teallach
tools operate and are used, subsequent tool discussion will be conducted in
relation to a case study, which is a library database application – the UML
class diagram of this is shown in figure 1.

For brevity, consider a single task that the user of a library application
might perform – that is searching for a book . Using the application, the user
indicates that a search is to be performed, and subsequently specifies a
collection of search parameters which constitute the attributes on which the
search is to be based – for example, a search based on a named author. The
user then initiates the search (amounting to the running of a query
parameterised by the specified information) and is presented with the
resultant information. Assuming one or more books were returned, the user
can browse through them. The remainder of this paper demonstrates, in
terms of one possible traversal of the Teallach method using the tools, how a
designer might construct a user interface to support this task.

4. THE TEALLACH METHOD

One of the principle aims of Teallach is the provision of a flexible design
method such that designers using Teallach are not restricted to a single
developmental strategy. Although some might question this approach given
the more rigid methods promoted by other MB-UIDEs [4], the
methodological stance adopted by Teallach arose from the following
observations. Firstly, there is little evidence to support the notion that the

Figure 1: The Library Database Schema

Librarian

Person

ProhibitedBook
Exception

Student

1

on loan to

loans

*

*

books

in

1

name : String
password: String
salary: int
loans: Book[]

String getName()
void setName()

Book

title : String
author: String
year: String
onLoanTo : Person
ownedBy: Library
String getTitle()
void setTitle()

Library

void addBook(Book) throws
 ProhibitedBookException
Boolean isBookHeld(Book)

name : String
location: String
id: int
books: Book[]

String getName()
void setName()

name : String
password: String
matricNo: int
loans: Book[]

String getName()
void setName()

Barclay, Griffiths, McKirdy, Paton, Cooper & Kennedy

less flexible methods forwarded by other MB-UIDEs are indeed the best (or
only) approaches; forcing designers along a linear developmental path
appears overly restrictive and does not support the characteristics of the
software development life cycles that designers often favour. For example,
one could indicate that TADEUS [11] operates by successively refining a
task model through a dialogue model and a number of interaction tables.
Secondly, Teallach recognises that if it is to be adopted as a means of user
interface development, then it needs to observe the developmental habits of
software developers who often work in iterative cycles of development
where various aspects of their artefacts are developed in parallel or in an
interleaved manner [8]. Through its flexible methodology, Teallach aims to
support (as far as possible) the observed working practice of software
developers.

Figure 2 shows the flexible methodological structure proposed by
Teallach and which is subsequently realised in the Teallach tools. Due to the
number of potential routes through the method – made possible by its
inherent flexibility – it is not feasible to discuss each. Instead, the
interactivity and dependencies between the steps in the method will be
discussed at a high level, with the intention that the discussion provides a
feel for the developmental freedom available to the designer. Later

Figure 2: The Teallach Method

DOMAIN

MODEL

PRESENTATION

MODEL

Abstract

Concrete

T ASK

MODEL

generation of domain model
persistent components

continuing iterative inclusion
 of auxiliary data types

continuing iterative generation
 of database access-related
 components

1

**

*

*

*

*

*

Verification of
Models

GENERATED

USER

INTERFACE

 *
registration of
generated user
interface as widget
in presentation
model

 continuing iterative
 independent development of
 task model components

continuing iterative generation
of presentation model
components from domain
model components

continuing iterative generation
of task model components from

domain model components

 continuing
 iterative
 generation of

 presentation
 model components
 from task model
 components &
 vice versa

START

* * independent generation of
presentation model components

independent development of
task model components

*

continuing iterative
independent generation &
registration of presentation
model components

BC
D E

F

G

c

b

a

Key: * repeatable action

1 action performed once only

 user action

 system action

a

A

 Code Generation

The Teallach Tool

discussion of the actual Teallach tools, by which the method is realised, will
demonstrate one possible path through the method.

Teallach refers to a design effort as a project – that is, a collection of
models which contribute to the development of a specific user interface.
Projects can be saved during the course of development, and components of
one project can be imported into another to facilitate reuse. The remainder of
this discussion will assume that the developer is creating a new project. It
should be noted that the aim of this section is to outline the Teallach method
– the means by which the actions may be performed using the tools is
discussed in section 5.

Teallach has been developed to facilitate the design of user interfaces to
pre-existing object oriented databases (OODBs). There is therefore a basic
assumption that the schema and classes for the underlying database must
exist prior to user interface development. The Teallach tool therefore permits
one entry point to the developmental cycle (as shown in Figure 2). This
allows the structure of the underlying database application to be established
within a project in the form of the persistent components of a project-
specific domain model (step A). Having determined the persistence
capability of the application, the developer is then free to design each of the
individual Teallach models.

At any stage in the design of a user interface, each of the models can be
independently developed. Consider first the domain model. As required, the
developer can create components to facilitate access to the underlying
database (database connectivity components) and can import information
about auxiliary data types which may be required for the runtime operation
of the application – see the steps labelled (a) in figure 2. It should be noted
that the domain model also provides the facility to view and utilise the types
provided by the Java API – a subset of the auxiliary information available to
Teallach. The inclusion of these components is a one-off action which can be
performed at any stage during development.

Consider now the task model. Independently of the other Teallach
models, components (and hierarchies of components) within the task model
can be created, manipulated, and deleted – as shown by steps (C) and (c) in
figure 2. Similarly, the developer can, independently of the domain and task
models, create, manipulate and delete components (and hierarchies of
components) within the presentation model and can register new widgets
(steps (B) and (b) in figure 2). Each of these activities can be performed at
any stage during user interface development.

At any point during development the designer can either associate
components from distinct models (thus linking the models to generate a
cohesive user interface design) or can generate new components in a model
from a component previously constructed in another model. Such activities

Barclay, Griffiths, McKirdy, Paton, Cooper & Kennedy

are represented by steps (D), (E) and (F) in figure 2 (and also labelled in the
actual tool shown in figure 3). These activities can be performed repeatedly
and in any order.

Consider first step (D), which shows the association of task model
components with domain model components. The designer can use a domain
model structure to automatically generate an initial task hierarchy, or can
link components in the two models through the use of state objects. A state
object is the means by which the task model represents constructs imported
from the other Teallach models. Greater detail of these associations is given
in section 5. Step (E) supports a similar scenario where the domain model
components are used to automatically generate a presentation. Further details
of these associations are also given in Section 5.

In Teallach, the task model is not tied to a specific visual representation
of a user interface. This maxim is realised in the tool by linking task model
components to high-level abstractions of concrete presentation model
constructs (termed the abstract presentation model). In step (F) components
in the abstract presentation and task models can be linked together, or can be
used to automatically generate a new component in the other model. In all
such operations, the designer will create a state object in the task model to
represent the linked presentation model component.

F

Figure 3: The Teallach Tool and Possible Inter-model Operations.

 D

 E

The Teallach Tool

At any stage during design, the developer can choose to verify the
various models; a step which determines the consistency and completeness
of the models with respect to one another. Assuming model verification has
succeeded, the designer can automatically generate a user interface as
described by the models. The developer can either choose to accept the
generated interface, or can return to the various models and continue the
design process in an iterative cycle. The designer can choose to register any
generated user interface as a self-contained "black-box" widget within the
presentation model (see step (G)), thus facilitating a bootstrapping process of
development and reuse of generated components.

From the above discussion it can be seen that, with the exception of step
(A), provided that the required components exist within each model, any of
the discussed steps can be performed in any order and any number of times.
Hence designers are given the freedom to work in the manner most suited to
themselves and their projects, and are not restricted by an overly prescriptive
developmental strategy.

5. THE TEALLACH TOOL

5.1 General

The Teallach tool has been implemented using Java 2.0 and the Swing
GUI tool-set. This tool-set has provided us with a rich library of GUI
primitives that facilitate design using the model-view-controller pattern; our
experiences with both this tool-set and Java in general have been mainly
favourable. It has been designed so that Teallach itself, and the interfaces it
generates which are also implemented in Java, will run on all major
hardware and OS platforms. Teallach interacts with the underlying
application (typically an OODB) through its domain model, which provides
an interpretation of the contents of the application through the concepts of
ODMG. In the current prototype Teallach has been designed to interact with
the Poet OODBMS [9].

As shown in figure 3, the tool provides separate editors for each of the
three models, implemented using a desktop metaphor. In addition, the
presentation model provides further, free-floating windows, such as a
preview of the interface under construction, and a palette of widgets the
designer can use. Model constructs can be exchanged between the editors
either by drag-and-drop or by cut-and-paste metaphors using a single system
clipboard.

The semantics of inter-model associations are described in more detail
below, but the basic scheme is as follows: when a fragment of one model is

Barclay, Griffiths, McKirdy, Paton, Cooper & Kennedy

dropped into the editor of a different model, some new structure is generated
in the target editor, derived from the source model (drag-and-generate). It is
also possible to ‘link’ components from different models, for example to
show that a particular widget is to be used to perform a particular task. This
is achieved by switching the tool into link mode and drawing arcs between
the associated components (click-and-link). The large arrows in figure 3
show the possible ways in which the three Teallach models can interact.

5.2 The Domain Model Editor

A project-specific Teallach domain model reflects the structure and
functionality of the underlying application, database connectivity, and
auxiliary data types such that they can inform and link into the user
interface. To provide a measure of platform independence, the domain
model represents these factors using constructs derived from the concepts
specified in the ODMG object database standard.

The domain model editor within the Teallach tool comprises four
independent panels, representing: persistent data components, imported
auxiliary classes, auxiliary classes derived from the Java API, and the
database connectivity aspects of an application. A domain model serves
purely as an information source (as shown in figure 2), and as such the
domain model tool is not concerned with receipt of information from the
other models. Instead, its role is to make available information to the other
models in a uniform manner such that the persistence of the data is
transparent.

Upon start up of the Teallach development environment, as mentioned in
Section 4, a model of the persistent data related components of the
application is generated. This is done automatically through an analysis of
the schema of the underlying database. The domain model editor shown in
figure 3 shows the persistent data components of the domain model that
represent the schema described in the case study.

There are also two panels concerned with the representation of auxiliary
data types, that is, data structures which are not database classes, but which
provide functionality required for the runtime operation of the application.
The first of the two auxiliary data panels provides the designer with the
means to import, as required, any user-defined classes or packages that
provide additional functionality. To import a package or class, the designer
must simply specify its fully qualified name. The screen shot in figure 4
shows an auxiliary class that has been imported for use in the case study. It
provides the facility for authentication of a string as a valid year. Once again,
the designer is able to copy or drag this domain model component and paste
or drop it into one of the other models so that its functionality can be

The Teallach Tool

exploited. The second of these panels represents the data types in the Java
API.

The final panel within the domain model editor concerns the
establishment of components to support database connectivity. Once again,
such components are modelled in terms of the appropriate ODMG concepts.
Within this panel, the developer can instantiate database connections and
therein transactions. Similarly, the developer can create OQL queries that
can be run over the underlying database. Once established, the developer can
treat database connectivity components in the same manner as other domain
model components. Figure 5 shows the representation of a database
connection and transaction required for the search for book case study.
Having established the connectivity with the database, the developer would
then be required to build the query using this same panel in the domain
model editor.

5.3 The Presentation Model Editor

Teallach provides both a concrete presentation model (CPM) and an
abstract presentation model (APM). The CPM contains real widgets such as
those available in Swing, and user-supplied custom widgets. For example,
the widget JPasswordField (for capturing users’ passwords) is available from
Swing, whereas the widget TextGrabber (for inputting text) is a user-
supplied widget. Arbitrarily complex Interactors, such as 3D molecule-
viewers, may be used as concrete widgets provided they have been
registered with the presentation model tool.

Figure 5: Database Connectivity PaneFigure 4: Importing Auxiliary Information

Barclay, Griffiths, McKirdy, Paton, Cooper & Kennedy

Teallach’s APM extends the light-weight presentation model described in
[3]. This model defines abstract categories of widgets, designed to offer a
particular functionality. An abstract category may be realised by many
different concrete widgets. For example, the category Inputter represents
anything which may capture the user’s input; both a JPasswordField and a
TextGrabber may serve as realisations of Inputter.

The designer may use either concrete or abstract presentation objects, and
intermix these freely. Of course, where abstract interactors are used, a
decision must be made as to which possible realisation will be used in the
final interface; a default is always available, so a valid interface is defined at
all times. Details of how abstract categories are realised by concrete widgets
are recorded in a style, so that consistency of look-and-feel can be achieved,
and differing interfaces can be easily generated which support the same
functionality.

5.3.1 An Overview of the Presentation Model Tools

The interface designer interacts with Teallach’s presentation model
through a collection of related tools. The presentation model editor allows
the designer to construct presentation fragments, whether by hand or
automatically; the widget palette provides access to the components which
may be used for building interfaces; and the presentation meta-editor allows
the designer to edit the meta-model of the presentation, as described below.

5.3.2 Constructing Interface Fragments by Hand

The designer may construct presentations by hand, by explicitly
assembling components. An example can be seen in figure 6, where the
designer is constructing the form to be used when specifying the criteria to
be used when searching for a book. From the presentation model's widget
palette, the designer has selected three TextGrabber components, to capture
the title, author, and year fields for the book sought. These components have
been placed within a JPanel, which is a (usually invisible) container
provided by Swing for grouping together related items, and ensuring that
they behave as desired when the window is resized. An ancillary class, from
the domain model, may be employed to ensure that the format of the text
entered into the year field can represent a valid year.

The designer has then added a second JPanel to the search window,
grouping two buttons that allow the user either to confirm the search criteria
and proceed to performing the search (search), or to quit from this window,
if desired (quit).

The Teallach Tool

Once constructed, this interface fragment can be used in a variety of
ways: 1) it can be ‘shrink-wrapped’ for later use in this and other
applications; 2) it can be linked to constructs in the domain and task models
to form part of the final user-interface; or 3) it can be dropped into the task
model to automatically generate task structures corresponding to the activity
of searching for a book.

In addition to the tree-structured view provided by the presentation
editor, Teallach also provides a preview of the end-interface under
construction. For example, an automatically generated preview of the search
form is shown in figure 7; this allows the designer to see an immediate result
when altering properties of the presentation such as colour, font, and layout.

5.3.3 Editing the Presentation Meta-model

Teallach’s presentation meta-editor allows the designer to modify the
abstract presentation model. The meta-editor is shown in figure 8. This tool
has both a categories tab and a register tab. The categories tab allows new
abstract categories to be defined and added to the presentation model; once

Figure 6: Constructing Presentation Model Elements

Figure 7: The Presentation Model Preview Window

Barclay, Griffiths, McKirdy, Paton, Cooper & Kennedy

defined, they become available for use in the abstract widget palette. Figure
8 shows part of the definition of the category Inputter, derived from the
category Item; this has a method getValue() returning an object (of any type)
which has been input by the user of the widget.

The register tab allows new concrete widgets to be registered within
existing categories. Once registered, a widget becomes available for use in
the concrete widget palette. This allows the designer to use custom-built and
third-party widgets in an interface.

The meta-editor uses the meta-data it collects to automatically write Java
code implementing the newly defined meta-objects. This code is then
compiled reflectively, so that the new objects can become available in the
system without need for interpretation.

5.4 The Task Model Editor

The Teallach task model tool provides an environment for constructing
and editing hierarchical task models, the semantics of which have been
presented in [5]. A hierarchy constructed using the task model tool is a
temporally ordered representation of the goals and subgoals a user wishes to
achieve in the developed interface. The Teallach task model is novel in that
it provides a designer with the ability to declare local state and associate this
with a task, and subsequently to indicate how this state information is
initialised and utilised within a task.

To realise the task model for the case study, our designer constructs a
high-level specification of the task they intend application end-users to
perform through the modelled interface. To achieve this, the designer drags a
task of the required type from the task model’s palette of task types (shown
in figure 3) and drops it at the required location in the task model
construction area.

Figure 8: the Presentation Model Meta-Editor

The Teallach Tool

At the lowest level in the task hierarchy, the designer creates interaction
and action tasks which represent how the application processes information,
and how the end-user and the application participate in the task. These tasks
may have links to domain or presentation model functionality which is
realised and invoked through a suitably initialised state object (as described
in section 5.5.1).

5.5 Establishing Model Interaction Using Link Mode

At any time during the model development process, the designer may
create links between components specified in any of the Teallach models. By
creating a link, the designer is stating, for example, that a widget is to be
used to perform a particular task, or that an action task corresponds to an
invocation of an operation on an application class. Links between the Task
and Presentation models are also used to describe dialogue dynamics. This
section will show how, through the use of state objects representing both
domain and presentation model constructs, the task model tool provides the
facility to bind together the concepts in the three Teallach models.

5.5.1 Creating and Using State Information in the Tool

A state object is the means by which the task model tool maintains
references to constructs from the other Teallach model tools, and is
constructed through either a paste as state menu option, or as a side-effect of
Teallach automatically generating a task construct from another Teallach
model construct. A state object refers to a named instance of either a domain
or abstract presentation model class, and is realised as a uniquely named
rectangle within the scope of a non-primitive task.

Once a state object has been created it can be utilised in several ways.
For example, one of the state object's methods can be invoked (equivalent to
invoking underlying application or widget functionality), or one (or more) of
a state object's public attributes can be read from or written to (equivalent to
specifying the flow of information between the user and the underlying
application).

For the purposes of our case study, the designer needs to specify that the
search criteria provided by the end-user should be stored in a named object
of type Book, and that a named query should be invoked on the database
with this Book object as the search parameter. The designer therefore copies
the Book persistent domain class from the domain model tool and pastes in
into the specify book information non-primitive task selected in the task
model tool using the paste as state option from the Edit menu. Similarly,
using the Database Connectivity editor pane, a state object corresponding to

Barclay, Griffiths, McKirdy, Paton, Cooper & Kennedy

a new OQL query is copied from the domain model to the Search for a Book
task. The designer will also need to create state objects representing the
database session and transaction in which the OQL query will be performed.
Once the designer has provided a suitable name (e.g., currentBook), new
state objects are created at the required locations. In figure 3, the task model
editor shows that the Search for a Book task contains two state objects
corresponding to searchResults:Collection and
query1:OQLQuery.

The following sections illustrate some of the ways in which state objects
can be used to link constructs in the three Teallach models using both the
link and generate mechanisms.

5.5.2 Linking Task and Domain Model Constructs

Once our designer has created the necessary state objects, they can link
action or interaction tasks with them. For example, the designer needs to
show that the Perform Search action task invokes the execute() method
on the query1:OQLQuery state object. This is achieved by the designer
selecting the link toggle button on the main toolbar to switch to link mode,
and subsequently clicking on the Perform Search action task and
query1:OQLQuery state object – an extending arc is drawn between the
two constructs to give the designer visual feedback.

If the link operation is successful, then Teallach invokes its Link Wizard
to guide the designer through the potentially complex task of creating the
link. As shown in figure 9, the Link Wizard recognises that the designer is
creating a link between an action task and a state object, and asks the
designer to choose which of the selected state object's methods they wish to
invoke by providing them with a list of possible methods from which to
choose. Once a method has been selected, the Link Wizard checks if the
selected method requires any parameters, or if it has a return value. In either
case it asks the designer which state objects will provide the information for
the parameters, and optionally, which state object will be used to store the
return value. For both of these questions the Link Wizard will provide a list

Figure 9: Assigning Method calls to an Action Task Using the Link Wizard

The Teallach Tool

of suitable alternatives to the designer. An example of this is shown in figure
10, where the Link Wizard is enquiring where the collection of Objects (i.e.,
Books) returned by the query1.execute() method will be stored; the
designer selects the foundBooks:Collection state object within the
Search for a Book task.

If the chosen domain method raises an exception (i.e., an
IllegalOperationException), then the task model editor will display a red
circle next to the action task for each exception that it raises. The designer is
then free to specify what should happen if the exceptional circumstance
arises; the task model editor can be used to specify that if the
query1.execute() method (as utilised by the Perform Search action
task) raises an exception, then the Search for a Book task should be
performed again – this is shown in figure 3.

5.5.3 Linking Task and Presentation Model Constructs

If the designer wishes to declare that an interaction task is to be realised
by a particular widget (e.g., that the Get Author Name interaction task
corresponds to a particular Swing JTextField widget in the CPM), then in a
similar manner to the previous section, the designer will create a state object
corresponding to the JTextField widget in the required location within the
task model editor. It should be noted that it is actually the APM construct
which corresponds to the CPM widget that is used. If the link operation is
accepted, then the Link Wizard will once again be activated.

Since the semantics of this link operation are different to that discussed in
the previous section, the Link Wizard will ask the designer a different set of
questions. For example, if the designer creates a link between the Get
Author Name interaction task and the author:Inputter state object
(realised by a JTextField widget in the CPM), then the Link Wizard will ask
if the task is receiving or outputting (or both) information, and will proceed
with a dialogue which will ascertain the type of the information being
processed, and which state object(s) will provide this information.

Figure 10: Handling return Values Using the Link Wizard

Barclay, Griffiths, McKirdy, Paton, Cooper & Kennedy

By linking task and presentation model components the designer is also
specifying the dynamics (dialog) of the interface. This is achieved by the
semantics of non-primitive task model nodes (i.e., sequential, concurrent,
etc.) being applied to the non-primitive presentation model nodes to which
they are linked.

5.6 Establishing Model Interaction Using Generate
Mode

To assist the designer in the process of constructing a consistent set of
models, Teallach provides a drag-and-generate mode. This mode is invoked
by dragging a fragment of one model into a suitable location within another.
As a result of this operation a new model structure is created in the target
model. Since the domain model is immutable, it cannot act as a target model.
When the target model is the task model, Teallach creates appropriate state
objects in addition to the newly constructed task hierarchy (i.e., domain
classes or presentation widgets), and automatically creates links between
these state objects and any action or interaction tasks.

For example, our designer may decide to drag the Book class into the
task model editor to create a new first child of the Search for a Book task:
this will create an order-independent task called Edit Book , with an action
task child corresponding to each of the class's methods, and interaction tasks
corresponding to each of the class's public attributes. The designer is then at
liberty to edit the new constructs required. In this case the designer will
simply remove any unwanted action or interaction tasks, and will rename the
top-level task Gather Search Criteria .

Once this task has been constructed, the designer can then drag the new
task construct into the presentation model to create a default form to
represent the required task.

6. SUMMARY

This paper has presented the flexible design method forwarded by the
Teallach MB-UIDE, which is realised through a rich set of tools that support
the construction of the Teallach models. In particular the Teallach method
and its supporting tools remove the rigid methodological constraints imposed
by other MB-UIDEs, providing user interface designers with a method and
design environment that more closely meets their modes of working.

This inherent flexibility has posed many challenges for the Teallach
design team, as a flexible design method requires often complex control
facilities. We have therefore concentrated on providing a core set of design

The Teallach Tool

primitives (e.g., building models individually using no automatic generation,
providing a simple paste as state operation for inter-model linking), and
subsequently providing higher-level design functionality (utilising the core
primitives) which supports a more rapid design method (e.g., automatically
generating model constructs from the information modelled in another
Teallach model). The often complex process of inter-model linkage has also
been greatly simplified through the use of a Wizard metaphor.

Acknowledgements
This work is funded by UK's Engineering and Physical Sciences

Research Council (EPSRC), whose support we are pleased to acknowledge.
We also thank our partners on the Teallach project for their contributions to
the development of the overall Teallach system. They are Carole Goble, Phil
Gray, Michael Smyth and Adrian West.

7. REFERENCES

[1] Cattell, R.G.G. et al., The Object Database Standard: 2.0. Morgan Kaufmann Publishers,
Inc. 1997.

[2] Eckstein, R., Loy, M., & Wood, D., Java Swing. O'Reilly & Associates, Sebastopol, CA.
1998.

[3] Gray, P., Cooper, R., Kennedy, J., McKirdy, J., Barclay, P., & Griffiths, T. (1998), A
Lightweight Presentation Model for Database User Interfaces , ERCIM'98, Stockholm,
October 1998.

[4] Griffiths, T., McKirdy, J., Forrester, G., Paton, N., Kennedy, J., Barclay, P., Cooper, R.,
Goble, C., & Gray, P., Exploiting Model-Based Techniques for User Interfaces to
Databases , in Proceedings of VDB-4, Chapman & Hall, London. pp. 21-46. 1998.

[5] Tony Griffiths, Norman W. Paton, Carole Goble, Adrian West, Task Modelling for
Database Interface Development. To appear in Proceedings HCI International'99.

[6] Tony Griffiths, Peter J. Barclay, Jo McKirdy, Norman W. Paton, Philip D. Gray, Jessie
Kennedy, Richard Cooper, Carole A. Goble, Adrian West and Michael Smyth, (1999),
Teallach: A Model-Based User Interface Development Environment for Object Databases ,
in Proc. User Interfaces to Data Intensive Systems (UIDIS), IEEE Press. pp. 86-96. 1999.

[7] F. Lonczewski and S. Schreiber, The FUSE-System: an Integrated User Interface Design
Environment, in Proc. CADUI, J. Vanderdonckt (Ed.), pp. 37-56. 1996.

[8] McKirdy, J., An Empirical Study of the Relationships Between User Interface
Development Tools & User Interface Software Development, Technical Report TR-1998-
06, University of Glasgow, Department of Computing Science, March 1998.

[9]Poet Software. http://www.poet.com
[10]Puerta, A.R., A Model-Based Interface Development Environment. IEEE Software, 14(4).

pp. 41-47. 1997
[11]E. Schlungbaum and T. Elwert, Automated User Interface Generation from Declarative

Models, in Proc. CADUI, J. Vanderdonckt (Ed.). pp. 3-18, 1996.

