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ABSTRACT 

The inherently intermittent nature of solar irradiance and other meteorological variables means 

that accurate forecasting of the photovoltaic power output is essential for planning and 

balancing photovoltaic power systems. This study proposes a novel approach to predicting one-

week-ahead half-hourly photovoltaic power output in the United Kingdom using sloped extra-

terrestrial irradiance and weather data (e.g., cloud-cover and temperature) as input parameters. 

A Non-linear Autoregressive Exogenous Neural Network is trained on a three-year historical 

dataset from two photovoltaic plants in the United Kingdom with capacities of 53 and 103 

MWp. The forecasting model captures huge intra-daily variations of photovoltaic output, which 

is particularly useful to balance the supply and demand of the electricity system. The result of 

the study validates the concept of using sloped extra-terrestrial irradiance as an input parameter 

and suggests that meteorological conditions will dictate the accuracy of predictions. Findings 

also indicate that the use of sloped extra-terrestrial irradiance in conjunction with cloud-cover 

presented the optimal combination of input parameters as these provided the simplest and most 

cost-effective model without reducing accuracy.  The approach can have universal value as it 

only requires coordinates and weather data. There is now a strong imperative to use the model 

in other locations where the weather is more stable. 
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1 Introduction and problematic 
In efforts to meet the UK’s net-zero greenhouse gas (GHG) target by 2050 [1], solar 

photovoltaic (PV) power has been undergoing rapid growth and increased demand. For 

example, during a 12-month period up to 31 March 2021, 975 megawatts (MW) PV capacity 

was installed in the UK. This increase brought the UK’s total installed PV capacity to over 14 

gigawatts (GW) [2], placing the UK in 6th place internationally for renewable energy generation 

[3]. 

Although PV energy is paving the way for clean energy, the power output of PV systems is 

intermittent by nature and largely dependent on weather and climate [4]. This dependency 

creates challenges for its optimal use in the UK, where weather is notably stochastic. This 

unique variability in weather is related to Britain’s position on the planet – an island situated 

between the Atlantic Ocean and continental Europe. As a result, the UK is under an area where 

five air masses meet, creating weather fronts. The UK’s proximity to the polar front jet stream 

(a high-altitude ribbon of fast-moving air) also contributes to the unsettled weather, due to 

frequent changes in pressure [5]. 

The continued growth of PV energy, combined with volatility in the UK’s weather, creates 

operable challenges for the UK National Grid, particularly in the summer months [6]. This is 

due to increased supply and demand variability caused by the low demand and high levels of 

renewable generation. For instance, the all-time peak from PV power in the UK was recorded 

at 9.86 GW on 20th of April 2020 at 12:30, whereas the peak generation two days prior (18th of 

April 2020 at 13:30) was less than half that amount at 4.73 GW [7].  

To balance the supply and demand of the electricity system, the National Grid needs to take 

more actions to curtail renewable generation. For example, in 2020, wind curtailment cost UK 

electricity users £274 million [8]. This statistical data shows that, despite the UK struggling to 

meet carbon emission targets, electricity generated from renewables is still being wasted. As 

such, there is now a strong imperative to develop innovative approaches to high frequency 

forecasting of PV generation (e.g., by minute or hourly) for 7-days-ahead. 

Various models have been used for PV output forecasting, and most of the present literature 

focuses on short-term (up to three-days-ahead) forecasting [9]. The models are commonly 

divided into persistence methods, physical models and statistical approaches [10]. Persistence 

methods adopt the idea that the current day’s climate is equal to the prevailing conditions of 

the previous day and is used for short-term and very-short-term forecasting [10]. Physical 

models commonly use numerical atmospheric data to forecast weather [11] and are mainly 

developed using Numerical Weather Prediction (NWP) [12]. Physical models perform best 

when meteorological conditions are stable [13] and are often used for longer forecast horizons. 

Statistical models utilise mathematical equations to extract patterns from input data. Statistical 

techniques can be divided into two groups: time-series and machine learning (ML) based 

models [10]. Time-series based models are often used for short-term forecasting and use past 

values through assessing the pattern of past information [10]. 

ML models are based on computing or artificial intelligence (AI). The models utilise AI’s 

ability to learn from historical data patterns and improve prediction with training runs. 

Artificial Neural Networks (ANN) is considered the most successful method for PV forecasting 

and is used widely thanks to its ability to model non-linear, complex, and dynamic processes 

[10]. For example, Andersson & Yakimenko [14] explored a Non-linear Auto-Regressive with 

Exogenous Inputs Neural Network (NARXNN) to forecast the PV output for a microgrid. Liu, 

Liu, Sun, Li & Wennersten [15] adopted a Backpropagation Neural Network (BPNN) for 24-
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hour-ahead solar PV prediction. The superiority of ML to other models is particularly evident 

for longer time horizons. However, training is more complicated for this type of approach, and 

large amounts of data are needed. Furthermore, there exists no commonly accepted superior 

way to construct a perfect model, making the process iterative. 

Throughout the literature, most PV power forecasts using ML approaches rely on solar 

irradiance data. The relationship between solar irradiance and PV generation means that 

reliable solar irradiance data is needed to forecast PV output accurately [16]. However, to 

accurately predict local solar irradiance, it requires an accurate prediction of the weather and 

long-term measurement of solar irradiance. This is particularly challenging for the UK given 

that there are only three weather stations recording hourly direct irradiance [17], as the 

uncertainty of solar irradiance prediction has proven to be a dominant source of PV forecasting 

error. 

Limited local coverage of irradiation measurements often prompts the application of modelled 

irradiance, and parametric irradiation models (based on time, geographical location, and 

weather) are widely used. Su, Batzelis & Pal [9] used modelled irradiance from the Copernicus 

Atmosphere Monitoring Service (CAMS) in conjunction with modelled weather data from to 

forecast PV output 6-days-ahead. Similarly, Andersson & Yakimenko [14] predicted PV 

output for 24-hours-ahead by using modelled irradiance from Solar Radiation Data (SODA) 

as well as modelled weather data. As such, detailed information on the atmospheric conditions 

is required to determine irradiation. The critical limitation here is that atmospheric conditions 

are based on estimates which means that artificial errors may be introduced, thus decreasing 

the data’s validity [18]. In addition, methods used to translate forecast solar irradiance values 

into PV power generation also introduces another layer of uncertainty into the prediction. This 

is due to numerous factors, such as the variation in PV installation, PV cell temperature and 

the sun’s position at different times and days. 

The proposed study aims to develop a new ML-based solar power forecasting model to forecast 

half-hourly PV generation. Unlike traditional approaches, the forecasting model development 

will not be based on the predicted local solar irradiance. Instead, accurately modelled sloped 

extra-terrestrial radiation (ERAD) in conjunction with weather data will be used as input 

parameters. The parametric model for sloped ERAD does not depend on meteorological 

conditions. This approach aims to remove the predetermined relationship established in other 

parametric irradiation models. Instead, the model itself is allowed to find the relationship for 

the PV output. 

The novelty and scientific significance of this paper is that it is the first reported study to use 

sloped ERAD as a key input parameter for PV output forecasting. The sloped ERAD based 

ML approach has been validated using historical data from two utility-scale solar PV plants 

operating under the UK’s unpredictable weather conditions.  

The advantage of this approach over other solar irradiance-based approaches is that by using 

sloped ERAD the irradiance input is not weather dependent. As such, sloped ERAD can be 

accurately estimated at any time for any given PV installation, which is not possible for 

approaches based on modelled solar irradiance. To establish the effectiveness of using sloped 

ERAD quantitatively, a comparative study of the novel approach with the existing approach of 

using modelled solar irradiance was undertaken.  

Another significance of the study is the modelling framework used, which includes data pre-

processing, selection analysis of meteorological parameters for training and prediction, and 

model performance assessment. This offers a unique forecasting approach which can be 
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applied in other locations under different weather conditions. Furthermore, the study paves the 

way for a simple and effective PV forecasting approach. This can be done through trials using 

the PV output at a larger scale in conjunction with forecast weather data to promote the 

appropriate use of this approach and highlight areas for future improvements. 

The paper is structured as follow: Section 2 describes the case study, while the methodology is 

presented and explained in section 3. The results and overall performance are discussed in 

section 4, followed by conclusions drawn in section 5. 

2 Sites, dataset, and visualisation 

2.1 Site specifications and dataset 

Four types of data were used for this study, all of which are summarised in Table 1. 

Data was collected for two locations with different characteristics: Richborough substation 

(Kent, England), Grimsby substation (Lincolnshire, England). Richborough has a favourable 

position in the UK for solar PV readings and currently has a capacity of 102.9 MWp. Grimsby 

has a capacity of 53 MWp with weather of a more intermittent nature. 
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Table 1: Information for the sources of data. 

Data Source Description Time 

Interval 

Locations for 

data 

PV Sheffield 

Solar 

[19] 

A collaborative PV live 

service between the UK 

National Grid and the 

University of Sheffield. The 

service provides reliable 

time-series data for all solar 

PV systems connected to the 

UK transmission network. 

30 min Richborough 

& 

 Grimsby 

Meteorological Variables Met Office 

[20] 

MIDAS: UK hourly weather 

observation data is available 

in the CEDA archive. The 

archive holds historical 

measurements for weather 

stations across the UK, and 

the data spans from 1875 to 

present. 

60 min Manston  

& 

Donna Nook 

(nearby 

weather 

stations) 

Modelled Sloped ERAD 

 

Solar 

Radiation 

and Daylight 

Models 

[17] 

The model is based on the 

theory of solar geometry and 

requires the following inputs: 

date and time, as well as the 

PV’s coordinates, orientation 

and tilt angle. Relevant 

software is provided in the 

source.   

30 min Richborough  

& 

Grimsby 

substations 

Modelled Irradiance Copernicus 

Atmosphere 

Monitoring 

Service 

[21] 

CAMS solar radiation time 

series provide modelled solar 

irradiance based on weather 

conditions through satellite 

images. Only historical data 

is available through this 

service. 

15 min Richborough  

& 

Grimsby 

substations 

 

Fig. 1 show the locations of the two solar plants and weather stations in the UK.  
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Fig. 1: Map illustrating locations in the UK. A denotes Grimsby substation & Donna Nook; and B denotes Richborough 

substation and Manston 

2.2 Training and validation dataset 

Data for four years (1st of January 2017 to 31st of December 2020) was collected at the two 

locations. Data for testing and training was extracted as shown in Table 2, creating sixteen 

datasets: eight for each site. The dataset is divided according to literature [9].   

Table 2: Training and testing datasets 

Season Training Data Validation Data 

Spring 01-03-2017 to 31-05-2017, 

01-03-2018 to 31-05-2018, 

01-03-2019 to 31-05-2019 

19-03-2020 to 26-03-2020 

Summer 01-06-2017 to 31-08-2017, 

01-06-2018 to 31-08-2018, 

01-06-2019 to 31-08-2019 

28-07-2020 to 04-08-2020 

Autumn 01-09-2017 to 30-11-2017, 

01-09-2018 to 30-11-2018, 

01-09-2019 to 30-11-2019 

10-09-2020 to 17-11-2020 

Winter 01-01-2017 to 28-02-2017, 

01-12-2017 to 28-02-2018, 

01-12-2018 to 28-02-2019, 

01-12-2017 to 31-12-2019 

18-01-2020 to 25-01-2020 

 

A 

B 
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2.3 Data visualisation 

Fig. 2 depicts one year (2020) of the dataset for Richborough (Fig. 2a-b) and Grimsby (Fig. 2 

c-d). This visualisation of data allows for studying changes throughout the day. The data 

illustrates that irradiance and PV peak in summer and dip in winter. Sloped ERAD is close to 

identical for the two sites due to their geographical proximity. The impact of the atmosphere 

on solar irradiance is reflected in the PV output. Furthermore, note how the daily time range 

for output is shorter during winter than during summer. This is due to solar geometry; as the 

position of the sun changes, so does the maximum solar radiation available. 

 

 

Fig. 2: One year’s data (2020) for; a) sloped ERAD, Richborough; b) historical PV generation, Richborough; c) sloped 

ERAD, Grimsby; d) historical PV generation, Grimsby. 

3 Methodology 
Fig. 3 illustrates the applied sequential model approach used for forecasting PV output power. 

Night-values were removed by eliminating Zeros from the training and validation datasets, 

which were normalised between 0 and 1 to improve precision, reduce regression error, and 

sustain correlation. All neural network simulations are performed using MATLAB_R2020b. 

This section describes the methodology based on sloped ERAD being used as the selected 

irradiance input. For the comparative approach, the modelled irradiance in Table 1 was instead 

selected as the irradiance input in Fig. 3. 

(a) (b) 

(c) (d) 



8 

 

 

Fig. 3: Sequential procedure flowchart. 

NARXNN was selected as the model based on findings by Su, Batzelis & Pal [9]. Results 

suggested that the NARXNN was the best performing model out of ten conventional ML-based 

models, which were all compared on the same framework. The NARXNN is widely used in 

globally for solar PV predictions, thanks to its superiority to other models. For example, the 
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NARXNN was used for PV output forecasting by Buritrago & Asfour [22] in the United States 

and by Vaz, Elsinga, van Sark & Brito [23] in the Neatherlands. 

Prior to using the NARXNN model for PV output forecasting, the following steps were 

completed: 

• Data pre-processing, including the alignment of data time-series. 

• Defining model target and selection of corresponding data for training and prediction. 

• Correlation analysis of PV output against sloped ERAD and meteorological data (cloud-

cover, visibility, temperature, wind speed and wind direction). 

The correlation analysis ensures that the high-impact meteorological parameters are 

selected as input parameters for PV forecast, as these parameters might be site-specific. 

Data was evaluated using Pearson’s correlation coefficient during the correlation analysis, 

as shown in Equation (1).  

𝑟 =  
𝑐𝑜𝑣(𝑋, 𝑌)

√𝑐𝑜𝑣(𝑋, 𝑋)√𝑐𝑜𝑣(𝑌, 𝑌)
 

(1) 

where,  𝑟 > 0 means two parameters have a correlation and are directly related to one another, 

𝑟 < 0 means two parameters are inversely related. When 𝑟 is close to 1, both have a close 

relationship, and when 𝑟 = 0, no correlation is found. The highly correlated parameters to PV 

output were then selected for the NARXNN. 

3.1 Network Overview 

Two different architectures can be employed with the NARXNN model, where the first 

performs one-step-ahead prediction and the second performs multi-step-ahead prediction. The 

former is often referred to as open-loop and the latter is referred to as close-loop [9]. The 

configurations may also be referred to as series-parallel architecture and parallel architecture, 

respectively [24].  

The model uses endogenous and exogenous inputs, which are the internal and external inputs, 

respectively. In this case, PV output was treated as endogenous input, whereas sloped ERAD 

and weather data were treated as exogenous inputs. Fig. 4 shows a simplified setup of the 

NARXNN where both architectures are used.  

 

Fig. 4: Setup of NARXNN. 

The selected meteorological parameters served as exogenous inputs were based on the 

correlation analysis between a set of weather data and PV output. The results are presented in 

the next section. Table 3 details the endogenous and exogenous inputs for the NARXNN 

model. 
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Table 3: Endogenous and exogenous inputs. 

Exogenous Inputs Endogenous Inputs Time Lag 

Sloped ERAD 

Cloud-cover 

Visibility 

Temperature 

Historical PV output 

 

Seven days 

 

Ideally, forecast data should be used for the meteorological parameters used when forming 

future exogenous inputs. Due to the data’s availability, historical meteorological data was split 

into two parts in this work, with data prior to 2020 treated as historical inputs and data from 

2020 treated as future exogenous inputs. This selection also allows for testing the model’s 

performance when using the same approach as taken in the literature [14] [9].  

The models for the NARXNN configurations used in this study are presented in Fig. 5. The 

NARXNN architecture for both configurations consisted of one endogenous input node y(t) 

four exogenous input nodes x(t), one hidden layer with 20 nodes and one output node. The 

endogenous input node y(t) for open-loop is set up in the same way as for x(t), meaning that a 

new y(t) is needed for each point from the historical dataset (Fig. 5a). However, for close-loop 

the value obtained as the predicted endogenous output ŷ(t) was instead fed back for the next 

prediction (Fig. 5b).  

The commonly applied workflow, which was adopted, is to create the network in open-loop 

(Fig. 5a). The open-loop uses one-step-ahead predictions, making it suitable for training the 

model. The weights and biases from the open-loop were then used to initialise close-loop 

predictions [25]. In (Fig. 5b) the four exogenous input nodes consist of future weather and 

sloped ERAD inputs. Together these streams of input created the first predicted PV output. This 

value was fed back and used for the next point, to allow for multi-step-ahead predictions. Both 

input delays and feedback delays were set to 1:2. Full interconnection was selected. The 

sigmoid function was used as the activation function, and the Levenberg-Marquart 

backpropagation was used as the learning algorithm in accordance with literature [9]. 
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Fig. 5: NARXNN training models with 20 hidden neurons, 1:2 input delays, and 1:2 feedback delays; a) open-loop; and b) 

close-loop, where w stands for weights and b stands for bias. 

3.2 Network construction 

Fig. 6 illustrates a more detailed flowchart for the proposed network construction. Here, the 

pre-processed inputs were fed into the network, where the dataset is split into training, testing 

and validation (in a 70%, 15% and 15% split, respectively) in accordance with literature [22]. 

This split is the default setting and allows for a large amount of data being used for training. 

The training set used Levenberg-Marquardt backpropagation in an open-loop configuration to 

determine the weights of the training set. The loop was closed and initialised with the weights 

from the open-loop. The model then used the created PV output prediction as an input to 

generate the next forecast value. 

 

Fig. 6: Proposed network construction. 

The normalised root mean square error (nRMSE) was employed as an evaluation method, as 

shown in equation (2). It has been widely used in literature for substations [26]. For example, 

[27] uses nRMSE to compare results for different models for PV output forecasting at a power 

station. By introducing the normalised prediction error, with the installed capacity 𝑃𝑖𝑛𝑠, 

comparisons between errors referring to different solar farms or substations can be made. 

 

(a) 

(b) 

 ̂ 

 ̂ 
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𝑛𝑅𝑀𝑆𝐸 = √ 
1

𝑁
∑ (

𝑃̂(𝑖) − 𝑃(𝑖)

𝑃𝑖𝑛𝑠
)

2

 

𝑁

𝑖=1

  

 

(2) 

 

where, 𝑁 is the number of data samples; 𝑃̂(𝑖) and 𝑃(𝑖) represent the predicted and measured 

power at the time 𝑖. 𝑃𝑖𝑛𝑠  is the installed capacity. 

nRMSE was saved for both configurations, and the process was repeated 20 times (which was 

selected as an arbitrary number). The network’s forecast (close-loop) performance was 

determined based on the lowest training (open-loop) nRMSE. The process was repeated where 

sloped ERAD was changed to modelled irradiance. 

4 Data analysis and forecast performance 

4.1 Meteorological analysis and PV output 

Fig. 7 shows sloped ERAD, visibility, cloud-cover, temperature, and PV output over a week in 

May at Richborough. The sloped ERAD exhibits a perfect bell curve at the top of the 

atmosphere due to being unaffected by atmospheric weather conditions (Fig. 7a). The radiation 

striking a surface on earth can be expressed as the residual of sloped ERAD once it has passed 

through the atmosphere, which strongly correlates to the PV output. Meteorological variables 

(Fig. 7b-d) clearly demonstrate that weather conditions influence the amount of radiation that 

reaches the surface of the PV panel. It is evident that low PV output occurs on cloudy days 

(i.e., on the 3rd of May) with a weak correlation to the sloped ERAD, while high PV output is 

observed on clear sky days (i.e., on the 6th of May) with a strong correlation to the sloped 

ERAD.  
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Fig. 7: Photovoltaic power characteristics and meteorological factors for Richborough; a) sloped ERAD (W/m2); b) visibility 

(m); c) cloud-cover (okta); d) temperature (°C); e) PV load (MW). 

4.2 Seasonal analysis 

An analysis of PV output for the two locations shows that the PV output varies significantly 

even within the summer season. The standard deviations are up to 50% of the peak hourly mean 

outputs (Fig. 8a & 8c).  This suggests that unpredictable weather conditions significantly 

impact PV output, reinforcing the importance of developing a PV forecasting tool to balance 

supply and demand. The seasonal data shows the seasonal variation of the mean PV output for 

both sites, with the highest output in summer followed by spring, autumn and winter (Fig. 8b 

& 8d). However, the variance between summer and spring is not significant as peak outputs 

for both sites are at a range of 43-50% of the installed capacity throughout these seasons 

(Richborough:  103 MWp and Grimsby: 53 MWp). 

(a) 

(b) 

(c) 

(d) 

(e) 
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Fig. 8: Seasonal data over three years for; a) Richborough, mean summer PV output with standard deviation; b) 

Richborough, mean seasonal PV output for all seasons; c) Grimsby, mean summer PV output with standard deviation; and d) 

Grimsby, mean seasonal PV output for all seasons. 

4.3 Correlation coefficient analysis 

The correlation analysis shows that Pearson’s correlation coefficient varies with both season 

and location. In general, the highest correlation is found for Sloped ERAD, followed by cloud-

cover, temperature, visibility, wind speed and wind direction. Fig. 9 presents the correlation 

coefficients of the four variables that correlate most closely to PV output: Sloped ERAD, cloud-

cover, temperature and visibility. A comparison of the two locations suggests that all selected 

variables have a stronger correlation to Richborough (Fig. 9a) than to Grimsby (Fig. 9b).  

As expected, sloped ERAD has the highest positive correlation with PV output for all seasons. 

This justifies the use of sloped ERAD as an essential input parameter for the model. Cloud-

cover shows a high negative correlation to PV output, although it varies significantly with the 

seasons and PV locations. This is because cloud-cover reduces the amount of solar irradiance 

reaching a PV surface, and its impact depends on the PV local weather conditions, as revealed 

by numerous studies [17] [10].   

It is interesting to note that temperature shows a positive correlation to PV output. As the PV’s 

efficiency decreases with the increased temperature, a plausible explanation for this positive 

(a) (b)

(c) (d)
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correlation is that a high temperature also generally correlates to high solar irradiation on PV 

given the UK’s temperate weather conditions. As such, temperature is related to sloped ERAD 

and is not an independent variable. The highest temperature correlation to PV output occurs in 

summer, followed by spring, autumn and winter (Fig. 9). Visibility has the weakest correlation 

to the PV output among these four parameters for all seasons, regardless of location. The 

correlation analysis provides information for the model parameter selection and rationale for 

the model sensitivity analysis, presented in the later section.  

   

Fig. 9: Pearson’s correlation coefficient between PV and exogenous input variables for a) Richborough; and b) Grimsby. 

4.4 Forecast performance 

The forecast performance (close-loop) for two approaches is summarised in Table 4, where the 

nRMSE for a 7-day-ahead forecast for Richborough and Grimsby is presented. Both 

approaches use visibility, cloud-cover and temperature as meteorological input parameters. 

The Irrad approach is based on modelled irradiance, which was used as a comparative study 

for the sloped ERAD based approach. 
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Table 4: Seasonal forecast performance for Richborough and Grimsby (nRMSE).  

Season Richborough  Grimsby  

 Irrad approach1 ERAD approach2 Irrad approach ERAD approach 

Spring 5.19% 6.36% 8.96% 8.95% 

Summer 5.95% 5.54% 5.30% 8.26% 

Autumn 6.87% 6.46% 6.53% 9.35% 

Winter 3.85% 5.25% 4.26% 5.70% 

1. Irrad approach uses modelled irradiance, visibility, cloud-cover and temperature as input parameters. 

2. ERAD approach uses sloped ERAD, visibility, cloud-cover and temperature as input parameters. 

There are trends that generally apply to both approaches. Forecasting in summer yields better 

results than in spring and autumn for both locations, which was expected due to the steady 

weather and a large amount of solar irradiance. This is very useful since the peak PV output is 

generated during this season. Forecasts in spring and autumn show very similar results; the two 

locations do not show concordance in relation to which of the seasons is the most difficult to 

forecast. Therefore, in this case, the complexity of the daily pattern will have a greater impact 

on forecasting than the season itself. 

During the winter, shorter sunshine periods mean that data is limited. It was therefore surprising 

that winter achieved the lowest nRMSE for both locations. However, care must be taken when 

analysing nRMSE, as the evaluation is based on capacity. Winter is the season where the 

measured PV output is the lowest, and the contrast between the measured output and the 

installed capacity will therefore be the largest. For this reason, the nRMSE for low PV outputs 

(such as those experienced during the winter) does not necessarily indicate high accuracy for 

the PV output forecast, and a graphical representation is therefore needed to confirm the results. 

The measured PV output for three of the winter days was below 10% of the total capacity, 

which is the most likely reason for the good results. Furthermore, the strongest correlation with 

cloud-cover for both locations was for winter, which may further explain the results. 

A seasonal representation of the measured and forecasted PV output results are presented in 

Fig. 10 and Fig. 11 (for Richborough and Grimsby, respectively). Results show an excellent 

PV output forecast for all four seasons at Richborough (Fig. 10). In particular, the forecast 

captured huge intra-daily variations of PV output. For example, the peak PV output on the 19th 

and 20th of March 2020 (~20 MW) is less than one-third of the following five-day outputs (~60 

MW) in spring (Fig. 10a). Moreover, the daily peak output variation during the winter week 

fluctuates (~40 MW) (Fig. 10d). For Grimsby, the forecast is less accurate when compared 

with Richborough. However, the forecast can capture the daily variation of PV output 

reasonably well. This is evident in the forecasting performance on the 19th and 20th of March 

in spring, 15th and 16th of September in autumn and 21st and 24th of January in winter (Fig. 11). 

This forecasting feature is particularly useful to balance the supply and demand of the 

electricity system. 
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Fig. 10: Forecast performance for Richborough; a) spring; b) summer; c) autumn; d) winter. 

The ERAD approach does not perform well in capturing the inter-hourly variability of PV 

output due to the rapid change to weather conditions. In fact, capturing the inter-hourly 

variability of PV output is very challenging given the UK’s erratic weather. A plausible 

explanation for this is the smoothing of weather data, since linear interpolation was applied for 

the meteorological variables to create a half-hourly dataset from an hourly dataset. Using 

smoothed weather data as input parameters for modelling, training, and forecasting fails to 

accurately represent the local weather conditions reflected by the measured PV output. 

However, it should be recognised that even in situations where high-frequency weather data is 

available, the data must represent the local weather conditions for effective PV output 

modelling. High-spatial-resolution weather data is often not available in the UK, given the 

island’s weather conditions. Overall, this study demonstrates that the ERAD approach can 

capture a clear daily trend, which ultimately is more valuable for stakeholders. 

When comparing the Irrad approach with the ERAD approach, there are a number of things 

to take into consideration. Quantitatively the Irrad approach is more effective in capturing 

inter-hourly fluctuations compared to the ERAD approach. This is because the modelled 

irradiance was obtained based on high frequency (15 minutes) historical weather data through 

satellite images. Measured weather data in the UK is readily available, but in lower frequency 

(a) 

(b) 

(c) 

(d) 
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intervals (hourly), and the Sloped ERAD is dependent on this information. It is therefore not 

surprising that the Irrad approach outperforms the ERAD approach under these circumstances.  

The key limitation when using the Irrad approach is that it requires tremendous resources for 

accurate weather forecasting at 15-minute frequency intervals (to generate modelled 

irradiance) in addition to requiring values for visibility, cloud-cover and temperature, forecast 

at hourly frequency intervals for the coming week ahead. Sloped ERAD on the other hand is 

unaffected by weather conditions and can be determined with high accuracy, both for past and 

future values. The ERAD approach only requires hourly forecasting of visibility, cloud-cover 

and temperature, making it suitable to use in practice. 

   

 

 

 

 

Fig. 11: Forecast performance for Grimsby; a) spring; b) summer; c) autumn; d) winter. 

Richborough exhibits a generally satisfying performance for all seasons compared to Grimsby, 

where the performance is less accurate. This suggests that forecast accuracy does depend on 

local meteorological conditions and plant capacity. As sloped ERAD was close to identical for 

both substations (due to their proximity), meteorological conditions will inevitably play an 

integral role in subsequent predictions using sloped ERAD. When observing the measured PV 

output for the two substations, fluctuations were more common for Grimsby, with frequent 

midday spikes. The measured data revealed that the weather conditions at Grimsby are more 

(a) 

(b) 

(c) 

(d) 
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intermittent than Richborough due to its location in the UK. Unsurprisingly, the frequent 

variations at Grimsby are much more challenging to forecast.  

In addition to the variability in weather, variation in capacity may also be an important factor. 

As suggested from the results, the approach seems to be more effective for a larger PV 

installation. This may be because microclimate has a more significant impact on smaller PV 

installations such as Grimsby. Richborough, on the other hand, is less affected by unexpected 

cloud-cover or weather changes. This information is useful because accurate 7-day-ahead PV 

forecasting is needed to minimise curtailment on a regional or national level. Furthermore, this 

incentivises an increase in connection of solar PV panels to substations; providing better 

forecast predictions in addition to an uptick in electricity production. This is valuable 

information for stakeholders in the planning of future PV installations. 

4.5 Sensitivity analysis of input parameters 

A preliminary sensitivity analysis was conducted using several combinations of input 

parameters in order to validate the selection of the meteorological input parameters for the 

ERAD approach. This was done to optimise the number of input parameters for the model. 

These combinations were constructed based on the correlation analysis (Fig. 9). Sloped ERAD 

is included for all combinations as it has the highest correlation to PV output when compared 

all other parameters as well as superior availability (it can be modelled to high accuracy 

regardless of location). Each combination's forecast performance was assessed using summer 

data, as the peak PV output is found in this season.  

Results show that Combination C, which used sloped ERAD and cloud-cover only as input 

parameters, is the optimal option for PV forecasting (Table 5). This is because the model 

performance was either maintained or increased for both locations when temperature and 

visibility were removed from input parameters, resulting in a simpler and more cost-effective 

model. The sensitivity analysis confirms that sloped ERAD and cloud-cover are the most 

important input parameters. The impact of other meteorological variables (e.g., temperature, 

visibility, wind speed and wind direction) on the model performance are negligible, as indicated 

by the correlation analysis. This reinforces that the correlation analysis for the input parameter 

selection is critical for a successful forecast, as the model input parameters can be site-specific. 

Table 5: Forecast performance using different combinations of input parameters for summer(nRMSE). 

Combination Exogenous Input Richborough  Grimsby  

A Sloped ERAD + Cloud-cover + Temperature + Visibility 5.65% 8.85% 

B Sloped ERAD + Cloud-cover + Temperature 5.59% 8.58% 

C Sloped ERAD + Cloud-cover 5.68% 8.25% 

D Sloped ERAD + Temperature 6.83% 11.33% 

E Sloped ERAD + Cloud-cover + Temperature + Wind direction 5.64% 8.62% 

F Sloped ERAD + Cloud-cover + Temperature + Wind speed 5.27% 8.78% 

 

4.6 Model development and potential applications  

Ultimately, the aim was to create a model that will work in practice and that can pave the way 

for solving industry issues related to the absence of recorded solar irradiance globally. The use 

of modelled sloped ERAD to forecast PV output means that the novel approach removes 
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complexity and potential errors related to other modelled irradiance parameters whilst still 

maintaining a high accuracy. Adopting sloped ERAD as an input parameter in future research 

means that reliable PV forecasting can be obtained, which is beneficial for future development 

in this field. 

The novel approach will require further testing using weather forecasting data. The model will 

not perform as effectively as suggested in Fig. 10 and Fig. 11 if using forecast weather data in 

place of historical weather data. However, to make the model practical the use of forecasted 

weather data is essential. The forecast horizon will inevitably impact the accuracy of the 

weather forecast. For example, for a five-day and a seven-day forecast, 90% and 80% accuracy 

can be expected, respectively. For a 10-day (or longer) forecast, equivalent accuracy values are 

only obtained half of the time [28]. 7-day-ahead weather forecast data is available from the 

Met Office. The granularity of cloud data that is available to the public is less accurate than 

that used for recorded data. However, the forecast of cloud-cover in oktas, similar to historical 

data available from the Met Office, is available as a fee-paid service [29]. 

The model would be particularly useful for larger scale applications (i.e., county or regional 

scale). This is because the intra-hourly change of PV output caused by the rapid change in local 

weather conditions can be smoothened. Potentially a more accurate intra-hourly PV forecast 

can be achieved on this scale. Trials using the PV output at a larger scale in conjunction with 

forecast weather data promote the appropriate use of this approach and highlight areas for 

future improvements. 

5 Conclusion 
In the present paper, a novel machine learning approach for solar photovoltaic energy output 

forecasting was developed using sloped extra-terrestrial irradiance. The main conclusions are 

detailed below. 

• The promising results validate the concept of using sloped extra-terrestrial irradiance 

as an input parameter in conjunction with meteorological variables. The uniqueness of 

this approach relates to the approach’s ability to precisely model sloped extra-

terrestrial irradiance – an input parameter that has a stronger correlation to PV output 

compared to widely recorded meteorological parameters. Furthermore, since sloped 

extra-terrestrial irradiance is based on solar geometry and therefore not influenced by 

atmospheric weather conditions, it can also be accurately modelled for future inputs. 

This is a great advantage compared to conventional approaches where inaccurately 

predicted solar irradiance is often used. 

 

• The novel forecasting model captures huge intra-daily variations in photovoltaic output, 

which is particularly useful for balancing supply and demand of the electricity system. 

 

• The use of sloped extra-terrestrial irradiance and cloud-cover presented the optimal 

combination of input parameters as these provided the simplest and most cost-effective 

model without reducing accuracy.  

 

• The model was tested and validated in what can be considered a worst-case scenario in 

UK’s unpredictable and intermittent weather conditions. The excellent model 

performance suggests that there is now a strong imperative to use the model in other 

locations where weather conditions are more stable. The proposed approach offers 

universal value as it only requires coordinates and weather data.  
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Trials using photovoltaic output at a larger scale in conjunction with forecast weather data 

promote the appropriate use of this approach and highlight areas for future improvement, 

including consideration of wear and tear as an input parameter to represent reduced PV 

efficiency over time.  
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