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Automating the Modular Construction Process: A Review of Digital Technologies and 
Future Directions with Blockchain Technology 

Abstract 

Modular integrated construction (MiC) method has come to limelight in recent years due to its 

enormous potentials. Although several digital tools and technologies (DTT) have been employed 

in MiC projects, no previous research study has critically reviewed and analysed their 

implementation in MiC projects. The current study addresses this gap using a three-tier research 

approach– data curation, science mapping, and systematic analysis to evaluate modular 

construction research studies. The findings revealed minimal application of DTT in the MiC prefab 

transportation phase and the potentiality of blockchain and other integrated DTT for use in MiC 

projects. Globally, Canada, China, and the USA are the leading countries that have applied DTT 

in MiC projects. Also, simulation, building information modelling (BIM), and optimization 

algorithms are the most frequently deployed DTT in modular construction. This study has 

provided valuable insights into the digital technologies adopted in MiC projects and potential 

areas for its future use in modular construction. 

Keywords: Blockchain technology; digital tools; modular integrated construction; prefabrication; 

technologies. 

 

Nomenclature 

BCT  Blockchain technology 

BIM  Building Information Modelling 

BIM-OfA BIM-Based Optimizer for Assembly 

DfMA  Design for Manufacture and Assembly 

DTT  Digital tools and technologies 

MCR  Modular Construction Research 

MiC  Modular Integrated Construction 

PSO  Particle Swarm Optimization 

RFID  Radio Frequency Identification 

 

 



2 
 

1. Introduction 

MiC projects form a critical mass and are vital to the overall development and sustainability of 

the built environment, and much attention has been given to it in recent years. MiC is the 

process and technology of creating 3D-volumetric furnished modules in off-site facilities and 

transporting them to the site for proper assembling and installation. MiC is primarily carried 

out in phases of prefab manufacturing, transportation, and on-site installation [1,2]. Each of 

these phases is pivotal to the overall development of the prefabricated buildings and facilities. 

Prefab manufacturing dates back to the 17th century, when manufactured goods were 

transported from one place to another [3]. The MiC processes have evolved over the past 

years and have reached a point where technology is becoming a major fulcrum and centre 

point. 

The relationship between MiC processes and technology is vital, and the use of these DTT is 

a significant enabler. The different digital technology tools are indispensable to the overall 

automation of the offsite construction processes. For instance, integrating BIM into the prefab 

manufacturing phase has significantly increased the productivity of manufacturing processes 

[4]. Through the application of real-time integrated frameworks and perspectives ranging from 

organization, coordination, implementation, BIM has been identified as a viable DTT by [5], 

and its benefits and importance are well outlined in the extant literature [6,7]. Achieving 

automated modular construction processes is made easy through the instrumentality of 

several digital technologies, which has strengthened the methods and mechanisms of 

implementing modular construction in each of its phases. Machine learning and generic 

algorithms that are data-driven have helped drive the growth and implementation of the MiC 

through supervised learning and training. The faster training that the radial basis function 

illustrated in [8] when used in relevant DTT, which is data-driven, enhances their suitability for 

MiC processes. 

Moreover, as demonstrated by Yin et al. [9], the application of RFID and personal digital 

assistants facilitate real-time information sharing with all stakeholders with a resultant 

improvement in the overall construction process. Therefore, automating the processes 

involved in modular construction is of prime importance to its overall development and 

sustainability. At the same time, digital technology tools provide a great path for this 

developmental agenda. In a similar context, [10] emphasized the need for the proper 

automation of prefab manufacturing to lay a strong foundation for the remaining phases. In 

another instance, the multilayer perceptron neural network proposed by Pan et al. [11] to drive 

the modular construction process at the prefab transportation phase was trained with a 

backpropagation algorithm, and defective modules during transportation were detected in real-
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time. This distinct technology in the transportation phase saves time as the faulty modules can 

be fixed in real-time or replaced before arriving at the on-site assembly. Thus, integrating 

innovative technologies in modular construction works offers wide-ranging possibilities 

because construction work can be carried out very fast without much delay. Damages and 

rework can also be reduced to the barest minimum when appropriate digital tools are 

employed. 

A number of studies in the extant literature have reviewed modular construction, some of 

which are tabulated by [12]. Other recent review studies include [13] and [14], which conducted 

scientometric analysis and qualitative analysis of the offsite construction articles. Other tailor-

made reviews focus on specific research areas in MCR, such as sustainability [10] and critical 

drivers for its adoption [15]. These studies used varying research databases such as Web of 

Science and Scopus. At present, studies on the use of DTT have only focused on its 

application in a particular case study, and as at the time of data curation in this study; no paper 

has examined and reviewed the implementation of DTT in modular construction projects; nor 

analysed its trend, structure, and knowledge areas. 

Given the above, the current study aims to critically explore and conduct an in-depth review 

of the digital tools and technologies applied across the MiC phases. The key objectives to be 

achieved are: (i) identify and track the evolution, trend, and structure of DTT application in 

MCR. (ii) Reveal the gaps in the implementation of DTT across the MiC project phases. (iii) 

Investigate the pattern or method of the application of DTT employed in MCR - while 

discussing its related strengths (benefits) and weakness (limitations) of the DTT in relation to 

their use in MCR. (iv) Explore the potentiality of blockchain technology as an enabler for MiC 

projects – and how it could enhance these DTT strengths and ameliorate their weakness. As 

expatiated in the next section, a three-tier research approach would be employed in achieving 

these defined objectives. 

Subsequently, the scientometric analysis and a review of the research corpus will be 

discussed in section 3. In contrast, section 4 would expatiate on the various DTT and their 

implementation across the MiC phases. Section 5 outlines blockchain's potentiality and 

prospects in MiC projects, while section 6 concludes the study. It is expected that the findings 

of this paper would be useful to its readers by facilitating their understanding and interest in 

applying DTT in MiC projects and other construction methods towards enhancing the 

digitalization of the construction industry. 

2. Research Methodology 

A multi-stage research approach was used in the present study to critically explore and 

analyse the digital tools and technologies adopted in the extant literature to automate the 
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modular (offsite) construction process. The first stage of the research approach is data 

curation, followed by science mapping and systematic analysis (see Figure 1). 

 
Figure 1: Outline of the research design 
 

2.1 Data curation 

Data curation involves the process of retrieval, management (discovery and analysis), and 

organization of data collected from sources (databases/repositories). It allows for the 

preservation and maintenance of data quality [16] and adds value to digital research data. 

More so, digital tools and machine learning algorithms are often employed to facilitate data re-

use, sharing, and manipulation using digital tools and machine learning algorithms. Data 

curation was used in this study to extract data from a scientific research database. Several 

research databases are available to the authors, such as Google Scholar, Scopus, Web of 

Science (WoS), ProQuest, and Microsoft Academic. Olawumi et al. [17] considered WoS and 
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Scopus more reliable research databases with broader coverage. An in-depth review of 

Scopus and WoS databases by [18] shows a significant overlap in their publication records. 

Moreover, the WoS database was selected because it contains more influential and 

comprehensive records and because of its scientific robustness [19–21]. 

Afterwards, research data were retrieved from WoS using an iterative search process to get a 

reliable result. Search keywords used are - "off-site construction" OR "modular construction" 

OR "prefabrication construction" OR "modular integrated construction" OR "modular buildings" 

OR "prefabricated building" OR "offsite construction" OR "precast concrete building" OR 

"precast construction" OR "prefabricated housing" OR "off-site manufacturing" OR "offsite 

manufacturing" OR "volumetric construction." The time span for the search was between 

1970–2020. The retrieved publication records were limited to journal papers – as the article 

category is regarded as a reputable and certified knowledge source [22] and more 

comprehensive [23]. The data was further refined to include articles related to “engineering,” 

“construction building technology,” and “architecture” research areas, which resulted in 450 

bibliographic records, which are indexed in Mendeley reference manager and saved as a 

marked list on WoS. Greiner and Robart published the first paper on modular construction in 

1970, which focused on electric heating adapted for modular buildings [24]. 

Meanwhile, to align the retrieved data with the research aim, in-depth content analysis of the 

research corpus – especially the topic, abstract, keywords – was further carried out to identify 

publications that solely employed digital technologies and tools for modular construction. A 

total of 82 bibliographic records (year span= 1992–2020) conform to this selection criteria and 

were included in the final research corpus; and indexed in Mendeley reference software. 

However, papers that applied questionnaire surveys, interviews, and discussing these 

technologies were excluded. 

2.2 Science mapping 

The science mapping method is a useful and proven approach to picture dynamic patterns in 

bibliographic records and databases [25]. It provides reliable diagnostic tools to conduct, link, 

and process literature concepts, which are often overlooked in a manual review process [26]. 

More so, science mapping involves three independent but overlapping research techniques – 

bibliometric analysis, scientometric analysis, and informatics [12]. Readers interested in in-

depth information on these three techniques can consult relevant studies such as [27,28]. 

According to [12], the scientometric analysis includes bibliometric methods. Hence, it was 

adopted as the primary technique for the study’s science mapping.  

Several scientometric software is available for use, such as VoSviewer, CiteSpace, Gephi, 

BibExcel, and the like [25]. The VoSviewer and CiteSpace are the most widely used tools for 
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scientometric reviews in the extant literature overlapping features. However, the VoSviewer 

was adopted in this study as it is more user-friendly [29] and contains features useful in this 

study analysis such as (i) distance-based visualizations; (ii) smart-moving clustering algorithm; 

and (iii) full and fractional counting methodology [30]. 

A range of scientometric techniques was conducted on the indexed 82 bibliographic data using 

the VoSviewer software in this study, such as co-authorship analyses (authors, organizations, 

and countries analyses), co-occurrence keywords, citation analyses (document and journal 

co-citation analyses), and keywords clustering. A few more scientometric techniques are 

achievable via the VoSviewer. Still, these identified techniques are adequate to achieve the 

study’s objectives. Extant literature [21,30,31] provides in-depth descriptions of these 

scientometric techniques. More so, these scientometric analyses generate relevant network 

maps on the VoSviewer software, which provides more useful information and measures of 

the network. The science mapping approach forms the quantitative analysis stage of this 

study. 

2.3 Systematic review 

Systematic reviews (SR) are not a literature review in the traditional sense, and it involves 

examining existing studies, evaluating scientific contributions, and synthesizing the relevant 

data. Hence, this SR process allows for reasonable and clear conclusions to be reached – “on 

what is and is not known” [32]. Also, per [33], SR complements other reviews, including 

science mapping by a key element of evidence-based research. 

The steps for a systematic review include: (1) frame the review questions; (2) identify relevant 

studies; (3) assess the research corpus quality; (4) summarize the research evidence and 

resolve literature conflicts, and (5) interpret the findings (clarify the studies' relative strengths 

and weakness) and provide recommendations for future research [33,34]. The formulation of 

the research question and the research corpus's size are fundamental aspects for an SR to 

ensure any applicable conclusion is reached [34].  

The key research/review questions examined in the SR aspect of this paper are: (i) how are 

digital tools and technologies (DTT) employed for modular construction research (MCR) in the 

literature? (ii) What are the related strengths (benefits) and weaknesses (limitations) of each 

DTT in relation to its application in MCR? (iii) How can blockchain technology (BCT) enhance 

these DTT strengths and ameliorate their weakness? (iv) What is the potentiality of BCT as a 

new collaborative system in modular integrated construction (MiC) projects? Moreover, the 

research evidence from the review questions (i) – (iii) would be discussed based on the three 

phases of typical MiC projects: the offsite prefab manufacturing phase, prefab transportation, 

and the onsite assembly phases. 
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3. Research Findings: Scientometric analysis 

This section discusses the scientometric analysis results based on the research approach 

outlined in section 2.1 and Figure 1. 

3.1 General overview of the research corpus 

The two sets of bibliographic records highlighted in section 2.1 were analysed in this section.  

Publication years: The first implementation of MiC in the construction industry dates to the 

1960s. However, the first few papers on MiC concepts were published between 1970–1990. 

The first paper that dealt with applications of digital technologies for MiC projects was in the 

year 1992 by [35]. They developed an expert scheduling system for MiC projects named 

“CONSCHED.” However, there was no sporadic interest in MiC until this last decade (2010 – 

to date); before this, there were only 59 MiC articles (pre-2010) and just 7 MiC articles that 

applied technological tools in MiC (TA-MiC) projects. 

 
Figure 2: Distribution of published MiC research articles in 1972–2020 
Data source: WoS database 

More so, within the following 5-year range (2010–2014), there are 47 MiC articles and seven 

TA-MiC articles from the indexed WoS research corpus, constituting about 15% of the total 

MiC publications in the period (see Figure 2). In the year range (2015–2016), there was 

increased interest in MCR with 51 MiC papers, of which there are six TA-MiC articles (12). 

Meanwhile, in the following two years (2017–2018), there was a very significant increase in 

MCR with 127 in MiC papers (127) and 200 in TA-MiC related articles (16). In the last 
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two years (2019–2020), there was a sustained interest in MCR in the built environment with a 

53 and 144 increased growth rate in MiC and TA-MiC papers, respectively – of which there 

are 25.  

Note:  – % increases compared to the previous year range.  – % constituent of TA-MiC 

papers in MiC publications within the specified year range. 

Country and impact metrics: Further quantitative analysis of the WoS research corpus 

shows countries and regions with the widespread application of modular construction and TA-

MiC (see Figure 3). The top five countries in MiC applications are China (122, 22), the United 

States (100, 16), Australia (77, 9), England (57, 7), and Canada (50, 25) – of MiC and TA-MiC 

articles, respectively. These countries constitute 68% of published MiC papers and 71% of 

TA-MiC articles when the co-authorship counting is normalized. MCR-related publications are 

well represented in the five regions (Table 1). North America, Asia, and Europe have made 

more research impact (h-index) regarding modular construction in the global built 

environment. 

 
Figure 3: Global spread of MiC (inclusive of TA-MiC) related research publications 
Data source: WoS Database 

However, modular construction concepts are still at the early stages of adoption in Africa and 

South America, with three and nine MiC publications, respectively. The first MiC paper in 

South America was in 2007 [36], and it took more than a decade before the subsequent 
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publication in 2018. Meanwhile, in Africa, the first co-authored MiC study was in 2013 but was 

based on a bridge project in Saudi Arabia (Asia). Afterwards, two articles were later published 

in the year 2017 and 2019. 

Table 1: Impact metrics rating of regions 

Regions (a, b) Nr of MiC articles 
(*TA-MiC) 

H-index 
(*TA-MiC) 

Citations 
(*TA-MiC) 

Citing Articles 
(*TA-MiC) 

Africa (2, 1) 3 (1) 2 (1) 25 (16) 25 (16) 

Asia (17, 8) 242 (45) 28 (12) 2974 (469) 1730 (387) 

Europe (23, 12) 126 (22) 25 (8) 1854 (171) 1523 (154) 

North America (3, 2) 143 (41) 24 (12) 2128 (337) 1634 (261) 
South America (3, 1) 9 (3) 5 (1) 74 (22) 73 (21) 

Note: a– number of countries with MiC articles; b– Number of countries with TA-MiC related papers; 
*TA-MiC articles; Nr– Number 

 

3.2 Scientometric analysis 

Prior to inputting the curated data from the WoS database into VoSviewer software for further 

quantitative analysis, the OpenRefine software was used to clean up, filter, and transform the 

data. For instance, there are several occurrences of the same term which connote the same 

meaning in the indexed WoS data, e.g. (i) "Building Information Modelling," "Building 

Information Modeling," "BIM"; (ii) "off-site construction," "offsite construction." Without data 

clean-up of such terms, it would affect the VoSviewer visualization and diminish the relevance 

of the produced network maps. Two clustering methods – key collision and nearest neighbour 

– on the OpenRefine application are used for the data clean-up (see Appendix A). About 29 

term clusters were refined. 

This section discusses the findings of the scientometric analyses as outlined in the research 

design (Figure 1) and section 2.2. Moreover, VoSviewer allows the direct use of WoS research 

data without further converting it before using the data to generate the power network map. 

Also, the variance in each item’s node and font size within the generated networks indicates 

the number of articles published [30]. 

3.2.1 Mapping of the collaboration networks (co-authorship analysis) 

Scientific collaborations among research scholars, industry practitioners, and government 

agencies breed expertise, bridge the digital divide, facilitate grants access, and increase 

productivity. The co-authorship analysis provides an in-depth understanding of the networks 

(authors, country, and organizations) and pinpoints the prolific research collaboration clusters. 
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Hence, this study maps the scientific collaborations of prolific authors, pre-eminent institutions, 

and leading countries in MCR research. 

3.2.1.1  Prolific authors 

A total of 253 authors published the 82 TA-MiC related research corpus used for the 

scientometric analysis. The scientometric analysis on the VoSviewer was undertaken as 

described in Appendix B. Figure 4 shows the generated collaboration network of the prolific 

authors with 14 links and total link strength (TLS) of 21.50. TLS indicates the total strength of 

the authors' cooperative relationships [30]. There are four research communities in the 

authors, with at least two authors forming the research circuit. However, the research circuit 

of Mohamed Al-Hussein is the most productive and prolific in the overall network with a TLS 

of 11, followed by those of Hosein and Ulrich with a TLS of 5.  

The lack of cohesive collaborations among the authors is well-pronounced within the network 

map. This calls for more interdisciplinary research in the application of DTT in modular 

construction research. Rafiq and Pablo are the authors with recent publications in the TA-MiC 

field, as connoted by their yellow nodes (Figure 4). Table 2 provides more detailed information 

on the number of articles published by these prolific authors, their institutions, the number of 

citations received, the average publication time span, and the research expertise of the 

authors. 

 
Figure 4: Network of prolific authors in MCR 
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As contained in Table 2, Al-Hussein has authored 14 publications that have impacted the TA-

MiC research areas with 139 citations. His average publication year is 2017, with an average 

normalized citation value of 1.04. More so, these ten prolific authors' research expertise 

converge and ranges from 3D visualization and BIM, simulation, robotics, RFID, and 

blockchain for modular construction. Three main types of MiC are evidenced from their work: 

precast concrete assembly, steel frame assembly, and wood frame assembly. 

Table 2: Quantitative analysis of the prolific authors in MCR 

Authors 
(institutions) Documents Citations 

Avg. 
Pub. 
Year 

Avg. 
Norm. 

Citations 
Research expertise 

Al-Hussein Mohamed 
(University of Alberta) 

14 139 2017 1.04 BIM and simulation for the steel frame and 
modular assemblies 

Hermann Ulrich 
(PCL Industrial Management Inc) 

5 67 2016 1.00 Automated crane planning and scheduling 

Taghaddos Hosein 
(University of Tehran) 

5 67 2016 1.00 BIM and simulation-based crane planning 
and optimization 

Han Sanghyeok 
(Concordia University) 

5 26 2018 0.65 3D-visualization and ergonomics in 
modular construction 

Ahmad Rafiq 
(University of Alberta) 

5 21 2020 0.98 Vision-based systems for steel frame 
assemblies 

Bouferguene Ahmed 
(University of Alberta) 

4 49 2016 1.01 3D-visualization and RFID for mobile 
cranes and modular assemblies 

Martinez Pablo 
(University of Alberta) 

4 15 2020 0.98 BIM and simulation-based systems for 
steel and wood frame assemblies 

Hu Hao 
(Shanghai Jiao Tong University) 

3 53 2018 6.06 RFID and blockchain-based systems for 
precast construction supply chains 

Wang Zhaojing 
(Beijing Jiaotong University) 

3 53 2018 6.06 RFID and blockchain-based systems for 
precast construction supply chains 

Pan Wei 
(University of Hong Kong) 

3 14 2019 0.77 Robotics and automated guided vehicles in 
modular construction 

 

The mapping of the prolific authors can help guide researchers and other interested 

stakeholders in MiC projects to pinpoint the key authors to track so as to keep updated on 

relevant TA-MiC publications. It also provides useful information for potential future scientific 

collaborations in MCR. 

3.2.1.2  Pre-eminent institutions 

The next phase of the analysis examined the pre-eminent institutions active in applying DTT 

for MCR. The scientometric analysis was carried out as described in Appendix B. The active 

institutions' collaboration network, as revealed in Figure 5, has 14 links and a TLS of 18. The 

generated network shows a low level of collaboration among these pre-eminent institutions, 

as reflected by the scattered and less connected network nodes. Nevertheless, the strongest 

links exist between the pairs of (i) University of Alberta (TLS=8) and PCL Industrial 
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Management Inc (a construction company in Canada – TLS=5); as well as (ii) University of 

Alberta and Concordia University (TLS=4), and both research partnerships as a TLS of 2.5. 

This academic-industry technology and knowledge transfer are commendable and profound. 

They allow and sustain interest and investment in the field, especially those with the 

application of technologies [37,38]. It also provides insights into how research partnership 

policies can enhance the digitalization of the built environment, especially for MCR. 

 
Figure 5: Network of pre-eminent institutions in MCR 
 

Meanwhile, most of the key institutions identified in the previous ‘general’ review of MCR 

[12,39] are not active research hubs for DTT application in modular construction except 

Concordia University and the City University of Hong Kong. Hence, this reveals that most top 

institutions involved in MCR have little or no interest in applying DTT in modular construction. 

Although MiC originated from the USA, only an institution (Pennsylvania State University) in 

the country appears in the top-10 institutions with TA-MiC publications (Table 3). Moreover, 

based on citations and publications, the University of Alberta is the most influential in TA-MiC 

research. However, Shanghai Jiao Tong University in China, with an average normalized 

citation of 6.06, is significantly improving its contributions regarding the application of DTT to 

MCR. The key institutions highlighted in the generated network are unique in their 

contributions to the TA-MiC research area and can be regarded as key technology hubs for 

MCR. 
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Table 3: Quantitative analysis of the leading countries and institutions in MCR 

Institutions/Countries Documents Citations Avg. Pub. 
Year 

Avg. 
Norm. 

Citations 
Pre-eminent Institutions     
University of Alberta  18 183 2017 1.02 
PCL Industrial Management Inc  5 49 2017 0.76 
Concordia University  5 17 2019 0.55 
University of Hong Kong 4 55 2018 0.83 
Pennsylvania State University 3 63 2017 0.91 
Shanghai Jiao Tong University 3 53 2018 6.06 
Western Sydney University 3 48 2018 1.21 
Universidade Federal do Rio Grande do Sul 3 17 2020 0.93 
City University of Hong Kong 2 56 2011 0.98 
Universiteit Twente 2 40 2012 1.36 
Leading Countries 

    

Canada 25 199 2018 0.85 
China 22 215 2018 1.39 
United States 16 121 2015 1.51 
Australia 9 102 2018 1.08 
England 6 43 2018 0.84 
South Korea 5 6 2019 0.20 
Netherlands 3 41 2014 0.94 
Brazil 3 17 2020 0.93 
Iran 3 12 2019 0.78 
Singapore 2 11 2017 0.37 

 

3.2.1.3  Leading countries 

The last phase for the mapping of the collaboration networks examined the contributions of 

countries to MCR.  Scholars domiciled in twenty-four countries have published papers on TA-

MiC. However, the collaboration network generated using the procedure in Appendix B reveals 

23 countries – except for Scotland with 1 TA-MiC publication. The generated network (Figure 

6) has nine links with a TLS of 19, of which only seven countries have a form of collaboration 

with each other. The most influential countries are Canada, China, and the United States 

(USA) within the collaboration network with more links and TLS of (5,9), (3,9), and (3,9), 

respectively. Canada is the most significant contributor to TA-MiC research. The strongest 

collaboration links in the network are between USA-China (TLS=4.00) and USA-Canada 

(TLS=4.50); the connection between the other countries is either non-existent or weak. The 

gaps in the links are a consequence of the lack of cross-region applications of DTT in MCR. 

Hence, there is a need to validate technologies applied within a country context in other 

regions. 
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Figure 6: Network of leading countries in MCR 
The top-5 ranked countries (Table 3) in this study are similar to previous ‘general’ MCR review 

studies by [12,13], although these countries change rank places. Two developing countries 

are represented in the network, with Iran maintaining a link with Canada and Brazil being 

isolated. Some of the barriers to MiC adoption in developing countries are highlighted by Wuni 

and Shen (2020). Citation-wise, research studies in China are the most cited, and those from 

Singapore have the least citations. However, based on the average normalized citations 

(which cater to the fact that older documents have more time to gain citations), studies in the 

USA are the most impactful among MiC researchers (Table 3). The countries with the latest 

entries of MCR publications are South Korea, Iran, and Brazil. 

3.2.2 Mapping of the knowledge areas (co-occurrence of keywords analysis) 

Keywords serve as reference points towards understanding the research field's contents [21] 

and outline the research domain boundaries and track the research field's evolution over time. 

The TA-MiC knowledge areas illustrated in Figure 7 show the structure, trend, and relationship 

among the various research topics in MCR. A total of 450 keywords were identified in the 82 

indexed research corpus. The generated network has 147 links with a TLS of 93.50 and 22 

keywords nodes – using the analysis process described in Appendix B. As stated by [14], the 

links between  The salient research themes identified within the network are “simulation,” 

“building information modelling,” “management,” “optimization,” and “design,”; and their 

respective TLS are contained in Table 4.  
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Figure 7: Network of salient MCR knowledge areas 
 

Other interrelated keywords that mostly recur with these top knowledge areas are: (i) For 

“simulation,” its pairing with “visualization” and “modular construction” has TLS of 2.18 and 

2.41, respectively. (ii) For “BIM,” its pairing with “design,” “mass customization,” and 

management with has TLS of 2.00, 2.50, and 2.78. (iii) For “management,” its pairing with 

“simulation” and “off-site construction” has TLS of 1.53 and 3.83. (iv) “Optimization” pairing 

with “design” and “modular construction” with TLS of 1.25 and 1.46; and (v) “Design” pairing 

with “construction” and “prefabrication” with TLS of 1.75 and 2.00. The keywords pairing shows 

how these salient themes have influenced other research areas in the MCR domain. 

Knowledge domains such as “tracking,” “optimization,” “design,” “algorithm,” and “simulation” 

are the most cited and pivotal to MiC projects and the MCR community. The network 

visualization map revealed three main clusters with each of its subset’s keywords representing 

related research themes, as shown in Table 4. Furthermore, these research areas and themes 

have significantly shaped the emerging and influential integration of DTT in modular 

construction concepts. 

Table 4: Quantitative analysis of the MCR knowledge areas 

Keywords Cluster Links TLS Occurrences Avg. Pub. 
Year 

Avg. 
Citation 

Avg. 
Norm. 

Citations 
Simulation 2 20 17 19 2015 12.3 1.03 
Building Information Modelling 1 18 15 17 2019 7.5 0.76 
Management 1 13 15 15 2019 9.7 1.66 
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Keywords Cluster Links TLS Occurrences Avg. Pub. 
Year 

Avg. 
Citation 

Avg. 
Norm. 

Citations 
Design 1 10 11 14 2017 14.6 1.1 
Optimization 2 20 13 14 2016 15 1.04 
Prefabrication 1 16 11 13 2018 8.3 1.84 
Modular construction 3 15 12 13 2017 7.8 0.79 
Off-site construction 1 12 11 12 2018 4.3 1.62 
Construction 1 16 8 9 2018 8.1 0.62 
Model 3 17 8 9 2018 10.4 1.15 
Algorithm 2 14 8 8 2016 12.5 0.93 
Visualization 2 14 8 8 2017 8.9 0.85 
Systems 3 11 6 6 2017 10.2 0.89 
Modular building 1 12 5 5 2017 11.2 0.96 
Mass customization 1 5 4 5 2020 0.6 0.96 
Tracking 2 6 2 5 2017 20.2 0.62 
Mobile crane 2 10 5 5 2016 11.6 0.92 
Selection 2 11 5 5 2016 11 0.81 
Information 3 13 5 5 2019 10.6 0.91 
Automation 3 15 5 5 2017 9.2 0.96 
Framework 3 10 5 5 2018 9 0.9 

 

3.2.3 Top cited MCR publications 

A scientometric analysis of the direct citation received by MCR articles was also conducted as 

revealed in Table 5 and described in Appendix B, which contains 12 top TA-MiC related 

articles with at least 20 citations. The most cited paper is Yin et al. [9], which utilized RFID and 

personal digital assistants (PDAs) to manage and transmit the multifaceted MiC project 

information using the internet to the manager or relevant site personnel.  Other studies that 

integrate RFID technologies include [41] that compare the effectiveness of a knowledge-based 

RFID system and a barcode-based system for a precast construction supply chain, resulting 

in over 60% savings in operational costs and reduces errors when RFID-based system is 

deployed. Also, Altaf et al. [42] deployed RFID along with a data-mining, simulation-based 

approach to managed MiC assemblies production.  

BIM was integrated for MiC projects in [43] and [44] studies, where the former deployed 

Internet of Things (IoT) to develop smart construction objects for precast construction. In 

comparison, [45] and [46] advance genetic algorithms to optimize modular units' layouts. 

Simulation and automated systems for MiC projects were discussed by other well-cited articles 

[47–49]. However, comparing the citation metrics of documents published in older MCR 

articles with newer ones may not argue for a fair comparison. Hence, based on normalized 

citations as advised by [30], [50] received the highest normalized citation and is considered 

the most influential within the TA-MiC publications. These publications are fundamental 
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bedrock for TA-MiC research. The relevant data provided can guide researchers and industry 

practitioners to identify key studies in MCR and how relevant DTT are applied in modular 

construction. 

Table 5: Top cited MCR articles 

Document Title Citations Norm. 
Citations DTT used 

[9] Developing a precast production management 
system using RFID technology 

76 1.00 RFID, Personal Digital Assistants, 
wireless internet 

[45] Site precast yard layout arrangement through 
genetic algorithms 

56 1.96 Genetic algorithms 

[43] Smart construction objects 41 1.00 BIM, IoT, IFC extensible markup 
language 

[51] Interlocking system for enhancing the integrity of 
multi-storey modular buildings 

29 1.99 Modular Integrating System, 
Construction automation 

[47] Automated post-simulation visualization of modular 
building production assembly line 

29 1.98 Simulation and visualization 
system 

[44] Design for manufacture and assembly-oriented 
parametric design of prefabricated buildings 

28 1.92 BIM 

[48] Simulation-based multiagent approach for 
scheduling modular construction 

24 1.78 Simulation-based auction 
protocol, Scheduling applications 

[50] Autonomous production tracking for augmenting 
output in off-site construction 

23 2.13 Automated production tracking 
system 

[46] Improved precast production-scheduling model 
considering the whole supply chain 

22 1.89 Genetic algorithms 

[41] RFID enabled knowledge-based precast 
construction supply chain 

22 1.89 Knowledge-based RFID system, 
barcode system 

[49] Neuromodex - neural-network system for modular 
construction decision-making 

21 1.45 Trained neural network system 

[42] Integrated production planning and control system 
for a panelized home prefabrication facility using 
simulation and RFID 

21 1.44 RFID, optimization algorithm, 
simulation 

 

3.2.4 Scientific mapping of the key MCR sources 

The 82 indexed bibliographic records are sourced from 26 journals, while only five journals 

have at least four records within the dataset. The scientometric analysis for the top MCR 

sources described in Appendix B results in a generated network (Figure 8) of 14 links and a 

TLS of 33. The three authoritative journals where MCR researchers publish their research 

findings are Automation in Construction, Journal of Computing in Civil Engineering, and 

Journal of Construction Engineering and Management with a minimum TLS of 10; and 

constitutes 28%, 13.41%, and 7.32% of MCR publications in the dataset. However, 

Automation in Construction is the most prominent journal for MCR based on the analytic 

metrics indicated in Table 6 with 23 publications, TLS of 24, citation counts of 386, and a very 

high normalized citation metric (44.8). 
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Figure 8: Network of key MCR publication sources 
Also, in the rank of influential publishing outlets that serve as links between various MCR 

outlets are the Journal of Computing in Civil Engineering (0.869), Journal of Cleaner 

Production (0.866), and Journal of Architectural Engineering (0.834) based on the average 

normalized citations. Table 6 shows the impact factors of the top-cited journals based on the 

WoS database. The generated network also revealed close links between these key journals, 

and they can be considered scholarly hubs for MCR-related publications. Hence, these top 

MCR sources are recommended for researchers, policymakers, and industry practitioners 

interested in modular construction to follow. 

Table 6: Key MCR publication sources 

MCR Publication Sources Counts Citations Norm. 
Citation 

Avg. 
Pub. 
Year 

Avg. 
Norm. 

Citation 
Impact 
factor % 

Automation in Construction 23 386 44.8 2017 1.95 5.669 28.05 
Journal of Computing in Civil Engineering 11 144 9.6 2014 0.87 2.979 13.41 
Journal of Construction Engineering and Management 6 31 2.2 2018 0.37 2.347 7.32 
Journal of Cleaner Production 4 21 3.5 2019 0.87 7.246 4.88 
Engineering Construction and Architectural Management 4 3 0.2 2020 0.05 2.16 4.88 
Canadian Journal of Civil Engineering 3 24 2.0 2016 0.65 0.985 3.66 
Journal of Management in Engineering 3 21 2.5 2018 0.82 2.867 3.66 
Architectural Engineering and Design Management 3 13 1.0 2018 0.33 ** 3.66 
Building and Environment 2 18 1.6 1994 0.78 4.971 2.44 
Journal of Architectural Engineering 2 2 1.7 2019 0.83 ** 2.44 

Note: **Emerging Sources Citation Index - Web of Science; % - Percentage 
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4. Systematic analysis 

In this section, the DTT employed for modular construction is analysed using a systematic 

technique to understand the breadth and depth of its application for MiC projects. The relative 

strength (benefits) and limitations of each DTT in relation to its application in MCR are also 

highlighted. The DTT applications in MCR are categorized and discussed based on the MiC 

project phase that they were applied. There are three main phases in MiC projects [1], which 

are the offsite prefabricated manufacturing phase, prefabricated transportation (PB) phase, 

and the onsite assembly (OA) phase. The 82 bibliographic records – of which 43 articles were 

carefully selected and reviewed and the relevant DTT applications in the research corpus are 

presented in the following sub-sections. Figure 9 illustrates the frequency of applying the DTT 

across the MiC project phases, as evident from the indexed WoS research corpus (82 articles). 

Overlaps between the three main sub-sections existed and were settled based on the 

predominance of how DTT was applied to a MiC phase in each article or based on the core 

focus of that article. 

4.1 Phase 1 – Offsite prefabricated manufacturing 

The offsite prefabricated manufacturing (OPM) phase of MiC projects generally occurs almost 

concurrently with the onsite assembly phase [52]. It is a critical phase – as this is where the 

precast modules are produced and necessary structural, architectural, and sustainability 

designs and criteria are embedded in the prefab modules. In one of the earliest applications 

of DTT in modular construction at the offsite prefab phase, [53] built a computer-based 

capacity planning and simulation model to assist managers in assessing and forecasting the 

market and plant utilization. The simulation model uses the demand and shift patterns to 

estimate the precast plant performance. More so, at the concept and planning stages of a 

construction project, many decisions need to be made, one of which includes the method of 

construction – a stick-built or modular construction? With this in mind, [49] proposed 

Neuromodex. This system utilizes neural networks to help clients, project teams, and 

contractors decide if MiC is the best approach for the project endeavour. The neural network 

system uses five criteria [49] to help the practitioners reach a feasible decision. 

A key benefit of modular construction is the quality of the construction product or modules. To 

address quality issues involved in the OPM processes, [54] developed a visualization system 

using project-based augmented reality (AR) technology. The novel AR-based system permits 

the user to peruse vital design information of the module being manufactured and make 

relevant cognitive assessments on the product quality. However, the developed system is still 

immature and was applied on a smaller scale. Similar technology could be extended to the 

OA phase for quality control processes and material handling. 
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Meanwhile, to facilitate the inspection of modular units within the controlled factory 

environments, [55] developed a vision-based system coded using Python, which extracts 

relevant data from an industrial camera. The extracted data is then compared with the BIM 

model manufacturing data for each module unit. [55] examined its practicability for the 

prefabrication of light-gauge steel frames, which provides evidence of its accuracy. 

Moreover, RFID technology adoption is increasing in the construction industry, especially for 

modular construction methods. For instance, [42] employed an RFID system to automate 

production data collection in a prefabrication facility. Using a simulation model integrated with 

an optimization algorithm, a RANSAC model was developed [42]. The RANSAC model helps 

clean the generated RFID data, which is useful in developing a discrete event simulation 

(DES) model to enable construction managers to visualize the assembly line production and 

optimize the production schedule in the offsite manufacturing of panelized walls. Yin et al. [9] 

also used RFID integrated with Personal Digital Assistants (PDA) for various quality 

inspections – such as production process, materials, molds, and managerial inspections. 

Using RFID and PDA minimize information losses comprehensively. Hence, in the OA phase, 

information on the PDA can be shared in real-time to ensure speedy assembly. 

Meanwhile, [56] developed a GBMH algorithm using the control theory concept to monitor, 

detect, and correct possible variations in the desired performance level of offsite prefab 

factories. The system was implemented in a structural steel prefab facility at a minimum cost 

to the project [56], which helped the prefab facility manager predict the prefab shop's 

production performance. Other benefits are that MiC projects can be delivered on schedule, 

avoiding penalties due to delay and reduced overhead costs. Furthermore, [50] developed a 

production tracking and control system for a large-scale prefab plant in Australia to resolve 

deficiencies usually encountered in offsite construction works. The development system could 

detect any potential shortfalls in production against the predefined targets and make the 

necessary adjustment to the project capacity parameters and avoid escalating the costs due 

to the schedule delay. 

Each module manufactured in a prefabrication factory is a project on its own with associated 

activities and constraints. Hence, developing a feasible schedule for such large-scale and 

multi-unit projects and allocating project resources is a more daunting task. To this end, [48] 

developed a simulation-based auction protocol effective in resource levelling and scheduling 

of MiC projects even with limited data. The developed tools show better capabilities than 

commercially available software such as Microsoft Project and Primavera. Moreover, [57] 

implemented a scheduling optimization model to cater to an often neglected material logistics 

dynamics in construction planning. The advent of OPM has introduced some complexity to the 

supply chain management because of the necessity to deliver materials to the prefab 
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manufacturing site. Thus, material management is of great importance to the supply chain of 

goods been delivered to the site (either prefab or onsite). The optimization model solves 

multiple constraint problems through proper representation as a constraint satisfaction 

problem [57]. It employs symmetrical search problems to determine an objective function that 

would locate and optimize such tasks such that the materials will be scheduled to the prefab 

manufacturing site in record time without conflicts in scheduling and minimize waste. 

Moving to BIM-related DTT and use of artificial intelligence (AI) at the OPM phase. The most 

prolific author in the TA-Mic research field, Al-Hussein Mohamed, co-authored two articles 

where BIM was used to verify the intersections of steel and wood frame assemblies. In the 

first paper, [58] extended the use of 3D applications such as BIM to verify the manufacturability 

of steel frame assemblies automatically. The machine eligibility determination system (MEDS) 

helps detect the regions of intersection in steel frames and determine the areas requiring, for 

instance, the fastening of screws. However, the MEDS is limited by the computational time 

needed to detect the steel frame intersections. Also, the system cannot detect the contact 

area between the steel frame and other building elements. Secondly, using a similar BIM-

based framework, [59] verified the intersections of two wood-frame assemblies and calculated 

the manufacturing locations as well. The MEDS system's functionality can be further 

developed to extend its use to more building elements and assist, especially in the placement 

of modules using cranes on the MiC building site.  

DfMA technologies provide a lasting and comprehensive solution to the problems created 

when non-prefabricated buildings are adapted and fitted into fabricated structures. [44] 

implemented the DfMA integrated with the BIM model to aid the concept and development of 

DfMA-based parametric designs. Design and manufacturing are simple with DfMA, and it also 

provides an improved quality design. Its ability to save time and, at the same time, being cost-

intensive makes it very attractive. Moreover, Baghdadi et al. [60] utilized AI to enhance the 

design collaboration between the engineer and architect to achieve optimal beam and wall 

layout for the building as well as facilitate easy fabrication of the building elements. However, 

it may not be feasible for practical usages, as the AI system would require 149 iterations [60]. 

The building plan's complexity can also add to the difficulties of applying the algorithms for 

optimum wall configurations. 

The ergonomic posture of workers is critical to improving their safety and productivity and 

indirectly reducing project costs. In this view, [61] advanced a monocular vision-based system 

that utilizes videos from a camera to track the construction workers' postures and motions in 

a modular workshop. However, the system needs improvement to cater to workers' deep squat 

postures and for uncontrolled environments such as the construction site. Meanwhile, [62] 

integrated 3D visualization technologies to develop ErgoSystem, which provides an 
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automated way of assessing the ergonomic risks of different work methods. ErgoSystem, 

when demonstrated in practice, shows significant advantages over the conventional means 

[62]. It also eliminates the need for costly devices to assess works ergonomic risks on the 

project site and is less time-consuming. However, the system does not analyse workers' 

productivity based on the different work methods; and combines head and neck flexion for risk 

assessment instead of separately. 

In summary, the need to improve the BIM model to include relevant manufacturing information 

of construction products, especially steel and wood frame assemblies, cannot be 

overemphasized to enhance the current BIM systems used in modular construction.  More so, 

the feedback or data provided by the adopted system or DTT on each module unit being 

fabricated can easily be extracted and stored in the blockchain system for clients, architects, 

engineers, and managers’ future use and analysis. This data on the BCT network can be used 

for future modification and improvement of the existing technological system. 

 
Figure 9: Frequency of application of the DTT across the different phases of MiC 

projects in MCR 
Data source: WoS Database 
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4.2 Phase 2 – Prefabricated transportation 

The prefabricated transportation phase is the least critical. Still, it serves as a unique linkage 

between the other two MiC project phases. However, any difficulty or low efficiency of 

operationalization at this phase could potentially disrupt the logistics and scheduling of the 

onsite assembling of the MiC modules with attendant risks and costs to the involved project 

stakeholders. A key performance challenge of MiC projects is concerned with the logistics 

operations of prefab modules between the prefab factory and the project site. Hence, to 

improve the freight operations, [63] developed the Route Guidance System (RGS) based on 

a traffic simulation model. A unique aspect of the RGS is that it embeds the driver's 

behavioural components and the prefab modules' information supply strategies. The RGS can 

also predict traffic for RGS-/unequipped trucks and shows a better performance than the 

existing static systems in terms of the equipped truck emissions and fuel consumption, total 

travel time, and miles, among others [63]. However, the system does not factor in the impact 

of the public traffic control system. It cannot also cull real-time traffic information, which is a 

major let-down for its everyday implementation. 

Moreover, using scenario analysis, [64] explored the potentiality of adopting automated guided 

vehicle (AGV) technology for logistics. The article reckoned that when fully developed, AVG 

would improve efficiency and productivity for module transportation. However, good synergy 

between AVG and other modern technologies will help to fully achieve logistics automation. 

Meanwhile, in the transportation of the precast modules, especially via the road networks, they 

are often subjected to various road conditions (such as road roughness and speed, 

acceleration direction), leading to damages to the modules when delivered to the building site. 

[65] used tri-axle accelerometers and GPS trackers to collect transportation data of precast 

modules, which are analysed using power spectral density. The integrated system provides a 

mechanism to measure the mechanical responses of the precast modules during this MiC 

phase. 

To solve problems related to the prefabricated modules supply chain, [66] developed a PSO 

algorithm based on the just-in-time (JIT) principle. The PSO algorithm is also beneficial for 

contractors and suppliers to produce their bids for MiC projects [66] and coordinate the 

interfaces between the project stages and the stakeholders. However, the PSO model does 

not consider other significant issues like supply delay or disruption in transport routes and 

means. Using a genetic algorithm, [46] modified the traditional precast scheduling model to 

integrate its transportation processes, which improved the delivery of the precast components 

to the construction site. The improved scheduling model also helped achieve significant cost 

savings of at least 17.7% for daytime delivery and a higher savings of 35.7% for night-time 
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module transportation. However, the scheduling model does not consider the delivery trucks 

or other resources' capacity or inefficiency. Also, such savings in night-time delivery might not 

be practical on construction sites in the neighbourhood of residential buildings. 

In summary, technologies such as BIM, RFID, AI, computer-based vision system, blockchain 

and the like must be systematically integrated to provide intelligent and real-time assessment, 

monitoring, and management of the supply chain and transportation of the prefabricated 

modules. 

4.3 Phase 3 – Onsite assembly 

The onsite assembly phase culminates the whole modular construction process. The arriving 

MiC modules are inspected; any module faults are repaired and hoisted on a crane for proper 

placement on the building site. These managerial processes and others – such as valuation, 

quality control – generate many data that can be better managed using relevant DTT such as 

BIM, laser scanners, and other tools. BIM technologies are one of the most frequently used 

technologies for the MiC OA phase. For instance, due to the increasing complexity in engineer-

to-order (ETO) modules as a result of the overlaps in resources and project stages, ambiguity 

in client demands, and the like, [67] proposed a site logistics planning and control system 

which utilizes a 4D BIM plus lean production principles.  

The implemented system increased productivity and reduced hours spent transporting the 

modules to the site and the distance covered onsite in assembling the modules. However, the 

BIM system is limited because it uses a simple BIM model for managing the shipment of steel 

frames to the project site. More so, [68] developed a BIM-OfA assessment system that 

integrates lean principles and DfMA to optimize designs and assemblage of modular buildings. 

The system relies on BIM for efficient information processing for better decision-making. The 

BIM-OfA system is also useful for the users in the selection of construction materials and 

methods. However, it is only suitable for building envelopes and not for other building 

elements. 

Moreover, workplace conflicts are common due to clashes between labour crews installing the 

precast assemblies on the building site. These conflicts can negatively affect workers' 

productivity and safety. To attenuate this, [69] proposed a 4D BIM-based tool to identify and 

eliminate potential workplace conflicts during onsite prefab installations. However, for practical 

purposes and user-friendliness, the tool's algorithms need improvement as the Revit-based 

tool's runtime is long. Meanwhile, [70] extended BIM techniques and strain sensors for precast 

modules' structural health monitoring. The proposed system can detect and visualize any 

deformation in precast building components and any vibration or strain [70]. It helps expose 
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modules that might have hidden or visible damage either during transportation or during the 

manufacturing phase. 

More so, moving to 3D laser scanning technologies, this DTT was employed by [71]  to 

examine and inspect the geometric qualities of prefabricated mechanical, electrical, and 

plumbing (MEP) modules. The scanned data is compared with the designed module's BIM 

model. The experimental usage of this DTT shows it saves time and is more accurate than 

the manual inspection process and can improve the productivity of the inspection foreman. 

These benefits are very significant to project success as reworks of MEP modules on the 

project site is about 20 per cent [72], of which 10% relates to quality issues [73,74]. Also, the 

bulkiness of precast modules and heavy machinery on the project site, coupled with other 

resources, usually presents a big challenge for site management. Hence, [45] employed 

genetic algorithms (GA) model on a case study project, which helped achieve an optimal 

layout arrangement for precast site yard at a reduced cost for resource flow. The GA-based 

model application can be extended to solve layout problems in precast production factories 

and warehousing. 

Key equipment used in hoisting and installing the heavy precast components on the project 

site is mobile and tower cranes. Due to the type of tasks to which these cranes are employed 

and to save time and cost in installing the module and enhancing site safety, there is a need 

for proper planning and configurations of the crane positions' layout. To this end, a number of 

TA-MiC studies explored and implemented some DTT to analyse the best positioning for 

cranes. For instance, [75] developed an automated crane planning and optimization system 

that uses numerical algorithms and the HeviLift software suite to precisely determine the 

feasible crane locations. Meanwhile, Shahnavaz et al. (2020) connected the 4D lift animation 

plugin with BIM to simulate and define multi-mobile crane paths.  

Other related studies [77,78] also employed similar DTT. However, the technological system 

developed by [75] does not support tower cranes or two-crane lift layout configurations. In 

contrast, the BIM-based lift system [76] cannot automatically define the mobile crane layouts. 

Hence the user must manually input the lift path, which is more tasking. Finding technological 

synergies between the DTT developed in these studies can give a more intelligent and 

automated system for crane planning and optimization for diverse crane systems. 

In another context, the need to examine the performance of installed prefabricated modules 

in high seismic regions led [79] to develop a seismic force-resisting system (SFRS). The SFRS 

was implemented for a timber-based modular construction, which reduced the seismic-

induced force and provided a cost-effective method for resilient modular timber buildings. The 

re-centring system [79] can also be used for other structural systems using a different material. 
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[80] employed wind field simulation and numerical analysis to estimate the performance of the 

wind-induced MiC projects embedded with concrete cores in coastal regions. High-level winds 

like typhoons are serious threats to modular steel construction. The developed system 

improves beam and column joints stiffness and energy dissipation performance. 

Also, multi-storey modular buildings require adequate design to maintain their structural 

integrity against severe loading conditions. The joints and connections between these precast 

modular units are crucial to the structural integrity of modular buildings. Towards this end, [51] 

advanced an interlocking system to improve modular buildings' integrity based on the design 

requirements. The system facilitates an automated assemblage of the precast components 

and manages the structural tolerance. It provides a greater solution as compared to the 

traditional non-automated connection methods. These components are added so that the 

geometric features become more flexible than conventional fasteners. They are also suitable 

for rapid and automated assembly. 

4.4 All MiC phases 

Articles that do not fall precisely under any of the three MiC phases but cut across all the 

phases are presented here. For instance, using a case study of a MiC project in Italy, [81] 

presented how the early adoption of BIM on the project can facilitate information workflow 

among the downstream and upstream players. The study also highlighted how the 

stakeholders' inputs and requirements were merged to facilitate the project [81]. The upstream 

aspect of modular construction refers to the critical stages where the concept, design, and 

material inputs required for the MiC project are appraised and formulated. Meanwhile, the 

downstream is the opposite end, where the MiC project is procured, unit modules are 

produced, transported, and installed on the building site. 

Bataglin et al. [82] produced a 4D BIM model to link the 3D BIM model and the MiC production 

plan to improve the project's performance by removing uncertainty in the assembly process 

and non-value-adding activities. The article also presented how this enhanced BIM system 

helped implement lean production by updating the 4D model with logistics decisions and 

providing data on the fabrication and assembly process in an ETO environment. However, the 

BIM system was only experimented on a single prefabricated module with a short lead time. 

It did not assess the impacts of delays in determining the cost-benefits of implementing the 

BIM system. Also, [83] explored the IFC-based information systems in the construction 

industry for interoperability and tested their reliability for a precast concrete project. The article 

stressed that the absence of a typical BIM data exchange limits information processing in MiC 

projects and among the fragmented professional services. 
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The construction industry's logistics system has significantly changed since the gradual shifts 

from stick-built construction to modular construction. Hence, there is a need for the industry to 

reinvent the supply chains of MiC projects, which led [84] to develop an optimization logistics 

model for MiC projects – which covers all the tiers of its operations. The stochastic model 

captured demand and schedule variations and helped practitioners make informed decisions 

for the MiC projects' logistics. [85] also integrated various technologies such as sensors, BIM, 

and virtual construction management platforms to conduct a continuous quality inspection on 

precast building components. These integrated tools can be applied efficiently across the MiC 

project lifecycle. 

In summary, from the literature, there are no process framework or execution strategies on 

how BIM or any other DTT can be implemented across the MiC project stages – from project 

brief to post-completion – and the relevant data required for its successful application. The 

future development of such DTT execution strategies should capture the various stakeholders' 

roles and engagement in the MiC supply chain. 

5. Potentiality of integrating blockchain and DTT in MiC projects 

Blockchain technology application has been on the rise for about a decade, and it brings 

enormous possibilities to virtually all aspects of the economy. Generally, the construction 

industry is a latecomer in adopting innovative technologies [86]. Hence, this does typically 

affect the learning curve of applying BCT to construction processes by practitioners. However, 

the construction industry stands to enjoy the latecomer advantages such as lower cost of 

entry, a more mature BCT, and fewer market uncertainty issues [87] later on. 

The deployment of blockchain also provides a better prospect as a new collaborative system 

than BIM, which has been plagued by the issues of interoperability, portability, and lack of 

uniform standards [88,89]. Recent improvement in BCT architecture provides avenues of 

enhancing BIM and other DTT towards further embedding these tools for full or partial 

deployment in construction projects, especially for MiC projects. The developing synergy 

between BCT, DTT tools, and other IoT devices would practically bring enormous potentials 

and automation to MiC projects. Some of the potential benefits and risks that may likely spring 

up from these massive digital integrations are discussed in the extant literature [90–92]. As 

seen in Section 4, several DTT have introduced many possibilities to MiC projects. Still, it is 

expected that its integration with blockchain and other IoT devices will lead to the development 

and deployment of a ‘single’ viable technology. Also, this will help fully digitalize and automate 

MiC processes and overall sustenance of the MiC projects, thus providing a greater output.  

BCT is a distributed ledger technology in which transactions are cryptographically chained into 

growing blocks [87] and secured on a peer-to-peer type system [86]. The BCT offers a 
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considerable capacity to the construction industry, from transparency to smart contracts, 

increased trust, prompt settlement of contractual obligations, and the like. The BCT and DTT 

blend is expected to revolutionize MiC projects at prefab manufacturing, prefab transportation, 

and/or the onsite assembly phase. To conserve space, we briefly summarize the potentiality 

and benefits of integrating BCT and four key DTT in MiC projects (these may be applicable for 

other construction projects). 

5.1 Blockchain integrated with BIM for MiC projects 

The advent of BIM has improved efficiency across the construction industry as building data 

can be mapped out, modelled, and structured even before construction starts, and changes 

can be made during construction. Moreover, integrating blockchain with BIM will further 

improve the information sharing process and promote transparency among project 

stakeholders. Blockchain has an emerging ICT, provides the industry, especially in 

construction projects (such as MiC), with a standard of framework and protocol to facilitate 

collaboration and sharing of BIM data from multiple project stakeholders [93]. Currently, the 

industry is faced with an "islands of information" problem where data are fragmented [93]. With 

BIM and blockchain integration, such problems are avoided, and there is increased 

communication and information sharing [94]. As materials move from the prefab 

manufacturing phase to the onsite assembly, relevant information can be accessed about 

operations in a decentralized way that gives all parties confidence. Changes can be made on 

the BIM model of the MiC projects, and will blockchain deployed in such project, it can be 

accessible to relevant project stakeholders with ease. Also, relevant transactions and 

verification in MiC projects can be carried out quickly because smart contracts can be used 

[95]. 

5.2 Blockchain with machine learning and genetic algorithms 

Machine learning and genetic algorithms provide an optimal solution in every aspect of science 

due to the data available to train models effectively, and both make use of historical data 

[96,97]. The model is trained with labelled data [96,97] in a supervised learning algorithm, 

while unsupervised learning employs unlabelled data. Combining BCT with machine learning 

(ML) and genetic algorithm (GA) would enable trained data to be fully decentralized and 

subsequently improve MiC processes performance. A study by Jamil et al. [97], who 

developed an intelligent blockchain-based platform, provides evidence that the integration of 

BCT, machine learning, and/or genetic algorithms can help in providing predictive analytics 

for MiC projects. These predictive analytics can be in the form of scheduling [97] of prefab 

production, assembling, and transportation; real-time control, logging, and monitoring of 

project milestones; resource utilization [97], among others. Errors in design and construction 
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are largely minimized because of these predictive models.  Quality designs can also be 

implemented with the introduction of machine learning. The model can learn through data from 

blockchain technology. 

Data used for such predictive modelling based on ML/GA techniques are historical data [96–

98] from similar MiC/other construction projects. Such data might be data generated from BIM 

models, building energy simulations, productivity, traffic congestion data, and the like. For 

example, in the transport phase of the MiC, predictive models can be developed to determine 

the exact time prefabricated materials will arrive on site. Machine learning algorithms provide 

a unique way of uncovering hidden patterns from large datasets [99–101]. Machine learning 

working with big data can build very accurate predictive models for the enhancement of the 

construction industry. Machine learning-enabled blockchain uses data collected through user 

experiences and behaviours to develop industry-based predictive models. Machine learning 

can be used to ensure production, transparency, security, and compliance checks. Instead of 

planning fixed scheduling activities from the prefab manufacturing phase to the assembling 

phase, Machine learning algorithms are being used to create flexible plans at the precise times 

they should happen. This reduces any form of uncertainty during the construction process. 

Quality control and product testing of prefabricated materials have become increasingly 

automated, with adaptive and computer vision algorithms being used to detect good and faulty 

products. This is possible only because expansive data is being used to train the machine 

learning predictive models. 

More so, according to Miglani and Kumar [98], embedding ML with BCT can resolve data 

acquisition problems as blockchain can serve as a 'pipeline' towards which ML/GA algorithms 

can be fed with reliable and accurate data. Such results generated can be trusted by the 

stakeholders without the attendant security issues of centralized systems. ML/GA algorithms 

supported by BCT yields better predictive models, safer and tamper-proof data, increased 

stakeholders’ confidence in the data (due to BCT's transparency feature). Thus, the BCT-

ML/GA combination can provide an excellent boost for MiC projects. Combining data from the 

ML algorithm with those extracted from the BIM model would allow for better optimization of 

designs and the prefabrication – and with blockchain as the data hub, relevant process 

performances can easily be monitored and evaluated. 

5.3 Blockchain with RFID technology 

RFID has been employed in MiC projects to automate the collection of production data in 

prefabrication facilities [9,42]. RFID provides a trusted service application for stakeholders 

across the MiC projects' phases when embedded with the blockchain system. With an RFID-

blockchain based application user interface (API), users can build customizable apps for 
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varieties of processes or tasks involved in a MiC project using standard BCT protocols and 

mechanisms. This allows a decentralized generalized approach to construction with huge 

transparency with RFID data. A typical example is the case of smart contracts. In executing a 

smart contract, there is a need to know if a prefabricated building component has arrived on 

a location or if the required amounts of a meta beam have been brought in. This information 

can be fed in with RFID technologies. Modular construction with blockchain also provides 

security and data encryption. The encryption mechanism ensures security for data extracted 

from the RFID.  

According to Lanko et al. [102], RFID tags can be put on construction materials or a prefab to 

monitor the various stages of its production, transportation, and its installation on the project 

site. Using RFID scanners which uses radio signals, data stored in these tags can be read, 

broadcasted, and stored on the blockchain as a record. Hence, it allows for automated data 

collection, which could be useful in logging project milestones. Other relevant data may be 

written or recorded as notes to include information such as the time, supplier, specifications 

of the material/modules, and digital signatures  [103–105]. RFID tags can store data, so their 

use could be extended to identify and track construction products [106]. Therefore, a 

blockchain system that embeds RFID facilitate transparency across the supply chain, 

preventing issues like counterfeit materials, poor quality modules, poor storage conditions, 

unsuitable transport route, and the like. This is achievable when corresponding data in the 

RFID tag is stored within the blockchain [106].  

5.4 Blockchain with optimization algorithms 

Optimization algorithms have been widely adopted in MiC projects [42,57,75,84], and they 

have been very useful. Optimization algorithms like PSO, backward propagation algorithm, 

and k-means optimization employed a large amount of trained data to achieve high efficiency 

in the three phases of the MiC projects. Integrating blockchain with optimization would 

effectively provide a way for optimization to be achieved through the best routes. More so, 

according to Priyanka and Thangavel [107], implementing ML with optimization algorithms can 

assist with data mining for better predictive analysis of MiC processes. Blockchain systems 

are decentralized, and data is accessible in an open and transparent way to achieve the best 

solution at any phase in the MiC projects. Several studies [108–110] provide evidence of the 

feasibility of using BCT and optimization algorithms to predict and optimize MiC processes. 

 

Summarily, to implement BCT-integrated DTT and IoT devices, the project team and other 

stakeholders must understand the fundamental purposes of adopting it. For instance, if no 

project or module unit data needs to be stored, BCT will not add additional technological value 
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to the project from the data management angle. However, for a project with several mistrusting 

parties contributing to the project and in which their influences and actions can bear a lot on 

the project outcome, BCT will be a feasible and workable solution. 

6. Conclusions 

This study investigates the current state of research and practice in modular construction by 

examining the various digital tools and technologies applied in MCR to automate and digitalize 

the MiC process. The MiC itself is a technological derivative of the DfMA technique. Although 

some studies have conducted reviews on modular construction, this is the first study that 

critically examines and explores the application of DTT in MiC projects. The study conducted 

in-depth analyses to achieve the defined research objectives via the use of various research 

approaches such as data curation, science mapping (scientometric analysis), and systematic 

analyses.  

An analysis of the research corpus and findings shows that MCR has gained increased interest 

among researchers and practitioners, most notably in the last decade than in previous years. 

Although the first paper on modular construction was published in 1970, the first published 

DTT application in MCR was in 1992. Currently, only about 18 per cent of studies in modular 

construction practically implemented DTT. Meanwhile, more than 70% of these TA-MiC 

articles are produced by only five countries – Canada, China, the USA, Australia, and England. 

The study also identifies the key research clusters and communities, which are those of 

Mohamed Al-Hussein, Taghaddos Hosein, and Hermann Ulrich. The most influential outlets 

for MCR articles are Automation in Construction and the Journal of Computing in Civil 

Engineering which topped the table in both publications and citations. Meanwhile, for the top-

12 cited MCR articles, the prevalent DTT employed in these studies are simulation-based 

algorithms, RFID, BIM, and visualization systems applied mainly to either the offsite prefab 

manufacturing or onsite assembly phases of MiC projects. 

The science mapping of the research themes in MCR revealed that the design and product-

focused knowledge areas – such as BIM, simulation, optimization, and prefabrication – 

dominate. Meanwhile, management-related areas such as offsite construction, modelling, and 

algorithms are less considered. Moreover, the operational and strategic themes such as mass 

customization, tracking, automation, mobile cranes, and the like are noticeably neglected. The 

diverse nature of TA-MiC research is evident. It also reveals the current shortfall in studies in 

relevant aspects of modular construction, which are critical in facilitating the full integration 

and implementation of modular construction in the built environment. There is also disparity 

and lack of collaboration among MiC researchers and institutions, limiting the cross-

fertilization of ideas and technology, resulting in MiC projects' digital divide across regions. 



32 
 

Nevertheless, the close industry-academia collaboration between the University of Alberta and 

PCL Industrial Management Inc in Canada is worthy of note. 

Further in-depth analysis of the three critical phases of typical MiC projects shows that the 

prefab transportation phase, the logistics aspect concerned with the transportation of the 

precast modules from the prefab factory warehouse to the project site, is largely lagging in the 

application of DTT for its unique processes. Most of the research corpus articles focus 

primarily on applying DTT at either the OPM or OA phase. A follow-up quantitative analysis of 

the DTT employed in the TA-MiC research corpus shows that for the 15 main DTT used in the 

indexed dataset, the OPM phase of MiC experienced a greater utilization and application of 

DTT in its processes except for the "Automated tools/systems" DTT where the OA phase has 

a slightly more frequency of application. As earlier highlighted, the PB phase was the least 

digitalized phase of the MiC operational phases. 

Generally, from the synthesis of the research corpus, there is a substantial gap in the lack of 

integration of this diverse DTT used in MiC projects. As a result, the study explores the 

potentiality of using BCT as a collaborative platform to integrate these DTT and support the 

overall coordination and management of data in MiC projects. Although blockchain adoption 

in the construction industry is still relatively low, the study envisioned that the industry has a 

lot to gain in the form of latecomer advantages. The several benefits of integrating some key 

DTT with blockchain were highlighted. We envisaged that the embrace of BCT would further 

lead to the digitalization and automation of the construction industry, inclusive of MiC projects. 

Limitations of study. (i) The study's limitation lies in the data source's coverage (WoS) used 

for the scientometric and systematic analysis and the omission of non-English articles and 

conference proceedings. Also, the study focuses on research databases and do not consider 

other databases like patent databases like wipo.int or epo.org. (ii) The study’s findings and 

resultant statistics might change as more studies are published, and more DTT are adopted. 

Hence, more future review studies will need to be conducted to capture the new 

developments.  

For future studies, development, or application of DTT in MiC projects, the following key 

research directions are proposed; (i) The limitations of some of the DTT employed in the 

previous studies identified in this research should be addressed towards developing a more 

holistic tool for the industry. (ii) Need for the development and deployment of DTT that 

addresses safety, automated supervision at prefabrication factories, robotics in prefab 

production and assembly, post-completion management of modular buildings, risk 

assessment and analysis, sustainability assessments, and the like. (iii) Practical synergy and 

application of several DTT across the MiC phases using blockchain or any automated system. 
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(iv) Explore how ethical standards or other regulatory policies could affect the deployment of 

DTT in MiC projects. (v) Cost-benefit analysis of the application DTT in MiC projects. (vi) How 

the application of DTT in MiC projects enhances green or smart buildings in the built 

environment.  

Conclusively, the study has provided valuable insights and valuable guides to practitioners, 

researchers, government agencies, and even investors interested in venturing into MiC 

projects. The research network maps offer readers ready information to pinpoint future 

research collaborators, key areas to enhance MiC projects' implementation, and the various 

DTT and how they could be applied in future MiC projects. It also revealed the need for a 

holistic implementation of a collaborative system such as blockchain, which can serve as a 

fusion or centralized hub for integrating the DTT used across the MiC phases; and managing 

project data. The outlined benefits of employing blockchain can serve as a rallying point 

towards enhancing the construction industry's digitalization via its numerous capabilities, 

especially in reducing interoperability issues among DTT. The emerging knowledge areas 

identified in the study provide an avenue towards improving the efficiency and productivity 

associated with modular construction. 
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Appendix B: Scientometric analysis of the research corpus on VoSviewer 

Scientometric 
technique 

Manuscript section 
(Table or Figure No.) 

Approach to the quantitative analysis 

1. Co-authorship analysis 
A. Prolific authors Section 3.2.1.1 

 Table 2 
 Figure 4 

The indexed and refined research corpus data were imported 
into the VoS viewer, and the type of analysis was set to "co-
authorship" while the unit of analysis was set to "authors"; and 
the counting method as "fractional counting." A total of 253 
authors were identified, and by setting the minimum number of 
documents and citations of an author to 3; 10 authors met the 
criteria threshold. This resulted in 5 authors' clusters. 

B. Pre-eminent 
institutions 

Section 3.2.1.2 
 Table 3 
 Figure 5 

After importing the dataset into the VoS viewer, the type of 
analysis was similarly set to "co-authorship" while the unit of 
analysis was set to "organization"; and the counting method as 
"fractional counting." A total of 109 organizations were identified, 
and by setting the minimum number of documents and citations 
of an organization to 2; 20 organizations met the criteria 
threshold. This resulted in 11 organizations' clusters. 

C. Leading countries Section 3.2.1.3 
 Table 3 
 Figure 6 

 Type of analysis: "co-authorship"; Unit of analysis: 
"countries." 

 Counting method: "fractional counting." 
 Twenty-three countries were identified from the dataset. By 

setting the criteria threshold to 2 for the minimum number of 
documents and citations of a country, we have ten countries 
meeting the threshold. 

 Six countries clusters. 
2. Co-occurrence analysis 
Knowledge areas Section 3.2.2 

 Table 4 
 Figure 7 

 Type of analysis: "co-occurrence"; Unit of analysis: "all 
keywords." 

 Counting method: "fractional counting." 
 450 keywords were identified in the dataset, and by retaining 

the default minimum number of occurrences of a keyword 
(5), 22 keywords met this criteria threshold. 

 Three keyword clusters were identified. 
3. Citation analysis 
A. MCR publications Section 3.2.3 

 Table 5 
 Type of analysis: "citation"; Unit of analysis: "documents". 
 82 documents were identified from the dataset, and by 

setting the criteria threshold to 20 for the minimum number 
of citations of a document, 12 documents met the threshold. 

 Nine clusters were identified. 
B. MCR publication 
sources 

Section 3.2.4 
 Table 6 
 Figure 8 

 Type of analysis: "citation"; Unit of analysis: "sources." 
 26 sources were identified from the dataset; and by setting 

the criteria threshold to 2 for the minimum number of 
documents and citations of a source, 10 sources met the 
threshold. 

 5 clusters were identified. 
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