
TWO EVOLUTIONARY APPROACHES TO
CROSS-CLUSTERING PROBLEMS

Henri Luchian Ben Paechter Wad Radulescu Silvia Luchian
Faculty of Computer Science,
“A1.I.Cuza” University of Iasi,

School of Computing,
Napier University,

Faculty of Computer Science, Faculty of Computer Science,
“A1.I.Cuza” University of Iasi, “Al.,I.Cuza” University of Iasi,

Romania Edinburgh, U.K.
hluchian@infoiasi.ro benp@dcs .napier. ac .uk

Abstract. Cross-clustering asks for a Boolean matrix to
be brought to a quasi-canonical form. The problem has
many applications in image processing, circuit design,
archaeology, ecology etc. The heuristics currently used
to solve it rely on either topological sorting or quasi-
random search. We present here two evolutionary
approaches to this problem: a permutation-based
solution and a clustering one. The results on both real
data and randomly generated, scalable, test data show
very good convergence and encouraging efficiency
properties, mainly for our second approach.

1 Introduction
Cross-clustering - “classification crois6e” in French,
[DID821 - asks for a (sparse) Boolean matrix to be brought
to an “optimal” quasi-canonical form (QCF), only by
repeatedly interchanging two rows or two columns. The
optimal QCF, however, is loosely defined: the 1’s have to
be compacted into (not necessarily “rectangular”) blocks,
usually along one of the diagonals of the matrix. Figure 1
gives an example of an input matrix and a corresponding
QCF solution (dark pixels represent the 1 ’s).

Figure 1. Pixel-level representation of a 1 OOx 100 input matrix and of
a corresponding optimal QCF.

On one hand, this non-rigorous statement of the problem
does not encourage the use of hard-computing techniques
(linear programming, normal-forms transformations); on the
other hand, it can lead to an optimizational view on cross-
clustering.

There is no exact deterministic algorithm for cross-
clustering. Currently used heuristics are inspired from
topological sorting, from algorithms for algebraic normal
forms or even random iterative procedures ([DID82]). For

Romania Romania

example, the topological sortinrg approach aims at defining a
partial ordering on the set of rowslcolumns and then
interchanging rows or columns according to this order. All
of the currently used heuristics hardly achieve the required
optimal quasi-normal forms, leven for matrices with only
hundreds of elements.

We illustrate in the next section the interpretation of
cross-clustering in ArchaGology; other well-known
applications are in circuit design, image processing, Ecology
etc.

Cross-clustering can be $een in two complementary
ways. One obvious point of view comes from its particular,
algebraic flavor: cross-clustering is akin to bringing a matrix
to a quasi-canonical form. The other view comes from the
observation that cross-clustering asks for a solution which
can be seen as the Cartesian product of the solutions to two
instances of the usual clustering problem. These two views
on cross-clustering inspired two approaches for solving the
problem in an evolutionary setting: a permutation-based
approach and a “block” approach.

The rest of the paper is organized as follows: section 2.
describes a domain interpretation of cross-clustering,
namely in Archaeology; section 3. describes our
Permutation-based approach; section 4. deals with the
blocks approach; section 5. discusses experiments and
further work.

2 Cross-clustering - the archaeological view
A well-known application of cross-clustering is data
sequencing in Archaeology. The idea of using Boolean
matrices for data sequencing dates back at the beginning of
the century; credit for this idea is given to one of the
greatest Egyptologists, Sir W.M. Flinders Petrie. We
describe below the version of cross-clustering which is
considered in data sequencing,

n objects are described by means of a attributes; each
object displays a small number of these attributes and
usually each attribute appear9 for relatively few objects. A
matrix M can be built, with abject identifiers as row labels
and attribute identifiers as column labels. A 1 is placed in
position M(ij) if object i has the attribute j ; otherwise, a
M(ij)=O. Usually, M is 8 sparse matrix. The data
sequencing problem asks for the matrix M to be brought to a
form where the 1’s are compacted in blocks which “contain”

0-7803-5536-9/99/$10.00 0 1999 IEEE 870

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on August 02,2010 at 14:39:42 UTC from IEEE Xplore. Restrictions apply.

as few 0’s as possible; the only operations to be used are
rows or columns swap. Figure 2 shows a small-size
example: the input matrix M and a quasi-normal form of it.

Obj 1
Obj2
Obi3

1 Attr I Attr I Attr 1 Attr I Attr I Attr I Attr I Attr 1 Attr I Attr I

1 0 1 1 1 0 1 0 0 1
0 1 0 0 0 0 0 1 1 0
l o o l l l l o o l

2 a.

2 b.
Figure 2. An instance of the cross-clustering problem: a-the

input matrix M; bquasi-normal form of M.

If M coded for archaeological data as described above,
then the quasi-noma1 form in figure 2.b would suggest that
the 10 objects belong to 4 stages of the culture under
research; the object sets A={4,2}, B={5,7,10}, C={6,9}and
D={8,1,3} would represent the four stages. Using the set
notations A, B, C, D for the stages, then one can consider
that the attribute set {2,8,9} is characteristic for stage A, the
attribute set { 10,5,2,8} characterizes stage B etc.

The problem at hand can be seen as a special case of
clustering by partition: given a set of n objects and their
characterization by means of a categorial (Boolean)
attributes, find a partition of the set of objects and
(simultaneously) select the significant attributes for each
class of the partition; the optimality criterion is given by the
accuracy of the quasi-normal form of the matrix (e.g.,
minimize the number of 0’s inside each block of 1 ’ s) . Note
that the number of stages (cardinalities of the partitions) is
not known beforehand, so this is an unsupervised clustering
problem. Since the optimal partition would always be the
one of cardinality n, an additional optimality criterion is the
maximality of the blocks of 1’s.

3 A permutation-based approach
Our first approach has been an “optimal permutation” one:
given rn, a Boolean (sparse) matrix, find the permutation of

rows, rowgerm, and the permutation of columns,
colgerm, which, when applied to the given matrix, bring M
to an “optimal” quasi-normal form. Under this approach, the
solution in figure 2.b above is: rowgerm =

(4,2,5,7,10,6,9,8,1,3), colgerm = (6,4,7,3,1,10,5,2,8,9).
The criterion for QCF optimality is not obvious. Indeed,

an attractive criterion is given by the condition that as few
0’s as possible exist “inside” the blocks of 1’s and as few as
possible 1’s lie “outside” these blocks. However, if the
automated procedure would only use this criterion, then the
optimal QCF may consist of blocks of single 1’s; a
restriction which would enforce the decrease of the number
of blocks of 1’s has to be considered - see the discussion
below on the evaluation.

Representation. Under this approach, the representation
is straightforward: a chromosome encodes a pair of candidate
permutations - one for the rows and one for the columns’. A
permutation is represented by a sequence of either n (for
rows) or a (for columns) natural numbers between 1 and n,
respectively 1 and a, with no repetition. A major problem
which arises with this representation is epistasis ([REW95]):
not only the well-known interdependence of the genes in any
permutation encoding has to be taken into account, but also
the effect on convergence of the simultaneous search of two
correlated permutations. Indeed, any change in the row
permutation may alter dramatically the corresponding optimal
column permutation and vice-versa.

Figure 3 illustrates the fitness-distance correlation, using
Hamming distances, ([JOF95], [SCK96]) for the
representation described above and fitness function f given
below. For calculating and representing the FDC, we used
matrices with 10,000 elements and around 30% non-zero
values. In order to keep the figure readable, we give relatively
few points out of the 5,000 considered; these points however
describe accurately the overall shape of the distribution FDC
distribution. The FDC value is around 0.17, which gives little
hope for a good convergence of the algorithm.

9 55E+03 ,
9 50E+03

5 9 &E+M E 9 40E+03

9 35E+03

9 30E+03 t I
0 W E W 1 M)E+02 2 WE+02 3 ooE+02 4 M)E+02 5 WE+02 6 M)E+02 7 00E+02

Distance

Figure 3. Fitness-distance correlation for the permutation-based
representation

Experiments confirmed that simultaneous evolution of the
two permutations does not lead to convergence to a good
solution: for all tests below, no acceptable QCF has been
obtained in 1000 generations. Our solution to this has been an
alternate evolution: we designed a fitness function, fro,” and a
set of operators, op-row, for row-permutation evolution and a

’ Another possibility would be to encode only one of these
permutations and use another heuristic for finding the other one.

87 1

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on August 02,2010 at 14:39:42 UTC from IEEE Xplore. Restrictions apply.

fitness function, fro,, and a set of operators, op-col, for
column-permutation evolution. The general scheme of the
genetic algorithm is slightly altered: every g generations, the
algorithm switches between the use of (f r o , op-row) and the
use of (f ro / , op-col); g is a parameter of the algorithm. The
relation between g and the average fitness of the solutions
found over 10 runs of the algorithm, for each value of g, is
illustrated in figure 4; the average fitness values are scaled.
The input matrix had 100 rows and 100 columns, with a
percentage of 30% non-zero elements. Experiments with
other input matrices were similar, so that we used g=10 in all
further experiments.

I I
1 I

1 4 7 10 13 16 19 22

9

Figure 4. Average best-fitness over 10 runs for each value of g
between 1 and 23.

Evaluation. The sought solution is a pair (perm-row-best,
perm-col-best) which, when applied to the rows and columns
of the input matrix M, gives an optimal QCF. A candidate
solution Chr = (perm-row, perm-col) is evaluated as follows:

-build the matrix Mfm which results by applying the
respective permutation to the rows /columns of M;

-for i=l..n, find, in Mf,, the positions jfirst(i) and jiast(i)
of thefirst and last 1 in row i; let nr-l(i) represent the
number of I s in row i;

-if nr-I(i)=O (and so, jlast(i) = jfirst(i)=O), then
J;-row(Chr) =O, else

~-~ow(Chr)=MinNjiast(l) - jfirst(i))> (j f i rd i) -jiast(i) +
a)) /nr-l(i);

-calculate f,,(Chr) = x f i ,,(Chr) ;

- use analogous steps for calculating fco,(Chr);
-for the standard CA scheme, the fitness of Chr is:

- the goal is to minimize the$tness.
This fitness function aims at minimizing the number of

0’s inside the blocks of 1’s; it also tends to minimize the
dimensions of such blocks. Its advantage is that it treats
rows and columns in a non-discriminatory fashion, so that
there is no need to switch fitness functions while alternating
the row and column evolution, in the scheme described
above.

An alternative way of evaluating the candidate QCF of
matrix M is to express the compactness of existing groups
of l’s, by means of fitness function f , , with row and column
components as below:

, = I

f (W =Jow(Chr) +f,o,(Chr);

where and n l j ’ are analogous to their row counterparts.

Operators. Each mutationl operator has two versions: a
row operator and a column one. The only difference
between the two versions of the same operator is that one is
used for genes of the row permutation and the other one -
for the column permutation.

-swap mutation: randomly choose two genes in the row
(column) permutation and intarchange them;

-partial permutation: randomly choose a subset of the
set of row (column) genes in ~e chromosome and randomly
interchange them;

-sequential permutation: same as before, but the selected
genes have to be successive;

- circular permutation: a randomly chosen sequence of
row (column) genes is rotated.

The crossover operator is also typed - it has a row
version and a column one, which only differ in the part of
the chromosome where each one can be applied. We used
cycle crossover ([OLI87]).

i 1 5 9 13 17 21 25 29 33

= Best ! +Average

Figure 5 . Typical evolution ofbest and average fitness for g=10.

As mentioned above, in order to cope with epistasis,
every g generations the algorithm switches the evaluation
procedure from frow to fco/ and the set of operators from row
ones to column ones. We used rank-based, non-elitist
selection ([MIC96]). Figure 5 shows a typical evolution of
the best-so-far fitness value and of average fitness, for
g=10. Note the “saw-teeth” shape: the evolution cycle starts
with a constant (row) fitness decrease until the switching
generation; next, the (colum) fitness increases abruptly
compared to the last row value, then constantly decreases
until the next switching generation etc. A smooth, but less
effective, evolution occurs if f(Chr) = Jow(Chr) + fco/(Chr) is
used and only the set of operators is changed at switching
points.

Our permutation-based approach has an obvious weak
point: the blocks of l’s, which are the target of the
optimization process, cannot be defined, hence recognized
and taken into consideration during the evaluation process;
therefore, the fitness function loosely interprets the quality
of the candidate solution. Indeed, the blocks of 1’s are only

872

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on August 02,2010 at 14:39:42 UTC from IEEE Xplore. Restrictions apply.

vaguely approximated by the positions of the first and last 1
in a row/column. Fitness-distance correlation confirms this
observation: the fitness-distance correlation is weak (values
between 0.088 and 0.17 - see [LUC99]), which does not
suggest ([JOF95]) a good convergence of the genetic
algorithm. On the bright side, this approach is more
sensitive to rowslcolumns interchange inside each found
block of 1’s or 0’s - a feature that will disappear in our
second, more robust, approach.

4 A block-based approach
Our second algorithm, which we call BLOCKS, is inspired
from an existing random-search cross-clustering technique
presented in [DID82]. Roughly, that procedure clusters the
rows/columns of the initial matrix at random; subsequently,
the elements at the intersections of each row cluster with
each column cluster are treated as blocks (either “1” blocks
or “0” blocks). The iterative part of the procedure changes
the rowicolumn clusters with the aim of improving the
quasi-canonical form (a secondary goal is to decrease the
number of clusters).

In this approach, a solution to the cross-clustering
problem consists of a partition of the set of rows and a
partition of the set of columns; these two partitions give an
optimal QCF of the input matrix, by means of the sub-
matrices defined by their intersections. That is, all the
compact blocks of 1’s of an optimal QCF have to be among
those sub-matrices. In order to obtain the optimal QCF from
such a solution, one has to interchange rowslcolumns until
the identifiers in each class of the two partitions are grouped
in successive positions. The possible requirement to further
improve the solution by placing the found blocks of 1’s in
specific positions (e.g., along a diagonal) can be met by a
procedure described in section 5. Under the block-based
approach, the solution in figure 2.b above is expressed as:
k=3, 1=3, rowjartition {(8,1,3), (10,6,9), (4,2,5,7)},
columjar t i t ion {(6,4,7,3), (1,10,5), (2,8,9,)}. The
resulting blocks are considered either as 1-blocks (e.g., the
block at the intersection {8,1,3} x {6,4,7,3}) or 0-blocks
(e.g., {4,2,5,7}~{6,4,7,3}), depending on which Boolean
value appears more often in that block. Note that, under this
approach, the compactness of the blocks of 1’s is the
optimality criterion, since the order of the rows/columns in a
class of the respective partition is irrelevant; in other words,
the block-based approach is not sensitive to rows / columns
interchanges inside each block of 1 ’s or 0’s.

More formally, let M,,,*” be the input matrix,
I={il ,..., i,,,}, the set of row identifiers and J={jl ,..., j,,}, the
set of column identifiers. We have to find the optimal pair
(rowjartition, columnjartition), where the rowjartition is
(SI, ... ,Sk) = ({ i f , ,...,is:’ }, ..., { if, ,...,is: }) and the

columjarti t ion is (Q I ,..., Q,)=({ jd, ,..., j;: } ,..., { j,, ,..., I,, }). I . , I (

Since the cardinalities of the two partitions, k and I, are not
known beforehand, we are dealing with an unsupervised
cross-clustering problem.

In order to assess the dimension of the search space,
suffice it to say that, for a 50x50 input matrix, the Cartesian
product of the set of all row partitions and the set of all
column partitions has the order of magnitude while for a
100x100 input matrix, the number of different pairs
(rowjartition, columnjartition), only for k=Z=5, has the
order of magnitude

Halting condition. Since blocks are clearly defined in
this approach, we can use a convenient halting condition for
the algorithm. We chose a condition that expresses the level
of accuracy of the found solution: the algorithm stores the
first candidate solution for which all the blocks have under
p% “minority elements” in any block, where p is a
parameter of the algorithm, the algorithm continues to run
for 10 generations and then stops - the solution given by the
algorithm is the best between the stored solution and the
last-generationbest. The solution in figure 2.b has p=33.3,
which is likely to be acceptable for a matrix with 40% non-
zero values.

Selection and replacement strategy. Since the search
space is huge and also because the likely interval containing
all fitness values is comparable to [0;106], we tried to
prevent the selection pressure caused by occasionally-found
local optima. To this end, we used rank-based non-elitist
selection. Further improvement of the convergence has been
obtained by means of a combined replacement strategy: all
descendants obtained after recombination are placed in the
next generation (the above-mentioned selection mechanism
being used for applying the crossover), while the rest of the
new generation is selected at random from the current
population. This leads to an even lower selection pressure.

Representation. A chromosome consists of an encoding
of the two partitions: each row- gene represents a subset of
the set of rows and each column-gene represents a subset of
the set of columns; obviously, the reunion of all subsets
represented by row-(columJ genes equals the entire set
of rows (columns). Obviously, chromosomes may have
different lengths, which allows for performing unsupervised
processing.

A gene represents an unordered subset of either the set of
rows or columns; each row/column is represented exactly
once in a chromosome. Blocks are defined by the Cartesian
product of the row genes and column genes.

The Fitness-Distance Correlation is more encouraging
than the one for the permutation-based representation: the
FDC values are around 0.35 for all samples (sample sizes
around 5,000 points). Figure 6. illustrates the FDC
distribution, preserving only the overall shape and
displaying only relatively few points.

873

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on August 02,2010 at 14:39:42 UTC from IEEE Xplore. Restrictions apply.

1.00E+05 , I

9.00E+04 -
8.00E+04 -
7.00E+04 -

8 6.00E+04 !'

4.00E+04 -

Q) c 5.00E+04 -
c,

3.00E+04 -
2.00E+04 ~

1.00E+04 -

O.OOE+OO ! I ,
O.OOE+OO 5.00E+01 1.00E+02 1.50E+02 2.00E+02 2.50E+02 3.00E+02

Distance

Figure 6 . Fitness-distance correlation for the block-based approach.

Evaluation. A pair (row-gene, column-gene) defines a
block. A 1-block is a block in which the non-zero values are
at least as numerous as the 0's; the other blocks are
Oblocks.

In early experiments, on moderate size matrices
(hundreds of elements), evaluation of chromosome Chr
proceeded as follows:

- penalties of all blocks encoded by Chr are summed up;
- a penalty is attached to each block represented in Chr:

-in order to control the growth of k and I, the penalty is
adjusted, using the power [hg,(k +1)] , where
[x]=max{s/ SEN, ssx};

-in order to keep track of different x values leading to
the same [XI value, the term k.1 is used:
eval(Chr) = (pen, + 2)['0g2(k+')1 + k . I ;

penblock=(fin (#blockO, #blockl))2;

b.. .in.. .ch

-finally, the fitness hnction to be minimized by the
algorithm is obtained by scaling the raw fitness:

f - bl (Chr) = (e v ~ I (C h r)) l . ~ .

The scaling exponent has been obtained empirically, as a
minimal value which prevents premature convergence.

When experimenting with real-world matrices (up to tens
of thousands of elements), the dramatic increase of the
search space cardinality made this fitness function perform
poorly. Therefore, we used a simplified version of the
fitness function, which avoided any increase in selection
pressure:

Operators. All operators are typed - each one with row
and column versions. Row-crossover (applied at a rate of
60%) affects only row genes, the column genes being

passed over to descendants without any change. This
operator acts as follows:

- randomly choose a row identifier i, 1
-all rows which precede row i in the first parent are

copied, in the same position, into the first descendant; the
other rows are copied, in their respective positions, into the
second descendant;

- an analogous procedure is applied to rows in the second
parent;

- delete any empty row-genes of the descendants.
Three mutation operators, MI, M2 and M 3 , are used (each

one with row and column versions). Genes involved in each
mutation operator are from the same chromosome.

MI (interchange): a randomly chosen row/column is
moved from its original gene to another gene of the same
type; if the original gene remains empty, then it is removed
from the chromosome.

M2 ('join): two randomly selected non-empty genes of the
same type are joined in a single, new gene of the same type.

M3 (split): a randomly selected gene is split into two
new, non-empty genes of the same type.

Each of the six mutations was assigned a rate of 0.05.
Mutations are applied to offspring obtained by crossover.

i 2 n;

5 Experiments and further work
Experiments described below have been performed using
randomly generated test matrices; this makes the problem
more difficult, since many of the real-world applications ask
for bringing to an optimal QCF matrices that originally were
in an optimal QCF. Indeed, two examples illustrate the
situation:

-data sequencing: objects had been put in what
eventually became an archaeological site, in an order that
itselfindicates the optimal QCF. It is this original order that
the archaeological studies aim, to discover;

874

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on August 02,2010 at 14:39:42 UTC from IEEE Xplore. Restrictions apply.

- image processing: blocks would represent (moving)
objects2.

70

60

0
1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Figure 7. Epistasis: evolution of the number of row groups and
column groups.

9 WE+04

8 WE104

7 00E+04

6 WE104

5 WE104

4 WE+04

3 WE+M
2 WE104

1 WE+04

0 WEIW
1 8 15 22 29 38 43 50 57 64 71 78 85 92 99

Figure 8. Best- fitness and average-fitness evolution (block-based
approach).

All the existing algorithms (e.g., CROBIN [DID82]) or
heuristics (topological sorting, quasi-random search)
perform supervised cross-clustering: k and 1 are not changed
during the run. We implemented them for comparison
purposes, but no such implementation led to acceptable
results for matrices with more than 2,500 elements. In order
to make the comparisons more significant, for each
application we adapted the problem definition for the
evolutionary approach to match the other techniques as
much as possible. Since other methods did not prove useful,
we focused the experiments on the convergence of our
evolutionary algorithms. We give here a few comments on
the figures above; all figures and comments refer to
1 OOx 100 input matrices.

Figure 7 illustrates the evolution of the number of groups
(partition cardinality) for rows and columns. Epistasis is
clearly illustrated by the fact that relatively small variations
in one dimensions correspond to relatively large variations
in (the local optimum for) the other dimensions.

Figure 8 shows a typical evolution of the best-so-far
fitness and that of average-fitness (recall that non-elitist
selection has been used). Situations when the decrease of
best-so-far corresponds to an evolution to the worst of the
average fitness (generations around 15, 25 and 45) may
illustrate cases when a (much) better individual is obtained
from relatively poor parents. Mutation is not likely to
produce such situations, since moving one row/column to
another block or joining/splitting existing groups cannot, by
itself, improve very much a candidate solution; therefore,

we think that crossover is a powerful operator for this
problem and is the main responsible for the convergence of
the algorithm.

Figure 9 gives a view of typical evolutions of the
best-so-far fitness for two settings of the (global) mutation
and crossover rates. We have empirically set pc to 60% and
pm to 5% for each mutation; running a supervisor GA
(GRE86) would have been too resource consuming, even
though we took advantage of sparse matrices
implementations3.

We aim at improving the fitness function and the set of
operators, so as to take into consideration not only the
homogeneity of each block, but also the order of
rows/columns in each block and the relative positions of the
blocks in a candidate solution. We are considering two new
mutation operators, which change the order of either
rowsfcolumns in a gene, or genes of the same type in a
chromosome; also, the fitness function will contain as
penalties the number of 0’s placed between 1 ’s, both at the
level of the elements of the matrix and at the block level.

We are currently implementing a two-step strategy: in a
way similar to A-coding ([SCB90]) or to Dynamic
Parameter Encoding ([WMF91]), we vary the level of
optimization from one step to the other. The two steps are:

1. Run BLOCKS with input matrix M and let
MAT-BEST be the found solution;

2. Build MAT, the “kernel” matrix ([DID82]) of
MAT-BEST. MAT is a kxl binary matrix, the elements of
which are 1 for 1-blocks and 0 for 0-blocks. Run BLOCKS
with MAT as input matrix.

We also envisage a combination of the two approaches: a
run of BLOCKS, followed by the permutation-based
algorithm, could further improve the solution. We are
currently carrying out experiments with these ideas.

6 Conclusions
We presented two evolutionary approaches to the general
unsupervised cross-clustering problem. Our first solution is
a two dimensional optimal permutation search, while the
other one, inspired from an existing heuristic, searches for
optimal row and column partitions. Each approach has its
own advantage, not shared with the other one: the
permutation-based solution is more sensitive to detail-level
improvements of a candidate solution, while the block-
based approach gives a better interpretation to the blocks of
1’s and 0’s in the candidate solution. Our experiments
showed - as expected - that a proper interpretation of the
candidate solution is more important than detail-level
improvements: the second algorithm converges much
quicker and does not display premature convergence.

’ Note that the matrix may not be boolean in such applications. Our
algorithm can be easily adapted to such matrices.

Using sparse-matrix implementations, running time has been cut by
two thirds.

875

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on August 02,2010 at 14:39:42 UTC from IEEE Xplore. Restrictions apply.

50000

40000

2 30000
G 2 20000

10000

0
- m v) F o \ ” m m F

” c . l m b \ D F w m

Generation

Figure 9a. Best-so-far fitness evolution for a 100*100 input matrix
with 20% non-zero values; pc=50%, pm=3% for each mutation

operator.

Generation

Figure 9b. Best-so-far fitness evolution for a loo* 100 input matrix
with 30% non-zero values; pc=60%, pm =5% for each mutation

operator.

Acknowledgements
Henri Luchian gratefully acknowledges the sponsorship
from Lockheed Martin International, Microsoft - Romania
and The School of Computing at Napier University,
Edinburgh.

The authors wish to acknowledge the contribution of M.
Petriuc (Microsoft, Redmond, U.S.A.); he carried out part of
the computer work and has contributed to the permutation-
based approach.

References
[DID821 - Diday, E., Lemaire, J., Pouget, J., Testu, F.:
“Elements d’analyse de donnees”, Dunod, Paris, 1982.
[GRE86] - Grefenstette, J.J.: “Optimization of Control
Parameters for Genetic Algorithms”, in IEEE Transactions
on Systems, Man and Cybernetics, vol. 16, no.1, 1986,

[JOF95] - Jones, T., Forrest, St.: “Fitness Distance
Correlation as a Measure of Problem Difficulty for Genetic
Algorithms”, in Proc. of the 6‘h ICGA, 1995, Morgan
Kaufman, pp.184-192.

pp. 122-1 28.

[LUC99] - Luchian, H.: ‘‘ThrGe Evolutionary Approaches to
Clustering”, to appear in the volume EUROGEN’99,
Jyvaskila, Wiley&Sons, 1999.
[MIC96] - Michalewicz, Z.: “Genetic Algorithms + Data
Structures = Evolution Programs”, 3rd edition, Springer
Verlag, 1996.
[OLE371 - Oliver, I.M., Smith, D.J., Holland, J.R.C.: “A
Study of Permutation Crossover Operators on the Traveling
Salesman Problem”, in Proc. of the 2”d ICGA
(J.J.Grefenstette - editor), Lawrence Erlbaum Associates,

[REW95] - Reeves, C.R., Wright, C.C.: “Epistasis in
Genetic Algorithms: An Experimental Design Perspective”,
in Proc. of the 6th ICGA (L.Eshelman-editor), Morgan
Kaufman Publishers, 1995, pp.2 17-224.
[SCK96] - Schoenauer, M., Kallel, L.: “Fitness-Distance
Correlation for Variable Length Representations”, Raport de
recherche, Ecole Polytechique de Palaiseau, CNRS
URA756, 1996.
[WMF91] - Whitley, D., Mathias, K., Fitzhorn, P.: “Delta-
coding - An Iterative Search Strategy for Genetic
Algorithms”, in Proc. of the 4” ICGA, (Belew and Booker-
editors), Morgan Kaufman Pwblishers, 1991, pp.77-84.

1987, pp.224-230.

876

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on August 02,2010 at 14:39:42 UTC from IEEE Xplore. Restrictions apply.

