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Abstract. Cross-clustering asks for a Boolean matrix to 
be brought to a quasi-canonical form. The problem has 
many applications in image processing, circuit design, 
archaeology, ecology etc. The heuristics currently used 
to solve it rely on either topological sorting or quasi- 
random search. We present here two evolutionary 
approaches to this problem: a permutation-based 
solution and a clustering one. The results on both real 
data and randomly generated, scalable, test data show 
very good convergence and encouraging efficiency 
properties, mainly for our second approach. 

1 Introduction 
Cross-clustering - “classification crois6e” in French, 
[DID821 - asks for a (sparse) Boolean matrix to be brought 
to an “optimal” quasi-canonical form (QCF), only by 
repeatedly interchanging two rows or two columns. The 
optimal QCF, however, is loosely defined: the 1’s have to 
be compacted into (not necessarily “rectangular”) blocks, 
usually along one of the diagonals of the matrix. Figure 1 
gives an example of an input matrix and a corresponding 
QCF solution (dark pixels represent the 1 ’s). 

Figure 1. Pixel-level representation of a 1 OOx 100 input matrix and of 
a corresponding optimal QCF. 

On one hand, this non-rigorous statement of the problem 
does not encourage the use of hard-computing techniques 
(linear programming, normal-forms transformations); on the 
other hand, it can lead to an optimizational view on cross- 
clustering. 

There is no exact deterministic algorithm for cross- 
clustering. Currently used heuristics are inspired from 
topological sorting, from algorithms for algebraic normal 
forms or even random iterative procedures ([DID82]). For 
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example, the topological sortinrg approach aims at defining a 
partial ordering on the set of rowslcolumns and then 
interchanging rows or columns according to this order. All 
of the currently used heuristics hardly achieve the required 
optimal quasi-normal forms, leven for matrices with only 
hundreds of elements. 

We illustrate in the next section the interpretation of 
cross-clustering in ArchaGology; other well-known 
applications are in circuit design, image processing, Ecology 
etc. 

Cross-clustering can be $een in two complementary 
ways. One obvious point of view comes from its particular, 
algebraic flavor: cross-clustering is akin to bringing a matrix 
to a quasi-canonical form. The other view comes from the 
observation that cross-clustering asks for a solution which 
can be seen as the Cartesian product of the solutions to two 
instances of the usual clustering problem. These two views 
on cross-clustering inspired two approaches for solving the 
problem in an evolutionary setting: a permutation-based 
approach and a “block” approach. 

The rest of the paper is organized as follows: section 2. 
describes a domain interpretation of cross-clustering, 
namely in Archaeology; section 3. describes our 
Permutation-based approach; section 4. deals with the 
blocks approach; section 5. discusses experiments and 
further work. 

2 Cross-clustering - the archaeological view 
A well-known application of cross-clustering is data 
sequencing in Archaeology. The idea of using Boolean 
matrices for data sequencing dates back at the beginning of 
the century; credit for this idea is given to one of the 
greatest Egyptologists, Sir W.M. Flinders Petrie. We 
describe below the version of cross-clustering which is 
considered in data sequencing, 

n objects are described by means of a attributes; each 
object displays a small number of these attributes and 
usually each attribute appear9 for relatively few objects. A 
matrix M can be built, with abject identifiers as row labels 
and attribute identifiers as column labels. A 1 is placed in 
position M(ij) if object i has the attribute j ;  otherwise, a 
M(ij)=O. Usually, M is 8 sparse matrix. The data 
sequencing problem asks for the matrix M to be brought to a 
form where the 1’s are compacted in blocks which “contain” 

0-7803-5536-9/99/$10.00 0 1999 IEEE 870 

Authorized licensed use limited to: Edinburgh Napier University. Downloaded on August 02,2010 at 14:39:42 UTC from IEEE Xplore.  Restrictions apply. 



as few 0’s as possible; the only operations to be used are 
rows or columns swap. Figure 2 shows a small-size 
example: the input matrix M and a quasi-normal form of it. 

Obj 1 
Obj2 
Obi3 

1 Attr I Attr I Attr 1 Attr I Attr I Attr I Attr I Attr 1 Attr I Attr I 

1 0 1 1 1 0 1 0 0 1  
0 1 0 0 0 0 0 1 1 0  
l o o l l l l o o l  

2 a. 

2 b. 
Figure 2. An instance of the cross-clustering problem: a-the 

input matrix M; bquasi-normal form of M. 

If M coded for archaeological data as described above, 
then the quasi-noma1 form in figure 2.b would suggest that 
the 10 objects belong to 4 stages of the culture under 
research; the object sets A={4,2}, B={5,7,10}, C={6,9}and 
D={8,1,3} would represent the four stages. Using the set 
notations A, B, C, D for the stages, then one can consider 
that the attribute set {2,8,9} is characteristic for stage A, the 
attribute set { 10,5,2,8} characterizes stage B etc. 

The problem at hand can be seen as a special case of 
clustering by partition: given a set of n objects and their 
characterization by means of a categorial (Boolean) 
attributes, find a partition of the set of objects and 
(simultaneously) select the significant attributes for each 
class of the partition; the optimality criterion is given by the 
accuracy of the quasi-normal form of the matrix (e.g., 
minimize the number of 0’s inside each block of 1 ’ s ) .  Note 
that the number of stages (cardinalities of the partitions) is 
not known beforehand, so this is an unsupervised clustering 
problem. Since the optimal partition would always be the 
one of cardinality n, an additional optimality criterion is the 
maximality of the blocks of 1’s. 

3 A permutation-based approach 
Our first approach has been an “optimal permutation” one: 
given rn, a Boolean (sparse) matrix, find the permutation of 

rows, rowgerm, and the permutation of columns, 
colgerm, which, when applied to the given matrix, bring M 
to an “optimal” quasi-normal form. Under this approach, the 
solution in figure 2.b above is: rowgerm = 

(4,2,5,7,10,6,9,8,1,3), colgerm = (6,4,7,3,1,10,5,2,8,9). 
The criterion for QCF optimality is not obvious. Indeed, 

an attractive criterion is given by the condition that as few 
0’s as possible exist “inside” the blocks of 1’s and as few as 
possible 1’s lie “outside” these blocks. However, if the 
automated procedure would only use this criterion, then the 
optimal QCF may consist of blocks of single 1’s; a 
restriction which would enforce the decrease of the number 
of blocks of 1’s has to be considered - see the discussion 
below on the evaluation. 

Representation. Under this approach, the representation 
is straightforward: a chromosome encodes a pair of candidate 
permutations - one for the rows and one for the columns’. A 
permutation is represented by a sequence of either n (for 
rows) or a (for columns) natural numbers between 1 and n, 
respectively 1 and a, with no repetition. A major problem 
which arises with this representation is epistasis ([REW95]): 
not only the well-known interdependence of the genes in any 
permutation encoding has to be taken into account, but also 
the effect on convergence of the simultaneous search of two 
correlated permutations. Indeed, any change in the row 
permutation may alter dramatically the corresponding optimal 
column permutation and vice-versa. 

Figure 3 illustrates the fitness-distance correlation, using 
Hamming distances, ([JOF95], [SCK96]) for the 
representation described above and fitness function f given 
below. For calculating and representing the FDC, we used 
matrices with 10,000 elements and around 30% non-zero 
values. In order to keep the figure readable, we give relatively 
few points out of the 5,000 considered; these points however 
describe accurately the overall shape of the distribution FDC 
distribution. The FDC value is around 0.17, which gives little 
hope for a good convergence of the algorithm. 

9 55E+03 , 
9 50E+03 

5 9 &E+M E 9 40E+03 

9 35E+03 

9 30E+03 t I 
0 W E W  1 M)E+02 2 WE+02 3 ooE+02 4 M)E+02 5 WE+02 6 M)E+02 7 00E+02 

Distance 

Figure 3. Fitness-distance correlation for the permutation-based 
representation 

Experiments confirmed that simultaneous evolution of the 
two permutations does not lead to convergence to a good 
solution: for all tests below, no acceptable QCF has been 
obtained in 1000 generations. Our solution to this has been an 
alternate evolution: we designed a fitness function, fro,” and a 
set of operators, op-row, for row-permutation evolution and a 

’ Another possibility would be to encode only one of these 
permutations and use another heuristic for finding the other one. 
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fitness function, fro,, and a set of operators, op-col, for 
column-permutation evolution. The general scheme of the 
genetic algorithm is slightly altered: every g generations, the 
algorithm switches between the use of ( f r o ,  op-row) and the 
use of ( f ro / ,  op-col); g is a parameter of the algorithm. The 
relation between g and the average fitness of the solutions 
found over 10 runs of the algorithm, for each value of g, is 
illustrated in figure 4; the average fitness values are scaled. 
The input matrix had 100 rows and 100 columns, with a 
percentage of 30% non-zero elements. Experiments with 
other input matrices were similar, so that we used g=10 in all 
further experiments. 

I I 
1 I 

1 4 7 10 13 16 19 22 

9 

Figure 4. Average best-fitness over 10 runs for each value of g 
between 1 and 23. 

Evaluation. The sought solution is a pair (perm-row-best, 
perm-col-best) which, when applied to the rows and columns 
of the input matrix M, gives an optimal QCF. A candidate 
solution Chr = (perm-row, perm-col) is evaluated as follows: 

-build the matrix Mfm which results by applying the 
respective permutation to the rows /columns of M; 

-for i=l..n, find, in Mf,, the positions jfirst(i) and jiast(i) 
of thefirst and last 1 in row i; let nr-l(i) represent the 
number of I s in row i; 

-if nr-I(i)=O (and so, jlast(i) = jfirst(i)=O), then 
J;-row(Chr) =O, else 

~-~ow(Chr)=MinNjiast(l) - jfirst(i))> ( j f i rd i )  -jiast(i) + 
a)) /nr-l(i); 

-calculate f,,(Chr) = x f i  ,,(Chr) ; 

- use analogous steps for calculating fco,(Chr); 
-for the standard CA scheme, the fitness of Chr is: 

- the goal is to minimize the$tness. 
This fitness function aims at minimizing the number of 

0’s inside the blocks of 1’s; it also tends to minimize the 
dimensions of such blocks. Its advantage is that it treats 
rows and columns in a non-discriminatory fashion, so that 
there is no need to switch fitness functions while alternating 
the row and column evolution, in the scheme described 
above. 

An alternative way of evaluating the candidate QCF of 
matrix M is to express the compactness of existing groups 
of l’s, by means of fitness function f , ,  with row and column 
components as below: 

, = I  

f ( W  =Jow(Chr) +f,o,(Chr); 

where and n l j ’  are analogous to their row counterparts. 

Operators. Each mutationl operator has two versions: a 
row operator and a column one. The only difference 
between the two versions of the same operator is that one is 
used for genes of the row permutation and the other one - 
for the column permutation. 

-swap mutation: randomly choose two genes in the row 
(column) permutation and intarchange them; 

-partial permutation: randomly choose a subset of the 
set of row (column) genes in ~e chromosome and randomly 
interchange them; 

-sequential permutation: same as before, but the selected 
genes have to be successive; 

- circular permutation: a randomly chosen sequence of 
row (column) genes is rotated. 

The crossover operator is also typed - it has a row 
version and a column one, which only differ in the part of 
the chromosome where each one can be applied. We used 
cycle crossover ([OLI87]). 

i 1 5 9 13 17 21 25 29 33 

= Best ! +Average 

Figure 5 .  Typical evolution ofbest and average fitness for g=10. 

As mentioned above, in order to cope with epistasis, 
every g generations the algorithm switches the evaluation 
procedure from frow to fco/ and the set of operators from row 
ones to column ones. We used rank-based, non-elitist 
selection ([MIC96]). Figure 5 shows a typical evolution of 
the best-so-far fitness value and of average fitness, for 
g=10. Note the “saw-teeth” shape: the evolution cycle starts 
with a constant (row) fitness decrease until the switching 
generation; next, the (colum) fitness increases abruptly 
compared to the last row value, then constantly decreases 
until the next switching generation etc. A smooth, but less 
effective, evolution occurs if f(Chr) = Jow(Chr) + fco/(Chr) is 
used and only the set of operators is changed at switching 
points. 

Our permutation-based approach has an obvious weak 
point: the blocks of l’s, which are the target of the 
optimization process, cannot be defined, hence recognized 
and taken into consideration during the evaluation process; 
therefore, the fitness function loosely interprets the quality 
of the candidate solution. Indeed, the blocks of 1’s are only 
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vaguely approximated by the positions of the first and last 1 
in a row/column. Fitness-distance correlation confirms this 
observation: the fitness-distance correlation is weak (values 
between 0.088 and 0.17 - see [LUC99]), which does not 
suggest ([JOF95]) a good convergence of the genetic 
algorithm. On the bright side, this approach is more 
sensitive to rowslcolumns interchange inside each found 
block of 1’s or 0’s - a feature that will disappear in our 
second, more robust, approach. 

4 A block-based approach 
Our second algorithm, which we call BLOCKS, is inspired 
from an existing random-search cross-clustering technique 
presented in [DID82]. Roughly, that procedure clusters the 
rows/columns of the initial matrix at random; subsequently, 
the elements at the intersections of each row cluster with 
each column cluster are treated as blocks (either “1” blocks 
or “0” blocks). The iterative part of the procedure changes 
the rowicolumn clusters with the aim of improving the 
quasi-canonical form (a secondary goal is to decrease the 
number of clusters). 

In this approach, a solution to the cross-clustering 
problem consists of a partition of the set of rows and a 
partition of the set of columns; these two partitions give an 
optimal QCF of the input matrix, by means of the sub- 
matrices defined by their intersections. That is, all the 
compact blocks of 1’s of an optimal QCF have to be among 
those sub-matrices. In order to obtain the optimal QCF from 
such a solution, one has to interchange rowslcolumns until 
the identifiers in each class of the two partitions are grouped 
in successive positions. The possible requirement to further 
improve the solution by placing the found blocks of 1’s in 
specific positions (e.g., along a diagonal) can be met by a 
procedure described in section 5. Under the block-based 
approach, the solution in figure 2.b above is expressed as: 
k=3, 1=3, rowjartition {(8,1,3), (10,6,9), (4,2,5,7)}, 
columjar t i t ion {(6,4,7,3), (1,10,5), (2,8,9,)}. The 
resulting blocks are considered either as 1-blocks (e.g., the 
block at the intersection {8,1,3} x {6,4,7,3}) or 0-blocks 
(e.g., {4,2,5,7}~{6,4,7,3}), depending on which Boolean 
value appears more often in that block. Note that, under this 
approach, the compactness of the blocks of 1’s is the 
optimality criterion, since the order of the rows/columns in a 
class of the respective partition is irrelevant; in other words, 
the block-based approach is not sensitive to rows / columns 
interchanges inside each block of 1 ’s or 0’s. 

More formally, let M,,,*” be the input matrix, 
I={il ,..., i,,,}, the set of row identifiers and J={jl ,..., j,,}, the 
set of column identifiers. We have to find the optimal pair 
(rowjartition, columnjartition), where the rowjartition is 
(SI, ... ,Sk) = ( { i f ,  ,...,is:’ }, ..., { if, ,...,is: } ) and the 

columjarti t ion is ( Q I  ,..., Q,)=({ jd, ,..., j;: } ,..., { j,, ,..., I,, }). I . , I (  

Since the cardinalities of the two partitions, k and I, are not 
known beforehand, we are dealing with an unsupervised 
cross-clustering problem. 

In order to assess the dimension of the search space, 
suffice it to say that, for a 50x50 input matrix, the Cartesian 
product of the set of all row partitions and the set of all 
column partitions has the order of magnitude while for a 
100x100 input matrix, the number of different pairs 
(rowjartition, columnjartition), only for k=Z=5, has the 
order of magnitude 

Halting condition. Since blocks are clearly defined in 
this approach, we can use a convenient halting condition for 
the algorithm. We chose a condition that expresses the level 
of accuracy of the found solution: the algorithm stores the 
first candidate solution for which all the blocks have under 
p% “minority elements” in any block, where p is a 
parameter of the algorithm, the algorithm continues to run 
for 10 generations and then stops - the solution given by the 
algorithm is the best between the stored solution and the 
last-generationbest. The solution in figure 2.b has p=33.3, 
which is likely to be acceptable for a matrix with 40% non- 
zero values. 

Selection and replacement strategy. Since the search 
space is huge and also because the likely interval containing 
all fitness values is comparable to [0;106], we tried to 
prevent the selection pressure caused by occasionally-found 
local optima. To this end, we used rank-based non-elitist 
selection. Further improvement of the convergence has been 
obtained by means of a combined replacement strategy: all 
descendants obtained after recombination are placed in the 
next generation (the above-mentioned selection mechanism 
being used for applying the crossover), while the rest of the 
new generation is selected at random from the current 
population. This leads to an even lower selection pressure. 

Representation. A chromosome consists of an encoding 
of the two partitions: each row- gene represents a subset of 
the set of rows and each column-gene represents a subset of 
the set of columns; obviously, the reunion of all subsets 
represented by row-(columJ genes equals the entire set 
of rows (columns). Obviously, chromosomes may have 
different lengths, which allows for performing unsupervised 
processing. 

A gene represents an unordered subset of either the set of 
rows or columns; each row/column is represented exactly 
once in a chromosome. Blocks are defined by the Cartesian 
product of the row genes and column genes. 

The Fitness-Distance Correlation is more encouraging 
than the one for the permutation-based representation: the 
FDC values are around 0.35 for all samples (sample sizes 
around 5,000 points). Figure 6. illustrates the FDC 
distribution, preserving only the overall shape and 
displaying only relatively few points. 
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Figure 6 .  Fitness-distance correlation for the block-based approach. 

Evaluation. A pair (row-gene, column-gene) defines a 
block. A 1-block is a block in which the non-zero values are 
at least as numerous as the 0's; the other blocks are 
Oblocks. 

In early experiments, on moderate size matrices 
(hundreds of elements), evaluation of chromosome Chr 
proceeded as follows: 

- penalties of all blocks encoded by Chr are summed up; 
- a penalty is attached to each block represented in Chr: 

-in order to control the growth of k and I, the penalty is 
adjusted, using the power [hg,(k +1)] , where 
[x]=max{s/ SEN, ssx}; 

-in order to keep track of different x values leading to 
the same [XI value, the term k.1 is used: 
eval(Chr) = ( pen, + 2)['0g2(k+')1 + k . I ; 

penblock=(fin (#blockO, #blockl))2; 

b.. .in.. .ch 

-finally, the fitness hnction to be minimized by the 
algorithm is obtained by scaling the raw fitness: 

f - bl (Chr) = ( e v ~ I ( C h r ) ) l . ~ .  

The scaling exponent has been obtained empirically, as a 
minimal value which prevents premature convergence. 

When experimenting with real-world matrices (up to tens 
of thousands of elements), the dramatic increase of the 
search space cardinality made this fitness function perform 
poorly. Therefore, we used a simplified version of the 
fitness function, which avoided any increase in selection 
pressure: 

Operators. All operators are typed - each one with row 
and column versions. Row-crossover (applied at a rate of 
60%) affects only row genes, the column genes being 

passed over to descendants without any change. This 
operator acts as follows: 

- randomly choose a row identifier i, 1 
-all rows which precede row i in the first parent are 

copied, in the same position, into the first descendant; the 
other rows are copied, in their respective positions, into the 
second descendant; 

- an analogous procedure is applied to rows in the second 
parent; 

- delete any empty row-genes of the descendants. 
Three mutation operators, MI, M2 and M 3 ,  are used (each 

one with row and column versions). Genes involved in each 
mutation operator are from the same chromosome. 

MI (interchange): a randomly chosen row/column is 
moved from its original gene to another gene of the same 
type; if the original gene remains empty, then it is removed 
from the chromosome. 

M2 ('join): two randomly selected non-empty genes of the 
same type are joined in a single, new gene of the same type. 

M3 (split): a randomly selected gene is split into two 
new, non-empty genes of the same type. 

Each of the six mutations was assigned a rate of 0.05. 
Mutations are applied to offspring obtained by crossover. 

i 2 n; 

5 Experiments and further work 
Experiments described below have been performed using 
randomly generated test matrices; this makes the problem 
more difficult, since many of the real-world applications ask 
for bringing to an optimal QCF matrices that originally were 
in an optimal QCF. Indeed, two examples illustrate the 
situation: 

-data sequencing: objects had been put in what 
eventually became an archaeological site, in an order that 
itselfindicates the optimal QCF. It is this original order that 
the archaeological studies aim, to discover; 
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- image processing: blocks would represent (moving) 
objects2. 

70 

60 
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1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 

Figure 7. Epistasis: evolution of the number of row groups and 
column groups. 
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Figure 8. Best- fitness and average-fitness evolution (block-based 
approach). 

All the existing algorithms (e.g., CROBIN [DID82]) or 
heuristics (topological sorting, quasi-random search) 
perform supervised cross-clustering: k and 1 are not changed 
during the run. We implemented them for comparison 
purposes, but no such implementation led to acceptable 
results for matrices with more than 2,500 elements. In order 
to make the comparisons more significant, for each 
application we adapted the problem definition for the 
evolutionary approach to match the other techniques as 
much as possible. Since other methods did not prove useful, 
we focused the experiments on the convergence of our 
evolutionary algorithms. We give here a few comments on 
the figures above; all figures and comments refer to 
1 OOx 100 input matrices. 

Figure 7 illustrates the evolution of the number of groups 
(partition cardinality) for rows and columns. Epistasis is 
clearly illustrated by the fact that relatively small variations 
in one dimensions correspond to relatively large variations 
in (the local optimum for) the other dimensions. 

Figure 8 shows a typical evolution of the best-so-far 
fitness and that of average-fitness (recall that non-elitist 
selection has been used). Situations when the decrease of 
best-so-far corresponds to an evolution to the worst of the 
average fitness (generations around 15, 25 and 45) may 
illustrate cases when a (much) better individual is obtained 
from relatively poor parents. Mutation is not likely to 
produce such situations, since moving one row/column to 
another block or joining/splitting existing groups cannot, by 
itself, improve very much a candidate solution; therefore, 

we think that crossover is a powerful operator for this 
problem and is the main responsible for the convergence of 
the algorithm. 

Figure 9 gives a view of typical evolutions of the 
best-so-far fitness for two settings of the (global) mutation 
and crossover rates. We have empirically set pc to 60% and 
pm to 5% for each mutation; running a supervisor GA 
(GRE86) would have been too resource consuming, even 
though we took advantage of sparse matrices 
implementations3. 

We aim at improving the fitness function and the set of 
operators, so as to take into consideration not only the 
homogeneity of each block, but also the order of 
rows/columns in each block and the relative positions of the 
blocks in a candidate solution. We are considering two new 
mutation operators, which change the order of either 
rowsfcolumns in a gene, or genes of the same type in a 
chromosome; also, the fitness function will contain as 
penalties the number of 0’s placed between 1 ’s, both at the 
level of the elements of the matrix and at the block level. 

We are currently implementing a two-step strategy: in a 
way similar to A-coding ([SCB90]) or to Dynamic 
Parameter Encoding ([WMF91]), we vary the level of 
optimization from one step to the other. The two steps are: 

1. Run BLOCKS with input matrix M and let 
MAT-BEST be the found solution; 

2. Build MAT, the “kernel” matrix ([DID82]) of 
MAT-BEST. MAT is a kxl binary matrix, the elements of 
which are 1 for 1-blocks and 0 for 0-blocks. Run BLOCKS 
with MAT as input matrix. 

We also envisage a combination of the two approaches: a 
run of BLOCKS, followed by the permutation-based 
algorithm, could further improve the solution. We are 
currently carrying out experiments with these ideas. 

6 Conclusions 
We presented two evolutionary approaches to the general 
unsupervised cross-clustering problem. Our first solution is 
a two dimensional optimal permutation search, while the 
other one, inspired from an existing heuristic, searches for 
optimal row and column partitions. Each approach has its 
own advantage, not shared with the other one: the 
permutation-based solution is more sensitive to detail-level 
improvements of a candidate solution, while the block- 
based approach gives a better interpretation to the blocks of 
1’s and 0’s in the candidate solution. Our experiments 
showed - as expected - that a proper interpretation of the 
candidate solution is more important than detail-level 
improvements: the second algorithm converges much 
quicker and does not display premature convergence. 

’ Note that the matrix may not be boolean in such applications. Our 
algorithm can be easily adapted to such matrices. 

Using sparse-matrix implementations, running time has been cut by 
two thirds. 
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Figure 9a. Best-so-far fitness evolution for a 100*100 input matrix 
with 20% non-zero values; pc=50%, pm=3% for each mutation 

operator. 
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Figure 9b. Best-so-far fitness evolution for a loo* 100 input matrix 
with 30% non-zero values; pc=60%, pm =5% for each mutation 

operator. 
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