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ABSTRACT: In a previous research program 74 artificial soil mixtures of natural fluvial soils were prepared in 4 series of 
measurements for falling head permeability testing, differing in d10.  The conclusions drawn from the original investigations were as 
follows: the k showed a decreasing tendency with the increase of the uniformity index U for each series of measurements and 
increasing tendency with d10. In this research these are used (i) to test the value of the grading entropy parameters in case of non-
precise grading curve measurement with missing fines, (ii) to correlate the usual grading curve parameters like d10, d30, d50 and d60 
or their ratios and the grading entropy parameters, (iii) to validate some existing permeability – grading curve equations and to 
elaborate some new permeability – grading curve relationships partly with entropy parameters partly with the usual parameters.  For 
these aims, series I to IV have been started to be reevaluated, some specific surface formulae were derived. Some additional, 
literature data were also considered. The very first results are presented here. According to the results, the fine fractions 
significantly influenced the value of the entropy parameters.  The base entropy So showed strong  relationship with and parameters 
like d10, d30, d50 and d60. The entropy increment ΔS showed a monotonic increasing relationship with U. The specific surface 
parameter (containing density info) showed the best relationship with k out of the d-type parameters like d10 or harmonic mean dh. 
The original conclusions were reformulated in terms of S0 and and ΔS. It was also concluded that those parameters that are based on 
all measured data are more precise than the single diameter values in the k-regressions. The specific surface parameter is the best in 
this repect probably since containing density information, too. 
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1. Introduction 

The measured grading curve is an empirical 
distribution function (i.e., the cumulative distribution 
function is a step function which can be considered as a 
discrete distribution function without loss of 
information). The empirical central moments or 
statistical entropy can be used to characterize this 
empirical distribution function since these parameters 
contain all measured data in a consistent way.  

At present approximate, quantile-type statistical 
quantities are used. In addition, aome sources of error is 
related to the grading curve measurement (e.g., 
neglecting the small fractions). Using approximatethe  
variables, it is difficult to elaborate empirical 
relationships between soil parameters and the grading 
curve ([1 to 12]. 

In this paper, a tentative attempt is made to proper 
incorporate the grain size distribution and its evolution 
on the permeability function of granular material. The 
data of some previous research projects [10]  are used 
(i) to test the value of the grading entropy parameters in 
case of non-precise grading curve measurement with 
missing fines, (ii) to correlate the usual grading curve 

parameters and the grading entropy parameters, (iii) to 
validate some permeability – grading curve equations.  

Using the above procedure, the values of k obtained 
in the framework of Nagy project [10] are plotted in the 
entropy diagrams and the results are compared with the 
results reported by Feng et al. [1,2].  

The results are used to represent the permeability 
values in the non-normalised grading entropy diagram 
by level lines.  

2. Literature review 

2.1. Grading curve  

2.1.1. General approach 

In order to classify a soil on the basis of its particle 
sizes, it is necessary to quantify the sizes of the particles 
present in a soil.  For particles down to a size of around 
60-75 microns (0.06-0.075mm), this can be done using 
wet or dry sieving. Particles below this size are too 
small to be separated using sieves, and so, other 
techniques are needed. Large particles will fall freely 
under gravity. For small particles, electrostatic 



 

attractions begin become significant, and can dominate 
the particle’s behaviour. Consequently, when sieving 
fine soils, it is usual that individual dry particles will 
clump of agglomerate together to form apparently larger 
particles that will not disaggregate and pass through a 
sieve [12]. 

Although free small particles tend to remain free 
when suspended in water, the residual effects of 
sedimentation often prevent small particles from 
disaggregating when the soil is first wetted. To promote 
particle disaggregation, a chemical dispersant is usually 
added to the water. The dispersant which is a mixture of 
sodium hexametaphosphate and sodium carbonate, 
helps to overcome the near surface attractions between 
clay particles and the cementation between clays and 
other fine particles.  

There are a number of techniques available to 
estimate the sizes of finer particles in a soil. The most 
common are the hydrometer analysis, and laser 
diffraction techniques. Hydrometer analysis is an 
indirect method that is relatively slow and difficult to 
perform.  

The principles behind the hydrometer analysis are 
that larger particles settle from a suspension before 
smaller ones, and the amount of different sizes in a 
given suspension can be inferred by the rate of change 
of density of the suspension, by monitoring the height at 
which an object (hydrometer) floats. A modern 
alternative to hydrometer analysis is the laser diffraction 
sizing method. By analyzing the diffraction patterns 
produced when laser beams are shone through a 
suspension of fine particles, it is theoretically possible 
to discriminate particles as small as 0.01 microns.  

Both hydrometer analyses and laser diffraction 
analyses rely on the assumption of spherical particles. In 
soils with a high clay content, where the sheet-like clay 
particles may be 100 times wider than they are thick, the 
errors can be considerable.  

However, if the potential errors are addressed and/or 
appreciated, both hydrometer analyses and laser 
diffraction analyses can give results with acceptable 
accuracy. 

2.1.2. Statistical characterization 

Once the relative proportions of the different grain 
size fractions (expressed as percentages by total mass of 
the soil), have been determined, they are usually 
presented on a Particle Size Distribution (PSD) curve, 
shown in Fig. 1.  

From the PSD, two quantities are defined in terms of 
the basic particle size distribution curve data. These are 

the coefficient of uniformity Cu, given by 60
u
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D
C

D
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and the Cc. A granular soil is considered well graded if 
Cu >4 and 1< Cc< 3, otherwise it is poorly graded. 

In the case of the empirical grading curve, the central 
moments or the statistical entropy have not been used in 
the practice. Instead of it, the q-quantiles like like d10 are 
determined approximately.  

2.2. Statistical viewpoints  

2.2.1. Statistical cumulative distribution 
function  

The measured grading curve can be considered as an 
empirical distribution function. In statistics, an 
empirical distribution function is the distribution 
function associated with the empirical measure of a 
sample, a step function, a discrete distribution function.  

The expected value is the mass center of a 
distribution, the variance measures how far a set of 
(random) numbers are spread out from their expected or 
average value. The skewness is a measure of the 
asymmetry of the probability distribution, kurtosis is a 
descriptor of the shape of a probability distribution. 
Using these, the type of the distribution can be 
estimated.  

The expexted µ of the random variable of a discrete 
distribution is the weighted arithmetic mean of the 
possible values (x1,..., xk) of ξ 
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The variance of a discrete variable may be 

determined by the following expression 
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The coefficient of skewness (Cs) is the quotient of the 

third central moment of the standard deviation raised to 
the third power. 
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The kurtosis(Ck) is the quotient of the fourth central 

moment by the fourth power of the standard deviation 
minus 3. 
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Rétháti [3] and Elderton and Johnson [4] distinguishes 
seven types of curves (I-VII), depending on the value of 
the so-called criterion, defined by the expression 
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where β1 is characterizing the skewness and β2 is 
characterizing the kurtosis or peakiness.  
 



(a) 
 
(b) 

Figure 1. (a) Some grading curve parameters used in practice.  
(b) The grading density curve embedded in the elementary cell 

grid, assuming uniform distribution within the fractions. 
 

 
 

Table 1. Definition and properties of fraction j. 
j 1  23 24 
Limits in d0 1 to 2  222 to 223  223 to 224 
D or S0j [-] 1  23 24 

2.2.2. Statistical entropy 

The statistical entropy (the entropy of a distribution 
function) is presented in many textbooks and can be 
formulated as follows in the discrete case. Let us 
consider M elements in m equal cells, Mi is the number 
of the elements in the i-th cell. The statistical entropy Ss: 

 
Ss=Ms (7) 

 
where s is the specific entropy or the entropy of an 

element given by 
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In equation 2, b is the base of the logarithm, and i is 

the relative frequency of the i-th cell, given by  
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2.3. The grading entropy  

Grading entropy [5] has been proved useful in the 
following fields: 
 rules for granular filters, particle migration and 

segregation criteria [6, 7],  

 dry density of granular soils in the loosest possible 
(“emax”) state [8], 

 dispersive and piping nature of soils [9], 
 relation between grading curve and soil water 

characteristic curve [10], k. 

2.3.1. Parameters  

For the statistical entropy of a finite discrete 
distribution, a uniform cell system is used (Fig. 2.). In 
the case of the empirical grading curve, the base of the 
logarithm is set to 2 in the statistical entropy formula:  
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so that the maximal value of the specific entropy of a 

two-cell system could be equal to 1 where the relative 
frequencies of a two cells are equal. 

The empirical grain size distribution curve is a finite 
discrete distribution. The statistical entropy is computed 
using two statistical cell systems. The so called fractions 
-  which are measured - are defined by successive 
multiplication with a factor of 2, starting from an 
arbitrary d0 as follows (j =1, 2.., Table 1). 

 
j j 1

0 02 d d 2 d   (11) 

 
where fractions are numbered by j (serial number).  
The relative frequencies xi can be identified with the 

barycentre coordinates of the points of an N-1 
dimensional, closed simplex (which is the N-1 
dimensional analogy of the triangle or tetrahedron, the 2 
and 3 dimensional instances) and, the space of the 
grading curves with N fractions can be identified with 
the N-1 dimensional, closed simplex.   

The elementary cells are with d0 width assuming that 
the distribution within a fraction is uniform. The 
“smallest diameter” do may be taken arbitrarily, eg., to 
be  equal to the height of SiO4 tetrahedron (do=2-29 m).  

The number of the elementary cells Ci in the fraction 
i is equal to:  
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The relative frequency of any elementary cell in 

fraction i is equal to: 
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where xi is the relative frequency of fraction i.  
The grading entropy S is derived by using secondary 

cells and inserting the relative frequency of the 
secondary cell i:  
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where Ci is the number of the elementary cells in 

fraction i, and xi is the relative frequency of fraction i. 
The grading entropy S is split into the base entropy So 
and the entropy increment ΔS: 

0S S S    (15) 

The base entropy S0 and the normalized form A: 
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where S0k is the k-th fraction entropy (Table 1), 

which is defined as follows (Table 1):  
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where S0i is the grading entropy of the i-th fraction 

(called here also as abstract diameter D), S0max and S0min 
are the entropies of largest and smallest fractions, 
respectively. The entropy increment ΔS and the 
normalized version B: 
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2.3.2. Internal stability  

The base entropy S0 is essentially a mean abstract log 
diameter which varies between S0max and S0min. The base 
entropy So is a kind of dimensionless mean log 
diameter, a most probable diameter.  

The relative base entropy A (normalised mean 
abstract log diameter) varies between 0 and 1 and 
indicates the relative distance of the mean diameter 
from the maximum-minimum abstract diameter values.  

If A > 2/3 then enough large grains are present to 
form a stable soil matrix. If A < 2/3 then the coarse 
particles “float” in the matrix of the fines. The elongated 
grading curves have a transitional zone. 

 

2.4. The k researches  

2.4.1. Nagy [11] 

The artificial mixtures of natural soil mixtures were 
prepared from fluvial soil mixtures for permeability 
testing. The d10 or 10% diameter value of the 
measurement series were as follows: I. series of 
measurements d10 = 0.004-0.006 mm, II. measuring 
series d10 = 0.006-0.010 mm ( III. measuring series d10 = 
0.010-0.014 mm, IV. measuring series d10 = 0.014-
0.016 mm.) 
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Figure 2. Internal or grain structure stability criterion (a) Partly nor-
malized grading entropy diagram, the lines are the maximum lines 
(images of the optimal lines) for various N values.  (b) The normal-
ized grading entropy diagram for various N. The line related to transi-
tion zone is dependent on  N.  

 

 For high-precision measurements, a total of 3 
repetitive k determinations were performed on 207 
samples of falling head test using 74 pre-determined soil 
mixtures in 4 series of measurements.  
 The conclusions drawn from the investigations were 
as follows: the k showed a decreasing tendency with the 
increase of the uniformity index U. The range of 
validity was U < 200-250, suffusion took place if U = 
400-500. In this work gradation series 1, 2 were re-
examined (grading curve, k value). 

2.5. Feng et al. [1, 2] 

Feng et al [1] studied whether or not the normalised 
entropy coordinates (A, B) can be used to predict the 
coefficient of permeability (k). A series of constant head 
permeability tests performed on 30 laboratory fabricated 
granular soil samples made from crushed baslat and 
gritstone. The tested samples had d10 ranging from 0.72 
to 7.02mm, and the measured k20℃ ranged from 3.78 to 
501.07 mm/s.  

The average gradations examined before and after the 
test were used to calculate the normalised grading 
entropy parameter (A, B). Considering the gradation 
ranges of the tested mixtures, the “smallest diameter” do 

were selected as 0.0375 mm in the grading entropy 
calculation. To remove the potential discontinuity in 
normalised entropy diagram [9], ‘zero’ fractions were 
also introduced in the calculation to better depict the 
ongoing changes in the gradation within the tested 
sample mixtures.The plotted normalised grading 
entropy coordinates of the 30 tested sample mixtures 



can be categorised into three classes based on their k 
level (see Fig. 3). 

 
 

 
Figure 3. Identified permeability zones shown on the normal-

ized entropy diagram (adapted from Feng et al, 2019a) [1] 

 
The multiple linear regression of the measured k20℃ 

with the calcuted A and B values  gives: 

o

8.9 2.3

20 C
k 145.47A B   

2R 0.90, n 30, p 0.0001    (21) 

 
In [2] Eq. 21 was modified by introducing the void 

ratio e: 
It is  

o

5.59 1.30 4.59

20 C
k 671.83A B e   

2R 0.96, n 30, p 0.0001    (22) 

 

3. Materials and methods  

3.1. Materials  

Two different families of gradation curves (series 1, 
2) consisting of thirty one different samples were 
fabricated in the original study for falling head testing. 
For each sample, the PSD was determined by sieving 
test with the procedure generally followed ASTM and 
by hydrometer procedure of the Hungarian standard. 
The results were represented by continuous curves in 
the traditional way, as shown in Figure 4(a). 

To extend the d10 range of the grading curves, some 
additional sets are considered : earlier research gravel 
permeability tests (set 5, d10 = 0.72 to  5,82 mm [1]), a 
few new, coarse sand mixture data (sets 9 and 10, d10 = 
0.28 to 1.4, ongoing measurement [17-18], and a set of 
permeability tests of various authors on transitional soils 
(set 6 [15]). 

In this research the data were reevaluated. The steps 
were the following. The central moment were used to 
assess the type of the function using the Pearson 
diagram. The Weibull function was fitted on measured 
data and the distribution was extrapolated to the 
crushing limit. The classical grading entropy parameters 
and a new spwcific surface parameter were determined.  

The four entropy parameters were computed 
assuming that do=6.1E-05 mm. The minimum grain size 
was limited by a crushing limit around 0.12207 microns 

(1. 22 E-04 mm), the measured grading curves were 
extrapolated until this point.  

3.2. Methods 

3.2.1. Extension of grading curve data 

The two different families of gradation curves (series 
1, 2) were digitalized fron the original graphs. The 
central moments of the diameter d were computed, 
using these, the type of the distribution was determined 
in the Pearson diagram. A Weibull distribution was 
fitted to the data (e.g., Guida at al. [14]), the minimum 
grain size was limited by a crushing limit around 
0.12207 microns (1. 22 E-04 mm), the measured 
grading curves were extrapolated until this point.  

3.2.2. Computed parameters  

The central moments were computed for the abstract 
diameters, also. The expected value of the log diameter  
is the base entropy S0 . The variance of the abstract (or a 
kind of log) diameter is not used  in the grading entropy  
theory, here it was added as a possible grading entropy  
parameter and was also examined.  
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In the reanalysis of the original data, the gradation 
parameters (D10, D50, D60, Dm, Cu = D60/D10) were 
determined, moreover, the four entropy parameters were 
computed (assuming that do=6,1E-05 mm) for the data 
with or without extension, the results were graphically 
compared. 

3.2.3. Additional soil parameters for 
permeability    

A kind of equivalent grain diameter is the harmonic 
mean, dh. It can be defined as the diameter of the sphere 
which has the same ratio of solid volume /solid surface 
Vs / Ss as the solid phase as a whole. 
In this work some formulae were derived in addition for 
the specific surface area per mass or volume of a soil 
which are the total surface area divided by the mass or 
volume of a given undisturbed sample. These are the 
mean pore volume and the specific surface area per 
massor per volume.  

The mean pore volume was defined as v:  
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where Ss surface area of pores or solid phase (of all 
fractions), Vv volume of voids in solid phase, e is void 
ratio= Vv/ Vs, Vs volume of solid phase, the dh is the 
harmonic mean diameter. 



 

The specific surface area per mass of a soil is the total 
surface area to the mass of a given volume of grains. 
The particle surface area is a value in square metre, and 
the mass is grams, so the units are m2/g. The specific 
surface area per mass of a single sphere: 

 dVS ss  /6)/(   (26) 

For a volume of soil: 

hss dnVS /)1(6/   (26) 

where Sset surface area of grains, V s,set volume of solid 
phase, N fraction , e void ratio, n porosity  
The specific surface area per volume is the ratio of the 
total surface area (m2) to the volume of the soil (m3). 
The particle surface area per volume unit is so it has 
units of m-1. For a single sphere: 

 

 s sS / (V ) 6 / d    (27) 

For a volume of soil: 

)/()1(6])1/[(6)/( , hshssetssset dndeVS  
(28) 

3.3. Tested correlations  

In the reanalysis of the original data, the tradiitional 
gradation parameters were compared with the statistical 
parameters. The four entropy parameters computed in 3 
different ways (first all extended fractions were taken 
into account then the presence of possible smaller grains 
were neglected or substituted by zero value).   

The variance of the abstract  diameter (self-entropy 
of the fractions) was not used  in the grading entropy  
theory, here it was also examined.  

The regression of of the measured k with various 
diameter values and specific surface parameters derived 
here were started to be tested. The multiple linear 
regressions of the measured k with various grading 
entropy parameteres, the calculated A and B value, 
moreover, the calculated base entropy parameter S0, the 
entropoy increment S were started to be determined.  

4. Results 

4.1. Effect of the fines on the entropy 
parameters 

The original grading curves after digitalizationand 
the  Weibull fittings with minimum fraction size 
0.00012mm are shown in Figure 4 and in the Appendix..  

The extended grading curves for 16 to 18 non-zero 
fraction sizes were determined either by fitting a 
Weibull distribution (e.g., Guida at al. [14]) or by 
assuming smaller zero fractions up to the foregoing 
actual smallest limit. 

 
  

1E-4 1E-3 1E-2 1E-1 1E+0 1E+1

d [mm]

0.0

0.4

0.8

S
  [

%
]

 
(a) 

 

1E-4 1E-3 1E-2 1E-1 1E+0 1E+1

d [mm]

0.0

0.4

0.8

S
  [

%
]

 
(b) 

 
Figure 4. (a) Measured PSDs of gradation types 1 (dark blue) and 2 
(light blue) examined. (b) Weibull fitted PSDs of gradation types 1 
(dark blue) and 2 (light blue). 
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Figure 5. Effect of the small/zero fractions  
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Figure 6. Effect of fines (gradation type 1 (dark blue) and 2 (light 
blue)) on the normalized and on the non-normalized entropy parame-
ters. The open circles are by assuming smaller zero fractions up to the 
foregoing actual smallest limit (gave practically the same results as the 
Weibull data).  
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Figure 7. Effect of fines (gradation type 1 (dark blue) nd 2 (light 
blue)) on the non-normalized entropy parameters (Series 1.2 -1.7, 
1.10-1.11).  

Computing the normalized grading entropy 
parameters by  taking into account the fines up to N=16 
to 18 fractions, according to the results shown in 
Figures 5 to 6, the gradings fell into the more stable 
regions. The non-normalized parameters changed 
significantly if the Weibull fitted curves were 
considered (the zero fractions did not change their 
values, see Figure 7). The base entropy So decreased, 
the entropy incrementcincreased by considering the 
fines precisely. Therefore, it is essential to assess the 
precise value of the fines in the grading curve 
measurement. In the normalized diagram, by assuming 
smaller zero fractions up to the smallest limit, 
practically the same results were obtained. 

4.2. Comparing grading curve parameters 

Subseries (selected curves) 1.2 -1.7, 1.10-1.11 and 
2.6,2.7,2.8,2.9,2.12,2.13,2.14,2.15,2.16,2.17,2.18 were 
used in the analyses. 

According to the firstresults shown in Figures 7 to 
10, the base entropy So showed (a theoretically based) 
„strong“ regression with the parameters d50 and dm.  
The relative base entropy A or the base entropy So 

showed  a series-dependent, strong relationship with U. 
The variance parameter Y showed a strong relationship 
with the entropy increment ΔS.  

Surprisingly, the relation between parameters d50 
and dm was not too strong.  

The base entropy S0 showed a non-unique, series-
dependent regression with CU = U. The  entropy 
increment S showed a unique regression  with CU = U. 
The variance parameter Y showed a strong relationship 
with the entropy increment ΔS indicating that the 
entropy increment ΔS is basically a variance parameter. 
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Figure 8. Relations with D50, Dm for PSDs of gradation types 1 (dark 

blue) and 2 (light blue) examined  
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Figure 9. S0 and di (close to mean d it is stronger with larger 

R2)  



 

 

0 1 2 3 4 5

DS [-]

1.0

10.0

100.0
C

_u
 [-

]

series 9, 10

6 8 10 12 14 16 18 20

S_0 [-]

1.0

10.0

100.0

C
_u

 [-
]

 
 
Figure 10. Relations with Cu=U for PSDs of gradation types 1 (dark 
blue) and 2 (light blue) examined with non-normalised entropy coor-
dinates. The entropy increment S showed a univocal relation. The  
So regression was different for the various series.  
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Figure 11. Relations with Cu=U for PSDs of gradation types 1 (dark 
blue) and 2 (light blue) examined with normalized entropy coordi-
nates.  
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Figure 12. Relations with Y and the entropy increment parameter for 
PSDs of gradation types 1 (dark blue) and 2 (light blue) examined  
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Figure 13. Relations of the two base entropy parameters and for the 
two empirical mean estimates d50 and dm, for PSDs of gradation 
types 1 (dark blue) and 2 (light blue) examined  
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Figure 14. The mean falling head test data on pre-determined soil 
mixtures in the 2 series of measurements.  
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Figure 15. Re-evaluation of data series 1 and 2 of Nagy in the light of 
literature data of Feng et al [1] in non-normalized diagram. 

 



 
Figure 16. The predicted versus measured k using Eq.25 
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Figure 17. The level lines related to Eq. 35 

Table 1. The parameters determined by the Gauss Normal Equations, 
the variance, coefficient of variation (SD/mean), fitting error 2 

 Series 1-2 

 all data  selected data 

  -Bristol  -Bristol 

A -4.497 -4.818 -5.670 -7.330

B 14.210 11.958 10.364 8.332

C -40.577 -34.719 -28.986 -22.354

VAR(A) 0.150 0.180 0.262 1.964

VAR(B) 1.149 1.016 1.928 7.524

VAR(C) 9.051 7.873 13.585 35.856

Fittingerror - 0.048 0.028 0.019 >0.004

 
 

Table 2. The parameters determined by the Gauss Normal Equations, 
the variance, coefficient of variation (SD/mean), fitting error 2 

 Series 1-2 

A -2,71082

B 7,487592

C -0,22417

D -26,2253

VAR(A) 2,240154

VAR(B) 1,313213

VAR(C) 0,253004

VAR(D) 12,1185

Fitting error [-] 0,010345

4.3. Multilinear regressions- coefficient of 
permeability (k) 

4.3.1. Normalised entropy parameters  

The artificial mixtures of natural soil mixtures were 
prepared from fluvial soil mixtures for the permeability 
testing. The d10 or 10% diameter value of the 
measurement series used here were as follows: I. series 
of measurements d10 = 0.004-0.006 mm, II. measuring 
series d10 = 0.006-0.010 mm. the mean of the 3 
repetitive k determinations related to these soil mixtures 
in 2 series of measurements.  

Using the 2 series of measurements, a strong 
relationship between A and k moreover between the 
base entropy parameter S0 between and k are found (Fig. 
12, 13). Unifying the data with some values published 
by Feng et al 2018, the two data sets showed a 
consistent dependence on the mean log diameter (first, 
base entropy parameter S0) indicating the possibility of 
the approximate interpolation of a k function in terms of 
the grading curve (Fig. 14).  

Using some elements of data series 1, the previous 
equation of Feng et al was nicely supported. As follows. 
Comparing with the results of Feng et al. [1], the two 
data sets allows the approximate interpolation of a k 
function in the non normalized diagram. 

Eq. 21 and Eq. 22 were examined using data series 1 
and 2 from Nagy [10] and gives: 
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Eq. 29, 30 generally present the same trend of 
correlation as Eq. 21, 22 with some degree of variation 
on the regressed coefficients and exponents (cf. the 
exponent on the void ratio Eq. 29 and 30). The predicted 
k is plotted againsted measured k (Fig. 15) shows that 
37 out of 39 give predicted k value within 0.1 to 10 
times range, 27 out of 39 points give underpredictions 
of k, while the remainders (12 points) give 
overpredicted results for k. 

4.3.2. Non-normalised entropy parameters  

The relationship among the base entropy parameter S0 , 
the entropoy increment S and k is determined in the 
forms [16]: 
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3)exp( CC SSCk   (31) 

 
The predicted versus measured k using Eq.35. 
The relationship among the base entropy parameter S0 , 
the entropoy increment dS, void ratio e  and k is 
determined in the form: 
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Series 1 and 2, selected data and, some soils from the 
University of Bristol research were used for the regres-
sion analysis sometimes when indicated (“B data”). Re-
sults are shown in Tables 2 and 3. 
According to the results, the R2 was generally greater 
than 0.6 for selected data.  
The parameter C2 of S is entropy increment is always 
negative, parameter C2 related to the S0 base entropy if 
generally positive, the fitting is slightly better.  
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4.4. The diameter variables 

Using these parameters and Feng’s data and series 2, 
the regression equations were determined in Figs. 17 
and 18, resp. According to the results, the best R2 was 
found for the specific surface variable. The R2 was 
larger for gravel and in this case if the entropy 
parameters were used.  

 
 

 
 

 

 
Figure 18. Re-evaluation of data of Feng in terms of various diameter 
values (specific surface parameter (containing density info), harmonic 
mean dh and d10 with R2= 0.92, 0,91 and 0.90 resp.). 

 

 
 
 

 
 

 

 
Figure 19. Re-evaluation of data series 2 of Nagy in terms of various 
diameter values specific surface parameter (containing density info), 
harmonic mean dh and d10 with R2= 0.68, 0,63 and 0.52 resp.). 

5. Discussion 

The aim of the research is to introduce a statistically 
consistent, numerically more effective parameters which 
can be used both for a single empirical grading curve 
and for the space of the all possible empirical grading 
curves which is needed if any interpolation is made in 
terms of the grading curves. The very first results are 
summarized here.  

 

5.1. Traditional grading curve parameters  

5.1.1. Generally used parameters 

The grading curve is a statistical distribution of log 
diameter d with respect to dry weight. The empirical 
distribution function can be determined by the sieving 
of the granular matter with large enough grains, it is 
made with sieves that have “the classical sieve hole 
diameters”, which are resulted by successive 
multiplication or division with a factor of 2, starting 
from eg. 1 mm.  

On the basis of the sieving test, a graphically 
interpolated, continuous function is given in terms of 



log d to determine graphically some statistical 
“quantile” diameter values (d10 and d60 and d50) and at 
the unique inflexion point – if exists – a “dominant” 
diameter value (dm). These statistics are given then in 
arithmetic d scale instead of the log scale.   

The coefficient of uniformity U or Cu - as ratio of d60 
and d10 - is then computed which is similar to the 
standard deviation: if it is small then the d values are 
located around the d50 or dm  which approximate the 
mean d.  

 

5.1.2. Specific surface parameter 

More precise parameters are the harmonic mean and 
specific surface since these are based all measured data. 

In this work some formulae were derived in addition 
for the specific surface area per mass or volume of a soil 
which are the total surface area divided by the mass or 
volume of a given undisturbed sample. 

These were compared with the using series 2 and 
Feng‘s gravel series on the basis of permeability data 
with d10. According to the results, the value of R2 was 
larger for the gravel series than for the fine sand-silt 
series. Within each series, the best was the sepcific 
surface area and the worst was the d10. 

5.2. Grading entropy 

In the grading entropy theory the measured grading 
curve is considered as a finite, discrete distribution 
function with a non-uniform cell system in the 
arithmetic d scale and uniform in the log scale. The 
primary cell system is defined as an abstract fraction 
system using the log value of the classical sieve hole 
diameters. A secondary cell system is defined with 
equal increments on the arithmetic d scale, using this, a 
uniform discrete distribution is assumed within each 
fraction. Using the concept of the entropy of a discrete 
distribution, a specific entropy term was derived which 
splits into two parts, called entropy parameters. 

5.2.1.  Grading entropy parameters  

The main observations of the ongoing research are 
summarized as follows. The base entropy is similar to a 
mean log d value. The entropy increment may 
characterize the spreading of the data around the mean. 
It has a physical meaning, also since it expresses the 
contact between the spontaneous processes and the 
entropy principle.  (It was proved experimentally that 
there is a relations for the natural processes with the 
entropy principle [11]). 

The relative base entropy is useful since it may 
reflect the amount of the large grains. In case the 
amount of large grains is great enough then they may 
form stale structure, so the normalised parameter may 
reflect the microstructure and internal stability.  

The normalised he entropy increment is useful since 
the range difference originated from different fraction 
number N approximately disappears.  

The entropy increments ∆S and its normalised 
version B, reflect the actual effective number of fraction 

within the mixture – as a more precise coefficient of 
uniformity Cu. Its maximum is lnN/ln2 and 1/ln2, 
respectively. 

The entropy increment ΔS expresses the ‘disorder’ 
due to the fractons an effective fraction number, its 
maximum is equal to lnN/ln2.  The B varies between 0 
and 1/ln2. It is zero for a single fraction and is maximal 
where each relative frequency is the same (uniform 
distribution).   

5.2.2. Interpolation  

To interpolate a function over the space of the 
grading curves, it is important to characterize the space 
of the grading curve. The B, ∆S; and A, S0 entropy 
coordinates can be transformed into each-other, resp.; so 
the equations formulated in terms of normalised 
coordinates can be transformed into non-normalised 
coordinates. Eq. 24 , 25 can theoretically be transformed 
into a form using ∆S; and S0 instead of B, and A.  

For a given relative base entropy parameter A [-], the 
maximal normalized entropy increment is related to the 
possibly most uniform distribution which is a fractal 
distribution for each A value with fractal dimension 
varying between minus to plus infinity [14]. 

In the research, 15 laboratory tests on saturated 
permeability were conducted on fractally distributed 
sand mixtures (which are mean grading curves for a 
given A value and N=2) with given composition. In the 
future part of the research, larger N valued fractal 
gradings will be further tested.  

 

6. Summary 

6.1. The effect of fines 

To asses the effect of fines the four entropy 
parameters computed in 3 ways (leaving out the end of 
the grading curve, using zero relative frequency for the 
fines and taking into account the fines) were compared. 
According to the results, the non-normalized parameters 
changed significantly if the fines were considered. The 
base entropy So decreased, the entropy increment ΔS 
increased by considering the fines precisely.  

The normalized parameters fell into more stable 
regions by  taking into account the fines up to N=16 to 
18 fractions while otherwise they fell into the unstable 
region (either by model fitting or assuming zero 
fractions).  It follows that it is essential to assess the 
precise value of the fines in the grading curve 
measurement.  

6.2. The relations of the entropy coordinates 
and the traditional parameters 

The base entropy S0 showed (a theoretically based) 
strong, unique relationship with the parameters d50 and 
weaker with dm. The base entropy parameter S0 showed 
for each series a unique, strong, monotonic increasing 
relationship with U,  therefore, the original conclusions 
can be reformulated for each series  for S0.  



 

The grading entropy type variance parameter Y 
showed a strong, unique relationship with the entropy 
increment ΔS possibly due to the shift symmetry of the 
latter. The entropy increment ΔS with shift symmetry is 
basically a variance type parameter, being the largest for 
the uniform distribution. 

6.3. The regressions 

The k values determined by the two research projects 
plotted in the non-normalised entropy diagrams 
consistenly showed an increasing tendency with 
increasing mean grain size (and mean pore size). 
Results allow the approximate interpolation of a k 
function in the non normalized diagram. Further 
research is suggested on this. 

The entropy coordinates are pseudo-metrics.The B, 
ΔS; and the A, S0 entropy coordinates can be 
transformed into each-other, resp.; so the equations 
expressing the saturated k value in terms of normalised 
coordinates can be transformed into non-normalised 
coordinates which will be done in a further research. 

Using the grading curve parameters (d10, specific 
surface, harmonic mean diameter) and Feng’s data, the 
best-fit non-linear regression equations were 
determined. According to the results, R2 was larger if 
the entropy parameters were used. Concerning series 1 
and 2, the regression was weaker, the R2 was less than 
0.6 if all data were used. Further research is suggeted on 
this difference related to clays (seris 1 to 2) and gravel 
(Feng’s data) in the regression analyses. 

7. Conclusions 

The geotechnical correlations are generally formulated 
in terms of  diameter values such as d10, d30, d50 and d60 
and or their ratios. These are related to one single point 
of the grain size distribution. More precise parameters 
are the harmonic mean and specific surface in terms of 
correlations with the permeability. 

The four classical grading entropy parameters are 
based all measured data, therefore, these are more 
precise than the single diameter values. In addition, the 
four grading entropy parameters have several additional 
mathematical and physical meaning which can be used 
in regression forms. Only two are mentioned here.  
1. The relative base entropy A is the number to 
characterize the internal structure of the grains, which 
can be stable/unstable  if water is flowing through. In 
other words, this parameter well classifies the soils with 
respect to internal structure.  
2. The grading curves and the regression equations can 
be represented in the entropy diagram with points and 
level lines, respectively. The  permeability zones of [1] 
are in accordance with the level lines presented here. 
3. The conclusions drawn from the original 
investigations were as follows: the k showed a 
decreasing tendency with the increase of Cu and 
increasing tendency with d10. The original conclusions 
were reformulated in terms of S0 and and ΔS and strong 
regression was found between ΔS and the Cu, and 
between S0 and d10. 
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