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Abstract 

One of the key functions of demand-side refinement management solutions is non-intrusive load monitoring (NILM), which 
has benefited from the growing interest in emerging technologies such as wireless communications and the Internet of Things. 
Currently, deep learning methods such as Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) are 
widely used for in-depth research on NILM. This paper investigates the role of attention mechanisms in the above two time-
series deep learning models. Experiments show that the improved model is more than 10% more effective in indoor scenes, 
especially for typical household appliances such as refrigerators. 
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1. Introduction 

Electricity supports the functioning of modern 
society, from food, clothing and housing to 
communication, entertainment and healthcare, 
electricity is an integral part of digital life [1]. The 
growing consumption of electrical energy has led to 
the development of the power industry, and the 
introduction of smart grids has led to an increase in the 
flexibility and stability of the power system. The 
development of power systems in the new era has 
gradually changed from scale expansion to efficiency 
enhancement, improving the sensing and control 
capabilities of the whole chain of power grid 
operation, focusing on model building and standard 
building of the underlying facilities, improving the 
quality of power grid data and strengthening data 
management have become urgent issues to be solved 
today [2].  

Therefore, how to better access demand-side 
electricity data, further optimise the composition of 
power energy consumption, achieve digital 
transformation, improve energy utilisation, reduce 
carbon emissions and achieve sustainable 
development has become a major research direction 
today [3]. Advances in wireless indoor metering 
technology have opened up possibilities for power 
demand-side management in smart grid construction. 
Expanding from the simple metering functions of the 
past, smart meters now integrate wireless indoor 
monitoring functions such as remote meter reading 

and smart disconnection, providing the basis for 
further research into direct and indirect load 
management [4]. Indoor load management helps users 
to obtain real-time information on household energy 
consumption, thus prompting them to take the 
initiative to conserve energy, improve household 
energy utilization, reduce energy consumption and 
electricity load, and achieve significant economic and 
social benefits by reducing investment in new power 
plants and pollution of the atmosphere from primary 
energy sources [5]. It is estimated that more than 40% 
of the electricity consumed in the US is consumed in 
commercial buildings and residences, and load 
monitoring to help customers improve energy 
efficiency solutions can save more than 15% of energy 
consumption [6]. In addition, it can also improve the 
home life experience of home users and provide 
assistance for building intelligent integrated home 
services. Therefore, indoor load disaggregation has 
become a hot issue. 

Non-intrusive load monitoring aims to break down 
the total energy consumption data obtained from 
individual measuring devices to obtain the electricity 
consumption of each appliance, as shown in Fig. 1. It 
can effectively avoid the problems of high installation 
costs and inconvenient maintenance that make 
invasive monitoring difficult to promote, and provide 
a convenient monitoring solution for users [7]. 
Currently, clustering algorithms [8], hidden Markov 
models (HMM) [9], support vector machines (SVM) 
[10] and neural networks [11] have been tried to 
identify the energy consumption of different 
appliances. SVM are more accurate when there is a 
single load state, but they are computationally 
intensive and less accurate for continuously changing 
devices. Neural networks are relatively accurate, but 
they are susceptible to measurement noise and 
unknown devices. HMM solves the problem of 
discrete events and continuous value data, but it 
requires initialisation of the device state model with a 
priori knowledge, making it difficult to reason 
accurately. 

With deep learning methods achieving better 
results in processing temporal data such as natural 
language, researchers have started to turn their 
attention to unsupervised deep learning algorithms 
[12]. Compared to supervised traditional statistical 
algorithms, unsupervised methods do not require 
manual extraction of domain knowledge; they treat all Fig. 1. Example of NILM. 
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signals other than the target device as background 
noise and focus only on the features of the target signal 
[13]. It copes well with the situation of unknown 
devices that may exist in practical applications, but is 
less effective for multi-state device inference. 

This paper investigates the impact of the Attention 
mechanism on load disaggregation, and adds the 
Attention module to common load disaggregation 
models to help the models focus effectively on key 
regions, from improving the disaggregation of multi-
state devices. The work on NILM is briefly described 
in Section 2. Meanwhile, this paper adds the Atte 
mechanism to the bidirectional LSTM model and 
CNN model to effectively obtain different weights for 
the time series and focus on the target load active 
dimension, the details of which are shown in Section 
3. The paper compares the LSTM and Seq2Point 
models, and the experimental results in Section IV 
show that the accuracy of the model's active state 
identification and energy consumption disaggregation 
are improved, especially for devices with complex 
states. 

2. Related Work 

Edge computing effectively mitigates latency 
issues, bringing a new leap forward in indoor wireless 
monitoring devices and the practical deployment of 
remote smart meter reading technology [14]. At the 
same time, cloud computing technology provides a 
safe and reliable solution for the collection and storage 
of massive amounts of power data [15]. With the 
widespread deployment of smart meters, publicly 
available datasets on home energy management 
provide the basis for research on indoor load 
management [16]. 

The traditional load disaggregation method sees it 
as a problem of solving for the power of individual 
devices using the total power obtained by 
superimposing the power of multiple devices A. It 
further decomposes different devices from the total 
energy consumption by fitting their power curves to 
model the different devices. Hidden Markov (HMM) 
has advantages in handling time-series data and is 
often used for modelling appliance power curves. 
Makonin et al. proposed a sparse HMM combined 
with an improved Viterbi algorithm to solve the NILM 

problem efficiently, but the method does not use time 
information and the disaggregation is poor. [17]. Kong 
et al. used the Hierarchical Hidden Markov Model 
(HHMM) framework to efficiently obtain temporal 
correlations using two Markov chains to achieve 
optimal identification of device switching state 
transitions, but the error in disaggregation accuracy is 
large and needs to be further optimized in combination 
with other models [18]. Bonfigli et al. combined active 
and reactive power characteristics based on the HMM 
model and validated it using the AMPds dataset, which 
improved performance by more than 10% compared to 
traditional methods, but the model effect began to 
decline as the number of devices increased [19]. The 
HMM model effectively solves the problem of 
discrete-event and continuous-valued data, but the 
model is difficult to infer accurately and is susceptible 
to noise. 

Due to the emphasis on research in the area of load 
disaggregation by government departments, the data 
content contained in the power dataset is becoming 
more and more refined, which facilitates the 
application of supervised deep learning methods. 
Fabrizio et al. used the current from the BLUED 
dataset as an input quantity and performed 
simultaneous event detection and classification 
through three layers of convolution to improve 
computational efficiency, and achieved an accuracy 
rate of over 85% [20]. Pascal et al. used contextual 
information to extract device features forward for 
effective classification, and the results showed that the 
improved algorithm improved for four different types 
of devices, especially continuous devices [21]. The 
analysis was conducted [22]. Although deep learning 
methods have achieved better results in load 
disaggregation, there is still room for improvement. 

In recent years, the attention mechanism's use of 
different weight assignments makes the model focus 
on key features and has achieved better results in 
computer vision and natural language processing, so 
researchers have also started to apply it to other fields 
with hierarchical representation learning [23]. Ji et al. 
combined the long and short-term memory model with 
the attention mechanism to effectively transfer visual 
attention to achieve image caption annotation [24]. 
Zhao et al. applied the power of hierarchical attention 
mechanism to the field of emotion recognition and 
effectively identified depression text problems 
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through speech information under semi-supervised 
learning methods [25]. 

3. An Attention-based Time-series Deep Learning 
Model 

In the traditional approach, the total power can be 
regarded as the accumulation of the energy 
consumption of several devices. The load 
disaggregation problem can then be considered as a 
reverse process, i.e. the process of solving the power 
sequence of individual devices for a known sum, 
which can be expressed as the following equation: 

𝐸𝐸(𝑥𝑥) = ∑𝐸𝐸𝑖𝑖(𝑥𝑥) + 𝑒𝑒(𝑥𝑥)  (1) 
where 𝐸𝐸(𝑥𝑥) indicates the total power obtained from 

the measurement, 𝐸𝐸𝑖𝑖(𝑥𝑥)  indicates the power of the 
individual appliance and 𝑒𝑒(𝑥𝑥)  indicates the 
measurement noise value. 

However, it is different in the deep learning 
approach, where the model treats values other than the 
target power sequence as noise and the whole 
computation process can be seen as a denoising 
process. Therefore, the influence of other devices can 
be ignored and only the features of the target signal 
need to be focused on. The equation can be expressed 
as follow: 

𝐸𝐸(𝑥𝑥) = 𝑃𝑃𝑖𝑖(𝑥𝑥) + 𝑒𝑒(𝑥𝑥)  (1) 
where E(x) denotes the total power obtained from 

the measurement, 𝑃𝑃𝑖𝑖(𝑥𝑥)  denotes the power of an 
individual device and 𝑒𝑒(𝑥𝑥) denotes the measurement 
noise value. 

3.1. The attention mechanism 

For time-series data modelling, CNNs and LSTMs 
have been used, but conventional methods can be 
neglected in the process of acquiring the main features 
of the device. The attention mechanism, which mimics 
biological observation behaviour, can align internal 
experience with external senses to observe key regions 
more finely, with less complexity and parameters, and 
increase the weight of key regions through the 
probability of attention, thus allowing the model to 
achieve a better training effect [26]. The unit structure 
is shown in Fig. 2.  

The attention mechanism establishes a mapping of 
the learning target 𝑞𝑞 to the dictionary 𝑘𝑘 by means of a 

weight matrix. The input is first subjected to a 
transpose, then softmaxed for each dimension to 
obtain the attention weights for each dimension, and 
finally merged into the attention weights for the 
individual features, which are given by the following 
equation：  

e(𝑞𝑞, 𝑘𝑘) = 𝑞𝑞𝑇𝑇𝑘𝑘   (2) 
𝛼𝛼𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥�𝑒𝑒(𝑞𝑞, 𝑘𝑘)� = exp (𝑒𝑒(𝑞𝑞,𝑘𝑘𝑖𝑖))

∑exp (𝑒𝑒(𝑞𝑞,𝑘𝑘𝑖𝑖))
 (3) 

𝐴𝐴𝑠𝑠𝑠𝑠𝑒𝑒𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴 = (𝑞𝑞, 𝑘𝑘, 𝑣𝑣) = ∑𝑠𝑠𝑡𝑡𝑣𝑣  (4) 

The attention mechanism used in this paper is 
shown in Figure 3, where the model utilises a Permute 
layer to swap the data in dimensions 2 and 3. The 
weights of the features in each TIME_STEP are then 
calculated. Finally, the weighted output is multiplied 
with the input to obtain the weighted sequence. 

3.2. The attention-based LSTM network 

Recurrent neural networks are chosen as the main 
architecture in this paper because they have been 
shown to perform well in time series. Whereas NILM 
is the network input is a period of power consuming 
time series data and has achieved better results on 
LSTM models. 

LSTM models are special RNN models that use 
cells with memory functions to selectively control the 

Fig. 3. The attention mechanism unit. 
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input of information [27]. The attention-based 
bidirectional recurrent LSTM network adds the ATT 
module to the original model architecture, the detailed 
structure of which is shown in Fig. 3(a). the LSTM 
neurons ensure that the network input parameters can 
be preserved for a long time and have good 
performance in long-term learning [28]. The output of 
a two-way LSTM prediction is determined by a 

number of inputs in front of it and a number of inputs 
behind it, and its prediction will be more accurate 
compared to the LSTM model. However, due to its 
relative computational complexity, high 
computational cost during training and large 
disaggregation time cost, it needs further improvement 
in practical applications.  

 
 

3.3. The attention-based Seq2P network  

CNNs are selected as the main network structure in 
this paper because of their simple method structure, 
less training parameters and computation time than 
recurrent neural networks, and better training results. 
Also, in order to accommodate the time series data as 
input, the CNN network utilises a sliding window of 
length 100 as input for one-dimensional convolution. 

Convolutional neural networks can perceive local 
information to obtain further global information, 
effectively reducing the number of parameters [29]. 
The Attention-based seq2point network made use of 
four CNNs for feature extraction, while the dropout 
layers introduced after each layer hides different 

neurons randomly in each cycle, thus avoiding the 
phenomenon of overfitting and enhancing the 
generalisation ability of the model. The additional 
attention layer is responsible for calculating the weight 
parameter matrix, and finally the final output is 
obtained by fully connected calculation. The specific 
structure of the model is shown in Fig. 3(b). 

Before training and prediction, we normalised the 
data to speed up the network training. Compared to 
LSTM networks, convolutional neural networks are 
faster, taking only about 60𝑢𝑢𝑠𝑠 per sample compared to 
about 180𝑢𝑢𝑠𝑠 for LSTM networks. This is due to the 
fact that CNNs do not have the problem of back-and-
forth dependency and can operate efficiently in 
parallel. In practical deployments, efficient and 
lightweight disaggregation algorithms are beneficial 

Fig. 4. (a) Architecture of attention-based LSTM network; (b) Attention-based Seq2P network architecture. 
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for dissemination and application, and therefore the 
computation speed needs to be optimised while 
improving the accuracy. 

4. Experiments 

4.1. The dataset 

This paper uses the REDD[30] dataset from the 
USA and the UKDALE[31] dataset for training, 
REDD contains data from 6 households, from which 4 
devices were selected for evaluation, and UKDALE 
contains data from 5 households, from which 5 devices 
were selected for evaluation. The sampling frequency 
of REDD was 1s and that of UKDALE was 6s, and the 
specific devices are shown in Table 1. 

 
Table 1  

Devices selected in REDD and UKDALE 

Device REDD UKDALE 

Kettle - √ 

Fridge √  √  

Microwave √  √  

Dish washer √  √  

Washing machine √  √  

Prior to training, the data were first pre-processed 
by down sampling the data to 6S and filling the 
sequence with 0's with values of NAN, followed by 
normalisation. 

4.2. The metrics 

This paper evaluates the model performance in 
terms of both the identification of device switching 
states and the accuracy of the disaggregation values. 
The following indicators were used as model 
assessments. 

𝑅𝑅𝑒𝑒𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

   (3) 

𝑃𝑃𝑃𝑃𝑒𝑒 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

   (4) 

𝐹𝐹1 = 2 ∗ 𝑇𝑇𝑃𝑃𝑒𝑒∗𝑅𝑅𝑒𝑒𝑅𝑅
𝑇𝑇𝑃𝑃𝑒𝑒+𝑅𝑅𝑒𝑒𝑅𝑅

   (5) 

𝐴𝐴𝑅𝑅𝑅𝑅 = 2 ∗ 𝑇𝑇𝑃𝑃𝑒𝑒∗𝑅𝑅𝑒𝑒𝑅𝑅
𝑇𝑇𝑃𝑃𝑒𝑒+𝑅𝑅𝑒𝑒𝑅𝑅

  (6) 

𝑀𝑀𝐴𝐴𝐸𝐸 = 1
T
∑ |𝑥𝑥𝑡𝑡′ − 𝑥𝑥𝑡𝑡|𝑇𝑇
𝑇𝑇=1   (7) 

𝑅𝑅𝐸𝐸𝑅𝑅𝐸𝐸 = |𝑇𝑇′−𝑇𝑇|
max (𝑇𝑇′ ,𝑇𝑇)

  (8) 

In this paper, the device on/off state is regarded as 
a binary classification problem, and the predicted and 
true values greater than the turn-on threshold are 
marked as 1, and those less than the turn-on threshold 
are marked as 0. The turn-on threshold is obtained by 
ground.on_power_threshold(). TP is the quantity 
where both are 1 and TN is the quantity where both are 
0. When the true value is marked as 0 and the predicted 
value is marked as 1, it is counted as FP and the rest as 
FN. Where 𝑅𝑅𝑒𝑒𝑅𝑅  represents the ratio of correctly 
predicted samples and 𝑃𝑃𝑃𝑃𝑒𝑒 represents the accuracy of 
the device recognition. In addition, 𝐹𝐹1  is used to 
consider the performance of 𝑅𝑅𝑒𝑒𝑅𝑅 and 𝑃𝑃𝑃𝑃𝑒𝑒 together. 

Considering the problem of the accuracy of the 
predicted values that can be returned in practical 
applications, Mean Absolute Error (𝑀𝑀𝐴𝐴𝐸𝐸) and relative 
error in total energy (𝑅𝑅𝐸𝐸𝑅𝑅𝐸𝐸 ) are introduced in this 
paper to assess the error between the predicted and true 
values. These two indicators are used to assess the 
accuracy of the model disaggregation values; the 
smaller the value, the smaller the error. 

4.3. Results 

The attention-based LSTM network has F set to 16, 
K set to 4, and liner as the activation function, and the 
two LSTM layers are set differently at 128 and 256. 
the attention-based Seq2P network has a window 
length of 100 and the convolutional layer activation 
function is ReLU. The results of the experiment are 
shown in the table below. 
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Table 2 

Disaggregation performance for fridge 

Methods Rec↑ Pre↑ Accuracy↑ F1↑ RETE↓ MAE↓ 

RNN 0.9632 0.3678 0.4969 0.5324 0.1234 38.96 

S2P 0.8695 0.7729 0.8855 0.8184 0.1058 18.36 

Att-LSTM (this paper) 0.9374 0.4304 0.6127 0.59 0.1989 36.37 

Att-S2P (this paper) 0.8623 0.86 0.9175 0.8612 0.0543 14.66 

Table 3 

Disaggregation performance for microwave 

Methods Rec↑ Pre↑ Accuracy↑ F1↑ RETE↓ MAE↓ 

RNN 0.2087 0.2192 0.8985 0.2138 0.4694 22.81 

S2P 0.2071 0.0061 0.9007 0.2162 0.0082 16.91 

Att-LSTM (this paper) 0.2132 0.2103 0.895 0.2117 0.2615 25.36 

Att-S2P (this paper) 0.2016 0.5374 0.9345 0.2923 0.0042 12.46 

Table 4  

Disaggregation performance for dish wash 

Methods Rec↑ Pre↑ Accuracy↑ F1↑ RETE↓ MAE↓ 

RNN 0.9356 0.0982 0.1973 0.1778 0.1130 43.03 

S2P 0.99 0.0921 0.0921 0.1687 0.5052 66.79 

Att-LSTM (this paper) 0.9701 0.0943 0.1327 0.1718 0.4144 36.6 

Att-S2P (this paper) 0.9478 0.0946 0.1596 0.1720 0.1492 48.41 

 

Table 5 

Disaggregation performance for washing machine 

Methods Rec↑ Pre↑ Accuracy↑ F1↑ RETE↓ MAE↓ 

RNN 0.6160 0.7527 0.9837 0.6775 0.2853 21.89 

S2P 0.6824 0.6908 0.9820 0.6766 0.8778 47.11 

Att-LSTM (this paper) 0.6096 0.7741 0.9843 0.6820 0.0969 28.87 

Att-S2P (this paper) 0.7277 0.6442 0.9814 0.6834 0.1506 19.46 

 

Table 6 

Disaggregation performance for kettle 

Methods Rec↑ Pre↑ Accuracy↑ F1↑ RETE↓ MAE↓ 

RNN 0.1456 0.1936 0.7497 0.1662 0.5569 25.16 

S2P 0.1454 0.6600 0.81 0.2382 0.0617 24.94 

Att-LSTM (this paper) 0.0482 0.3298 0.7972 0.3917 0.1549 17.19 

Att-S2P (this paper) 0.1981 0.3525 0.9633 0.2536 0.3512 19.86 
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As we can see from the results of the experiment, 
the best results were boosted by the fridge and kettle. 
The results for washing machine, dishwasher and 
microwave oven are not so obvious. It can be seen that 
the attention mechanism can effectively improve the 
training effect of the model, while the reduction of 
MAE and RETE values can show that the accuracy of 
energy consumption prediction has been improved. 

In the prediction of refrigerators, the improved 
model improved by more than 10%, but the improved 
Att-LSTM still could not catch up with the S2P. There 
was a significant improvement in the prediction of 
washing machines, which may be due to the high 
number of feature channels of washing machine 
equipment, of which the attention module effectively 
focuses on the key areas. In addition, the improved 
Att-S2P outperformed the best GRU in terms of F1 

Fig.5. Some example disaggregation result on UK-DALE. 

Att-LSTM ATT-S2P RNN S2P 
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and MAE, and in the case of the kettle, the model 
improved by 20%, which means that the attention 
module can effectively extract the hidden features of 
the more obvious devices. The Att-S2P effect was 
much improved on the prediction of microwave ovens, 
probably due to the high number of feature channels 
of microwave oven devices, of which the attention 
module effectively focused on the key areas. In 
addition, in the other two equipment energy 
consumption predictions, the model did not improve 
as well, probably because the characteristic pattern of 
equipment with complex operating states is not 
obvious, and the simple attention module is not well 
suited to the identification of multi-state equipment.  

Fig. 5 shows some example disaggregation results 
on UK-DALE. From the figure we can see that the 
attention mechanism improves better than the ATT-
LSTM on the S2p model, this is due to the fact that the 
LSTM model itself can acquire temporal features very 
well, so the improvement is not so obvious. At the 
same time, it can be seen that the ATT-S2P model is 
more effective for devices with fixed patterns such as 
washing machines, dishwashers and refrigerators. The 
changes of loss and val_loss of 50 epoches are shown 
in Fig. 6. 

5. Conclusion 

This paper studies the role of attention mechanism 
in the field of load disaggregation. The experiment 
shows that the attention module helps to improve the 
model effect, and the model effect is improved by 
more than 10%. At the same time, for S2p model, ATT 
mechanism reduces the disaggregation error of 
equipment with fixed operation cycle. Although att-
seq2p model has many layers, its calculation is 
relatively simple and its training speed is faster. 

Considering the characteristics of different 
electrical appliances and users can improve the 
accuracy of load disaggregation algorithm. Next, the 
author will further improve the attention based deep 
learning networks proposed in this paper, so that it can 
more accurately reflect the characteristics of electrical 
appliances. Because the performance of the improved 
S2p model is better than the improved LSTM model, 
the author's next work will be carried out in the S2P 
model. 
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