
Title of book. Name of editors (Eds.)

Exploiting model-based techniques for
user interfaces to databases

T.Griffiths , J. McKirdy , G.Forrester, N.Paton, J.Kennedy,
P.Barclay , R.Cooper, C.Goble, P.Gray
Department of Computer Science, University of Manchester, Oxford

Road, Manchester, M13 9PL, England. http://img.cs.man.ac.uk
Department of Computing Science, University of Glasgow, 17 Lily-

bank Gardens, Glasgow G12 8QQ, Scotland.
http://www.dcs.gla.ac.uk/ {~pdg | ~jo | ~rich }
Department of Computer Studies, Napier University, Canal Court,

42 Craiglockhart Ave, Edinburgh, EH14 1LT, Scotland.
http://www.dcs.napier.ac.uk/osg/

Abstract
Model-based systems provide methods for supporting the systematic and efficient
development of application interfaces. This paper examines how model-based
technologies can be exploited to develop user interfaces to databases. To this end
five model-based systems, namely Adept, HUMANOID, Mastermind, TADEUS
and DRIVE are discussed through the use of a unifying case study which allows
the examination of the approaches followed by the different systems.

Keywords
Database interfaces, Model-based user-interface design environments,

TADEUS, Mastermind, HUMANIOD, Adept, DRIVE

1 INTRODUCTION
Databases are ubiquitous, and almost every database application exploits
interactive interfaces in some way, whether for database design, querying, data-
entry or browsing. The importance of user interfaces to databases as a research
topic is reflected in the various workshops and conferences that have been held in
recent years ((Spaccapietra, 1995), (Kennedy, 1996), (Wierse, 1995)). The demand
for interface builders for databases in commerce is reflected in the widespread use
of form interface builders (Oracle, 1996) and toolkits with integrated database
capabilities (Delphi, 1997). However, development of user interfaces to databases
is still often ad-hoc, and there is little evidence of the most recent interface
development environments, such as model-based systems, being applied to
database interfaces.

 Model-based interface development environments have emerged in recent years
as a promising technique for supporting more systematic and more efficient user
interface development (Foley, 1995), (Johnson, 1995), (Bodart, 1995), (Puerta,
1996). Not only do model-based systems support rapid prototyping through
automatic generation of (preliminary) interfaces from partial descriptions of
applications, they support a methodology that encourages discipline in interface
design. However, model-based systems are not yet mature, and proposals differ
significantly in the range and nature of the models supported. There are also few
case studies of the use of such systems in practice, so it is difficult to compare and
contrast different proposals.
 This paper provides a case study on the use of model-based systems for database
interface development. A simple library database application is described and its
implementation presented using five representative model-based systems. The
paper thus has the following aims:
• To illustrate to database interface developers the possible benefits of

exploiting model-based techniques.
• To assess the appropriateness of current model-based systems for developing

user interfaces to databases.
• To enable a comparison to be made of the facilities supported by model-based

systems in a common application.

 Although there have been earlier surveys of model-based systems (Schlungbaum,
1996), (Myers, 1995), (Szekely, 1994), these have never been in the context of user
interfaces to databases, and have never exploited a case study to allow more
detailed comparisons to be made of the different approaches.
 The paper is structured as follows. Section 2 describes the case study used
throughout the paper. Section 3 provides an overview of model-based systems.
Section 4 describes the use of five model-based systems, namely Adept,
Humanoid, Mastermind, TADEUS and DRIVE for supporting the case study.
Section 5 summarises the capabilities of the different model-based systems, and
section 6 presents some conclusions.

2 CASE STUDY
In section 1, reference was made to the scarcity of case studies which illustrate the
use of model-based systems in practice and how this has made comparison of such
systems difficult. In order that this paper can present a balanced survey of selected
model-based systems, a small-scale case study has been devised and is described
here. Thereafter, in section 3, each of the systems under comparison will be
discussed with reference to their support of the case study.
 This case study is based upon a library database, the ODMG (Cattel, 1996)
schema for which is shown in figure 1. Object classes are shown as rectangles and
scalar types as ovals. In section 4 access to the database from the model-based
systems is assumed to be through standard ODMG call interfaces.
 Rather than attempt to describe an entire library application based on this
domain, the case study focuses on a single task - Searching for a book. The case

study is not prescriptive with respect to interface style since to be so might unfairly
influence the comparison of the various systems.

 To search for a book, the user must first specify that a search is to be performed.
A series of search parameters must then be specified, including: the attribute(s) of
the book on which the search is to be based - i.e. author, title or year; and whether
exact or approximate results should be returned. By specifying these parameters,
the user has effectively constructed a query that can then be submitted to the
database. The system must either present the results of the query to the user in a
manner appropriate to the particular interface style, or inform the user that no
matching books were found. Where results were obtained, the user can browse
through them.

3 OVERVIEW OF MODEL-BASED SYSTEMS
Model-based interface development environments (MB-IDEs) can be classified as
IDEs that exhibit three main features, namely they: Support the automatic
generation of interfaces; utilise declarative methods to specify the interface; and
adopt a methodology to support the development of the interface.

Figure 1: The Library Schema

Figure 2: Typical Model-based Development Life-Cycle

Task, Domain,

User models

Dialogue
model

Declarative Models

Presentation
model

Modelling Tools

Design Critics,
Design Advisors

Automated Generation
Tools

Ergonomic Rules,
Style Guidelines

Design Knowledge

Application Code

Executable UI Code,
or

Run-time UI Code

Compiler /
Linker

Runtime
System

Delivered
Application

description

Person

BorrowerLibrarian

cname: stringfname: string

salary: integer

Loan

date: Date

StockItemBook

Library

year: integerauthor: string title: string

libname: string

location: string

borrowed_by

has_loan

employs

works_for

is_stockItem

is_stock

stocks

on_loan

is_at

contains is_stockItem

 The process of developing a user interface with a MB-IDE is an iterative process
of developing and refining a set of declarative models using graphical editor tools
or high-level specification languages. Once developed, these models are
transformed according to ergonomic rules and/or style guidelines into an interface
specification. This specification is subsequently linked with the underlying
application code to generate a running application. This development process is
illustrated in figure 2.
 From the designer’s viewpoint the key components of a MB-IDE are the
declarative models which store the conceptual representation of the interface.
During recent years, the models supported by MB-IDEs have increased both in
number and in expressiveness. The first-generation of MB-IDEs (typified by UIDE
(Foley, 1995), MECANO (Puerta, 1996), and JANUS (Balzert, 1996))
concentrated on modelling the underlying application domain using a domain
model. This model represents the application objects together with their
properties, available actions, and any pre- or post-conditions applicable to these
actions. Typically, such a limited view of the modelled domain produced simple
menu or forms-based interfaces.
 In recent years however, MB-IDEs have exploited a much wider range of
interacting models, with a consequent increase in the quality and variety of the
generated interfaces. These models allow the designer to exploit fully the
information gathered during the requirements analysis phase of the development
process.
 A task model allows the hierarchical description of the tasks performed by the
end-user, including the ordering of sub-tasks, their goals, and the procedures used
to achieve the goals. These procedures represent application-level operations, and
are thus captured in the domain model. The development of the task and domain
models are therefore closely related activities.
 A user model describes characteristics of the intended users or groups of users of
the application that can be exploited to tailor the functionality or the appearance of
the resulting interface. Through the use of a user model a MB-IDE can generate
different interfaces for each category of user, thus allowing the capture of both
application independent (e.g., user capabilities, psycho-motor skills) and dependent
(e.g., system knowledge, privileges) characteristics.
 To allow the realisation of the dynamic behaviour of an interface a dialogue
model can be provided. This model describes the interaction between the human
and computer in terms of when and what commands can be invoked in a
presentation independent manner. Earlier MB-IDEs derived this information from
their task or domain models. The provision of an explicit dialogue model results in
richer interfaces that more closely reflect the desires of the designer.
 The provision of a presentation model allows the designer to specify the
characteristics of the interface components. This can apply to both the static
(widgets etc) and dynamic (typically involving run-time application-dependent
data) facets of the interface.
 Some MB-IDEs (e.g. Trident (Bodart, 1995)) also try to help the designer by
providing design critics or advisors. These are tools that analyse models and either

suggest improvements or identify inconsistencies or errors in the design. In
addition to these facilities other systems (e.g. UIDE (Foley, 1995), HUMANOID
(Luo, 1993)) utilise the specified models to automatically generate non-interface
features such as help and redo/undo sub-systems.

3 SURVEY OF SYSTEMS
3.1 ADEPT
Adept (Johnson, 1995) is a MB-IDE that follows a user centred design philosophy.
To this end Adept utilises the user and task descriptions captured during the
requirements analysis phase of application development to produce an executable
user interface corresponding to the modelled tasks. Adept also recognises the
importance of incorporating the proposed users of the developed system at all
stages of interface development by involving the end-users during each stage of
model development.

User Model
The Adept user model (Kelly, 1992) takes the form of a rule-base which is used to
describe groups of current/proposed users in terms of both concrete attributes such
as their domain knowledge and familiarity with computer systems, and abstract
notions such as motivation and attitude. Once elicited, this knowledge can be used
to provide design guidelines, and hence to influence the form of the generated
interface. For example, in our case study two user groups can be identified, namely
Borrowers and Librarians. A knowledge base is instantiated for each of these user
groups. The Librarians user model will contain facts such as: (’application
experience’ ’high’); (’frequency of use’ ’high’); (’motivation’ ’moderate’);
 The individual user models are used in conjunction with a set of design rules that
associate the modelled user characteristics with a set of interface design rules. For
example the rule: (’typing skills’ ’low’ ’fill-in forms’); states that if the user group
has low typing skills then fill-in forms might be an appropriate medium for the
developed interface.

Task Model
The task of producing a UI to represent the modelled domain is a process of
successively refining the tasks informally identified during the initial requirements
analysis phase. The first stage in this process results in a refinement of the initial
task model called the task knowledge structure (TKS) (Johnson, 1991).
 The TKS is a representation of the tasks in a domain. Each task is modelled in
terms of its goals (the state to be achieved by the task), procedures (the sequence
of actions which will achieve the goal), actions (lowest level of activity), and the
objects (as identified in modelled domain) which the task will affect. Adept does
not make formal reference to an explicit domain model, rather the affected objects
are listed with a textual description of their properties. For example the Check in
Book task will affect the domain objects book and borrower, amongst others. The
limited role assigned to the domain model means that it is less obvious how a
database query could be constructed or its results processed using Adept as it is.

Figure 4: Search task AIM

 Figure 3 illustrates the top-level TKS for the case study. Nodes in this task model
represent either goals, sub-goals, procedures or actions, with a temporal
relationship specified between nodes. This relationship may be one of: sequence
(whose order is inferred top-down); interleaved (multi-threading); parallel; or
choice. Goals can also be specified as being repeated, optional, or disabled (i.e. not
possible under certain conditions). The TKS also displays and allows the editing of
the domain objects affected by each task. Unexpanded goals are indicated by the
dark triangle.

 Whilst the TKS seeks to describe all tasks from the users’ perspective, the
delivered system may only represent some of these tasks (e.g., the library system
will not catalogue new books). The Abstract Interface Model (AIM), which is
derived from the TKS, provides a high-level presentation independent specification
of what the interface is to do.

 The AIM represents the abstract interaction objects (AIOs) that comprise the user
interface. Each AIO is modelled only in terms of the type of input expected. This
type is provided by the developer form a set of pre-defined alternatives including
text, number, range, element, set, or special, thus providing a link to the underlying
type of the domain. Temporal information is also expressed about the AIM
components, leading to a basic dialogue description of the abstract interface. The
AIM corresponding to the Search task hierarchy is shown in figure 4.

<Sequence>

Search for Book

<Element>

Whole db

<Text>

Title

<Text>

Author

<Text>

Year

<Element>

Previous search

<Selection>

Specify search criteria

<Selection>

Search by

<interleave>

Specify search

Figure 3: Case study TKS

<Sequence>
Administer Library

<Interleave>

Maintain books

<Sequence>

Logon

<Sequence>
Query Book Status

<Sequence>

Search for Book

<Sequence>

Browse

<Sequence>
Check out Book

<Sequence>

Check in Book

<Sequence>
catalogue book

<Sequence>
Specify Search

<Procedure>

Do Search

<Sequence>

Get Results

<Optional>
Ordering Criteria

<Optional>
Search Fields

<Optional>
Search Criteria

<Domain>

Title

<Domain>

Year

<Domain>
Author

Generating the User Interface
The high-level description of the user interface defined by the AIM must be
transformed into a low-level platform independent description of the designed
interface. This low-level description is provided by the Concrete Interface Model
(CIM). Adept uses the Smalltalk language to produce an equivalent executable
version of the interface.
 The CIM is automatically generated from the information stored in the AIM and
the user model specifications by instantiating each AIO as a widget from the
adopted widget set. This process is achieved by the CIM interactively interrogating
the user models’ knowledge base of applicable design rules. For example, when the
CIM needs to instantiate the widgets corresponding to the ’Specify search criteria’
goal in the case study AIM, the choices radio button, checkbox, or button could be
applicable. If the CIM generator cannot resolve a conflict then the designer is
brought into the process through an interactive dialogue with the generator.

Methodology
Figure 5 provides an overview of the methodology followed by Adept. This is a
semi-automated iterative process that is initiated by the development of user and
task models. Whilst the current implementation of Adept does not allow for
iterative refinement of the models, the authors state that this is one of the goals of
the system.

3.2 HUMANOID
HUMANOID (Luo, 1993), is a template-centred, MB-UIDE which aims to bridge
the gap between interface builders and automatic interface generators. In contrast
to the latter, HUMANOID was developed on the basis that the most difficult
design decisions are best left to the designer since they require knowledge which is
more easily and quickly modelled by humans than by a system, for example
knowledge about end-users and the application domain.
 A HUMANOID model comprises five semi-independent dimensions: application
semantics, presentation, manipulation, sequencing, and action side effects.

Application Semantics
This model corresponds quite closely to the domain model described in section 3,
and is designed independently of the manner in which the objects will be

Task Analysis

User Model

CIM

TKS

AIM

User characterisation

generation

Iterative

refinement

Figure 5: The Adept Interface Development Methodology

displayed. Application objects and commands are hierarchically modelled by
specifying the types and slots of each object. Commands are further modelled in
terms of their inputs, preconditions, and a call-back procedure. Commands and
objects can be grouped into application objects, multiple instances of which can be
created at run-time. HUMANOID also facilitates the specification of data flow
constraints.
 The Application Model component of Figure 6 shows how this might be applied
to the case study. The search task is modelled in terms of the input parameters for
the query, the commands the user can invoke, and the grouping of these
commands. The search command which refers to the submission of the query to the
database, is itself specified in terms of its input parameters. Unfortunately, no
details were available concerning the way in which the call to the database could
be done and how the results could be made available.

Presentation Model
This model relates directly to the presentation model discussed in section 3, and is
specified using templates organised into a hierarchy such that the leaves consist of
graphical primitives or primitive building blocks of the underlying toolkit. The
information that defines a presentation template is represented as slots in the
presentation template object. Such information includes: input data, applicability
conditions, widgets and associated parameters, and component parts. HUMANOID
provides libraries of templates that the developer can use directly or can extend.
 The presentation model component of figure 6 outlines one possible interface for
the search task and specifies that the interface comprises an input panel which has
a number of controls (for allocating values to the query parameters) and a
command panel containing the buttons for submitting the search query and for
quitting the query.

Figure 6: The Case Study as Specified According to HUMANOID

Specify_Search

Current_title

Current_author

Current_year

Search

Quit

Panel Commands
Quit, Search

Title_to_search

Author_to_search

Year_to_search

Specify_search_window

Input Panel Command Panel

Controls Buttons

APPLICATION
MODEL

PRESENTATION
MODEL

Move Mouse

BEHAVIOUR
MODEL

 inputs

 Commands inputs

 command-groups

Action:
Set Input Values

Running Region

Start Region

Start Event Left Down

Stop Event Left Up

Manipulation
Modelling manipulation involves stipulating the input gestures that users can
perform to manipulate presented information plus the actions which should be
invoked upon gesture detection. This is achieved by adding behaviour
specifications to templates. In essence this model groups information that is
contained within the presentation and dialogue models of other systems. A
manipulation model includes specification of the gesture, where in the presentation
it applies, the application data on which it operates, and actions to be taken at
points during the gesture (e.g., setting a value). Manipulation specification for the
case study is shown in the behaviour component of Figure 6. This demonstrates the
connection between the presentation and the application model.

Sequencing
This model corresponds to the dialogue model described in section 3, and involves
specifying the order in which displays appear on the screen plus the set of
behaviours that are enabled at any instant. Designers do not directly state when
commands are enabled or disabled in their design. Instead, the run-time system
calculates timeous sets of enabled behaviours based on specified constraints. Like
the other HUMANOID models, sequencing is modelled through properties of
command, input and group objects. A library of objects is provided that implement
commonly-used sequencing features. Unfortunately, insufficient documented
information was available to enable the construction of a sequencing model for the
case study.

Action Side Effects
HUMANOID also provides libraries of objects for commonly used side effects.
These include: Beep-When-Correct, Message-When-Correct, etc. Other systems
would perhaps incorporate these features in the dialogue model. Again, insufficient
information made it impossible to reflect the action side effects as applied to the
case study.

Methodology
Figure 7 shows that HUMANOID’s methodology would appear to be iterative,
sequential, and partially automated (with some degree of concurrency).
Specification of the application semantics is pivotal to user interface development

Application
Semantics

Design

Presentation
Model
Design

Manipulation
Specification

Sequencing
Specification

Action
Side-effects
Specification

Figure 7. The HUMANOID Interface Development Methodology

and can run in parallel with the presentation model design. Manipulation
specification links application semantics and the presentation model and so is
dependent upon them. Sequencing specification is entirely dependent on the
manipulations. Action side-effects link manipulations with their side-effect on the
presentation.

3.3 MASTERMIND
MASTERMIND (Szekely, 1996) is an MB-IDE based on two existing MB-IDEs,
namely HUMANOID (Luo, 1993) and UIDE (Foley, 1995). It attempts to
incorporate the strengths of both its predecessors while avoiding many of their
weaknesses.
 The MASTERMIND project has identified the need for three distinct models,
namely the application, task and the presentation models, each of which is
implemented using CORBA IDL (OMG, 1995) and operates as a “model server”
process to which all the tools connect. While the models are separate and distinct,
communication between them is facilitated through the use of an expression
language.

Task model
The task model is used to specify what the user does with the interface, and drives
the operation of the interface. The designer describes this by modelling high-level
user tasks as compositions of necessary sub-tasks. An example of a task–subtask
relation is shown in figure 8.

Search : Task {
 goal = "To search for a book in a given locus to a specified degree of accuracy";
 task_type = User;
 parameters = searchlocus : Parameter {type = String;},

searchattribute : Parameter {type = String;},
searchvalue : Parameter {type = String;},
searchaccuracy : Parameter {type = String;};

 subtasks = :Task Connection {
 connection_type = SEQUENCE;
 tasks = Invoke_Search, Specify_Attribute, Specify_Value, Specify_Accuracy,

Perform_Search; } ;
 is_reentrant = TRUE;
 is_interruptable = TRUE;
};

Specify_Attribute : Task {
 goal = "Indicate the value to search the given attribute for";
 task_type = Interaction_Technique;
 task_extension = : Technique_extension {
 interactor =: Am_Text_Edit_Interactor {
 object = Search_Value_Field
 ……
 effects = [searchvalue <- Search_Value_Field.contents];
};

Figure 8: Case study Task Model Sub-tree

 A task object has a type that determines its nature. For example, there exist task
types to specify low-level interactions from the user (e.g. button click), and
requests to display information or to perform some application processing. Tasks
have goals and effects that are defined as expressions for evaluation. The effect of
a task may be on the task model itself, the application or the presentation.
 In the figure 8, the Search task is defined as a sequence of sub-tasks which must
be performed. The sub-task requires user interaction as defined by its type
Interaction_Technique. The use of task_extensions links the task model to the
presentation model. This is demonstrated in the Specify_Attribute subtask by the
setting of the searchvalue task object based on the value of a presentation object.

Application model
This model defines the classes that are used within the interface that represent real-
world artefacts, and provides a mechanism for defining useful data types. Class
structure and method signatures are both represented. The application model
extends IDL to include notions such as preconditions on the execution of methods
and the support for a publish/subscribe event model. The event model extensions
allow task and presentation objects to register interest in an artefact and be
informed should any changes to it occur.

Presentation model
The presentation model is used to describe how the interface appears to the user.
Presentation objects are used to represent the static elements (windows, buttons,
etc.) of the user-interface and the visualisation of the application data being
manipulated. Presentations are typically defined as compositions of smaller
presentation objects. Each presentation object is a specialisation of a prototype
presentation object e.g. an interface component may inherit from a button widget.
Furthermore, presentation parameters may be specified that determine the data
displayed by the presentation object and the appearance of the presentation object
itself e.g. colour, orientation.

 MASTERMIND’s presentation model differs from many other MB-IDEs in its
attempt to provide a mechanism for specifying both the dynamic and static

DB_Interface : Window {
parameters = results : Parameter {Value = DB_Task.results}, font : Parameter {…..};
guides = hguide1 : Guide { direction = HORIZONTAL; position = 200;}, // top of results box

hguide2 : Guide { direction = HORIZONTAL; position = [(hguide1+bottom) /2];},
…….

grids = resultsGrid : Grid {direction = HORIZONTAL; start= [hguide1]; end= [hguide2];
 stretchable= FALSE; distance= [font.height() +2];};

parts = bookdetail : BookDetail_Presentation {
replication= { is_on_demand= FALSE;
replication_data= [results.contents()];
references= grid_ref {reference = [resultsGrid];};
};

……..
};

Figure 9: Case Study Presentation Model of Application Main Window

components of the interface. The lack of support for the dynamic aspects of user-
interfaces was identified by Szekely as the “Main Window” problem during the
earlier HUMANOID project (Luo, 1993). Some forms of interface allow direct and
indirect manipulation of a visualisation of application data. The layout and number
of constituents of this visualisation may change at run-time and therefore cannot be
specified at design time. The presentation model provides guides, grids and
conditions to allow such a dynamic display to be defined abstractly.
 The definition in figure 9 shows how a main window providing the search
functionality could be described in MASTERMIND. The use of guides and grids is
demonstrated showing that the positioning of interface elements is logical rather
than physical.

Database Integration with MASTERMIND
The data model of an ODMG-compliant database and MASTERMIND's CORBA
IDL-based domain model are conceptually similar in structure. It is therefore
possible to wrap an ODMG database in CORBA IDL so that MASTERMIND's
domain model can interface with the database. Once defined, method bodies can
delegate execution to the equivalent C++ bindings of the ODMG classes in the
database. Some code may be required to open and close the database.

Methodology
MASTERMIND's methodology assumes that early design documents have been
prepared and begins with the specification of the initial three models. These are
instantiated from early design artefacts. The specification of these models may be
undertaken in parallel but some co-ordination will be required. From the
documentation available these models are defined using a language interface only.
No reference is made to graphical notations or tools to support them.

 From the first three models a small procedural program analyses the models and
generates the appropriate code to implement the user-interface. During code gen-
eration the declarative IDL models are encoded into C++ for compilation to pro-
vide an efficient run-time. However, the compiled applications retain the ability to
access the original models by contacting the model server. It is possible for MAS-
TERMIND to automatically generate sections of the interface according to a set of
rules built into the program. Executable interfaces can be generated even when the
models are not fully specified.

Task

model

Application

model

Presentation

model

CORBA Communication Layer

Modelling

support tools

Figure 10: The Mastermind Interface Development Methodology

3.4 TADEUS
The TADEUS MB-IDE (Elwert, 1995) utilises four explicit declarative models,
namely task, domain, user and dialogue models. The methodology proposed by
TADEUS consists of both manual, computer-assisted, and automatic stages of
development, the output of which is an interface specification file suitable for use
by an existing user interface management system (UIMS) (TADEUS uses the ISA
Dialog Manager (ISA, 1995)).

Task Model
The developed task model is realised as a hierarchical structure of user goals with a
similar structure to Adept’s TKS (Johnson, 1991). Each modelled goal consists of a
task, roles describing the user groups interested in performing the task, and domain
objects identified from the domain model which provide the primitive domain-
specific functionality of each task. All goals and sub-goals have an explicit
temporal ordering applied to them. The task model for the case study corresponds
to the TKS developed in the Adept section of this paper.

Domain Model
TADEUS’s domain model is an object-oriented realisation of the application
domain using modelling techniques such as those of OMT (Rumbaugh, 1991).
There is an explicit relationship between the task and domain models, with each
task specifying the objects, attributes or methods that are utilised in the execution
of the task.

User Model
The user model describes potential or existing groups of users in the modelled
domain in terms of their roles and relations to specified tasks. Roles are described
hierarchically in terms of task independent and task dependent attributes; for
example, the user’s level of experience with interactive systems. The specific tasks
that each role performs are modelled through a usage relation that has attributes to
represent concepts such as frequency of use, preferred input device, etc. The
authors do not expand on functionality of the user model or how the model affects
the generated interface.

Dialogue Model
 Once the task, user, and domain models have been constructed, the first step
towards producing the dialogue model requires the designer to specify views in the
developed task or domain models. A view represents related processing units that
should be simultaneously presented in a window in the target UIMS. The designer
specifies the required views by annotating the task model to indicate which groups
of goals should form each view. Figure 11 represents some of the views identified
in the task model of the case study.

Dialogue graphs
The annotated task/domain model is used to automatically generate the initial state
of the corresponding dialogue model using a notation called dialogue graphs
(Schlungbaum, 1996a) to specify the dynamics of the interface. These graphs allow

the realisation of multiple instances of windows, hierarchical dialogue structuring,
and the declaration of modal dialogue windows. A dialogue graph further
distinguishes between navigation dialogue (the sequencing between views, realised
via dialogue graphs) and processing dialogue (the dialogue within a view,
specified through interaction tables).

 Taking as input the automatically generated dialogue graph, the designer
proceeds by editing this graph to model the required dynamics of the navigation
dialogue. The dialogue graph corresponding to the case study is shown in figure
12.

 Figure 12 indicates that interaction with the developed library system will be
initiated through a modal dialogue with a login window. Upon successful login, the
user then has the choice of five possibly concurrent iterative book maintenance
processes, each of which concludes by returning to the maintain books window.

Figure 11: Annotated Task Model

Figure 12: TADEUS Dialogue Graph and Legend

single multi modal complex end

Dialogue
view
types concurrent sequential

transition
types

login

search

browse

status check-in

check-out

maintain
books

Administer Library

Maintain books

Logon

Query Book Status

Search for Book

Browse

Check out Book

Check in Book

View 1

View 2

View 3

View n

The complexity of the graph is reduced through an information hiding mechanism,
used here to hide details of the top-level groups. For reasons of brevity, figure 12
only shows one end node, although the case study requires navigation to end from
each of the identified views.

Interface Generation
Initially the designer must specify the default layout description for each UI
project. This consists of specifying some of the layout properties of interface
objects, for example: All windows will have a white background and will use an
arrow cursor.
 For each identified dialogue view the designer must define the mapping for each
form of dialogue to an AIO, and hence to its concrete interaction object (CIO)
equivalent; an example is shown in tables 1 and 2.

Dialogue form type AIO
free input field

data input 1:m single selector
m:n multiple selector

Table 1: Mapping dialogue forms to AIOs

AIO type CIO
input field free edit text

1:m (m=const, n ���� group box + radio buttons
single selector 1:m (m=const, n > 7) list box

m:n (m=const, n ���� group box + check boxes
multiple selector m:n (m=const, n > 7) list box

Table 2: Mapping AIOs to CIOs
Interaction Tables
For each identified view the designer must define the processing dialogue via
interaction tables, as illustrated by table 3 for the Specify search task view. Table 3
identifies two groups in the corresponding CIO window and specifies the dialogue
form for each grouped element. The mapping for each dialogue form to CIO is
achieved through the rules defined in tables 1 and 2.

Transition dialogue form type group group position
title data input free 1 1
author data input free 1 2
year data input free 1 3
exit function call N/A 2 1
ok function call N/A 2 2

Table 3: Mapping AIOs to CIOs
Database Integration with TADEUS
There is a conceptually simple mapping from TADEUS’s object-oriented domain
model (using UML or similar) to the ODMG realisation of the case study. With the
exception of stating that object methods form the substance of tasks, it is not clear
how TADEUS would interface to an external system such as a database. It can

however be envisaged that such a linkage can be achieved through the database
API methods by wrapping the required database functionality.

Methodology
The general stages in the TADEUS methodology are outlined in figure 13. It can
be seen that there are three broad stages involved in the generation of an interface,
namely requirements analysis, dialogue design and definition of default layout
characteristics, and interface generation. No iteration is possible between each
stage.

3.5 DRIVE
DRIVE (Mitchell, 1995) is a MBS explicitly aimed at producing interfaces to
databases rather than interfaces to applications in general. DRIVE combines
interface modelling using a declarative language with storage of interface
definitions in a database along with the enterprise data. DRIVE does not attempt to
explicitly identify distinct models with different roles, rather it presents a
framework for defining interfaces to database systems (IDSs) (Mitchell, 1996a),
shown in figure 14. Components of this framework correspond to disparate models
used by other MB-IDEs.

R
e

q
u
ir

e
m

e
n
ts

 a
n

a
ly

s
is

Task
model

User
model

Domain
model

Dialogue
model

Layout
characteristics

interface
description

file
UIMS

Figure13: The TADEUS Interface Development Methodology

Figure14: DRIVE Framework for User Interfaces to Databases

observation

USER
- Sophistication

- Task

- Authority

INTERFACE
DATABASE

- Data Model

- Schema

- Object

INTERACTION
- Intention

- Medium

- Effect

VISUALISATION
- Layout

- Metaphor

- Referent

articulation performance

presentation

DRIVE Meta-Model
The DRIVE system is centred on a meta-model of the IDS framework, and is
captured in the meta-model as either classes, as shown in figure 15, or as
properties, operations or triggers of those classes. There are 4 major meta-level
classes for the framework: USER, INTERFACE, VISUALISATION and DATA.
A given user interface to a database defined in DRIVE consists of instances of
these meta-level classes. For example, the domain model for DRIVE is specified
by defining a schema in the form of a set of DATA classes; similarly the
presentation model is defined with a set of VISUALISATION classes. The meta-
level classes act as templates for the classes which describe the interface to the
database. DATA classes are free-form except that they must have property has
interfaces which associate the data class with one or more interface class if the
instances of the data in the database are to be available in the interface.

 While DRIVE employs a single modelling language, its model may be
partitioned into a collaboration of several smaller dedicated models. The terms user
model, domain model and interface model will therefore be used to refer to the
corresponding sections of the IDS framework.

User Model
The user model is used to store the features of the users who will use this system.
Many different users may be defined using the model, each with different levels of
authority and sophistication. So far little use has been made of the user model other
than user identification at start-up to present the appropriate interface. The model
allows specialisation hierarchies of user or user groups to be constructed.

Domain Model
The domain model is basically the schema of the database. This describes the
classes that are in use by the database as the enterprise model. These classes form
the application to which the interface front-ends in more traditional MB-IDEs.

Interface Model
The DRIVE interface model concerns task and dialogue information and the
mediation between presentation and domain information. Each interface artefact
seen on the screen is represented by an AIO. The actual presentation behaviour is
determined by an associated visualisation object (e.g. a form) which has standard
presentation properties such as colour, position, and orientation. This information
is traditionally stored in the presentation model in MB-IDEs. The interface classes

 has
referent

 has
interfaces has

interface
uses
metaphor

 has
components

 uses

 used by

DATAUSER INTERFACE

VISUALISATION

 has
composite

Figure 15: DRIVE Meta-model Showing Basic Template Classes for IDSs

also model the response the interface should make given a particular set of inputs
from the user and the database. This is referred to in the framework as “intention,
medium and effect”. These are modelled through the use of operations and triggers
in the conceptual modelling language NOODL (Barclay, 1993). Operations are the
intention and medium, triggers cause the effect. The effect may cause an event to
take place in the database or the interface. The operations and triggers represent the
form of the dialogue between the user and interface. It is worth noting here that all
the DRIVE models are stored within the database itself, the database interface
along with the database data. This has several useful side-effects (Mitchell, 1996b)
including several forms of run-time customisation.

DRIVE Methodology
DRIVE was specifically designed to allow interfaces to object oriented databases
to be developed. Given this, there is an implicit assumption that the first task
involved after a general requirements analysis phase, which is unsupported by
DRIVE, is to develop the domain model (or DATA classes of the framework). The
NOODL schema for the Library database consists of a range of object classes,
operations and constraints.
 Having developed the Domain model for the database, the User model and
Interface models can be described. The current User model in DRIVE is simple,
allowing the interfaces available to a user and their sophistication and authority to
be specified through the classes Interface, Sophistication and Authority
respectively. These classes associated with the User class in the framework meta-
model. In the case study there are two categories of USER class, Borrower and
Librarian. These have been taken from the domain model and augmented with the
following USER class properties.

accessors : #BoolInterface ref users;
sophistication : Sophistication ref user;
authority : Authority ref user;

 Given the Domain model and the User model, the Interface model may be
defined. The IDS layout and visual appearance are interactively constructed by
dragging and dropping from a dynamically registered palette of widgets. Each
widget created corresponds to an instance of a visualisation class in the
presentation model. These are then coupled to appropriate data and functionality
through the properties, operations and triggers of interface classes. DRIVE uses
model interpretation to permit the interface under development to be executed at
any time, even when incomplete. As tasks are identified the specification of
interface classes may be refined, whereby the user’s intention, medium and effect
may be specified. For example, in performing a database query, the intention is to
search, the medium is the widget through which the task is performed and the
effect is the query itself. Following the rules of the IDS template classes, this gives
a NOODL interface class specification in terms of VISUALISATION and
INTERFACE classes (some of which is shown in figure 16). The DRIVE
methodology may be summarised as shown in figure 17.

INTERFACE classes VISUALISATION classes

class BookInterface class BookForm isa Form2D
properties properties
 referent : Book ref interface ; interface: BookInterface ref metaphor ;
 composite: LibraryInterface ref bookComponent ; name : Text ;
 metaphor : BookForm ref interface author : Text ;
operation year : Number
 query : #Book is
 Book where Its.name = self.metaphor.name and class QueryButton isa Button2D
 Its.author = self.metaphor.author and properties
 Its.year = self.metaphor.year ; interface : QueryInterface ref metaphor ;
 show (selection : Number) is override text: Text is “Search…”
 self.referent(self.query.element(selection)),
 self.metaphor.name(self.referent.name), class ResultsList isa ListBox2D
 self.metaphor.author(self.referent.author) , properties
 self.metaphor.year(self.referent.year) interface: ResultsInterface ref metaphor

 override entries : # Text is
class QueryInterface self.interface.composite.bookComponent.query.name
properties
 composite : LibraryInterface ref queryComponent ;
 metaphor : QueryButton ref interface
operation
 search is self.metaphor.select { intention is medium}
trigger
 self.search => self.composite.bookComponent.query { effect }

Figure16: NOODL Interface Class Specification

Domain
model

User
model

Interface model
(task & dialogue)

DRIVE Manager
and tools

Presentation
model

DBMS

DB - UI

Requirements Analysis

Figure 17: The DRIVE Interface Development Methodology

4 SUMMARY OF MODEL-BASED SYSTEMS
In this section the discussed MB-IDEs are evaluated across several dimensions,
which are divided into sections examining models, architectures and tools. The
section concludes with a discussion of the database-specific issues that this
evaluation has raised. A question mark is used in table 4 to indicate that the
referenced literature does not provide sufficient information to answer the section.
Where necessary, additional references to abbreviations are explained in the text.

Models
This section examines the models and any associated modelling tools provided by
the evaluated systems. These modelling tools provide a means of hiding the
underlying (often complex) syntax of the modelling languages. Modelling tools
include simple textual editors (Mastermind, DRIVE), forms-based tools, and
graphical editors (HUMANOID, TADEUS, Adept).
• Task model notation – this model forms the basis of each of the evaluated

systems. The task model utilises concepts found in the domain model, and is
based on formalisms from HCI task modelling research. Notations include
formal methodologies such as CSP (Hoare, 1985).

• User model notation – for the most part this is the most under-specified model.
Formal notations are not utilised, and most systems do not describe how this
model is utilised. Notations include rules that describe mappings and objects
that capture facts about users that are exploited by mapping rules.

• Domain model notation – this model forms the basis of many MB-IDEs,
providing information about the type of identified domain objects and their
attributes and operations. Notations include informal references to domain
objects; structured paradigms such as UML or ER diagrams; and the use of
languages such as CORBA IDL or NOODL. In the specific case of databases,
the domain model corresponds to the schema of the underlying application
stored in a relational or object database. The concepts modelled in the domain
model should provide the substance to the modelled tasks. At run-time,
domain model concepts should provide the linkage between the underlying
application and the runnable interface.

• Dialogue model notation – this model captures the sequencing information
and complex interface semantics of the generated interface. Systems without
an explicit dialogue model derive this information from their task or domain
models. MB-IDEs which utilise a dialogue model use graphical notations such
as Petri-nets (TADEUS) to capture the often complex intentions of the
designer.

• Presentation model – this model allows the designer to specify abstractly the
layout of the generated interface. The information captured by this model
allows the designer to customise the generated interface. In some cases the
presentation model can also allow the modelling of run-time application-
dependent data, for instance to dynamically reconstruct the interface when
application data structures change.

• Modelling tools – some systems provide tools that provide a convenient
interface to the models under development. These tools include text editors,
forms-based tools, and GUI editors.

T
ab

le
 4

:
S

um
m

ar
y

of
 C

ha
ra

ct
er

is
tic

s
of

 E
va

lu
at

e
d

M
o

de
l-

b
as

e
d

S
ys

te
m

s

Architecture
This section discusses how the architecture of the MB-IDEs affects the modelling
capabilities of the system and the appearance and capabilities of the generated
interface.
• Methodology style – some systems impose a rigid sequential structure on the

order in which the models must be developed, with some systems allowing
some of their models to be developed concurrently, and others favouring an
ad-hoc development process. Furthermore, the methodology can either
automate (A) some stages of the development process, or can be specification-
based (S) – providing a complete specification of the proposed interface
developed by the designer. While each evaluated system automates the
production of the runnable interface from the model-based specifications, the
specification-based systems also allow the task model to generate the initial
state of their intermediate models.

• Run-time system – the runnable interface generated by the MB-IDE can either
generate source-code in a programming language (e.g., C++ (Mastermind), or
Smalltalk (Adept)), can produce a specification of the developed interface
suitable for an existing UIDE or interface builder (e.g., TADEUS), or can
produce a run-time interpretation of the interface (e.g., DRIVE).

• Propagation of changes – if a system allows the generated interface to be
customised at run-time then the MB-IDE can attempt to propagate these
changes to the underlying declarative models. If this facility is not available
then any such modifications will be lost. Some systems (Mastermind) also
allow changes made at design-time in one model to be propagated to the other
models.

• Multi-platform support – the generated interface may be able to run on several
platforms or operating systems utilising the platform's interface style (P). The
MB-IDE may also generate different interfaces according to the envisaged
operating environment (E), e.g. laptop, full-size screen, or kiosk.

• Generated interface style – this can be forms-based (F), direct manipulation
(DM), WIMPS, 2D or 3D. In addition modal interaction with the generated
interface can be supported (m).

Secondary tools
The declarative models provided by MB-IDEs produce a semantically rich source
of interface and domain information. This information can be exploited by MB-
IDEs to produce enhanced functionality in the following areas.
• Help generation – some systems automatically or semi-automatically generate

part of the user help system of the generated interface.
• Undo support – some systems provide methods for automatically providing

undo/redo facilities.
• Design critics or advisors – these tools can analyse the information contained

in the various declarative models. They either verify that the design satisfies
specified properties, simulate end-user interactivity, or produce statistics on
the quality of the developed interface and its dialogue structure.

Database Issues
If MB-UIDEs are to provide a viable base for database UI generation, they must
provide several database-specific facilities. These facilities may be captured in one
or more of their models, and include:
• Information passing – both transient and persistent information needs to be

used by (and within) an interface. A MB-UIDE should provide a means of
describing this information flow, and methods for mapping the information to
its equivalent domain concepts. This ability therefore requires the task or
dialogue model to be capable of representing information flow, and to be able
to map such information to concepts captured in the domain model.

• Transactions – the ability to be aware of database transaction has important
implications for facilities such as undo. Transaction information should be
accessible (possibly via a domain model) to allow potentially fine-grained
transaction processing information to be captured through a task or dialogue
model.

• Database user modelling – as previously discussed, the user model is the least
exploited model. Databases have an in-built knowledge base of stored user
information in terms of user authorities and access rights. If fully exploited,
this information can produce interfaces which closely reflects a user's mental
model of the information available or applicable to them.

• Database-specific visualisations – the discussed systems utilise a limited (and
frequently fixed) set of visualisations, with the developer typically
constructing an interface from a set of simple CIO building blocks. If MB-
UIDEs are to produce useful database interfaces, they must be capable of
providing an open architecture which will allow developers to use existing
data visualisation and schema representation widgets and component libraries.

5 CONCLUSIONS
MB-IDEs can provide a novel means of generating user interfaces to represent the
domain knowledge captured in a database. While the sophistication of the
generated interface depends largely on the capabilities of the dialogue and
presentation models, the underlying functionality of the interface is primarily a
reflection of the richness of the domain and task models. When using a MB-IDE to
produce an interface to a database, the primary concern of the interface designer is
therefore the creation of the domain and task models, and the subsequent linkage of
domain model concepts to the underlying database schema and the services
provided by the DBMS.
 With the exception of Adept and HUMANOID, the evaluated MB-IDEs use an
object-oriented realisation of the domain model. While this provides an easy
mapping from an OODBMS schema to the domain model, a relational schema
would require additional transformations into its object-oriented equivalent. The
question of utilising Mastermind's CORBA-based model repository can be reduced
to producing a wrapper which will export a call interface suitable for use with a
database API. While both HUMANOID and Adept utilise domain concepts in the

construction of the user interface, the domain model is not explicitly developed by
the designer. In the specific case of interfaces to databases, the lack of an explicit
domain model results both in a loss of domain knowledge and difficulties in
maintaining the links between domain concepts and the generated interface.
 The task-orientated approach to developing interfaces adopted by the evaluated
MB-IDEs is based upon a sound platform of long-standing and well understood
HCI research, utilising the knowledge captured during the early requirements
analysis phase of developing a database application. In addition, the use of
declarative models focuses the developer’s attentions on what the interface should
represent and do rather than how this should be realised.
 The evaluated MB-IDEs take different stances concerning methodological style.
The sequential approach of the automated design tools (Adept, TADEUS, and to a
lesser degree HUMANOID) will be seen by advocates of structured methodologies
to be systematic tools, whereas the more ad-hoc approach favoured by the
specification-based tools (Mastermind and DRIVE) provides the interface
developer with arguably more control over the finished interface.
 Whilst most of the evaluated MB-IDEs propose a user model, the facets of users
or user groups which can be captured by this model remain unclear. Furthermore,
the manner in which the user model is utilised is frequently under-specified. In the
specific case of generating interfaces to databases, the potential for utilising the
user model to capture features such as the access rights and requested functionality
inherent in the DBMS data dictionary remains as yet un-exploited.
 This paper has found that although the referenced MB-IDEs utilise some form of
a domain model (or domain concepts), the method by which the domain model is
linked to an underlying database application remains unclear. If MB-IDEs are to
prove to be a useful vehicle for developing user interfaces to databases they must
cater for database-specific concepts such as query construction and execution,
rollback, schema modelling and visualisation, and the presentation of non-forms-
based graphics. It also remains unclear from the referenced literature how
fundamental tasks such as the construction of database queries from user
information gathered through the completion of query sub-tasks is to be achieved;
indeed there is still a need for specifying how query results are to be returned to the
user. The capabilities of the domain model could also be extended to utilise the
meta knowledge contained in database-specific formalisms such as ODMG or ER
diagrams to allow, for example, the integrity of the database to be maintained
through the constraints inherent in such formalisms.

Acknowledgements
We are indebted to the contribution made to this work by Kenny Mitchell for his
discussions on the DRIVE presentation model. This work is funded by UK’s
Engineering and Physical Sciences Research Council (EPSRC).

6 REFERENCES
Balzert, H., et al. (1996) The Janus Application Development Environment:

Generating More than the User Interface, in Computer-Aided Design of User
Interfaces (ed. J. Vanderdonckt), Namur University Press, Namur, 183–205.

Barclay, P.J. (1993) Object Oriented Modelling of Complex Data with Automatic
Generation of a Persistent Representation. PhD Thesis, Napier University,
Edinburgh.

Bodart, F., et al. (1995) Towards a Systematic Building of Software Architectures:
The TRIDENT Methodological Guide, in Interactive Systems: Design,
Specification and Verification. Berlin: Springer, 77–94.

Cattel, R., et al. (1996) The Object Database Standard: ODMG 2.0. Morgan
Kaufmann.

Devin, L. (1997) Delphi 3 Technology Overview,
http://netserv.borland.com/delphi/papers/techover.

Elwert, T., Schlungbaum, T. (1995) Modelling and Generation of Graphical User
Interfaces in the TADEUS Approach, in Design Specification, and Verification
of Interactive Systems (eds. P. Palanque and R. Bastide). Wien, Springer, 193–
208.

Foley, J. Sukaviriya, P. (1995) History, Results and Bibliography of the User
Interface Design Environment (UIDE), an Early Model-based System for User
Interface Design and Implementation, in Interactive Systems: Design,
Specification and Verification. Berlin: Springer, 3–14.

Hoare, C.A.R. (1985) Communicating Sequential Processes. Prentice-Hall.
ISA (1995) The ISA Dialog Manager: http://www.isa.de/en/idm/
Johnson, P., et al. (1991) Task related knowledge structures: analysis modelling

and application, in People and Computers IV: From Research to
Implementation, (eds. D. Jones and R. Winder). Cambridge University Press,
Cambridge.

Johnson, P., Johnson, H., Wilson, S. (1995) Rapid Prototyping of User Interfaces
Driven by Task Models, in Scenario-Based Design, (ed. J. Carroll). John
Wiley & Son (London), 209–246.

Kelly, C. & Colgan, L. (1992) User Modelling and User Interface Design, in
People and Computers VII, (eds. A. Monk, D. Daiper, M. Harrison).
Cambridge University Press, Cambridge, 227–239.

Kennedy, J.B. & Barcley P.J. (eds.) (1996) Interfaces to Databases (IDS-3), in
Proceedings of the 3rd International Workshop on Interfaces to Databases,
Napier University, Edinburgh, 8–10 July 1996. Electronic Workshops in
Computing, Springer.

Luo, P., Szekely, P., & Neches, R., (1993), Management of Interface Design in
HUMANOID, in Proceedings of InterCHI’93, Amsterdam.

Mitchell, K., Kennedy, J., Barclay, P. (1995) Using a Conceptual Data Language to
Describe a Database and its Interface, in British National Conference on
Databases 13, Manchester, England, 101–119.

Mitchell, K., Kennedy, J., Barclay, P. (1996a) A Framework for User Interfaces to
Databases, in ACM International Workshop on Advanced Visual Interfaces.
Gubbio, Italy.

Mitchell, K., Kennedy, J. (1996b) DRIVE: An Environment for the Organised
Construction of User-Interfaces to Databases, in International Workshop on
Interfaces to Databases 3. Edinburgh, Scotland.

Mitchell, K. (1997) Three Dimensional Database Environments. PhD Thesis,
Napier University.

Myers, B.A. (1995) User Interface Software Tools, in ACM Transactions on
Computer-Human Interaction, 2(1), 64–103.

OMG (1995) CORBA: Architecture and Specification. Object Management Group
Publication Services.

Oracle (1996) Oracle Forms Developer's Guide, Release 4.5, Part No. A32505-2.
Puerta, A. (1996) The Mecano Project: Comprehensive and Integrated Support for

Model-based Interface Development, in Computer-Aided Design of User
Interfaces (ed. J. Vanderdonckt). Namur University Press, Namur, 19–36.

Rumbaugh, J. et al. (1991) Object-Oriented Modelling and Design. Prentice-Hall.
Schlungbaum, E. (1996) Model-based User Interface Software Tools - Current

state of declarative models. Graphics, Visualization and Usability Centre,
Georgia Institute of Technology, GVU Tech Report #96-30.

Schlungbaum, E., Elwert, T. (1996a) Dialogue Graphs - A Formal and Visual
Specification Technique for Dialogue Modelling, in Proceedings of the BCS-
FACS Workshop on Formal Aspects of the Human Computer Interface,
Sheffield Hallam University (eds. C.R. Roast and J.I. Siddiqi). Springer-Verlag
London.

Spaccapietra, S. & Jain, R. (eds.) (1995): Visual Database Systems 3, Visual
Information Management, in Proceedings of the 3rd IFIP 2.6 working
conference on visual database systems. Chapman & Hall.

Szekely, P. (1994) User Interface Prototyping: Tools and Techniques. Technical
report, Intelligent Systems Division, University of Southern California.

Szekely, P., et al. (1996) Declarative Interface Models For User Interface
Construction Tools: The MASTERMIND Approach, in Engineering For
Human-Computer Interaction.

Wierse, A., et al. (eds.) (1995) 2nd Workshop on Database Issues for Data
Visualization, Atlanta, Georgia,. - Database issues for data visualization: IEEE
Visualization '95 Workshop. Springer, London.

