Exploiting model-based techniques for
user interfacesto databases

T.Griffiths*, J. McKirdy, G.Forrestef, N.Patori, J.Kenned$,

P.Barclay’, R.CoopeY, C.Goblé, P.Gray

*Department of Computer Science, University of Manchester, Oxford
Road, Manchester, M13 9PL, England. http://img.cs.man.ac.uk
YDepartment of Computing Science, University of Glasgow, 17 Lily-
bank Gardens, Glasgow G12 8QQ, Scotland.
http://www.dcs.gla.ac.uk/ {~pdg | ~jo | ~rich }

*Department of Computer Studies, Napier University, Canal Court,
42 Craiglockhart Ave, Edinburgh, EH14 1LT, Scotland.
http://www.dcs.napier.ac.uk/osg/

Abstract
Model-based systems provide methods for suppottiegsystematic and efficient
development of application interfaces. This papeangnes how model-based
technologies can be exploited to develop userfades to databases. To this end
five model-based systems, namely Adept, HUMANOIDastérmind, TADEUS
and DRIVE are discussed through the use of a urgfgiase study which allows
the examination of the approaches followed by ifferént systems.

Keywords
Database interfaces, M odel-based user-interface design environments,
TADEUS, Mastermind, HUMANIOD, Adept, DRIVE

1 INTRODUCTION

Databases are ubiquitous, and almost every datalaggdication exploits
interactive interfaces in some way, whether forabase design, querying, data-
entry or browsing. The importance of user interfate databases as a research
topic is reflected in the various workshops andfemnces that have been held in
recent years ((Spaccapietra, 1995), (Kennedy, 199é@grse, 1995)). The demand
for interface builders for databases in commeraefiected in the widespread use
of form interface builders (Oracle, 1996) and taslkwith integrated database
capabilities (Delphi, 1997). However, developmehtiger interfaces to databases
is still often ad-hoc, and there is little evidenok the most recent interface
development environments, such as model-based nsystbeing applied to
database interfaces.

Titlea nf hnnk Name nf editnre (Fd

Model-based interface development environmeatgelemerged in recent years
as a promising technique for supporting more syatemand more efficient user
interface development (Foley, 1995), (Johnson, L9@Bodart, 1995), (Puerta,
1996). Not only do model-based systems supportdrgpbtotyping through
automatic generation of (preliminary) interface®nfr partial descriptions of
applications, they support a methodology that erages discipline in interface
design. However, model-based systems are not yaireyaand proposals differ
significantly in the range and nature of the modrlpported. There are also few
case studies of the use of such systems in prastici is difficult to compare and
contrast different proposals.

This paper provides a case study on the useodkirbased systems for database
interface development. A simple library databaspliegtion is described and its
implementation presented using five representativedel-based systems. The
paper thus has the following aims:

« To illustrate to database interface developers pussible benefits of
exploiting model-based techniques.

* To assess the appropriateness of current modettb®ystems for developing
user interfaces to databases.

e To enable a comparison to be made of the facilgiggported by model-based
systems in a common application.

Although there have been earlier surveys of mbdeed systems (Schlungbaum,
1996), (Myers, 1995), (Szekely, 1994), these haxeenbeen in the context of user
interfaces to databases, and have never exploitedsa study to allow more
detailed comparisons to be made of the differept@gches.

The paper is structured as follows. Section 2cdbes the case study used
throughout the paper. Section 3 provides an ovendé model-based systems.
Section 4 describes the use of five model-basedemygs namely Adept,
Humanoid, Mastermind, TADEUS and DRIVE for suppagtithe case study.
Section 5 summarises the capabilities of the differmodel-based systems, and
section 6 presents some conclusions.

2 CASE STUDY

In section 1, reference was made to the scarcitasé studies which illustrate the
use of model-based systems in practice and howh#sisnade comparison of such
systems difficult. In order that this paper canserg a balanced survey of selected
model-based systems, a small-scale case studyeemsdevised and is described
here. Thereafter, in section 3, each of the systemder comparison will be
discussed with reference to their support of theecudy.

This case study is based upon a library datalkihge ODMG (Cattel, 1996)
schema for which is shown in figure 1. Object otssare shown as rectangles and
scalar types as ovals. In section 4 access to dtebadse from the model-based
systems is assumed to be through standard ODMGntaifaces.

Rather than attempt to describe an entire lbrapplication based on this
domain, the case study focuses on a single taglarcBing for a bookThe case

study is not prescriptive with respect to interfatg@e since to be so might unfairly
influence the comparison of the various systems.

fname: string
libname: string
salary: integer

works_for

chame: string

date: Date
has_loan
Librarian | | Borrower |4—>>E)an
borrowed_by 7'y

contains is_stockitem

Library employs

is_at

isﬁstucky }; y on_loan

_| is_stockltem
Book »| Stockitem
description
author: string @

Figure 1: The Library Schema

location: string

To search for a book, the user must first speitiait a search is to be performed.
A series of search parameters must then be spécifieluding: the attribute(s) of
the book on which the search is to be based author, title or year; and whether
exact or approximate results should be returnedspacifying these parameters,
the user has effectively constructed a query tlat then be submitted to the
database. The system must either present the gasfulhe query to the user in a
manner appropriate to the particular interfaceestgr inform the user that no
matching books were found. Where results were pbthithe user can browse
through them.

3 OVERVIEW OF MODEL-BASED SYSTEMS

Model-based interface development environments (MBs) can be classified as
IDEs that exhibit three main features, namely th&ypport theautomatic
generation of interfaces; utiliseleclar ative methods to specify the interface; and
adopt anethodology to support the development of the interface.

Declarative Models
Modelling Tools

Ergonomic Rules,
Style Guidelines
Design Knowledge

Task, Domain,
User models

Presentation Dialogue

Automated Generation
model model

Tools
Design Critics, Executab(l; Ul Code, Runtime
Design Advisors Run-time Ul Code System
»Application Code > Compiler / Delivered

Linker Application

Figure 2: Typical Model-based Development Life-@ycl

The process of developing a user interface wilB-IDE is an iterative process
of developing and refining a set of declarative eledising graphical editor tools
or high-level specification languages. Once dewedhpthese models are
transformed according to ergonomic rules and/olesgyidelines into an interface
specification. This specification is subsequentigkéd with the underlying
application code to generate a running applicatitinis development process is
illustrated in figure 2.

From the designers viewpoint the key componeotsa MB-IDE are the
declarative models which store the conceptual ssprtion of the interface.
During recent years, the models supported by MBdDiave increased both in
number and in expressiveness. The first-generatidiB-IDEs (typified by UIDE
(Foley, 1995), MECANO (Puerta, 1996), and JANUS IfBd, 1996))
concentrated on modelling the underlying applicatdlomain using alomain
model. This model represents thapplication objectstogether with their
properties availableactions and anypre- or post-conditiongpplicable to these
actions. Typically, such a limited view of the mted domain produced simple
menu or forms-based interfaces.

In recent years however, MB-IDEs have exploisednuch wider range of
interacting models, with a consequent increasen@ duality and variety of the
generated interfaces. These models allow the desigo exploit fully the
information gathered during the requirements anslphase of the development
process.

A task model allows the hierarchical description of ttesksperformed by the
end-user, including the ordering of sub-tasks,rtheals and theproceduresused
to achieve the goals. These procedures represelicaon-level operations, and
are thus captured in the domain model. The devetmprof the task and domain
models are therefore closely related activities.

A user model describes characteristics of the intended usegsaups of users of
the application that can be exploited to tailor fimectionality or the appearance of
the resulting interface. Through the use of a usedel a MB-IDE can generate
different interfaces for each category of userstlallowing the capture of both
application independent (e.g., user capabilitisgcpo-motor skills) and dependent
(e.g., system knowledge, privileges) charactesstic

To allow the realisation of the dynamic behaviofi an interface alialogue
model can be provided. This model describes the intemadietween the human
and computer in terms of when and what commands leannvoked in a
presentation independent manner. Earlier MB-IDEsvdd this information from
their task or domain models. The provision of apliek dialogue model results in
richer interfaces that more closely reflect theirssof the designer.

The provision of apresentation model allows the designer to specify the
characteristics of the interface components. Tlia apply to both the static
(widgets etc) and dynamic (typically involving rtime application-dependent
data) facets of the interface.

Some MB-IDEs (e.g. Trident (Bodart, 1995)) atep to help the designer by
providing design critics or advisors. These ardgdbat analyse models and either

suggest improvements or identify inconsistencieseoors in the design. In
addition to these facilities other systems (e.dOBI(Foley, 1995), HUMANOID
(Luo, 1993)) utilise the specified models to auttozly generate non-interface
features such as help and redo/undo sub-systems.

3 SURVEY OF SYSTEMS

3.1 ADEPT

Adept (Johnson, 1995) is a MB-IDE that follows amusentred design philosophy.
To this end Adept utilises the user and task dpsoris captured during the
requirements analysis phase of application devedoprto produce an executable
user interface corresponding to the modelled tagidept also recognises the
importance of incorporating the proposed usershef developed system at all
stages of interface development by involving thd-esers during each stage of
model development.

User Model

The Adept user model (Kelly, 1992) takes the foifna oule-base which is used to
describe groups of current/proposed users in tafiimth concrete attributes such
as their domain knowledge and familiarity with cantgr systems, and abstract
notions such as motivation and attitude. Onceteligithis knowledge can be used
to provide design guidelines, and hence to infleetite form of the generated
interface. For example, in our case study two gseups can be identified, namely
BorrowersandLibrarians. A knowledge base is instantiated for each ofgheser
groups. The Librarians user model will contain $atuch as: (application
experience’ high); (frequency of use’ high)fotivation’ moderate);

The individual user models are used in conjumctiith a set of design rules that
associate the modelled user characteristics witaf interface design rules. For
example the rule: (typing skills’ low’ fill-informs)); states that if the user group
has low typing skills then fill-in forms might benappropriate medium for the
developed interface.

Task Model

The task of producing a Ul to represent the modeliemain is a process of
successively refining the tasks informally idertifiduring the initial requirements
analysis phase. The first stage in this procesdteem a refinement of the initial
task model called theask knowledge structuf@KS) (Johnson, 1991).

The TKS is a representation of the tasks in maln. Each task is modelled in
terms of itsgoals (the state to be achieved by the tagkpceduresthe sequence
of actions which will achieve the goa§ctions(lowest level of activity), and the
objects(as identified in modelled domain) which the tagk affect. Adept does
not make formal reference to an explicit domain eipchther the affected objects
are listed with a textual description of their pedjies. For example th€heck in
Booktask will affect the domain object®mokandborrower, amongst others. The
limited role assigned to the domain model means ithes less obvious how a
database query could be constructed or its reprdtsessed using Adept as it is.

Figure 3 illustrates the top-level TKS for thase study. Nodes in this task model
represent either goals, sub-goals, procedures diona¢c with a temporal
relationship specified between nodes. This relatigm may be one okequence
(whose order is inferred top-downinterleaved (multi-threading); parallel; or
choice Goals can also be specified as be#geatedoptional ordisabled(i.e. not
possible under certain conditions). The TKS alspldiys and allows the editing of
the domain objects affected by each task. Unexghidals are indicated by the

dark trlangle' <Sequence> > <Optional> >
catalogue book Search Criteria

<Sequence> <Sequence> <Optional> <Domain>
Query Book Status' Specify Search Ordering Criteri! Author
<Sequence>> <Sequence> <Procedure> > <Optional> <Domain>
Logon Search for Book Do Search Search Fields Title
<Sequence>
Administer Library
il <Sequence> > <Sequence> >
Maintain books Browse Get Results

<Domain>
Year

\ <Sequence>

Check out Bool
<Sequence> >

Check in Book

Figure 3: Case study TKS
Whilst the TKS seeks to descrilzdl tasks from the users’ perspective, the
delivered system may only represent some of theslest(e.g., the library system
will not catalogue new books). Th&bstract Interface Mode(AIM), which is
derived from the TKS, provides a high-level preaéint independent specification

of what the interface is to do.
: Whole db
<Selection>

Specify search criteria
pectly <Element>

Previous search

<Selection>,

1|

Search by
<Sequence> <Text>
Search for Book Title
<interleave> <Text>
Specify search Author
<Text>
Year

Figure 4: Search task AlM
The AIM represents the abstract interaction aisj¢AlOs) that comprise the user
interface. Each AlO is modelled only in terms oé tfype of input expected. This
type is provided by the developer form a set ofgeéned alternatives including
text, number, range, element, set, or special, pnogiding a link to the underlying
type of the domain. Temporal information is alsgpessed about the AIM
components, leading to a basic dialogue descripifotne abstract interface. The
AIM corresponding to the Search task hierarchyhiman in figure 4.

Generating the User Interface

The high-level description of the user interfacdirdl by the AIM must be
transformed into a low-level platform independemsctiption of the designed
interface. This low-level description is provided the Concrete Interface Model
(CIM). Adept uses the Smalltalk language to prodaceequivalent executable
version of the interface.

The CIM is automatically generated from the infation stored in the AIM and
the user model specifications by instantiating eat® as a widget from the
adopted widget set. This process is achieved bytNeinteractively interrogating
the user models’ knowledge base of applicable desitgs. For example, when the
CIM needs to instantiate the widgets correspontiinthe Specify search criteria’
goal in the case study AIM, the choices radio buttheckbox, or button could be
applicable. If the CIM generator cannot resolveoaflict then the designer is
brought into the process through an interactivéodiae with the generator.

Methodology

Figure 5 provides an overview of the methodologhofeed by Adept. This is a
semi-automated iterative process that is initidigdhe development of user and
task models. Whilst the current implementation afept does not allow for
iterative refinement of the models, the authorsestaat this is one of the goals of
the system. Task Analysis User characterisation

=)

User Model

AIM

generation

r

_einement =)
Figure 5: The Adept Interface Development Methodglo

3.2 HUMANOID
HUMANOID (Luo, 1993), is a template-centred, MB-WHDwhich aims to bridge
the gap between interface builders and automateface generators. In contrast
to the latter, HUMANOID was developed on the basiat the most difficult
design decisions are best left to the designeediney require knowledge which is
more easily and quickly modelled by humans thanabgystem, for example
knowledge about end-users and the application domai

A HUMANOID model comprises five semi-independéithensionsapplication
semanticspresentationmanipulation sequencingandaction side effects

Application Semantics
This model corresponds quite closely to the donmagdel described in section 3,
and is designed independently of the manner in kvhite objects will be

displayed. Application objects and commands arealghically modelled by
specifying the types and slots of each object. Cands are further modelled in
terms of their inputs, preconditions, and a catbarocedure. Commands and
objects can be grouped into application objectdfipi@ instances of which can be
created at run-time. HUMANOID also facilitates thpecification of data flow
constraints.

The Application Model component of Figure 6 sBdwow this might be applied
to the case study. The search task is modelledring of the input parameters for
the query, the commands the user can invoke, aed gtlouping of these
commands. The search command which refers to thmission of the query to the
database, is itself specified in terms of its inparameters. Unfortunately, no
details were available concerning the way in whiod call to the database could
be done and how the results could be made available

Current_title
T Current_author .

APPLICATION
MODEL

inputs

"W Current_year

Title_to_search
o Author_to_search

“Command: input
N
Year_to_search

command-groups PanelCommands

Quit, Search :

Specify_Search

BEHAVIOUR
MODEL

Move Mouse

PRESENTATION
MODEL

Specify_search_window

Input Panel Command Panel

Figure 6: The Case Study as Specified AccordingWdIANOID

Action;,
Set Input Values

Running Region

v

Start Region....... .

Start Event Left Down ™

1 d
Stop Event: » LeftUp

Presentation Model
This model relates directly to the presentation elatiscussed in section 3, and is
specified using templates organised into a hiesastlth that the leaves consist of
graphical primitives or primitive building blocksf ¢he underlying toolkit. The
information that defines a presentation templataeigresented as slots in the
presentation template object. Such informationudek: input data, applicability
conditions, widgets and associated parameters¢camgonent parts. HUMANOID
provides libraries of templates that the develayzar use directly or can extend.
The presentation model component of figure éireeg one possible interface for
the search task and specifies that the interfaogpdses an input panel which has
a number of controls (for allocating values to theery parameters) and a
command panel containing the buttons for submitting search query and for
quitting the query.

Manipulation

Modelling manipulation involves stipulating the utpgestures that users can
perform to manipulate presented information plus #ttions which should be
invoked upon gesture detection. This is achieved dgding behaviour
specifications to templates. In essence this maplelips information that is
contained within the presentation and dialogue rsodd# other systems. A
manipulation model includes specification of thetgee, where in the presentation
it applies, the application data on which it opesatand actions to be taken at
points during the gesture (e.g., setting a valignipulation specification for the
case study is shown in the behaviour componentgir€ 6. This demonstrates the
connection between the presentation and the agiplicanodel.

Sequencing

This model corresponds to the dialogue model desdrin section 3, and involves
specifying the order in which displays appear oe 8treen plus the set of
behaviours that are enabled at any instant. Desigie not directly state when
commands are enabled or disabled in their desigistead, the run-time system
calculates timeous sets of enabled behaviours haisespecified constraints. Like
the other HUMANOID models, sequencing is modelladough properties of

command, input and group objects. A library of abgeis provided that implement
commonly-used sequencing features. Unfortunatehgufficient documented

information was available to enable the constructiba sequencing model for the
case study.

Action Side Effects

HUMANOID also provides libraries of objects for camnly used side effects.

These include: Beep-When-Correct, Message-WheneCpretc. Other systems
would perhaps incorporate these features in tHegli@ model. Again, insufficient

information made it impossible to reflect the antiside effects as applied to the

case study. /_ \
Application Presentation
Semantics ~ [&------ Model
Design Design
i A

Manipulation
Specification [&

1 :

- Action
Sequencing Side-effects

\ Specification Specification /

Figure 7. The HUMANOID Interface Development Metbbxy

Methodology

Figure 7 shows that HUMANOID's methodology wouldpapr to be iterative,
sequential, and partially automated (with some eegrof concurrency).
Specification of the application semantics is pivab user interface development

and can run in parallel with the presentation modekign. Manipulation
specification links application semantics and thespntation model and so is
dependent upon them. Sequencing specification igebn dependent on the
manipulations. Action side-effects link maniputets with their side-effect on the
presentation.

3.3 MASTERMIND

MASTERMIND (Szekely, 1996) is an MB-IDE based orotexisting MB-IDEs,
namely HUMANOID (Luo, 1993) and UIDE (Foley, 1995}t attempts to
incorporate the strengths of both its predecessdnite avoiding many of their
weaknesses.

The MASTERMIND project has identified the need three distinct models,
namely the application, task and the presentatiadets, each of which is
implemented using CORBA IDL (OMG, 1995) and opesads a “model server”
process to which all the tools connect. While thedels are separate and distinct,
communication between them is facilitated througje use of an expression
language.

Task model

The task model is used to specify what the uses doth the interface, and drives
the operation of the interface. The designer dbssrihis by modelling high-level
user tasks as compositions of necessary sub-tAskexample of a task—subtask
relation is shown in figure 8.

Search : Task {
goal = "To search for a book in a given locua &pecified degree of accuracy";
task_type = User;
parameters = searchlocus : Parameter {type ag}ri
searchattribute : Parameter {type = String;},
searchvalue : Parameter {type = String;},
searchaccuracy : Parameter {type = String;};
subtasks = :Task Connection {
connection_type = SEQUENCE;
tasks = Invoke_Search, Specify_Attribute, Spediiglue, Specify_Accuracy,
Perform_Search; } ;
is_reentrant = TRUE;
is_interruptable = TRUE;
h
Specify_Attribute : Task {
goal ="Indicate the value to search the givénibate for";
task_type = Interaction_Technique;
task_extension = : Technique_extension {
interactor =: Am_Text_Edit_Interactor {
object = Search_Value_Field

effects = [searchvalue <- Search_Value_Fieldemusi;

Figure 8: Case study Task Model Sub-tree

A task object has a type that determines itareat~or example, there exist task
types to specify low-level interactions from theeuge.g. button click), and
requests to display information or to perform soapplication processing. Tasks
have goals and effects that are defined as expres§or evaluation. The effect of
a task may be on the task model itself, the apipdinaor the presentation.

In the figure 8, th&earchtask is defined as a sequence of sub-tasks which mu
be performed. The sub-task requires user intenactis defined by its type
Interaction_TechniqueThe use oftask_extensionsinks the task model to the
presentation model. This is demonstrated in Specify_Attributesubtask by the
setting of thesearchvalugask object based on the value of a presentatito

Application model

This model defines the classes that are used witiginnterface that represent real-
world artefacts, and provides a mechanism for dafiruseful data types. Class
structure and method signatures are both represeriiee application model
extends IDL to include notions such as precondgtion the execution of methods
and the support for a publish/subscribe event mode event model extensions
allow task and presentation objects to registeeradt in an artefact and be
informed should any changes to it occur.

Presentation model
The presentation model is used to describe howntieeface appears to the user.
Presentation objects are used to represent thie statnents (windows, buttons,
etc.) of the user-interface and the visualisatidnthe application data being

manipulated. Presentations are typically defined campositions of smaller

presentation objects. Each presentation object spexialisation of a prototype
presentation object e.g. an interface component imfagrit from a button widget.

Furthermore, presentation parameters may be sedctfiat determine the data
displayed by the presentation object and the appearof the presentation object
itself e.g. colour, orientation.
DB_Interface : Window {

parameters = results : Parameter {Value = DB_Tasklts}, font : Parameter {.....};
guides = hguidel : Guide { direction = HORIZONTApgsition = 200;}, // top of results box

hguide?2 : Guide { direction = HORIZONTAL; positien[(hguide1+bottom) /2];},
grids = resultsGrid : Grid {direction = HORIZONTAIstart= [hguidel]; end= [hguide2];
stretchable= FALSE; distance= [font.heiyh¥];};
parts = bookdetail : BookDetail_Presentation {
replication= { is_on_demand= FALSE;
replication_data= [results.contents()];
references= grid_ref {reference = [resultsGrid];};

h

Figure 9: Case Study Presentation Model of AppglicaMain Window

MASTERMIND' presentation model differs from nyanther MB-IDEs in its
attempt to provide a mechanism for specifying btte dynamic and static

components of the interface. The lack of suppartie dynamic aspects of user-
interfaces was identified by Szekely as the “Maimdéw” problem during the
earlier HUMANOID project (Luo, 1993). Some formsioferface allow direct and
indirect manipulation of a visualisation of apptioa data. The layout and number
of constituents of this visualisation may changeuattime and therefore cannot be
specified at design time. The presentation modelviges guides, grids and
conditions to allow such a dynamic display to bérdsl abstractly.

The definition in figure 9 shows how a main wemd providing the search
functionality could be described in MASTERMIND. Thee of guides and grids is
demonstrated showing that the positioning of irteef elements is logical rather
than physical.

Database Integration with MASTERMIND

The data model of an ODMG-compliant database ancSWERMIND's CORBA
IDL-based domain model are conceptually similar in structure. It is therefore
possible to wrap an ODMG database in CORBA IDL so that MASTERMIND's
domain model can interface with the database. Once defined, method bodies can
delegate execution to the equivalent C++ bindings of the ODMG classes in the
database. Some code may be required to open and close the database.

Methodology

MASTERMIND's methodology assumes that early design documents have been
prepared and begins with the specification of the initial three models. These are
instantiated from early design artefacts. The specification of these models may be
undertaken in paralel but some co-ordination will be required. From the
documentation available these models are defined using a language interface only.
No reference is made to graphical notations or tool s to support them.

a (N

Task
model

Presentation

Application
model

model

[CORBA Communication Layer

Modelling -
\suppon tools /

Figure 10: The Mastermind I nterface Devel opment M ethodol ogy

From the first three models a small procedural program analyses the models and
generates the appropriate code to implement the user-interface. During code gen-
eration the declarative IDL models are encoded into C++ for compilation to pro-
vide an efficient run-time. However, the compiled applications retain the ability to
access the original models by contacting the model server. It is possible for MAS-
TERMIND to automatically generate sections of the interface according to a set of
rules built into the program. Executable interfaces can be generated even when the
models are not fully specified.

3.4 TADEUS

The TADEUS MB-IDE (Elwert, 1995) utilises four eigt declarative models,
namely task, domain, user and dialogue models. mMmbthodology proposed by
TADEUS consists of both manual, computer-assistad] automatic stages of
development, the output of which is an interfacecs#fjration file suitable for use
by an existing user interface management systeI8)(TADEUS uses the ISA
Dialog Manager (ISA, 1995)).

Task Model

The developed task model is realised as a hiei@thiructure of user goals with a
similar structure to Adept’s TKS (Johnson, 19913ck modelled goal consists of a
task rolesdescribing the user groups interested in perfogntiire task, andomain
objectsidentified from the domain model which provide themitive domain-
specific functionality of each task. All goals amsdib-goals have an explicit
temporal ordering applied to them. The task modelitie case study corresponds
to the TKS developed in the Adept section of thipey.

Domain Model

TADEUSs domain model is an object-oriented reditsa of the application

domain using modelling techniques such as thos®MIT (Rumbaugh, 1991).

There is an explicit relationship between the task domain models, with each
task specifying the objects, attributes or methibdg are utilised in the execution
of the task.

User Model

The user model describes potential or existing gsoaf users in the modelled
domain in terms of their roles and relations toc#jped tasks. Roles are described
hierarchically in terms of task independent andk tdependent attributes; for

example, the users level of experience with intbve systems. The specific tasks
that each role performs are modelled througlsage relatiorthat has attributes to

represent concepts such as frequency of use, mdfeénput device, etc. The

authors do not expand on functionality of the usedel or how the model affects
the generated interface.

Dialogue Model

Once the task, user, and domain models have beestracted, the first step
towards producing the dialogue model requires #sgher to specifyiewsin the
developed task or domain models. A view represezitded processing units that
should be simultaneously presented in a windovhéntarget UIMS. The designer
specifies the required views by annotating the tasklel to indicate which groups
of goals should form each view. Figure 11 repressoine of the views identified
in the task model of the case study.

Dialogue graphs

The annotated task/domain model is used to autoallgtigenerate the initial state
of the corresponding dialogue model using a natatialled dialogue graphs
(Schlungbaum, 1996a) to specify the dynamics ofritexface. These graphs allow

the realisation of multiple instances of windowigrarchical dialogue structuring,
and the declaration of modal dialogue windows. Aalajue graph further
distinguishes betweemavigation dialogudthe sequencing between views, realised
via dialogue graphs) angrocessing dialogue(the dialogue within a view,
specified through interaction tables).

Logon |
Administer Library t
Maintain books

Figure 11: Annotated Task Model

Taking as input the automatically generated ogjaé graph, the designer
proceeds by editing this graph to model the reguagnamics of the navigation
dialogue. The dialogue graph corresponding to e cstudy is shown in figure
12.

S O000 . |[wr o e |

Check in Book

types single multi modal complex end types concurrent sequential

maintain

Figure 12: TADEUS Dialogue Graph and Legend

Figure 12 indicates that interaction with theveleped library system will be
initiated through a modal dialogue with a login ddmv. Upon successful login, the
user then has the choice of five possibly concariemative book maintenance
processes, each of which concludes by returninthéomaintain books window.

The complexity of the graph is reduced throughrdarmation hiding mechanism,
used here to hide details of the top-level grodjms.reasons of brevity, figure 12
only shows one end node, although the case stupljres navigation to end from
each of the identified views.

Interface Generation

Initially the designer must specify the default day description for each Ul
project. This consists of specifying some of thgol# properties of interface
objects, for example: All windows will have a whitackground and will use an
arrow cursor.

For each identified dialogue view the designeistdefine the mapping for each
form of dialogue to an AIO, and hence to its cotermteraction object (ClO)
equivalent; an example is shown in tables 1 and 2.

Dialogue form type AIO

free input field
data input { Im single selector
m:n multiple selector

Table 1: Mapping dialogue forms to AlOs

AlO type CIO
input field free edit text

1:m (m=const, & 7) group box + radio buttons
single selector 1:m (m=const, n >7) list box

m:n (m=const, i£k7) group box + check boxes
multiple selector m:n (m=const, n > 7) list box

Table 2: Mapping AlOs to CIOs

Interaction Tables

For each identified view the designer must defihe processing dialogue via
interaction tables, as illustrated by table 3 for §ecify searchiask view. Table 3
identifies two groups in the corresponding CIO vandand specifies the dialogue
form for each grouped element. The mapping for edialogue form to CIO is
achieved through the rules defined in tables 12and

Transition dialogue form type group group position

title data input free 1 1
author data input free 1 2
year data input free 1 3
exit function call N/A 2 1
ok function call N/A 2 2

Table 3: Mapping AlOs to CIOs
Database Integration with TADEUS
There is a conceptually simple mapping from TADE&)ject-oriented domain
model (using UML or similar) to the ODMG realisatiof the case study. With the
exception of stating that object methods form thilestance of tasks, it is not clear
how TADEUS would interface to an external systerchsas a database. It can

however be envisaged that such a linkage can bewachthrough the database
API methods by wrapping the required database fonality.

Methodology

The general stages in the TADEUS methodology aténed in figure 13. It can
be seen that there are three broad stages invoivé@ generation of an interface,
namely requirements analysis, dialogue design asfahition of default layout
characteristics, and interface generation. No tilgnais possible between each

stage. \

Domain
model

Requirements analyA

A 4

Layout Dialogue
characteristics model
interface

description
Figure13: The TADEUS Interface Development Methodgl

file

35 DRIVE

DRIVE (Mitchell, 1995) is a MBS explicitly aimed giroducing interfaces to

databases rather than interfaces to applicationgeineral. DRIVE combines

interface modelling using a declarative languagehwstorage of interface

definitions in a database along with the enterpdis. DRIVE does not attempt to
explicitly identify distinct models with differentroles, rather it presents a
framework for defining interfaces to database syst€IDSs) (Mitchell, 1996a),

shown in figure 14. Components of this frameworkrespond to disparate models

used by other MB-IDES.cccoormsrssnssssesssssans .

articulation INTERACTION performanc

- Intention
- Medium

DATABASE

USER
- Sophistication
- Task

- Authority

- Data Model
- Schema
- Object

VISUALISATION
- Layout

observation

- Metaphor
- Referent

presentatio

Figurel4: DRIVE Framework for User Interfaces totBlaases

DRIVE Meta-Model

The DRIVE system is centred on a meta-model of IID® framework, and is
captured in the meta-model as either classes, awrshn figure 15, or as
properties, operations or triggers of those clas$égre are 4 major meta-level
classes for the framework: USER, INTERFACE, VISUSATION and DATA.
A given user interface to a database defined inMBERtonsists of instances of
these meta-level classes. For example, the domatehior DRIVE is specified
by defining a schema in the form of a set of DAThasses; similarly the
presentation model is defined with a set of VISUBATION classes. The meta-
level classes act as templates for the classeshwdéscribe the interface to the
database. DATA classes are free-form except they thust have propertiias
interfaceswhich associate the data class with one or maexface class if the
instances of the data in the database are to lkallean the interface.

has has
composite }y components has

INTERFACE

used by

uses has
has interfaces
interface

uses
metaphor

VISUALISATION

Figure 15: DRIVE Meta-model Showing Basic TempGitesses for IDS

While DRIVE employs a single modelling languagés model may be
partitioned into a collaboration of several smafledicated models. The terms user
model, domain model and interface model will therefbe used to refer to the
corresponding sections of the IDS framework.

User Model

The user model is used to store the features ofiskees who will use this system.
Many different users may be defined using the moeksth with different levels of
authority and sophistication. So far little use basn made of the user model other
than user identification at start-up to presentdppropriate interface. The model
allows specialisation hierarchies of user or useups to be constructed.

Domain Model

The domain model is basically the schema of thedete. This describes the
classes that are in use by the database as thwprésgemodel. These classes form
the application to which the interface front-endsriore traditional MB-IDEs.

Interface Model

The DRIVE interface model concerns task and diatognformation and the

mediation between presentation and domain infomatEach interface artefact
seen on the screen is represented by an AlO. Tiualgresentation behaviour is
determined by an associated visualisation objegt @ form) which has standard
presentation properties such as colour, positiod, @ientation. This information

is traditionally stored in the presentation modeMB-IDEs. The interface classes

also model the response the interface should miaes @ particular set of inputs
from the user and the database. This is referred to in the framework as “intention,
medium and effect”. These are modelled through the use of operations and triggers
in the conceptual modelling language NOODL (Barclay, 1993). Operations are the
intention and medium, triggers cause the effect. The effect may cause an event to
take place in the database or the interface. The operations and triggers represent the
form of the dialogue between the user and interface. It is worth noting here that all
the DRIVE models are stored within the database itself, the database interface
aong with the database data. This has several useful side-effects (Mitchell, 1996b)
including several forms of run-time customisation.

DRIVE Methodology

DRIVE was specifically designed to allow interfaces to object oriented databases
to be developed. Given this, there is an implicit assumption that the first task
involved after a genera requirements analysis phase, which is unsupported by
DRIVE, isto develop the domain model (or DATA classes of the framework). The
NOODL schema for the Library database consists of a range of object classes,
operations and constraints.

Having developed the Domain model for the database, the User model and
Interface models can be described. The current User model in DRIVE is ssimple,
alowing the interfaces available to a user and their sophistication and authority to
be specified through the classes Interface, Sophistication and Authority
respectively. These classes associated with the User class in the framework meta-
model. In the case study there are two categories of USER class, Borrower and
Librarian. These have been taken from the domain model and augmented with the
following USER class properties.

accessors : #BoolInterface ref users;
sophistication : Sophistication ref user;
authority : Authority ref user;

Given the Domain model and the User model, the Interface model may be
defined. The IDS layout and visual appearance are interactively constructed by
dragging and dropping from a dynamically registered palette of widgets. Each
widget created corresponds to an instance of a visualisation class in the
presentation model. These are then coupled to appropriate data and functionality
through the properties, operations and triggers of interface classes. DRIVE uses
model interpretation to permit the interface under development to be executed at
any time, even when incomplete. As tasks are identified the specification of
interface classes may be refined, whereby the user’s intention, medium and effect
may be specified. For example, in performing a database query, the intention is to
search, the medium is the widget through which the task is performed and the
effect is the query itself. Following the rules of the IDS template classes, this gives
a NOODL interface class specification in terms of VISUALISATION and
INTERFACE classes (some of which is shown in figure 16). The DRIVE
methodology may be summarised as shown in figure 17.

INTERFACE classes VISUALISATION classes

class Booklnterface class BookForm isa Form2D
properties properties
referent : Book ref interface ; interface: Btutlerface ref metaphor ;
composite: Librarylnterface ref bookComponent ; name :Text;
metaphor : BookForm ref interface author : Text
operation year : Number

query : #Book is
Book where Its.name = self. metaphor.name andlass QueryButton isa Button2D

Its.author = self.metaphor.author and propertie
Its.year = self.metaphor.year ; interface QueryInterface ref metaphot ;
show (selection : Number) is override t&éxt is" Search...”
self.referent(self.query.element(selection)),
self.metaphor.name(self.referent.name), class ResultsList isaListBox2D
self.metaphor.author(self.referent.author) , properties
self.metaphor.year(self.referent.year) interface: ResultsInterface ref metaphor
override entries: # Text is
class Querylnterface self.interface.composite.bookComponent.query.name
properties

composite : LibraryInterface ref queryComponent ;
metaphor : QueryButton ref interface
operation
search is self.metaphor.select { intentionis mediuny
trigger
self.search => self.composite.bookComponent.query { effect}

Figure16: NOODL Interface Class Specification

Requirements Analysis

Domain User \

model model
y Vv

Interface model < » DRIVE Manager < > .
[(task & dialogue) and tools DBMS
4 4
v A 4
Presentation DB -UI

\ model /

Figure 17: The DRIVE Interface Development Methodwgl

4 SUMMARY OF MODEL-BASED SYSTEMS

In this section the discussed MB-IDEs are evaluatemss several dimensions,
which are divided into sections examining modelghiectures and tools. The
section concludes with a discussion of the databpeeific issues that this
evaluation has raised. A question mark is usedabiet 4 to indicate that the
referenced literature does not provide sufficieribimation to answer the section.
Where necessary, additional references to abbienare explained in the text.

Models

This section examines the models and any assoaiabel@lling tools provided by

the evaluated systems. These modelling tools peoddmeans of hiding the

underlying (often complex) syntax of the modellilrgmguages. Modelling tools
include simple textual editors (Mastermind, DRIVHprms-based tools, and
graphlcal editors (HUMANOID, TADEUS, Adept).
Task model notatior this model forms the basis of each of the evaluated
systems. The task model utilises concepts found in the domain model, and is
based on formalisms from HCI task modelling research. Notations include
formal methodol ogies such as CSP (Hoare, 1985).

* User model notatior for the most part this is the most under-specified model.
Formal notations are not utilised, and most systems do not describe how this
model is utilised. Notations include rules that describe mappings and objects
that capture facts about users that are exploited by mapping rules.

¢« Domain model notatior- this model forms the basis of many MB-IDEs,
providing information about the type of identified domain objects and their
attributes and operations. Notations include informal references to domain
objects; structured paradigms such as UML or ER diagrams; and the use of
languages such as CORBA IDL or NOODL. In the specific case of databases,
the domain model corresponds to the schema of the underlying application
stored in arelational or object database. The concepts modelled in the domain
model should provide the substance to the modelled tasks. At run-time,
domain model concepts should provide the linkage between the underlying
application and the runnable interface.

« Dialogue model notatior- this model captures the sequencing information
and complex interface semantics of the generated interface. Systems without
an explicit dialogue model derive this information from their task or domain
models. MB-IDEs which utilise a dialogue model use graphical notations such
as Petri-nets (TADEUS) to capture the often complex intentions of the
designer.

* Presentation model this model allows the designer to specify abstractly the
layout of the generated interface. The information captured by this model
alows the designer to customise the generated interface. In some cases the
presentation model can aso alow the modelling of run-time application-
dependent data, for instance to dynamically reconstruct the interface when
application data structures change.

Modelling tools— some systems provide tools that provide a convenient
interface to the models under development. These tools include text editors,

forms-based tools, and GUI editors.

191SAS pasemigpalen|ens Jo sansualoesey) Jo Arewwns (7 s|gel

501
uonEIUNS }SurESE STfa s op] i Op FAOSIAPY 10 eogne uliesT 5
op] op] Op] sag op] poddns opupy 2.
O] O] O] gag Op] wogpLouss deer
WS T OIS T A SAITIA SAIATLA SAILy, AIIE PORfKAJI PRIDLBLAD)
d op] T+d i g woddrr weeofopd-gingy b
op EE] san i op eefuvys fo wogedodody o
worpearaads patarcrapry +0 pajarclraprg RIS wmeds sug-umy B
SURHARI] BORFIAP] &
&« amf o] ATRTIANI] AORTIANI] £ [ARONI 12EE 5
ol CEAR o« PRI & S[9POJ SIBEISP] ¢ S[SPOJ J0 dSw|S BT pajEmoje safeys - ®
v aoranbag (S a0H-py (o) o0-py (W) ErManbestuiac (g0 souanbaeg apizs dF opopoiiapr
I I00pa Ea Lo I0Mpa A, 109 e T e sp00¢ IURAPOR]
I saL sl Op it EJRp AT -
It saL AL saL FIH AyIeEsTIo}sn - =
Op SeSSERTOON Tl ¥dd00 saL opg [PPOMw HoRIuasaLf o
S}NI-1I34,] sdo TrTo0H O] Of] Op Wopppou japot sndopoyT W
I SRSEEE TOOON Tl ¥ddoD SJAI[RWUIOR] SJAI[ENUOPI] HOGHIou jEpow wwiwog o
spoalqn seSSE[D TIOON Op] Op say HOGEROU [APOL 455
do stlo TIoop 1A Fad00 oM J50 HOREION JApO ynT
S ETFL FATHT FU AR ISE] JICNF R Jelap UOISHSLT

Architecture

This section discusses how the architecture oMBelDEs affects the modelling

capabilities of the system and the appearance apdbdities of the generated

interface.

« Methodology style- some systems impose a rigid sequential structure on the
order in which the models must be developed, with some systems allowing
some of their models to be developed concurrently, and others favouring an
ad-hoc development process. Furthermore, the methodology can either
automate (A) some stages of the development process, or can be specification-
based (S) — providing a complete specification of the proposed interface
developed by the designer. While each evaluated system automates the
production of the runnable interface from the model-based specifications, the
specification-based systems also allow the task model to generate the initial
state of their intermediate models.

¢ Run-time system the runnable interface generated by the MB-IDE can either
generate source-code in a programming language (e.g., C++ (Mastermind), or
Smalltalk (Adept)), can produce a specification of the developed interface
suitable for an existing UIDE or interface builder (e.g., TADEUS), or can
produce a run-time interpretation of the interface (e.g., DRIVE).

< Propagation of changes if a system allows the generated interface to be
customised at run-time then the MB-IDE can attempt to propagate these
changes to the underlying declarative models. If this facility is not available
then any such modifications will be lost. Some systems (Mastermind) aso
alow changes made at design-time in one model to be propagated to the other
models.

e Multi-platform support- the generated interface may be able to run on several
platforms or operating systems utilising the platform's interface style (P). The
MB-IDE may also generate different interfaces according to the envisaged
operating environment (E), e.g. laptop, full-size screen, or kiosk.

* Generated interface style this can be forms-based (F), direct manipulation
(DM), WIMPS, 2D or 3D. In addition modal interaction with the generated
interface can be supported (m).

Secondary tools

The declarative models provided by MB-IDEs produce a semantically rich source

of interface and domain information. This information can be exploited by MB-

IDEs to produce enhanced functionality in the following areas.

e Help generatior some systems automatically or semi-automatically generate
part of the user help system of the generated interface.

e Undo support- some systems provide methods for automatically providing
undo/redo facilities.

» Design critics or advisors these tools can analyse the information contained
in the various declarative models. They either verify that the design satisfies
specified properties, ssimulate end-user interactivity, or produce statistics on
the quality of the developed interface and its dial ogue structure.

Database | ssues

If MB-UIDEs are to provide a viable base for datsdaJ)l generation, they must

provide several database-specific facilities. THasédities may be captured in one

or more of their models, and include:

* Information passing- both transient and persistent information needs to be
used by (and within) an interface. A MB-UIDE should provide a means of
describing this information flow, and methods for mapping the information to
its equivalent domain concepts. This ability therefore requires the task or
dialogue model to be capable of representing information flow, and to be able
to map such information to concepts captured in the domain model.

¢ Transactions- the ability to be aware of database transaction has important
implications for facilities such as undo. Transaction information should be
accessible (possibly via a domain model) to alow potentially fine-grained
transaction processing information to be captured through a task or dialogue
model.

« Database user modellingas previously discussed, the user model is the least
exploited model. Databases have an in-built knowledge base of stored user
information in terms of user authorities and access rights. If fully exploited,
this information can produce interfaces which closely reflects a user's mental
model of the information available or applicable to them.

« Database-specific visualisatiorsthe discussed systems utilise a limited (and
frequently fixed) set of visudisations, with the developer typicaly
constructing an interface from a set of simple CIO building blocks. If MB-
UIDEs are to produce useful database interfaces, they must be capable of
providing an open architecture which will allow developers to use existing
data visualisation and schema representation widgets and component libraries.

5 CONCLUSIONS

MB-IDEs can provide a novel means of generating user interfaces to represent the
domain knowledge captured in a database. While the sophigtication of the
generated interface depends largely on the capabilities of the dialogue and
presentation models, the underlying functionality of the interface is primarily a
reflection of the richness of the domain and task models. When using a MB-IDE to
produce an interface to a database, the primary concern of the interface designer is
therefore the creation of the domain and task model s, and the subsequent linkage of
domain model concepts to the underlying database schema and the services
provided by the DBMS.

With the exception of Adept and HUMANOID, the evaluated MB-IDESs use an
object-oriented realisation of the domain model. While this provides an easy
mapping from an OODBMS schema to the domain model, a relational schema
would require additional transformations into its object-oriented equivalent. The
question of utilising Mastermind's CORBA-based model repository can be reduced
to producing a wrapper which will export a call interface suitable for use with a
database API. While both HUMANOID and Adept utilise domain concepts in the

construction of the user interface, the domain rhaaot explicitly developed by
the designer. In the specific case of interfacedatabases, the lack of an explicit
domain model results both in a loss of domain keolge and difficulties in
maintaining the links between domain concepts Aadyenerated interface.

The task-orientated approach to developing fiatexss adopted by the evaluated
MB-IDEs is based upon a sound platform of long-dtag and well understood
HCI research, utilising the knowledge captured myrihe early requirements
analysis phase of developing a database applicatioraddition, the use of
declarative models focuses the developers attestan what the interface should
represent and do rather than how this should Hseela

The evaluated MB-IDEs take different stancesceomng methodological style.
The sequential approach of the automated desids (ddept, TADEUS, and to a
lesser degree HUMANOID) will be seen by advocatestmctured methodologies
to be systematic tools, whereas the more ad-hocoapp favoured by the
specification-based tools (Mastermind and DRIVE)ovisles the interface
developer with arguably more control over the firdd interface.

Whilst most of the evaluated MB-IDEs proposesarunodel, the facets of users
or user groups which can be captured by this moetehin unclear. Furthermore,
the manner in which the user model is utilisedégfiently under-specified. In the
specific case of generating interfaces to datababkespotential for utilising the
user model to capture features such as the adgis and requested functionality
inherent in the DBMS data dictionary remains asweexploited.

This paper has found that although the refer@méB-IDEs utilise some form of
a domain model (or domain concepts), the methodlgh the domain model is
linked to an underlying database application resmainclear. If MB-IDEs are to
prove to be a useful vehicle for developing uséerfiaces to databases they must
cater for database-specific concepts such as qcemgtruction and execution,
rollback, schema modelling and visualisation, amel presentation of non-forms-
based graphics. It also remains unclear from thiereaced literature how
fundamental tasks such as the construction of da&abqueries from user
information gathered through the completion of gusub-tasks is to be achieved,;
indeed there is still a need for specifying howrguesults are to be returned to the
user. The capabilities of the domain model coukb dle extended to utilise the
meta knowledge contained in database-specific fiisma such as ODMG or ER
diagrams to allow, for example, the integrity ok tdatabase to be maintained
through the constraints inherent in such formalisms

Acknowledgements

We are indebted to the contribution made to thiskway Kenny Mitchell for his
discussions on the DRIVE presentation model. Thiwkwis funded by UK's
Engineering and Physical Sciences Research ColztR8RC).

6 REFERENCES

Balzert, H., et al. (1996) The Janus ApplicationvE&lepment Environment:
Generating More than the User Interface Computer-Aided Design of User
Interfaceg(ed. J. Vanderdonckt), Namur University Press, Namur, 183-205.

Barclay, P.J. (1993) Object Oriented Modelling ain@plex Data with Automatic
Generation of a Persistent Representation. PhD i§h&kapier University,
Edinburgh.

Bodart, F., et al. (1995) Towards a Systematic dug of Software Architectures:
The TRIDENT Methodological Guide, irnteractive Systems: Design,
Specification and VerificatiarBerlin: Springer, 77-94.

Cattel, R., et al. (1996) The Object Database Standard: ODMG 2.0. Morgan
Kaufmann.

Devin, L. (1997) Delphi 3 Technology Overview,
http://netserv.borland.com/del phi/papers/techover.

Elwert, T., Schlungbaum, T. (1995) Modelling and Generation of Graphical User
Interfacesin the TADEUS Approach, in Design Specification, and Verification
of Interactive Systemn(gds. P. Palanque and R. Bastide). Wien, Springer, 193—
208.

Foley, J. Sukaviriya, P. (1995) History, Results and Bibliography of the User
Interface Design Environment (UIDE), an Early Model-based System for User
Interface Design and Implementation, in Interactive Systems: Design,
Specification and VerificatiorBerlin: Springer, 3-14.

Hoare, C.A.R. (1985) Communicating Sequential Processes. Prentice-Hall.

ISA (1995) The ISA Dialog Manager: http://www.isa.de/en/idm/

Johnson, P., et al. (1991) Task related knowledge structures: analysis modelling
and application, in People and Computers IV: From Research to
Implementation(eds. D. Jones and R. Winder). Cambridge University Press,
Cambridge.

Johnson, P., Johnson, H., Wilson, S. (1995) Rapid Prototyping of User Interfaces
Driven by Task Models, in Scenario-Based Desigried. J. Carroll). John
Wiley & Son (London), 209-246.

Kelly, C. & Colgan, L. (1992) User Modelling and User Interface Design, in
People and Computers Vll(eds. A. Monk, D. Daiper, M. Harrison).
Cambridge University Press, Cambridge, 227-239.

Kennedy, JB. & Barcley P.J. (eds.) (1996) Interfaces to Databases (IDS-3), in
Proceedings of the 3rd International Workshop otetfaces to Databases
Napier University, Edinburgh, 8-10 July 1996. Electronic Workshops in
Computing, Springer.

Luo, P., Szekely, P., & Neches, R., (1993), Management of Interface Design in
HUMANOID, in Proceedings of InterCHI'93Amsterdam.

Mitchell, K., Kennedy, J., Barclay, P. (1995) Usm@onceptual Data Language to
Describe a Database and its Interface,Biitish National Conference on
Databases 13V anchester, England, 101-119.

Mitchell, K., Kennedy, J., Barclay, P. (1996a) A Framework for User Interfaces to
Databases, in ACM International Workshop on Advanced Visual Ifgees
Gubbio, Italy.

Mitchell, K., Kennedy, J. (1996b) DRIVE: An Environment for the Organised
Construction of User-Interfaces to Databases, in International Workshop on
Interfaces to Databases Bdinburgh, Scotland.

Mitchell, K. (1997) Three Dimensional Database Eowments. PhD Thesis,
Napier University.

Myers, B.A. (1995) User Interface Software Tools, ACM Transactions on
Computer-Human Interactior2(1), 64-103.

OMG (1995) CORBA: Architecture and Specification. Object Management Group
Publication Services.

Oracle (1996) Oracle Forms Developer's Guide, Release 4.5, Part No. A32505-2.

Puerta, A. (1996) The Mecano Project: Comprehensive and Integrated Support for
Model-based Interface Development, in Computer-Aided Design of User
Interfaceg(ed. J. Vanderdonckt). Namur University Press, Namur, 19-36.

Rumbaugh, J. et al. (1991) Object-Oriented Modelling and Design. Prentice-Hall.

Schlungbaum, E. (1996) Model-based User Interface Software Tools - Current
state of declarative models. Graphics, Visualization and Usability Centre,
Georgia I ngtitute of Technology, GVU Tech Report #96-30.

Schlungbaum, E., Elwert, T. (1996a) Dialogue Graphs - A Forma and Visual
Specification Technique for Dialogue Modelling, in Proceedings of the BCS-
FACS Workshop on Formal Aspects of the Human Canputerface
Sheffield Hallam University (eds. C.R. Roast and J.I. Siddiqi). Springer-Verlag
London.

Spaccapietra, S. & Jain, R. (eds) (1995): Visual Database Systems 3, Visua
Information Management, in Proceedings of the "8 IFIP 2.6 working
conference on visual database syste@ispman & Hall.

Szekely, P. (1994) User Interface Prototyping: Tools and Techniques. Technical
report, Intelligent Systems Division, University of Southern California

Szekely, P., et a. (1996) Declarative Interface Models For User Interface
Construction Tools: The MASTERMIND Approach, in Engineering For
Human-Computer Interaction

Wierse, A., et a. (eds) (1995) 2" Workshop on Database Issues for Data
Visualization, Atlanta, Georgia,. - Database issues for data visualization: |IEEE
Visualization '95 Workshop. Springer, London.

