
An Open Model-Based Interface Development System:
The Teallach Approach

T.Griffiths? , J. McKirdy? , N.Paton? , J.Kennedy? , R.Cooper? , P.Barclay? , C.Goble? ,
P.Gray? , M. Smyth? , A. West? , A.Dinn?

? Department of Computer Science, University of Manchester, Oxford Road,
Manchester, M13 9PL, England. http://img.cs.man.ac.uk
?Department of Computing Science, University of Glasgow, 17 Lilybank Gardens,
Glasgow G12 8QQ, Scotland. http://www.dcs.gla.ac.uk/ {~pdg | ~jo | ~rich }
? Department of Computer Studies, Napier University, Canal Court, 42 Craiglockhart
Ave, Edinburgh, EH14 1LT, Scotland. http://www.dcs.napier.ac.uk/osg/

Abstract. The goal of the Teallach project is to provide facilities for the
systematic development of interfaces to object databases in a manner which
is independent of both a specific underlying database and operating system.
Teallach's open architecture also allows the creation of interfaces to non-
database applications in a platform-independent manner. To this end
Teallach adopts model-based techniques in the process of interface
construction, exploits the cross-platform capabilities of Java, and utilises
the Java Beans API to allow third-party interface components to be
exploited. Through the use of a simple case study this paper introduces the
Teallach approach to interface development, providing an overview of the
system, its motivations, and underlying technology.

1 Introduction

1.1 Motivation

Recent research and development work in database management systems has
emphasised the extension of conventional database systems with enhanced data
modelling features or languages [9]. Furthermore, the behaviour modelling facilities
of databases are no longer limited to simple query languages, as database
programming languages and systems support the storage of imperative programs,
active rules, deductive rules and integrity constraints in the database alongside the
stored data with which they are associated. This increase in the functionality of
database systems has been motivated by the needs identified in advanced applications
in a wide range of scientific, engineering, geographic and commercial domains.

This increase in the facilities supported by database systems has, however, been
associated with a corresponding increase in their complexity. This, in turn, presents
new challenges to the designers and developers of user interfaces to databases, who
must seek to provide effective tools for the design, browsing, querying, updating,
maintenance and debugging of ever more sophisticated database applications. It is

clear, however, that the increasing capabilities of database management systems has
not been accompanied by corresponding improvements in the utility of their
interfaces. This mismatch in the rates at which database systems and their interfaces
are developing, if not addressed, is likely to limit the effective exploitation of
advanced database technologies, even in applications where there are clear needs for
enhanced database capabilities.

Teallach1 is a model-based user interface development environment (MB-UIDE)
whose primary aim is to provide a software workbench facilitating the rapid
development of interfaces in a manner which is independent of both a specific
underlying database system and operating system. To this end, Teallach has adopted
model-based techniques in the process of interface construction, exploits the cross-
platform capabilities of Java, and utilises the Java Beans API to allow third-party
interface components to be exploited. By these means Teallach will provide a means
of moving database interface development from an ad hoc, system-specific context
towards more general and well founded solutions.

1.2 Model-based User Interface Development Environments

MB-UIDEs have emerged as a promising paradigm for supporting the systematic and
efficient development of user interfaces [6, 8, 4, 7, 15]. MB-UIDEs support both rapid
prototyping through automatic generation of (preliminary) interfaces from partial
descriptions of applications, and a methodology that encourages discipline in interface
design. However, MB-UIDEs are not yet mature, and proposals differ significantly in
the range and nature of the models supported.

From the viewpoint of the developer, the key comp onents of a MB-UIDE are the
declarative models which store a conceptual representation of the required interface.
During recent years, the models supported by MB-UIDEs have increased both in
number and in expressiveness. The first-generation of MB-UIDEs (typified by UIDE
[6], MECANO [15], AME [10] and JANUS [2]) concentrated on modelling the
underlying application domain through a domain model. Typically, such a limited
view of the modelled domain produced simple menu or forms-based interfaces. In
recent years however, MB-UIDEs such as TADEUS [16, 5], DRIVE [11] and
MASTERMIND [18] have exploited a much wider range of interacting models, with
a consequent increase in the quality and variety of their generated interfaces. These
models allow the designer to exploit fully the information gathered during the
requirements analysis phase of the development process.

1.3 Interfacing MB-UIDEs to External Applications

A MB-UIDE is a system that automatically generates a user interface from a set of
declarative specifications (models) which describe the tasks that the end-users of an
application wish to perform in an interface in terms of either a task or application
domain specification (or a combination of both). Typically, a MB-UIDE may be
expected to be used in conjunction with existing software systems (e.g. databases) and
established display techniques. As such, MB-UIDEs should be developed in an open
manner which supports interfacing to external components. As illustrated in figure 1,

1 In Gaelic, teallach (pronounced: tyaloch) is usually taken to mean a smith's forge although, in
the past, it was also used to refer to an anvil or furnace; it is a place where tools are made.

if a MB-UIDE is to be considered open, it must allow efficient and transparent
interfacing to both external applications and interface components.

While the Teallach project has its roots in generating user interfaces to databases,
the project has identified several important features which must be considered when
interacting with external applications in general, namely:
• Application knowledge. A MB-UIDE has little or no control over the internal

workings of an external application. If an application is capable of raising
exception conditions or being interrupted, then the generated user interface must
be capable of responding appropriately.

• Limited interface components. The components or libraries from which the user
interface is constituted in MB-UIDEs are typically fixed, often non-extensible,
and frequently platform-specific. An open MB-UIDE should be capable of using,
extending or customising existing interface components.

• External Data flow. The user interface needs to consider and handle interactive
dialogue with the application. An open MB-UIDE should be capable of both
gathering information from an application, and presenting information to the
application.

• Internal Data flow. The user interface must handle the flow of application,
interface, and transient data that is relevant to user tasks.

To date, many MB-UIDEs have concentrated on capturing the declarative semantics
of users tasks using both task and domain-centric methods, yet have failed to provide
comprehensive support for the four core activities stated above.

This paper is structured as follows. Section 2 provides an overview of the
Teallach models and their relationships. These are discussed in greater detail in
section 3 through the use of a case study. Section 4 discusses how information
captured by the Teallach models can be used to generate a user interface. Finally
section 5 draws some conclusions and identifies research directions for the Teallach
project.

2 An Overview of Teallach
Teallach has adopted a model-based approach to user interface development. To this
end Teallach utilises four declarative models in the process of generating a user
interface, namely the domain, user, task , and presentation models. In the Teallach
approach many of the concepts that other MB-UIDEs capture in an explicit dialogue
model are partitioned between the task and presentation models. Unlike other MB-
UIDEs, Teallach does not impose a highly structured methodology on its users, rather
Teallach aims to provide developers with a flexible design methodology, allowing
them to construct the models in an order that reflects their preferences or needs. Once
completed, the developer can automatically generate a user interface from the
complete model specifications. The relationships between the Teallach models are
shown in figure 2.

MB-IDEApplication

Fig. 1. Interfacing to External Applications

2.1 Shared model Repository

Teallach uses a shared model repository to allow each model to populate the
repository with the specific concepts it is responsible for capturing. Where possible
this approach also allows the initial state of each model to be created from the
concepts already stored in the repository as populated by other previously constructed
models. This is possible since many of the stored concepts are analogous to the
concepts utilised by other models. For example, an optional task (as seen by the task
model) is viewed by the presentation model as a Java container class whose
components are options.

If the underlying application is a database, then the model repository can be
stored in the database along with the schema for the application. This is possible
because all Teallach models are represented internally using the information
structuring facilities of the domain model. This allows Teallach to utilise the storage
management and transaction processing mechanisms provided by the database. If no
database is present then the storage facilities provided by the Java Serialisation API or
persistent Java through PJama [1] will be utilised.

2.2 Domain Model

The domain model (DM) is used to capture the functionality of the underlying
application or database. This model therefore specifies the application's public
interface in terms of the low-level data sources and services the application makes
available to the user. Since Teallach's prime motivation is to facilitate the creation of
interfaces to object databases which conform to the ODMG standard [13], the DM
views the database (through its ODMG Java binding) as a set of Java classes which
reflect the structure and functionality of both the underlying object database and its
meta-data. If Teallach is to act as an MB-UIDE for non-database applications, then
the applications must provide methods that allow them both to appear as a set of Java
classes and that allow the interrogation of their classes used system through
appropriate meta-data access facilities. One means by which this may be achieved is
through a CORBA [14] application interface, as the CORBA object model is
essentially a subset of that provided by ODMG. In Teallach the DM is visually

Fig. 2. The Teallach Models and their Relationships

Task model

Model
Repository

User model

Domain model Presentation model

Database or
Application

Mapping
rules

Java API

Beans Archive
Teallach
Modelling

Tools

represented using a subset of the class diagram notation of UML [19].

2.3 Task Model

The task model (TM) expresses the activities that end-users of an application want to
undertake and any ordering constraints that exist between tasks or sub-tasks. In
addition to this task hierarchy, the TM captures cyclic tasks, conditional tasks, data
flow, exceptions, interrupts, help, modality, entry and exit points, and (in the specific
case of databases) transactions. At its lowest level, TM primitives are bound to DM
concepts. The TM can also make reference to transient state information and can pass
this state information within its internal structure.

The complexity of the TM is managed by allowing the TM to be viewed as a
multi-layered structure, with each layer allowing the expression of further concepts.
For example, the designer may start the process of task modelling by creating a task
hierarchy and the ordering constraints between these tasks; once completed they may
add exceptions or state information using a different view of the same model. This
approach facilitates the design process by allowing the designer to visualise either the
whole TM or layers of related concepts.

2.4 Presentation Model

The presentation model (PM) exists at two distinct yet complimentary levels. The first
level (termed the Abstract Presentation Model) provides an abstract view of a generic
interface which represents a corresponding task model. The second level (termed the
Concrete Presentation Model) is realised as a concrete instance of an interface which
can be presented to a user; there may be many concrete instances of an abstract
presentation model. The PM has two primary responsibilities. Firstly it serves to act
as a repository for information relating to the Java Beans2 with which it can create
interfaces, and secondly it allows the designer to alter and fine-tune the appearance of
an interface through a design-time tool. The PM can be partially generated from the
structure of the TM using a set of mapping rules in combination with the concepts
captured by the user model. The PM allows the designer to: edit, change and fine-tune
the Java Beans used in the interface; alter the grouping of the Beans; specify event
handling mechanisms (since each Bean interacts using a specific event interface);
define navigation between windows or frames; and add non-functional enhancements
to the interface such as borders. The PM is responsible for maintaining and registering
new Java Beans.

It should be noted that the Bean repository maintained by the PM serves a dual
purpose since the Teallach's graphical model construction tools will themselves be
constructed using Beans. These tools will in turn utilise Bean technology in the
definition of the constructs which they utilise to realise their modelled concepts. For
example, the TM can use Beans to represent its task types.

2.5 User Model

The user model (UM) captures information about the style of interface preferred by

2 JavaBeans [3] is the platform-neutral, component architecture for Java. They allows
developers to create reusable software components which the PM can use as its interface
building blocks.

the intended users or user groups. The UM is used in conjunction with the TM and a
set of mapping rules to generate the initial state of the PM. When the underlying
application is an object database the UM captures information about the users of the
database in terms of their authority level and how this affects the data they can access.
The UM can also be used to record information about a user’s interface configuration
and preferences.

2.6 Mapping Rules

Teallach uses mapping rules in several places in its architecture to allow mappings
between the various models. For example, a set of mapping rules exist between the
task model and its abstract presentation model counterpart. In addition to these
mappings, an additional set of rules exist between the abstract and concrete
presentation models. These mapping rules take into consideration the information
captured in the user model, to provide the intended users of the system with a
generated interface suitable to their requirements.

These mapping rules are simple in nature, selecting from a 1:m correspondence
between abstract PM concepts and PM Beans. The mapping rules consult the UM to
decide which Bean from those applicable should be used, and reflect the implicit
structure of many task model ordering constraints. The mapping rules can also utilise
environmental information, such as the target display medium, to affect the
characteristics of the generated PM layout. In addition to defining mappings between
tasks and Beans, the mapping rules define which layout manager should be used by
each container Bean. The notion of layout managers is discussed in section 3.5.3 of
this paper.

3 The Teallach Models

3.1 A Simple Case Study

This case study is based upon a library database. Access to the database is assumed to
be through an ODMG call interfaces. Rather than attempt to describe an entire
application based on this domain, the case study focuses on a single task - searching
for a book .

After connecting to the library database, to search for a book, the user must first
specify that a search is to be performed. A series of search parameters must then be
specified. These include: the attribute(s) of the book on which the search is to be
based - i.e. author, title or year (or a combination thereof); and the required accuracy
of the search - whether approximate results should be returned or only those results
which constitute an exact match. By specifying these parameters, the user has
effectively constructed a query that can then be submitted to the database. Upon
retrieval of the results of the query, the system must present the results to the user in a
manner appropriate to the particular interface style, or inform the user that no books
were found to match the parameters given. Where results were obtained, the user is
then at liberty to browse through them.

3.2 The Domain Model

The DM provides a description of the underlying application through a Java API. For
the case study this is realised as a UML description of the set of Java classes

constituting the library schema together with auxiliary classes representing the
facilities provided by an ODMG-compliant database. These auxiliary classes allow
access to the database meta-data and the services provided by the database. The UML
description of these classes is shown in figure 3.

The Connect class is responsible for making the connection to the library database
given the user type (either librarian or borrower) and their login information, whereas
the OQLQuery class executes the given OQL query string and returns its results as a
set of Java objects. In addition to modelling the domain schema and meta-data, the
domain model allows the definition of transient classes. These classes facilitate the
modelling of task model concepts such as state information and data flow. An
example of a transient domain class is the OQLQueryData class whose purpose is to
collect the information necessary for a book search.

3.3 The Task Model

The Teallach TM describes the tasks that application users want to undertake through
an interface. The TM is realised using a multi-layered approach capable of capturing
many concepts including temporal ordering, state, data flow, exceptions, conditional
tasks and undo. In the TM tool these concepts are stacked in concept layers to allow
the potential complexity of the model to be managed. The structure and semantics of
the initial task hierarchy layer of the TM is similar to the task structures used by other
MB-UIDEs such as ADEPT [8] and TADEUS [5].

3.3.1 Task Trees
 When viewed in its simplest form, a TM expresses the temporal ordering constraints
between sub-tasks. An ordering constraint is specified by the parent task. Initially, we
have used seven temporal ordering constraints: sequential, order-independent,
repeatable, parallel, interleaved, choice and optional. These are informally defined as:

Fig. 3. The Library Case Study Domain Model

Connect
type: String

passwd : String
name: String

verify(): Boolean
isOk(): Boolean

OQLQuery
create(String query): Object

execute() throws ODMGException

OQLQueryData
author: String

title : String
year: String

order: String
performSearch() throws
ODMGException: Objectdescription

borrowedBy

hasLoan

employs

worksFor

StockItem

stockAt

stocks

onLoanisAt

contains

StockItem

*

1

*

1 0..10

1

*

1

1

1

Person
fname: String
cname: String

Library
name: String

location: String

Loan
dueDate: Date

Book
author: String

title: String
year: Integer

Librarian
salary: Integer

checkIn ()
checkOut()

StockItem
status: enum

*

1

role

Borrower
/numLoans: Integer

Sequential The sub-tasks are performed in strict sequence.
Order-
independent

The sub-tasks can be performed in any order, but all sub-
tasks must be completed.

Repeatable The sub-tasks are to be repeated a specified number of
times, or until a condition is satisfied.

Parallel The sub-tasks are to be performed concurrently.
Interleaved The sub-tasks are to be performed concurrently, but they

may be synchronised at specified points in the task
hierarchy.

Choice Only one of the sub-tasks is to be performed, the user must
decide which.

Optional Between zero and all of the sub-tasks are to be performed,
the user must decide which.

Conditional There exists a choice between sub-tasks which is dependent
on a specified condition.

Each task type raises an implicit 'task complete' event when its goal is achieved. In the
case of the optional and choice task types any corresponding interface will need to
specify the actual event which signals that the user has completed the task. The TM
allows previously declared tasks to be referred to at lower levels in the hierarchy,
thus allowing task reuse and ensuring consistency across common sub-tasks.

The task tree for the case study is shown in figure 4. In this diagram leaf tasks are

Fig. 4. Case Study Task Tree

Library Application
<sequence>

Connect to Library
<sequence>

Search for a Book
<sequence>

Browse all Books
<sequence>

Check Book Status
<sequence>

Select Activity
<interleaved>

Check in book
<sequence>

Check out Book
<sequence>

Administer Stock
<optional>

Search for a Book
<sequence>

Specify Search Information
<order independent>

Enter Search Fields
<option>

Specify Search Order
<option>

View Results

Specify Search Precision
<choice>

Report Error

Select Activity
<parallel>

Check Book Status
<sequence>

Perform Search

Set Library.Book.Author

Set Library.Book. Year

Set Library.Book. Title

mapped to DM concepts, resulting in an implicit TM type system. The direction of
information flow in leaf tasks is inferred through the naming conventions adopted
from Java. For example, set Xxxx infers that information is to be passed from the user
to the application whereas get Xxxx infers the opposite. When a conditional ordering
exists the conditional tasks are shown as adjacent tasks at the same level; the
conditional part of this relationship is declared in a finer grained layer of the TM. In
figure 4, tasks which require further decomposition are enclosed by double borders,
and modal tasks3 are shown by bold border.

3.3.2 The Task Model Layers
The information contained in the task tree allows the basic task hierarchy to be
constructed. The task model allows the capture and visualisation of additional
interface and object database concepts by utilising a layered interface.

3.3.2.1 Adding State Information and Data Flow
The conducting of many tasks requires access to information from the DM or
provided by the user of the developed interface. To support this, it is necessary to be
able to declare local state associated with tasks and to indicate how this state
information flows between tasks.

As can be seen from figure 5 the designer can specify both state information and
the flow of information into and from sub-tasks. This information is shown
superimposed on the basic task hierarchy structure using labelled arcs to indicate the
direction of information flow. State information is shown through typed DM concepts
whose scope is defined by the enclosing task.

3 A modal task locks out the execution of any other possibly concurrent tasks.

Fig. 5. Case Study Task Model – State and Information Flow Layer

QD

Search for a Book
<sequence>

View Results Report Error

Select Activity
<parallel>

Check Book Status
<sequence>

QD: OQLQueryData

CurrentBook

QD

Books
QD.performSearch

Books

Specify Search Information
<order independent>

Books: Set(Book) CurrentBook: Book

In figure 5, the fields of an OQLQueryData state object are set by the sub-tasks
of the Specify Search Information task. The populated object is passed to the
next task in the sequence. In this figure the Perform Search task has been further
specified to be a call on the OQLQueryData state object's performSearch
method. This method (realised in Java) constructs an OQL query string from its
gathered state information and constructs and executes an OQLQuery. The result of
this method is another transient state object representing a set of Book objects. These
are passed as the input to the View Results task. Figure 5 further shows that the
View Results task passes individual Book objects to the Check Book Status task.

3.3.2.2 Adding Navigation Information
Although the task model constructs provide the general control flow information, the
designer may periodically need to adapt this control flow in a manner that extends the
facilities described above. Figure 6 shows the general structure of the top-level of task
model for the case study. In this figure nodes representing interface start and exit
points have been explicitly added. The semantics of the exit nodes may be read as:
each sub-task of the Select Activity task will have exit available unless otherwise
specified.

Additional task information can be added to the TM through the definition of
navigation and conditional transitions; however, only one transition can be taken from
a given node. Conditional transitions between task nodes are labelled with a guard
condition or an explicit event name. In this example the transition with the guard
condition Books.empty() refers to a Boolean method of the Books state variable
declared within the Search for a Book task node. This state information is
accessible through the state layer of the TM. Figure 7 shows two navigation
transitions called another search. These allow a designer to specify task branches
which do not conform to the temporal ordering specified by a parent node, and may
have an optional label. Conditional transitions are labelled with a Boolean guard
condition (enclosed by square braces) which allows a decision to be made based upon
state information; in this case whether any books were found by the specified search.

Additional concepts can be added to the task graph in any order, but for the sake
of this case study we will continue by adding the data flow and state information.

Fig. 6. Case Study Top-level Task Model

Library Application
<sequence>

Connect to Library
<sequence>

start

exit

Select Activity
<interleaved>

3.3.2.3 Specifying Exceptions and Help
Any external source may fail in some way, giving rise to an exception. As sources in
Teallach are wrapped from Java, it is assumed that the Java exception mechanism will
be used by them to signal difficulties. The handling of exceptions must therefore be
propagated to the descriptions of the tasks that may give rise to them.

By default, exceptions are implicitly thrown to their parent task which may
provide a means of catching them. This process continues until a top-level task is
reached, upon which a general exception is caught. This default behaviour can,
however, be overridden by explicitly providing a modal event handler task for an
explicit exception. Figure 8 shows that the ODMGException thrown by the
OQLQueryData object's performSearch method uses an explicit exception
handler. This handler declares that the Search for a Book task will be the next task
called after the exception has been successfully handled.

Figure 8 further declares that help should be available for all sub-tasks of Select
Activity unless explicitly specified, as indicated by the View Results task.

Fig. 8. Case Study Task Model – Exceptions and Help Layer

Fig. 7. Adding Navigation Transitions

Search for a Book
<sequence>

View Results Report Error

Select Activity
<parallel>

Check Book Status
<sequence>

QD.performSearch

Specify Search Information
<order independent>

Select Activity
<interleaved>

ODMGException

?

?

Search for a Book
<sequence>

Specify Search Information
<order independent>

View Results Report Error

Select Activity
<parallel>

Check Book Status
<sequence>

Perform Search

an
ot

he
r

se
ar

ch

another search

[Books.empty()]

[!Books.empty()]

3.4 The User Model

The user model (UM) allows a designer to specify information about users and user
groups in terms of their preferences and authority. The notion of authority is of
particular interest and importance when considering user interfaces to databases,
where users may have restricted access to the data and restricted permissions on their
use of that data. In the library case study the librarians user group will have access to
the AdministerStock sub-task hierarchy, whereas the borrowers group will not. By
recognising this inherent feature of database systems, the UM can affect the user
interface components (and hence the presented interface) which are visible to each
group of users. If this feature were not present, the interface generated for each user
group would be identical, and would rely on database security features to disallow
access to restricted information.

The UM is used in conjunction with the defined mapping rules to allow the
construction of the initial state of the PM. The UM is not intended to rely on using a
fixed set of attributes with which to model users since this would be both prescriptive
and limiting. Rather, in the longer term, an extensible knowledge base of user
information will be utilised which will be linked to the set mapping rules. An example
of this type of system is the user model of the Adept MB-UIDE [8].

For the purposes of the present prototype, the UM will specify abstract user
interface preferences such as "Librarians prefer menus" or "Borrowers prefer iconic
displays". Whilst the simple user model proposed for the present prototype does not
exploit the full potential of user modelling techniques, it does have the advantage of
producing a simple mapping between the TM and PM, thus providing the potential for
reverse engineering of a TM from a PM. The case study assumes that the initial state
of the PM has been created using mappings such as:

Optional task à < Optional Container, Grid layout manager >
Procedure call à < LabelledButton >
Interleaved tasks à < CardStack Container, Card layout manager > or

< menubar, null >

where mappings are of the form < Container Bean, layout manager >, or <
Component Bean >. Where a choice is available, the preferences specified in the UM
will determine which mapping rules are chosen for each user. For example, figure 9
shows the two interface components corresponding to a set of interleaved tasks
according to the above mapping rules. The mapping rule which specifies the
CardStack container uses a toolbar to control the stack of interface cards
corresponding to the task mapped to each toolbar button.

The mappings utilise the implicit type definitions and information flow direction
of the TM concepts in the process of generating a PM. For example, the type of the
setLibrary.Book.Author implies that a String data input Bean should be used
whose label is 'Author'.

3.5 The Presentation Model

To further its openness policy, the PM utilises an extensible set of Java Beans in the
process of generating a user interface to an application. The Beans used in this
process are often diverse in functionality and appearance, but in general can be
categorised as either container or component Beans, with a wide range of interface
functionalities being offered by both type of Bean. In the process of developing a
presentation the PM must register information about the Beans it is using. This
information is gathered using two methods.
• Introspection: Java Beans provide methods by which their publicly accessible

interface can be discerned. This introspection API allows the PM to register
information about a Bean’s methods and variables and their type system. The
introspection API also allows the PM to know about the events that a Bean can
generate and respond to. In addition the introspection API provides facilities
which allow the designer (through the PM) to customise a Bean’s appearance and
functionality. These customisations can be saved through Java’s serialisation
API.

• Interactive Dialogue : When the PM is constructing an initial interface
specification from the information stored in the shared model repository, it needs
to know which of a Bean’s methods to bind to the specified task events. Java
Beans do not provide any notion of default behaviour for event generation; for
example, a Button Bean can respond to many different mouse and keyboard
events. When each Bean is initially registered with the PM, the PM administrator
must therefore specify which of a Bean’s methods will form its default behaviour
if any ambiguity is present. The PM administrator can also specify whether the
Bean is a container or a component. If it is a container then it is possible to
specify the type of the container. For example, will its components be optional or
choices.

Through the above methods, Teallach can avoid many of the pitfalls associated with
working with external interface components whose closed access to their functionality

Search Browse Status Administer Stock Help

Interleaved Tasks Mapped to a Toolbar Controller for a CardStack

Interleaved Tasks Mapped to a Menubar

Fig. 9. Potential Interface Mappings

is likely to prove restrictive.
The case study assumes that the PM has Beans available which allow the

realisation of the required containers (such as a toolbar Bean), and a simple
LabelledButton Bean. Within the Teallach project, more sophisticated Beans for
visualising generic query results, database schemas, etc, will be developed.

3.5.1 Design Scenarios
Teallach will allow a designer to work in many ways, including generating an
application interface from existing task and/or domain model specification(s), or
creating an interface in isolation from the other Teallach models, and allowing
Teallach to generate the structure of the TM from the developed interface.

Using the first scenario, the initial interface design is realised by a combination of
mapping rules and style and preference information gathered by the user model. This
‘first-stab’ interface it fully editable, allowing the designer to change the selected
Beans, alter their placement and appearance, add any missing components that are
identified at this stage, and customise the event handling mechanisms utilised by each
Bean. Any such changes will be propagated (through the shared model repository) to
other interested models. By adopting the second scenario, the designer must ‘reverse
engineer’ the task structure of the constructed interface. This potentially complex
prospect is achievable since each Bean has previously registered its default
functionality with the PM, and the mappings used by the UM are simple in nature.

It has been noted that one of the shortcomings of MB-UIDEs in general is their
lack of ability to propagate any changes made to the designed interface to any
underlying models [17]. Teallach’s shared model approach to interface design moves
towards a solution to this problem by informing the other models of any changes to
any concepts in which they have an interest.

Figure 10 shows a possible interface for the Search for a Book task using the
mapping rules specified in section 3.4.

3.5.2 Presentation Model Structure
The structure of the abstract PM and TM reflect each other, with a mapping existing
between each task in the TM and concept in the abstract PM. Once the abstract PM
has been constructed, a set of corresponding concrete PMs can be generated using the
abstractions defined in the user model.

In its simplest form the concrete PM can be seen to be a hierarchy of containers
and components which reflect the required functionality of the TM. The PM however
captures many more concepts than this simple structure through its ability to specify
events, physical groupings of task concepts, inter and intra-component navigation,
and non-functional ornamentation. The PM also allows the designer to specify the
dynamic layout of each container through its layout manager feature as discussed in
the next section.

In some cases the PM may possess a Bean which has enough functionality to
process a complete sub-task hierarchy. This is illustrated in the case study, where it is
assumed that the PM has access to a generic query visualisation Bean which will
provide the functionality required for the View Results task. Alternatively, the
designer may define a leaf task which is too complex for any single Bean to capture
the required functionality. If this is the case then designer must either continue

decomposing the task (in the TM) until it is defined to a level of detail where
individual Beans are available in the PM, or obtain a Bean with the required
functionality.

3.5.3 Layout Managers

The PM exploits Java’s automatic and dynamic layout facilities, termed layout
managers. In the PM, a layout manager can be applied to a container Bean to provide
a means of defining where interface components will be physically located in the
interface. The designer can utilise layout managers by either defining user layout
preferences in the user model, or can interactively specify or override which layout
managers should be used for each container Bean through PM facilities. Through the
use of layout managers, Teallach can simply and effectively achieve the dynamic
layout functionality of user interface management systems (UIMS) such as
AMULET [12].

For the case study, several layout managers can be utilised according to the
required functionality. For example, the Enter Search Fields container shown in
figure 9 uses the standard flow layout manager which dynamically updates the
number of columns and rows needed to view its components as the Search for a
Book window is resized.

4 Generating the User Interface
There are several options that are available for generating an interface corresponding
to the requirements specified in the Teallach model repository, including whether to
use an interpreted or compiled solution. Teallach’s requirements identify that an
interpreted design-time solution for the interactive PM tools is indicated, whereas an
optimised compiled version of the production interface has many performance-related
benefits. The compiled solution does have drawbacks however, since each time the

Fig. 10. Search for a Book User Interface

Search Browse Status

Search for a Book

Enter Search Fields

Author

Year

Title

Perform SearchCancel

Specify Search Precision

Precise Approximate

Administer Stock

Author Year Title

Specify Search Order

Help

Fig. 11. Possible Interface for the Search for a Book Task

designer wishes to generate a test application an expensive re-build operation is
necessary. This problem can however be overcome by using techniques such as
incremental and background compilation. It is envisaged that the advantages that an
interpreted design-time environment will bring will reduce the need for such a
requirement.

5 Conclusions and Research Directions
This paper has presented the Teallach approach to developing user interfaces to object
databases in particular, and external applications in general. The current research has
recognised the need for MB-UIDEs to consider an open approach to interface
development, in terms of both interfacing to existing software systems and interface
display techniques.

The Teallach MB-UIDE will provide software tools which allows the realisation
of the models and methodology discussed in this paper. At the present time the project
(having constructed a throw-away prototype for experimental purposes) is completing
the design of the second prototype and will shortly commence development of the
necessary software tools.

Acknowledgements
This work is funded by UK's Engineering and Physical Sciences Research Council
(EPSRC), whose support we are pleased to acknowledge.

6 Bibliography
1. Atkinson, M., Daynes, L., Jordan, M., Printezis, T., Spence, S.: An Orthogonally

Persistent Java. ACM SIGMOD Record, Volume 25, Number 4, December 1996
2. Balzert, H., Hofmann, F., Kruschinski, V., Niemann, C.: The Janus Application

Development Environment Generating More than the User Interface. In Computer-
Aided Design of User Interfaces (Vanderdonckt, J. Ed.). Namur University Press,
Namur, 1996, pp. 183 – 205.

3. The Java Beans Specification: http://splash.javasoft.com/beans/docs/beans.101.ps
4. Bodart, F., Hennebert, A.-M., Leheureux, J.-M., Provot, I., Sacre, B., Vanderdonckt,

J.: Towards a Systematic Building of Software Architectures: The TRIDENT
Methodological Guide. In Interactive Systems: Design, Specification and Verification.
Berlin: Springer, 1995, pp 77 – 94.

5. Elwert, T., Schlungbaum, T.: Modelling and Generation of Graphical User Interfaces
in the TADEUS Approach. In Designing, Specification, and Verification of
Interactive Systems (Palanque, P., Bastide, R. Eds.). Wien, Springer, 1995, pp.
193-208.

6. Foley, J. Sukaviriya, P.: History, Results and Bibliography of the User Interface
Design Environment (UIDE), an Early Model-based System for User Interface Design
and Implementation. In Interactive Systems: Design, Specification and Verification.
Berlin: Springer, 1995, pp 3 – 14.

7. Janssen, C., Weisbecker, A., Zeigler, J.: Generating User Interfaces from Data Models
and Dialogue Net Specifications. In Bridges between Worlds, Proceedings of
InterCHI'93 (Ashlund, S. et al. Eds.), Amsterdam, April 1993. ACM Press, New York
1993, pp 418 – 423.

8. Johnson, P., Johnson, H., Wilson, S.: Rapid Prototyping of User Interfaces Driven by
Task Models. In Scenario-Based Design, (Carroll, J. Ed). John Wiley & Son
(London), 1995, pp. 209 – 246.

9. Kim, W. (Ed.): Modern Database Systems. Addison Wesley, 1995.
10. Märtin, C.: Software Life Cycle Automation for Interactive Applications: The AME

Design Environment. In Computer-Aided Design of User Interfaces (Vanderdonckt,
J.Ed.). Namur University Press, Namur, 1996, pp. 57 – 74.

11. Mitchell, K., Kennedy, J., Barclay, P: A Framework for User Interfaces to Databases.
In ACM International Workshop on Advanced Visual Interfaces. Gubbio, Italy, 1996.

12. Myers, B.A., et al.: The Amulet Environment: New Models for Effective User
Interface Software Development. Carnegie Mellon University School of Computer
Science technical report No. CMU-CS-96-189. 1996.

13. Cattell, R.G.G. et al.: The Object Database Standard: 2.0. Morgan Kaufmann
Publishers, Inc. 1997.

14. CORBA: Architecture and Specification. Object Management Group Publication
Services, 1995.

15. Puerta, A.: The Mecano Project: Comprehensive and Integrated Support for Model-
based Interface Development. In Computer-Aided Design of User Interfaces
(Vanderdonckt, J. Ed.). Namur University Press, Namur, 1996, pp. 19 – 36.

16. Schlungbaum, E., Elwert, T.: Automatic User Interface Generation from Declarative
Models. In Computer-Aided Design of User Interfaces, Proceedings of the 2nd
International Workshop on Computer-Aided Design of User Interfaces CADUI'96,
(Vanderdonckt, J. Ed.) Namur, 5-7 June 1996, Presses Universitaires de Namur,
Namur, 1996, pp. 3-18.

17. Szekely, P.: Retrospective and Challenges for Model-Based Interface Development.
In Proceedings of the 2nd International Workshop on Computer-Aided Design of
User Interfaces, (Vanderdonckt, J. Ed.). Namur University Press, Namur, 1996.

18. Szekely, P., Sukaviriya, P., Castells, P., Muhtkumarasamy, J., Salcher, E.: Declarative
Interface Models For User Interface Construction Tools: The MASTERMIND
Approach. In Engineering For Human-Computer Interaction, 1996.

19. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modelling Language Reference
Manual. Addison Wesley Longman, Inc. 1998.

