
Improving Maintenance through DevelopmentExperiences�Xiaodong Liu, Hongji Yang and Hussein ZedanDepartment of Computer Science,De Montfort University,EnglandEmail: xdl, hjy, zedan@dmu.ac.ukAbstractAn empirical comparison is made between present approaches/tools of software main-tenance and development. The conclusion is that development technology is more maturein many aspects, such as automation, formalism, con�dence, understanding of original sys-tems and application domain. Aims to improve the weakness of maintenance, a uni�edre-engineering approach is proposed which is based on a wide spectrum language and a setof formal abstraction and transformation rules. A relevant tool is under construction.Keywords : software maintenance and development, re-engineering, wide spectrum language,formal methods, object oriented, time critical systems.

�The paper is accepted by the Workshop on Empirical Studies in Software Maintenance (WESS98), Metropoli-tan, Washington D.C., USA, November 1998. 1

1 IntroductionSoftware maintenance is attracting more and more attention as it has become evident that oldarchitectures severely constrain new design, which leads to demands for changes to existingsoftware, for instance, �xing errors, adding enhancements and making optimisations. The im-plementation of the changes themselves creates problems over and above those that are beingrecti�ed.However, the approaches/tools of maintenance are rather weak when contrasted to those ofdevelopment. Two reasons account for this situation:� The research and practice of development are more mature than those of maintenance.� Maintenance is more di�cult and with large cost.Early systems tended to be unstructured and ad hoc, which makes it hard to understand theirbehaviour. System documentation is often incomplete, or out of date. With current methods, itis often di�cult to retest or verify a system after a change has been made. Successful softwarewill inevitably evolve, but the process of evolution will lead to degraded structure and yet greatercomplexity.Under most situation, the most reliable corpus of information on software being maintained forany signi�cant period is the code itself. However, to software engineers, code is more di�cult tounderstand than speci�cation. This accounts for the present backward situation of maintenanceto some extent.Based on the experience of using various maintenance and development tools, in particularMaintainer's Assistant (MA)[1, 6] and SPIN [3], we made a comparison between the currenttechnology of maintenance and development. The result is given in section 2. Our conclusion isthat development research has a longer history and is more advanced in a wide span. With thesuggestion of successes in development technology, a uni�ed approach for system re-engineeringis proposed in section 3. Section 4 summarises the experiment test result with case studies.2 Empirical Study of the Technology of Maintenance andDevelopmentWe based our study mainly on two tools: MA and SPIN. MA is an interactive tool which helpsthe user to extract a speci�cation from an existing source code program. It is based on a programtransformation system, in which a program is converted to a semantically equivalent form usingproven transformations selected from a catalogue. Spin is a widely distributed software packagethat supports the formal veri�cation of distributed systems. The software was developed at BellLabs in the formal methods and veri�cation group. It uses Linear Temporal Logic as its base.The aim of the ReForm project is to create a code analysis tool{theMaintainer's Assistant,aimed at helping the maintenance programmer to understand and modify a given program.Program transformation techniques are employed by the Maintainer's Assistant both to derive aspeci�cation from a section of code, and to transform a section of code into a logically equivalentform. The aim is to provide a tool with features such that:� It acts, initially, on existing program code as a tool to aid comprehension (possibly byproducing speci�cations);� Only the program code is required;� The system can work with any language by �rst translating|with a stand-alone translator{into WSL; 2

� Changes are made to the WSL program by means of transformation;� The system incorporates a large, exible catalogue of transformations;� The applicability of each transformation is tested before it can be applied;� The system is interactive and incorporates an X-Windows front end and pretty-printercalled the Browser;� The system includes a database structure to store information about the program beingtransformed, such as the variables assigned to within a given piece of code;� The system includes a facility to calculate metrics for the code being transformed.One of the most important successes of Maintainer's Assistant is that it is based on a widespectrum language whose syntax and semantics are formally de�ned. Maintainer's Assistant isa successful case of applying wide spectrum languages in re-engineering area. However, Main-tainer's Assistant focused on transformations rather than abstraction. It involved very littlein how to use multi-leveled abstractions and relevant abstraction rules to reach a good systemre-engineering, especially reverse engineering. The Wide Spectrum Language in Maintainer'sAssistant is sequential and non-timed, which limits its application domains such as real-timesystems.As a formal methods tool, SPIN aims to provide:1. an intuitive, program-like notation for specifying design choices unambiguously, withoutimplementation detail.2. a powerful, concise notation for expressing general correctness requirements, and3. a methodology for establishing the logical consistency of the design choices from 1) andthe matching correctness requirements from 2).The design methodology that is supported by SPIN can be summarised as follows:1. A distinction is made between behaviour and requirements on behaviour. The designerspeci�es the two aspects of the design in an unambiguous way by de�ning a veri�cation orprototype in the language PROMELA.2. The prototype is veri�ed using the model checker SPIN. The requirements and behavioursare checked for both their internal and their mutual consistency.3. The design is revised until its critical correctness properties can successfully be proven.Only then does it make sense to re�ne the design decisions further toward a full systemsimplementation.The increasing number of applications of SPIN, and the growing acceptance of formal methodsin general, are hopeful signs that this paradigm of design is maturing, and is gaining recognitionwhere it counts : among the practitioners of distributed systems design.The conclusions is that development technology is more advanced than that of maintenancein many aspects. We present our study according to the following criteria:1. Maturity. Development is far more well studied and has more approaches and tools thanmaintenance. The theory foundation of Spin has been well developed for a rather longhistory and has a wide and strong background. MA, although a successful example inmaintenance, is weaker in both theory and practice when compared with Spin.3

2. Application Domain. Most maintenance activities are still focused on sequential proceduralsystems, while many development activities already dip into special domains, such as time-critical, parallel/concurrent systems. Spin aims for concurrent distributed real-time system,while MA aims mainly at sequential non-time applications.3. Formalism. Most maintenance approaches and tools use ad hoc technology instead of formalmethods. This limits their con�dence and automation. On the other hand, formalism isalready popular in development approaches and tools. Spin is based on Linear TemporalLogic and theorem proving theory. MA although has a well de�ned formal semanticsfoundation, it is still weaker than Spin. And most other maintenance tools only use ad hoctechnology.4. Objectives. Maintenance aims to recover design and speci�cation from old code, to im-prove it and then to move down to a new system; while development always moves fromspeci�cation to source code. As stated before, Maintainer's Assistant aimed at helping themaintenance programmer to understand and modify a given program. Spin supports theformal speci�cation and veri�cation of distributed systems, time-critical systems.5. Key activity. In maintenance the key activity is abstraction; while in development it isre�nement.6. Understanding of System. This criterion is important both to maintenance and develop-ment. However, the target system is normally better understood by the software engi-neer during development than maintenance since speci�cation is easier to understand thansource code. When using MA, you actually has to read and understand the processed code�rst, whilst the speci�cation in Spin is more high-leveled and easier to understand.7. Automation. Maintenance tools are usually weak in automation in contrast with devel-opment tools. Many factors a�ect automation, for instance, using of formalism, rules toful�ll re�nement or abstraction, understanding of the processed system (code or speci�ca-tion). MA needs much more human intervene than Spin when using them for applications,especially using it to do abstraction.8. Industrial Scale. Only a few maintenance tools bear the ability to deal systems in industrialscale; while relatively `many' development tools have this ability. Spin can manage morelarge-scale application than MA.9. Con�dence. Maintenance approaches/tools tend to be less accurate to original systemswhen contrasted to development approach/tools. Lack of formalism and di�culties inunderstanding original systems contribute to this result. When using MA for programtransformation, the con�dence of the result is better than most of other maintenance tools,although sometimes it still produces \unreasonable" result.10. Emergency in need: Both e�cient maintenance and development approaches/tools areneeded in practice.3 Proposed Approach and ToolFrom the empirical study in section 2, we conclude that maintenance is weak in automation,formalism, con�dence, understanding of original systems and application domain. Maintenanceneeds further research. In order to overcome these incompetences, it is helpful and promisingto develop a formal approach accommodating reverse engineering systems with an emphasis onabstraction and also a provision of incorporating Object-Oriented technique for re-engineering4

these systems. With such an approach, the con�dence and automation of maintenance activitywill be increased. A formal speci�cation will be extracted from source code through abstractionrules to help the software engineer get a good understanding of original systems, which facilitatemaintenance in a great extent.The approach is based on the construction of a wide spectrum language, known as R-WSL,and a set of abstraction and transformation rules, which enjoys a sound formal semantics. Aspectrum of abstraction level from code to speci�cation and abstraction rules to cross theselevels are developed and de�ned in Interval Temporal Logic [4, 5, 2]. Besides general sequentialsystems, our approach treats concurrent real-time systems as its speci�c domain.A prototype tool named Re-engineering Assistant is being built based on the proposed frame-work, as a re-engineering workbench. We have also developed metric measures for measuringabstractness in such a tool.4 Case StudiesThe approach has been applied on small to medium case studies, and the result shows it is verypromising and worth further development.Typical �nished case studies include: (1) Robot Control System: non-timed, sequential sys-tem; (2) Mine Drainage System: time-critical, interrupt-driven system. (3) Task Farm System:parallel system with synchronous and asynchronous communication.5 ConclusionDevelopment and maintenance are two di�erent but closely related activities. It is helpful tocompare, contrast and borrow successful ideas between them. Since development has a longerhistory than maintenance, it often appears as technologies originated in development �nd theirnew place in maintenance.What is required is a reliable link between development and maintenance methodologies. Thiswill ultimately result in a highly and tightly integrated workbench which both deal with devel-opment and maintenance.References1. Bennett, K. H., Bull, T., and Yang, H. A transformation system for maintenance | turningtheory into practice. In IEEE Conference on Software Maintenance-1992 (Orlando, Florida, Nov.1992).2. Cau, A., Zedan, H., Coleman, N., and Moszkowski, B. Using ITL and tempura for largescale speci�cation and simulation. In Proceedings of 4th EUROMICRO Workshop on Parallel andDistributed Processing, IEEE (Braga, Portugal, 1996), pp. 493{500.3. Holzmann, C. J. Design and Validation of Computer Protocol. Prentice-Hall International, 1990.4. Moszkowski, B. A Temporal Logic for Multilevel Reasoning about Hardware. IEEE ComputerSociety, Feb. 1985.5. Moszkowski, B. Executing Temporal Logic Programs. Cambridge University Press, CambridgeUK, 1986.6. Yang, H., and Bennett, K. H. Extension of A transformation system for maintenance | dealingwith data-intensive programs. In IEEE International Conference on Software Maintenance (ICSM'94) (Victoria, Canada, Sept. 1994). 5

