Improving Maintenance through Development
Experiences®

Xiaodong Liu, Hongji Yang and Hussein Zedan
Department of Computer Science,
De Montfort University,
England
Email: xdl, hjy, zedan@dmu.ac.uk

Abstract

An empirical comparison is made between present approaches/tools of software main-
tenance and development. The conclusion is that development technology is more mature
in many aspects, such as automation, formalism, confidence, understanding of original sys-
tems and application domain. Aims to improve the weakness of maintenance, a unified
re-engineering approach is proposed which is based on a wide spectrum language and a set
of formal abstraction and transformation rules. A relevant tool is under construction.

Keywords : software maintenance and development, re-engineering, wide spectrum language,
formal methods, object oriented, time critical systems.

*The paper is accepted by the Workshop on Empirical Studies in Software Maintenance (WESS98), Metropoli-
tan, Washington D.C., USA, November 1998.

1 Introduction

Software maintenance is attracting more and more attention as it has become evident that old
architectures severely constrain new design, which leads to demands for changes to existing
software, for instance, fixing errors, adding enhancements and making optimisations. The im-
plementation of the changes themselves creates problems over and above those that are being
rectified.

However, the approaches/tools of maintenance are rather weak when contrasted to those of
development. Two reasons account for this situation:

e The research and practice of development are more mature than those of maintenance.
e Maintenance is more difficult and with large cost.

Early systems tended to be unstructured and ad hoc, which makes it hard to understand their
behaviour. System documentation is often incomplete, or out of date. With current methods, it
is often difficult to retest or verify a system after a change has been made. Successful software
will inevitably evolve, but the process of evolution will lead to degraded structure and yet greater
complexity.

Under most situation, the most reliable corpus of information on software being maintained for
any significant period is the code itself. However, to software engineers, code is more difficult to
understand than specification. This accounts for the present backward situation of maintenance
to some extent.

Based on the experience of using various maintenance and development tools, in particular
Maintainer’s Assistant (MA)[1, 6] and SPIN [3], we made a comparison between the current
technology of maintenance and development. The result is given in section 2. Our conclusion is
that development research has a longer history and is more advanced in a wide span. With the
suggestion of successes in development technology, a unified approach for system re-engineering
is proposed in section 3. Section 4 summarises the experiment test result with case studies.

2 Empirical Study of the Technology of Maintenance and
Development

We based our study mainly on two tools: MA and SPIN. MA is an interactive tool which helps
the user to extract a specification from an existing source code program. It is based on a program
transformation system, in which a program is converted to a semantically equivalent form using
proven transformations selected from a catalogue. Spin is a widely distributed software package
that supports the formal verification of distributed systems. The software was developed at Bell
Labs in the formal methods and verification group. It uses Linear Temporal Logic as its base.

The aim of the ReForm project is to create a code analysis tool-the Maintainer’s Assistant,
aimed at helping the maintenance programmer to understand and modify a given program.
Program transformation techniques are employed by the Maintainer’s Assistant both to derive a
specification from a section of code, and to transform a section of code into a logically equivalent
form. The aim is to provide a tool with features such that:

e It acts, initially, on existing program code as a tool to aid comprehension (possibly by
producing specifications);

e Only the program code is required;

e The system can work with any language by first translating—with a stand-alone translator—

into WSL;

Changes are made to the WSL program by means of transformation;
The system incorporates a large, flexible catalogue of transformations;
The applicability of each transformation is tested before it can be applied;

The system is interactive and incorporates an X-Windows front end and pretty-printer
called the Browser;

The system includes a database structure to store information about the program being
transformed, such as the variables assigned to within a given piece of code;

The system includes a facility to calculate metrics for the code being transformed.

One of the most important successes of Maintainer’s Assistant is that it is based on a wide
spectrum language whose syntax and semantics are formally defined. Maintainer’s Assistant is
a successful case of applying wide spectrum languages in re-engineering area. However, Main-
tainer’s Assistant focused on transformations rather than abstraction. It involved very little
in how to use multi-leveled abstractions and relevant abstraction rules to reach a good system
re-engineering, especially reverse engineering. The Wide Spectrum Language in Maintainer’s
Assistant is sequential and non-timed, which limits its application domains such as real-time
systems.

As a formal methods tool, SPIN aims to provide:

1.

an intuitive, program-like notation for specifying design choices unambiguously, without
implementation detail.

a powerful, concise notation for expressing general correctness requirements, and

a methodology for establishing the logical consistency of the design choices from 1) and
the matching correctness requirements from 2).

The design methodology that is supported by SPIN can be summarised as follows:

1.

A distinction is made between behaviour and requirements on behaviour. The designer
specifies the two aspects of the design in an unambiguous way by defining a verification or
prototype in the language PROMELA.

The prototype is verified using the model checker SPIN. The requirements and behaviours
are checked for both their internal and their mutual consistency.

The design is revised until its critical correctness properties can successfully be proven.
Only then does it make sense to refine the design decisions further toward a full systems
implementation.

The increasing number of applications of SPIN, and the growing acceptance of formal methods
in general, are hopeful signs that this paradigm of design is maturing, and is gaining recognition
where it counts : among the practitioners of distributed systems design.

The conclusions is that development technology is more advanced than that of maintenance
in many aspects. We present our study according to the following criteria:

1.

Maturity. Development is far more well studied and has more approaches and tools than
maintenance. The theory foundation of Spin has been well developed for a rather long
history and has a wide and strong background. MA, although a successful example in
maintenance, is weaker in both theory and practice when compared with Spin.

10.

3

Application Domain. Most maintenance activities are still focused on sequential procedural
systems, while many development activities already dip into special domains, such as time-
critical, parallel /concurrent systems. Spin aims for concurrent distributed real-time system,
while MA aims mainly at sequential non-time applications.

Formalism. Most maintenance approaches and tools use ad hoc technology instead of formal
methods. This limits their confidence and automation. On the other hand, formalism is
already popular in development approaches and tools. Spin is based on Linear Temporal
Logic and theorem proving theory. MA although has a well defined formal semantics
foundation, it is still weaker than Spin. And most other maintenance tools only use ad hoc
technology.

Objectives. Maintenance aims to recover design and specification from old code, to im-
prove it and then to move down to a new system; while development always moves from
specification to source code. As stated before, Maintainer’s Assistant aimed at helping the
maintenance programmer to understand and modify a given program. Spin supports the
formal specification and verification of distributed systems, time-critical systems.

Key activity. In maintenance the key activity is abstraction; while in development it is
refinement.

Understanding of System. This criterion is important both to maintenance and develop-
ment. However, the target system is normally better understood by the software engi-
neer during development than maintenance since specification is easier to understand than
source code. When using MA, you actually has to read and understand the processed code
first, whilst the specification in Spin is more high-leveled and easier to understand.

Automation. Maintenance tools are usually weak in automation in contrast with devel-
opment tools. Many factors affect automation, for instance, using of formalism, rules to
fulfill refinement or abstraction, understanding of the processed system (code or specifica-
tion). MA needs much more human intervene than Spin when using them for applications,
especially using it to do abstraction.

Industrial Scale. Only a few maintenance tools bear the ability to deal systems in industrial
scale; while relatively ‘many’ development tools have this ability. Spin can manage more
large-scale application than MA.

Confidence. Maintenance approaches/tools tend to be less accurate to original systems
when contrasted to development approach/tools. Lack of formalism and difficulties in
understanding original systems contribute to this result. When using MA for program
transformation, the confidence of the result is better than most of other maintenance tools,
although sometimes it still produces “unreasonable” result.

Emergency in need: Both efficient maintenance and development approaches/tools are
needed in practice.

Proposed Approach and Tool

From the empirical study in section 2, we conclude that maintenance is weak in automation,
formalism, confidence, understanding of original systems and application domain. Maintenance
needs further research. In order to overcome these incompetences, it is helpful and promising
to develop a formal approach accommodating reverse engineering systems with an emphasis on
abstraction and also a provision of incorporating Object-Oriented technique for re-engineering

these systems. With such an approach, the confidence and automation of maintenance activity
will be increased. A formal specification will be extracted from source code through abstraction
rules to help the software engineer get a good understanding of original systems, which facilitate
maintenance in a great extent.

The approach is based on the construction of a wide spectrum language, known as R-WSL,
and a set of abstraction and transformation rules, which enjoys a sound formal semantics. A
spectrum of abstraction level from code to specification and abstraction rules to cross these
levels are developed and defined in Interval Temporal Logic [4, 5, 2]. Besides general sequential
systems, our approach treats concurrent real-time systems as its specific domain.

A prototype tool named Re-engineering Assistant is being built based on the proposed frame-
work, as a re-engineering workbench. We have also developed metric measures for measuring
abstractness in such a tool.

4 Case Studies

The approach has been applied on small to medium case studies, and the result shows it is very
promising and worth further development.

Typical finished case studies include: (1) Robot Control System: non-timed, sequential sys-
tem; (2) Mine Drainage System: time-critical, interrupt-driven system. (3) Task Farm System:
parallel system with synchronous and asynchronous communication.

5 Conclusion

Development and maintenance are two different but closely related activities. It is helpful to
compare, contrast and borrow successful ideas between them. Since development has a longer
history than maintenance, it often appears as technologies originated in development find their
new place in maintenance.

What is required is a reliable link between development and maintenance methodologies. This
will ultimately result in a highly and tightly integrated workbench which both deal with devel-
opment and maintenance.

References

1. BEnNNETT, K. H., BULL, T., AND YANG, H. A transformation system for maintenance — turning

theory into practice. In IEEE Conference on Software Maintenance-1992 (Orlando, Florida, Nov.
1992).

2. Cau, A., ZEDAN, H., COLEMAN, N., AND M0szZKOWsKI, B. Using ITL and tempura for large
scale specification and simulation. In Proceedings of jth EUROMICRO Workshop on Parallel and
Distributed Processing, IEEE (Braga, Portugal, 1996), pp. 493-500.

3. HorzMANN, C. J. Design and Validation of Computer Protocol. Prentice-Hall International, 1990.

4. Moszkowski, B. A Temporal Logic for Multilevel Reasoning about Hardware. TEEE Computer
Society, Feb. 1985.

5. M0szZKOWSKI1, B. FEzecuting Temporal Logic Programs. Cambridge University Press, Cambridge
UK, 1986.

6. YANG, H., AND BENNETT, K. H. Extension of A transformation system for maintenance dealing
with data-intensive programs. In IEEE International Conference on Software Maintenance (ICSM
’94) (Victoria, Canada, Sept. 1994).

ot

