
Improving a Lecture Timetabling System for
University-Wide Use

Ben Paechter, R. C. Rankin, and Andrew Cumming

Department of Computing
Napier University
219 Colinton Road

Edinburgh
Scotland
EH141DJ

benp @dcs.napier.ac.uk

Abstract. During the academic year 1996/97 the authors were commissioned
by their institution to produce an automated timetabling system for use by all
departments within the Faculty of Science. The system had to cater for the
varying requirements of all the departments, be easy to use, robust, expandable,
and timetable 100% of events fully automatically within a reasonable time. The
timetables produced had not only to be workable, but also had to be 'good' with
respect to management defined criteria. The work was intended as a pilot study
for later extension to the whole institution. This paper describes the
enhancements to the user interface and timetabling engine that were found to be
necessary to meet the more extensive needs of a faculty.

1. User Interface

Specifying timetabling constraints can be difficult for anyone, and often this task is to
be completed by administration staff with little knowledge of mathematics or
computing. It is important therefore, that the user interface is easy to use, and that the
concepts employed related to the real world rather than to abstract mathematical
structures and operations.

In designing the interface some concepts were defined to help users to specify the
constraints on the timetable.

1.1 Features

A feature is a property satisfied by some resources or events in the system and
required by others. For example certain rooms may be "accessible" by those with
mobility problems. The room is made to satisfy a feature called "access" that is
required by a student-group. The constraint being represented here is that any event
that the student group is required to attend can only be allocated to a room possessing

157

the "access" feature. Another constraint might be that a certain room is reserved for
senior students. This could be represented by making the room require the feature
"senior" and the senior student groups satisfy it.

Entire Year Group

BScl

contains

Tutorial Sub-Groups

BScla, BSclb etc.

Fig. 1. The contains relationship for groups.

There is no restriction on what can be represented as a feature; the most common
use in a computing department is to manage rooms according to function and
equipment and software availability. Features need not be singular: a room may
satisfy or require several features. For example, a pair of computer laboratories for
data-communications classes may have the same equipment and software but one may
be more accessible than the other. Both would have the feature "comms", but only the
latter would also have the feature "access". Events requiring "comms" could be
placed in either laboratory, but "comms" events that also required "access" could only
be placed in the latter.

1.2 Containers

A container is a resource that can hold other similar resources, including other
containers. The contains relationship can be seen as a parent-child relationship giving
us a directed graph. If a particular resource is busy then all its descendants are also
busy along with all of the descendant's ancestors.

This has been applied to student-groups and rooms. A common example is show in
Figure 1, where a student group sub-divides for tutorial classes or practical classes.

The container concept allows for flexible use of rooms, especially when different
features are associated with each level in the container hierarchy. For example, a
general purpose classroom may have the feature "GP-room" and a nearby computer
laboratory may have the feature "PC-lab". Although there is no physical relationship
between these rooms, a container may be created that encompasses both and has the
abstract feature "GP+PC". Any events of a subject or module that need flexible access

158

to both types of accommodation will require the feature "GP+PC". These events will
be timetabled into the logical container room making both physical rooms busy at that
time. The composite room becomes unavailable when either of its components is in
u s e .

Composite Room

Classroom PC Labora to ry

Fig. 2. The contains relationships for rooms

The container relationship can also be applied to rooms with moveable partitions
which allows the various components, or the whole room, to be used at will but
prevents booking of one element causing clashes with others. There is no limit to the
depth of the container tree and its branches may be unbalanced.

A novel use of the container function is to deal with rooms of variable capacity.
For example a PC laboratory may have 16 computers. For one class it may be
desirable to have one student per machine, while for another, students may benefit
from working in pairs. One room is created with size 16 and the feature "PC-lab" and
another with size 32 and the feature "crowded-PC-lab". One room is made to contain
the other. Events that allow one student to each machine will require a "PC-lab" and
those that allow two students per machine will require a "crowded-PC-lab". As before
if the parent is busy the child is unavailable and vice-versa, so clashes do not occur.

A more specialised use of the container facility occurs where an event requires use
of different types of accommodation at different times in the semester. For example, if
a room is only required by an event on odd weeks of a semester that event can be
made to require "odd-ness". A physical room is made to contain two identical rooms,
one with the feature "odd-ness" and the other with the feature "even-hess". Because
siblings can be assigned independently, the allocation of the "odd" room to an event
does not preclude the use of its sibling by an event requiring the "even" room. This
technique is unnecessary where the system deals with separate timetables for each
week, but is of importance where the greatly increased complexity and processing
load of supporting weekly timetables needs to be avoided.

2. Evolutionary Engine

The evolutionary engine employs a memetic algorithm using an indirect
representation, heuristic seeding, directed mutation and targeted mutation. This

159

algorithm is described in detail in [1]. Changes to the algorithm, and further results
are given below.

2.1 Room Assignment

In previous versions of the algorithm, genetic representations encoded information
about the timeslot that each event should take place in, and rooms were allocated
using a greedy algorithm which allocated the best fitting room available to each event.
However, new evaluation criteria concerning the movement of people around and
between buildings has made it necessary to extend this genetic representation to
include information about the room in which an event should take place.

The specified room for an event is chosen from an ordered list of possible rooms.
A room is deemed "possible" if the combination of event, student groups, lecturers
and that room, leaves all the required features of any of them satisfied by at least one
of them, and the room capacity is greater than the combined sum of the sizes of the
student groups attending. The list is ordered by a heuristic that takes into account
features that the room satisfies that are not required, and unused capacity of the room.
This helps to ensure that events do not claim rooms that are bigger or satisfy more
features than are necessary.

When evaluating a chromosome, if the room specified for an event is not available
(because it has been used by some other event), then a search through the ordered list
of possible rooms is conducted. If a suitable room is found, then that room can be
written back to the genetic representation.

2.2 Local Search Results

There has been some debate as to the need for local search (memetics) in an
evolutionary approach to timetabling. Local search can be computationally very
expensive and it could be argued that the advantages of local search are outweighed
by the disadvantage of processing far fewer chromosomes in the same time. Some
methods do not use local search e.g. [2], some use local search throughout e.g. [1],
[3], others use local search to seed an initial population e.g. [4].

In order to explore this issue, experiments were conducted using different amounts
of local search. The data for these experiments was that for the Computer Studies
Department at Napier University. In one experiment local search was always used, in
another in was only used to seed the initial population, and in other experiments local
search was used when evaluating a randomly selected percentage of chromosomes.
Each experiment was given the same elapsed time to run, and so experiments using
less local search were able to perform a significantly larger number of evaluations.
The results are given in Figure 3 and show the weighted sum of penalty points over
12 competing objectives, averaged over 25 runs. These results show that significant
improvement can be made to the algorithm by including local search not just at the
population seeding stage, but throughout the whole algorithm.

160

Fig. 3. Effect of varying the amount of local search

Some systems, such as that described in [5], use a method known as delta
evaluation. This method cuts the processing necessary for timetable evaluation by re-
evaluating only the parts of the timetable that are changed through recombination or
mutation. Using local search throughout the evolution makes it impossible to
efficiently implement delta evaluation. While the authors expect that delta evaluation
cannot compensate for the lack of local search, it should be noted that experiments
have not been conducted to examine this.

2.3 Lamarckism

If local search is used then the results of this can be written back into the chromosome
giving Lamarckian evolution. There is some debate as to the relative benefits of
Lamarckian evolution compared to simply making use of the Baldwin Effect (using
local search but not writing the results back) [6].

Experiments were conducted, in a similar fashion to those above, to measure the
effect of varying the percentages of chromosomes that have the results of local search
written back to them. It should be noted that even in the experiments where no direct
writeback occurs, there is still a Lamarckian effect, since the directed and targeted
mutation operators have a Lamarckian nature. The results given in Figure 4 show that
for this real world problem Lamarckism has a significant advantage over use of the
Baldwin Effect. As soon as some writing back is done there is a big improvement.
Increasing the amount of writeback does not have a large effect because if there is

161

some writeback in the system then each chromosome will eventually have its local
search results written back even if it has to wait some generations for this.

The main reason that writing back is important is that it decreases epistasis in the
chromosomes. The local search considers each of the events in turn and tries to place
the event in the timeslot and room specified by the chromosome. If the timeslot and
room are not available then others are tried. Without writeback, the timeslot and room
used by an event at the last evaluation are not necessarily the ones specified in the
chromosome. This means that choosing the same timeslot and room is dependent on
the slots and rooms tried earlier being unusable - i.e. the resources they need have
already been used by some event considered earlier. So the timeslot and room for an
event is dependent on the slots used by previously considered events. If this event gets
a different slot then so might others considered afterwards. Writing back the results of
local search avoids this, so decreasing epistasis in the chromosomes, making then less
brittle.

Fig. 4. Effect of varying the amount of writeback

3. Evaluation Criteria and Results

The Napier University Science Faculty, was timetabled using 12 competing objectives
in addition to the objective of placing all events. The results obtained from a typical
run are shown in Figures 5-16. Results show penalty points for each evaluation
criterion are given for run time of 10 minutes, 1 hour and 12 hours on a Pentium Pro
200 computer system, along with the figures for the manually produced timetable.

It can be seen from the results that the pilot study was successful. The system
produces feasible timetables in a few seconds. If the system is left to run overnight
then timetables can be produced that are better than manually produced timetables in
all measured criteria.

162

Fig. 5. Lecturers without a teaching free day.

Fig. 6. More than two lectures in a row

Fig. 7. More than three hours class contact in a row

Fig. 8. Gaps of more than three hours in a student's day.

163

Fig. 9. We.dncsday Afternoon Classes.

Fig. 10. Five o'clock classes.

Fig. 11. Single classes on a student's day.

Fig. 12. Site changes during the day.

164

Fig. 13. Instantaneous site changes during the day.

Fig. 14. Location changes within a site.

Fig. 15. Room changes within a location.

Fig. 16. Seat wastage.

165

4. Conclusions

We have defined two concepts, features and containers and shown how they can
be used to help define constraints in timetabling problems. We have shown that the
policy of using a memetic (local search) algorithm with Lamarckian evolution work
well for this problem.

A system has been produced which is easy to use, quickly produces feasible
timetables, and which given an overnight run can be produce timetables that are better
than those manually produced in all measured criteria.

References

[1] Paechter B., Cumming, A., Norman, M.G. and Luchian, H., "Extensions to a Memetic
Timetabling System", in Practice and Theory of Automated Timetabling, Eds., Burke, E.
and Ross, P., Springer-Verlag Lecture Notes in Computer Science 1153, Berlin 1996.

[2] Come, D., Ross, P. and Fang, H, "Fast Practical Evolutionary Timetabling", in Evolutionary
Computing, Ed. Fogarty, T, Springer-Verlag Lecture Notes in Computer Science 865, Berlin
1994.

[3] Burke, E. Newall, J.P., and Weare, R.F., "A Memetic Algorithm for University Exam
Timetabling", in Practice and Theory of Automated Timetabling, Eds., Burke, E. and Ross,
P., Springer-Verlag Lecture Notes in Computer Science 1153, Berlin 1996.

[4] Come, D and Ross, P., "Peckish Initialisation Strategies for Evolutionary Timetabling", in
Practice and Theory of Automated Timetabling, Eds., Burke, E. and Ross, P., Springer-
Verlag Lecture Notes in Computer Science 1153, Berlin 1996.

[5] Ross, P., Come, D. and Fang, H., "Improving Evolutionary Timetabling with Delta
Evaluation and Directed Mutation" in Parallel Problem Solving from Nature ii, Ed. Davidor,
Y., Springer-Verlag, Berlin 1994.

[6] Tumey, P, Whitley, D. and Anderson, R. "Evolution Learning and Instinct: 100 Years of the
Baldwin Effect" in Evolutionary Computation, Volume4, Number 3, MIT Press 1996.

