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A B S T R A C T   

There is an urgent need to understand how organisms respond to multiple, potentially interacting drivers in 
today's world. The effects of the pollutants anthropogenic sound (pile driving sound playbacks) and waterborne 
cadmium were investigated across multiple levels of biology in larval and juvenile Norway lobster, Nephrops 
norvegicus under controlled laboratory conditions. The combination of pile driving playbacks (170 dBpk-pk re 1 
μPa) and cadmium combined synergistically at concentrations >9.62 μg[Cd] L− 1 resulting in increased larval 
mortality, with sound playbacks otherwise being antagonistic to cadmium toxicity. Exposure to 63.52 μg[Cd] L− 1 

caused significant delays in larval development, dropping to 6.48 μg[Cd] L− 1 in the presence of piling playbacks. 
Pre-exposure to the combination of piling playbacks and 6.48 μg[Cd] L− 1 led to significant differences in the 
swimming behaviour of the first juvenile stage. Biomarker analysis suggested oxidative stress as the mechanism 
resultant deleterious effects, with cellular metallothionein (MT) being the predominant protective mechanism.   

1. Introduction 

Many marine environments and the species therein are facing un
precedented pressure resultant of anthropogenic activities. To date, 
many studies have considered the effects of individual drivers, however 
in reality environments are complex with multiple drivers co-occurring 
or interacting (Boyd et al., 2018; Griffen et al., 2016). The need to better 
understand the impacts and implications of multiple drivers is 
emphasised by inclusion as an objective of the United Nations Decade of 
Ocean Science for Sustainable Development (Ryabinin et al., 2019). 
Though climate change is arguably at the forefront of people's minds 
when discussing environmental drivers in our oceans, there are many 
other drivers including pollution in the form of chemical loading (Boc
chetti et al., 2008; Matlock et al., 2002; Rider et al., 2014), and sound 
pollution caused by shipping, marine construction and other anthropo
genic activities (Solan et al., 2016; Lancaster et al., 2021; Lucke et al., 
2009; Nikolich et al., 2021; Richardson et al., 2013; Tyack, 2008). 

Whilst many studies have evidenced impacts of chemical pollutants on 
marine life, and a growing body of work addressing the biological im
pacts of sound pollution exists (Wale et al., 2021), few studies have 
investigated these drivers in combination, despite their potential co- 
occurrence. 

To assess whether interaction between anthropogenic sound and 
chemical pollution occurs, the toxicity of waterborne cadmium was 
assessed in combination with simulated pile driving sound achieved via 
playback of in situ recordings. Pile driving was selected as a sound driver 
given the expected prevalence of offshore construction in the coming 
years, particularly in the energy sector (Gourvenec et al., 2022). Cad
mium was selected given its common use as a reference toxicant, but also 
due to its legacy prevalence in marine sediments. The specific combina
tion of pile driving sound and cadmium exposure was considered envi
ronmentally plausible as sediment disturbances during construction 
activities can result in dissolution of sediment-associated minerals and 
chemicals (Eggleton and Thomas, 2004; Gutiérrez-Galindo et al., 2010). 

* Corresponding authors at: Aquatic Noise Research Group, School of Applied Sciences, Edinburgh Napier University, 9 Sighthill Court, Edinburgh EH11 4BN, UK. 
E-mail addresses: c.stenton@napier.ac.uk, k.diele@napier.ac.uk (C.A. Stenton), k.diele@napier.ac.uk (K. Diele).  

Contents lists available at ScienceDirect 

Marine Pollution Bulletin 

journal homepage: www.elsevier.com/locate/marpolbul 

https://doi.org/10.1016/j.marpolbul.2022.113667 
Received 24 December 2021; Received in revised form 10 April 2022; Accepted 12 April 2022   

mailto:c.stenton@napier.ac.uk
mailto:k.diele@napier.ac.uk
mailto:k.diele@napier.ac.uk
www.sciencedirect.com/science/journal/0025326X
https://www.elsevier.com/locate/marpolbul
https://doi.org/10.1016/j.marpolbul.2022.113667
https://doi.org/10.1016/j.marpolbul.2022.113667
https://doi.org/10.1016/j.marpolbul.2022.113667
http://crossmark.crossref.org/dialog/?doi=10.1016/j.marpolbul.2022.113667&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Marine Pollution Bulletin 179 (2022) 113667

2

Pile driving, or piling, is the process of driving supports known as 
‘piles’ deep into bedrock to provide solid structural foundation for 
construction. This often involves percussively hammering metal piles 
through the ground, the acoustic profile of which varies depending on 
the installation specifics, with source sound pressure levels exceeding 
250 dB re 1 μPa @ 1 m recorded for installations in UK waters (Nedwell 
et al., 2007). Based upon recordings of piling derived in the North Sea 
and specific sound propagation modelling, it has been estimated that 
pile driving sound exposure levels remain at 168 dB re 1 μPa2 s even at 2 
km distance from the source (Bolle et al., 2012; Hazelwood and Macey, 
2021). Piling also produces impulsive sounds, so in addition to typically 
producing high amplitudes of sound pressure and particle motion, these 
shifts in pressure and particle motion occur extremely rapidly (Hastie 
et al., 2019). 

Cadmium is a heavy metal predominantly produced as a by-product 
of zinc refinement (Shiel et al., 2010) and is widely used in industry, 
including use in batteries, pigments, and as an alloying material 
(Hasanuzzaman and Fujita, 2013). Cadmium is also a well-established 
and highly potent environmental toxicant with known carcinogenic 
and teratogenic properties (Witeska et al., 2014), the effects of which 
have been widely researched across a variety of taxa (Bohra et al., 2015; 
Marettová et al., 2015; Okocha and Adedeji, 2011). Although environ
mental discharge is now regulated in much of the world, cadmium of 
historic origin present in sediments remains a persistent contaminant (Ei 
Tun et al., 2009; Kühn et al., 1992), especially in estuarine and marine 
settings where it is likely to deposit given its physicochemical properties 
(Jiann and Ho, 2014; Stephenson et al., 1996). Given a plausible co- 
occurrence of sound-producing construction activity and heavy metal 
enrichment of waters, the aim of this study was to evaluate the potential 
interactive effects of the combination of pile driving sound playbacks 
and cadmium exposure. The study focused on early life stage organisms 
given these are often more sensitive to stressors than mature counter
parts (Braunbeck et al., 2014). Hence, early life stage exposures can lead 
to population ‘bottlenecks’ (Pineda et al., 2010). 

The model species chosen for this study, the Norway lobster, Neph
rops norvegicus (henceforth Nephrops), is a decapod crustacean common 
to the shallow-water regions of the North-East Atlantic and North Sea 
regions (Fisheries Global Information System (FAO-FIGIS), 2016). 
Nephrops has a biphasic life-cycle — undergoing planktonic larval 
development, followed thereafter by a benthic existence excavating and 
occupying burrows in muddy sediments. Adult female Nephrops produce 
a clutch of eggs annually, typically fertilised during summer months. 
The egg clutch is carried on the female's pleopods for around nine 
months before hatching in the following spring. Newly hatched pelagic 
Zoea larvae (Zoea I) are dispersed into the water column, and over a six- 
week period undergo two moults (to stages Zoea II and Zoea III) before 
metamorphosing to the first juvenile stage and commencing a benthic 
existence (Powell and Eriksson, 2013). 

The conservation status of Nephrops is currently considered as ‘least 
concern’ by the International Union for Conservation of Nature (IUCN); 
nonetheless the species faces a variety of pressures as the result of 
human activities. Nephrops are highly sought after across NE Europe for 
their commercial value, representing the third largest target-species 
fishery in Scotland by mass, valued at £86 m for 2019 (The Scottish 
Government, 2020). In addition to fishing pressure, the North Sea 
habitat range of Nephrops overlaps with a region of high utilisation for 
energy production, with a high density of existing and/or planned fixed 
structures including windfarms and fossil fuel platforms, the construc
tion of which usually requires some degree of pile driving. 

This study aimed to ascertain (i) whether anthropogenic sound 
playbacks and/or chemical pollutants affect the early life stages of 
Nephrops, (ii) whether these two drivers combine and interact, and (iii) 
the potential mechanism contributing to any such interactions. 

2. Methods 

The study comprised two complementary experiments conducted in 
a controlled laboratory setting. Experiment 1 focused on impacts of in
dividual and combined sound and cadmium exposure on mortality, 
growth and development of Nephrops larvae and behavioural fitness of 
the first Nephrops juvenile stage. Experiment 2 addressed a potential 
mechanistic link to the phenomenological observations from Experi
ment 1, focusing on quantification of oxidative stress biomarkers. 

2.1. Animal husbandry 

Berried female Nephrops were procured from DR Colin & Sons Ltd. of 
Eyemouth, Berwickshire, UK during July 2018 (Experiment 1) and June 
2019 (Experiment 2). All Nephrops were trawl-caught, landed, sorted, 
and held in refrigerated seawater before being transported to the St Abbs 
Marine Station, Berwickshire, UK on the same day they were caught. 
Healthy-appearing berried females with eggs in an advanced stage of 
development were selected and placed individually in 15 l conical up
welling hoppers (30 cm top-diameter, 15 cm bottom-diameter, 30 cm 
depth) with 1.5 mm mesh-covered outflows to enable retention of larvae 
of known maternity upon hatching. Hoppers contained segments of PVC 
pipes to provide shelter and were covered by 75% shade netting to 
reduce light intensity. The females were fed cooked blue mussel (Mytilus 
edulis) ad libitum. Flow-through conditions were maintained using raw, 
ambient-temperature seawater. On a weekly basis, each berried female 
was carefully transferred to a freshly cleaned hopper. Hoppers were 
visually inspected each morning for presence of newly hatched larvae. If 
present, these were collected into a 2-litre beaker, and subsequently 
transferred individually to experimental conditions using a 10 ml 
pipette. Larvae were maintained in UV sterilised seawater dosed to a 
designated cadmium concentration (detailed below). Water temperature 
was maintained at 12 ± 1 ◦C, and 75% shade netting used to reduce light 
intensity and minimise disturbance. Vessels were cleaned and received a 
95% water change twice weekly, at which time larvae were fed ad libi
tum with Artemia sp. nauplii. 

2.2. Experimental system 

Two identical exposure systems, each facilitating a different sound 
treatment, were set up to allow concurrent co-exposure of sound and 
cadmium under controlled conditions. Each system comprised a 750- 
litre fibreglass tank (internal dimensions (LWD): 152 cm × 94 cm ×
60 cm) acting as a water bath, containing a Clark Synthesis Diluvio 
AQ339 Aquasonic underwater speaker (frequency response: 20–17,000 
Hz) suspended centrally above the tank floor and orientated upwards 
towards the water surface, such that the speaker cone was 14 cm above 
the floor of the tank, and a minimum of 40 cm from the base of the 
closest exposure vessels (Fig. S1). Speaker suspension was employed to 
minimise extraneous vibration transfer between the speaker body 
directly into the tank superstructure and to reduce the potential for 
additional, diffuse sound pressure and/or particle motion sources. Each 
speaker was coupled to a Samson Audio Servo 300 Power Amplifier with 
signal input facilitated via a laptop computer and M-Audio M-Track 
QUAD Audio Interface. Each fibreglass tank was filled with raw seawater 
(34 ppt salinity) maintained at 12 ± 1 ◦C using a Teco TK-2000 heater- 
chiller unit fed by an Eheim Universal 3400 pump operating at a flow 
rate of 775 l/h, forming a static recirculating system. Both the pump and 
heater-chiller unit were externally isolated from the fibreglass tank to 
prevent transfer of additional sound and vibration, and all necessary 
contact points between in/outflow piping dampened by 4 mm-thick 
rubber sheeting placed between their interfaces. Water levels within the 
fibreglass tank were maintained where necessary by addition of deion
ised water, accounting for losses to evaporation and maintaining 
consistent seawater density (and associated sound propagation) condi
tions. Each fibreglass tank contained a table positioned centrally above 
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the speaker and isolated from the tank floor using anti-vibrational 
rubber sheeting, providing a surface onto which exposure vessels 
could be placed. Table height maximised the distance of the exposure 
vessels from the speaker to reduce the impacts of potential sound cone 
and near-field sound effects, whilst ensuring the working volume of the 
exposure vessels remained submerged. This resulted in a water-based 
interface for sound propagation, and effective temperature regulation 
of the exposure vessels. 

2.3. Sound exposures 

Exposure to ambient and pile driving sounds was simulated using 
playbacks of field-derived sound recordings made available by Rick 
Bruintjes (Defra, UK), Sophie Nedelec (University of Exeter, UK) and 
Irene Voellmy (University of Berne, CH). Piling playback tracks were 
compiled from multiple recorded strikes of a 1.2 m diameter monopole 
being driven approximately 25 m into the seabed in a water depth of 6.5 
m, recorded at distances between 87 and 200 m from the sound source 
using a Hi Tech Inc. HTI-99HF hydrophone with inbuilt preamplifier 
(manufacturer calibrated sensitivity − 204 dB re 1 V μPa− 1, 20–125,000 
Hz frequency range) and a RTsys EASDA data logger using a 44.1 kHz 
sampling rate. Ambient playback tracks were compiled from compara
ble recordings made in the absence of any evident anthropogenic sound, 
taken using a HiTech HTI-96-MIN hydrophone with inbuilt preamplifier, 
and an Edirol R09-HR 24-Bit recorder (44.1 kHz sampling rate). All 
sound files for experimental playback were compiled in Audacity 2.2.2 
and output as 24-bit WAV files. The ambient sound treatment comprised 
a 4:00 h looped ambient recording repeated continuously. The piling 
playback sound treatment comprised four pile driving tracks of varying 
length (1:00 h, 1:15 h, 1:30 h, 2:15 h) interspersed with four ambient 
tracks (3:30 h, 4:00 h, 4:30 h, 6:00 h duration). Pile driving and ambient 
tracks were alternated such that no single track was repeated within a 
24-hour period, amounting to a pseudorandomised sound regime, whilst 
maintaining a known, consistent sound exposure each day. Received 
sound pressure level (SPL) in exposure vessels was targeted at 118 dBRMS 
re 1 μPa in ambient playback phases to approximately match the noise- 
floor of the tanks, and at 170pk-pk re 1 μPa for piling playback phases. 
Received sound exposure levels were measured within each exposure 
vessel. Sound pressure was measured using a manufacturer-calibrated 
HiTech HTI-94-MIN hydrophone (sensitivity: − 165 dB re 1 V μPa− 1) 
coupled with a calibrated Roland R-26 2-channel Portable Recorder. 
Particle motion (as three-dimensional magnitudinal acceleration) was 
measured using a calibrated custom-built triaxial accelerometer 
(STMicroelectronics LIS344ALH) potted within epoxy resin and sus
pended within the exposure vessels using 1 mm diameter elastic cord 
(Wale, 2017). 

2.4. Cadmium exposures 

All equipment and exposure vessels were acid washed using 2 M 
nitric acid prior to use to remove trace-metal contamination. Exposure 
vessels were then subsequently conditioned with a cadmium solution of 
their respective designated nominal concentration. In each experiment, 
larvae were exposed to one of four cadmium treatments with nominal 
waterborne cadmium ion concentrations (Cd2+) of 0 μg L− 1, 1 μg L− 1, 10 
μg L− 1, and 100 μg L− 1 — henceforth referred to as Control[Cd], Low[Cd], 
Medium[Cd] and High[Cd] respectively. All chemical exposures were 
conducted under semi-static renewal conditions, with twice-weekly 
(Experiment 1) and daily (Experiment 2) 95% water changes and full 
cadmium renewal. In each experiment, replication was fulfilled using 
conspecific larvae originating from a single berried female. Detailed 
cadmium dosing regimens for both Experiment 1 and Experiment 2 can 
be found in the supplementary materials (Table S1). 

Time-averaged waterborne Cd2+ concentrations were quantified 
from paired water samples taken immediately after dosing and imme
diately preceding water changes pooled from each replicate and 

preserved by acidification to pH < 2 using addition analytical grade 
nitric acid. Cadmium quantification was conducted by GEOMAR 
Helmholtz Centre for Ocean Research, Germany using solid-phase 
extraction ICP-MS. 

2.5. Experiment 1: phenomenological observations 

For Experiment 1 a total of 160 Nephrops Zoea I larvae were evenly 
distributed between treatment groups, resulting in 20 independent 
replicates (i.e. larvae) per treatment. Larvae were allocated over a two- 
day period due to timing of hatching, with 80 larvae evenly allocated 
across treatment groups on each of the two days. Larvae were main
tained individually in 330 ml BPA-free, food-grade virgin polypropylene 
plastic cups containing 250 ml of cadmium-dosed UV sterilised 
seawater. Treatment replicates were arranged in a 14 × 6 Latin-square 
array to account for environmental factors and sound gradient effects 
(Fig. S2). 

Larvae were concurrently exposed to sound and chemical treatments 
for the duration of their planktonic development (Zoea I, II, III), and for 
an additional three days following metamorphosis to the benthic 
juvenile. 

2.5.1. Mortality 
All larvae were observed daily. In the event of a mortality, this was 

noted and the carcass collected, labelled, and frozen in a − 20 ◦C freezer 
for later biometric analysis. 

2.5.2. Development 
In the event of a successful moult, the day of moulting was recorded 

relative to the date each individual larva initially hatched. 

2.5.3. Behavioural fitness 
Nephrops that successfully transitioned to juveniles were subjected to 

a behavioural fitness assessment three days post metamorphosis. Their 
tail-flick escape response was assessed using methods similar to those 
described in Kellie et al. (2001) and (Bolger (2022). The fitness assess
ment was conducted in a circular ‘arena’ (19 cm diameter, height 12 
cm), filled with 250 ml of fresh, temperature acclimated UV sterilised 
seawater. The contents of individual exposure vessels, juvenile Nephrops 
included, were carefully poured into the arena. Following a five-minute 
acclimation period, the first-stage juvenile Nephrops were provoked by 
vertically lowering a small plastic rod onto the arena floor directly in 
front of them (0.5 cm from the rostrum) at a speed of approximately 10 
cm s− 1. For each provocation, the presence/absence of an induced 
escape response was recorded on video at 720p resolution and 60 fps 
using a DSLR camera suspended above the arena for later analysis using 
ImageJ Fiji (Schindelin et al., 2012). Where a tail-flick response was 
provoked, the total number of tail flicks within that response was 
counted, along with the distance the larva had travelled and its average 
swimming speed of each component tail flick within that response. This 
generated a hierarchical data set detailing each aspect of the swimming 
dynamics across all provocations. Fitness assessment and reviewing of 
the video files were both conducted blind to reduce potential bias. 

2.5.4. Biometrics 
Following completion of the behavioural fitness experiment, cara

pace length (mm) of first-stage juveniles (rostrum to anterior carapace) 
was measured using digital calipers and whole organism wet- and dry- 
weight (mg) (dried at 60 ◦C to constant mass) determined using a 
gravimetric balance. 

2.6. Experiment 2: biomarker assays 

For Experiment 2 a total of 672 Nephrops Zoea I larvae were evenly 
distributed across seven replicates of each treatment. Each replicate 
constituted a 1000 ml borosilicate glass beaker, containing 800 ml of 
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cadmium-dosed UV sterilised seawater, and 12 larvae. Communal allo
cation of larvae within replicates was required to provide sufficient 
tissue quantities to facilitate biomarker analyses. Full allocation was 
conducted over a 12-day period over which the larvae hatched, with 
specimens hatching on any given day being evenly distributed across all 
treatments. Exposure vessels were randomly allocated to one of 16 po
sitions (arranged in a 4 × 4 square within the central portion of the 
exposure system (Fig. S3) where sound levels were most consistent, and 
randomly reallocated to one of these 16 positions following each water 
change to minimise the influence of any environmental variation. 

Following the 5-day exposure period, surviving larvae from each 
replicate were removed from the vessels, gently dried with absorbent 
tissue, and all individuals within a replicate collected into a single 
cryovial before being flash-frozen in liquid nitrogen and stored at − 80 
◦C. Replicate whole-organism samples were homogenised in 800 μl Tris- 
HCl (50 mM, 0.15 M KCl, pH 7.4) buffer solution using a motorised 
pestle, and spun at 10,000 RPM for 3 min in an Eppendorf Mini Spin 
centrifuge. The resulting supernatant was split into aliquots for each of 
the oxidative stress assays, and re-frozen at − 80 ◦C until required. 
Quantitative assays were normalised against total protein content 
(Bradford, 1976). Superoxide dismutase (SOD) inhibition was quantified 
using the Sigma-Aldrich SOD Determination Kit (19160). Catalase (CAT) 
activity was quantified using the Cayman Chemical Catalase Assay Kit 
(707002). Glutathione (GSH) concentration was determined according 
to methods outlined by (Smith et al., 2007) adapted from (Owens and 
Belcher, 1965). Glutathione peroxidase (GpX) was quantified using the 
Cayman Chemical Glutathione Peroxidase Assay Kit (703102). Thio
barbituric acid reactive substances (TBARS) were quantified following 
the protocol of Al-Shaeri et al. (2013) adapted from Smith et al. (2007). 
Metallothioenein (MT) was quantified in accordance with the methods 
derived from Viarengo et al. (1997) and Cenov et al. (2018) assuming 18 
Cys residues per metallothionein residue (Cenov et al., 2018; Zhu et al., 
1994). Detailed methods for all biomarker assays can be found in the 
supplementary materials. 

2.7. Treatment characterisation and quantification 

Sound analyses were conducted using the Signal Processing Toolbox 
in MATLAB R2021b (The MathWorks Inc, 2021). Sound pressure was 
analysed over a broadband frequency range of 1–24,000 Hz from 10 s 
recordings. Sound particle motion was analysed over a 50–3000 Hz 
range using a 3rd-order Butterworth bandpass filter. Ambient sound 
treatments were characterised as continuous sounds, and therefore 
quantified as root-mean-square (RMS) sound pressure. Piling playback 
treatments were characterised as impulsive sounds, and thus primarily 
quantified using peak-to-peak sound pressure, with RMS being calcu
lated for comparative purposes only. 

2.8. Statistical analyses 

All statistical analyses were performed using the R version 4.1.0 (R 
Core Team, 2021). Analyses were selected based on underlying analyt
ical assumptions and data conformity. Where multiple comparisons 
were undertaken, statistical significance (α = 0.05) was conveyed ac
cording to direct pairwise comparisons (p), with secondary values con
trolling for false discovery rate (pFDR) using the Benjamini-Hochberg 
procedure (Benjamini and Hochberg, 1995) providing robustness of 
interpretation. 

2.8.1. Mortality 
Total larval mortality was modelled using logistic regression. Model 

significance was reported as deviance compared to the null model. 
Treatment mortality rates were also compared using Kaplan-Meier sur
vival analysis and post-hoc log-rank Mantel-Cox test. 

2.8.2. Developmental rate 
Developmental duration of Nephrops larvae was assessed by the 

timing of the transition (through moulting) between each zoeal stage up 
to-and-inclusive of the first juvenile stage. Day of transition was 
compared using Kruskal-Wallis test, with post-hoc analysis via Dunn's 
test. 

2.8.3. Biometrics 
Carapace length of both larvae and juveniles was compared using a 

two-way ANOVA with cadmium concentration and sound treatment as 
factors. Dry tissue weight was compared using a Kruskal-Wallis test 
across discrete treatment groups. 

2.8.4. Behavioural fitness 
Behavioural fitness of the first-stage juveniles was analysed using a 

hurdle model approach. Firstly, it was assessed whether the simulated 
threat provoked an escape response, and secondly the dynamics 
(average speed, distance travelled, duration, number of responses, flick 
per response) of resulting tail-flick escape responses. The total number 
of induced escape responses and non-responses to provocation, and the 
proportional response rate for juveniles were analysed using a Kruskal- 
Wallis test. For elicited escape responses, principal component analysis 
(PCA) was conducted combining data duration, distance travelled, and 
the average swimming speed for each tail flick within each response. For 
both the primary and secondary components of the PCA, variation in 
scores between treatments was analysed using a Kruskal-Wallis test with 
post-hoc analysis via a Dunn's test. 

2.8.5. Oxidative stress 
Biomarkers for GPx, GSH and SOD were each analysed using a two- 

way ANOVA. CAT, TBARS and MT were each analysed using a Kruskal- 
Wallis test, with post-hoc analysis via a Dunn's test. Collective biomarker 
responses were assessed using PCA, with scores for both the primary and 
secondary components being analysed seperately using a two-way 
ANOVA with post-hoc analysis via Dunn's test. 

3. Results 

3.1. Sound exposure 

Measured SPLs in all sound treatments were in line with nominal 
target exposures and broadly consistent between the two experiment 
set-ups (Table 1). 

Ambient playback SPLs were mostly consistent regardless of location 
within the experimental system, but a sound cone effect was present 
during the piling playback consistent with proximity to the speaker (Fig. 
S4). There were also some discrepancies in the sound frequency distri
bution between the piling sound as recorded in situ and recreated via 
experiment playbacks (Fig. S5). The marginally higher sound levels 
during piling playback phases of Experiment 2 compared to Experiment 
1 were a consequence of exposure vessels being more confined within 
the sound cone. However, the 24-hour cumulative sound exposure levels 
(SELcum) in each sound treatment were highly comparable between 
experiments. Differences in ambient playback sound levels were likely a 
consequence of variation in background laboratory noise between the 
times of measurement. Power spectral analysis confirmed that the 
received sound levels during piling playback phases were consistently 
greater than ambient playback treatments across all calculated fre
quencies for both pressure and particle motion (Fig. 1). 

3.2. Cadmium exposure 

Time-averaged Cd2+ concentrations of experimental media were 
approximately 65% of nominal dosage across both experiments 
(Table 2). Paired water samples showed no consistent evidence of Cd2+

depletion in the media between dosing and subsequent water change. 
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3.3. Experiment 1: phenomenological observations 

3.3.1. Total larval mortality 
Under ambient sound playbacks, larval mortality rates were 35%, 

50%, 40% and 75% in the Control[Cd], Low[Cd], Medium[Cd] and High[Cd] 
treatments, respectively. This compared with mortality rates of 25%, 
15%, 25% and 100% in the corresponding cadmium treatments under 
piling playbacks. Both sound treatment and cadmium concentration 
significantly affected larval mortality rates with a significant interaction 
also occurring (logistic regression: χ2 = − 31.748, df = 3, p < 0.001) 
(Fig. 2 and Table S2). 
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overlap. Bottom: particle motion; 0.1 s Hamming window and 50% overlap. 

Table 2 
Mean ± SD time-averaged waterborne Cd2+ concentrations of experimental 
media. n = 6 samples (n = 3 paired samples) per average.  

Cadmium 
treatment 

Nominal Cd2+

concentration 
Time-averaged Cd2+

concentration (μg L− 1) 

Expt 1 Expt 2 

Control 0 μg L− 1 0.08 ± 0.02 0.07 ± 0.02 
Low 1 μg L− 1 0.71 ± 0.11 0.71 ± 0.06 
Medium 10 μg L− 1 6.48 ± 0.13 6.31 ± 0.14 
High 100 μg L− 1 63.52 ±

2.55 
62.47 ±
1.56  
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The modelled data demonstrate that survival was higher in the piling 
playback treatments at waterborne cadmium concentrations of <9.62 
μg L− 1 compared to equivalent concentrations in ambient playbacks but 
reduced at concentrations exceeding this. This corroborates compari
sons of the raw count data (Fig. S6), evidencing a mechanistically 
antagonistic interaction between piling playback in the Low[Cd] and 
Medium[Cd] treatments, and a synergistic interaction in the High[Cd] 
treatment with respects to mortality. 

3.3.2. Temporal patterns of mortality 
There were significant differences in mortality curves (Fig. 3) be

tween treatments (Kaplan-Meier: χ2 = 49.2, df = 7, p < 0.001). Post-hoc 
log-rank Mantel-Cox analysis determined lowest observed effect con
centration (LOEC) of cadmium to be 63.52 μg L− 1 in both ambient (Z =
2.017, df = 1, p = 0.043, pFDR = 0.100) and piling (Z = 4.464, df = 1, p <
0.001, pFDR < 0.001) playback treatments, and significant interactions 
with piling playbacks at cadmium concentrations of 0.71 μg L− 1 (Z =
− 2.310, df = 1, p = 0.002, pFDR = 0.051), and 63.52 μg L− 1 (Z = 2.632, 
df = 1, p = 0.005, pFDR = 0.015). No other treatment groups differed 
significantly (Table S3). 

3.3.3. Developmental duration 
The timing of transition from Zoea I to Zoea II was unaffected by 

exposure treatments, but significant differences in timing were observed 
in the transitions to Zoea III (χ2 = 22.342, df = 7, p = 0.002) and juvenile 
(χ2 = 15.129, df = 6, p = 0.019) (Fig. 4). Post-hoc analysis (Table S4) 
showed that under ambient sound playback conditions, High[Cd] expo
sures caused significant delays in transition to Zoea III (Dunn's test, Z =
2.616(14, 12), p = 0.009, pFDR = 0.042), however these did not persist 
with regards to transition to juvenile. Conversely, larvae exposed to 
piling playbacks transitioned to Zoea III significantly earlier in the 
Low[Cd] treatment relative to Control[Cd] (Z = − 2.630(16, 17), p = 0.009, 
pFDR = 0.042), with this trend persisting through to metamorphosis (Z =
− 2.744(15, 15), p = 0.006, pFDR = 0.050). Larvae in the Medium[Cd] 
treatment also showed consistently earlier development when exposed 
to piling playbacks relative to ambient playbacks at transition to both 
Zoea III (Z = − 2.837(14, 17), p = 0.005, pFDR = 0.042) and juvenile (Z =
− 2.823(12, 15), p = 0.005, pFDR = 0.050). 

3.3.4. Behavioural fitness of the first stage juveniles 
When considered independently, no statistical differences were 

observed in the total number of provoked escape responses, the number 
of non-responses to provocation, or the relative proportion of responses 
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(Fig. S7 and Table S5). Analysis of tail-flick escape response dynamics by 
PCA (Fig. 5) implied the presence of two key axes of response behaviour. 
The primary principal component (PC1), representing 48.3% of variance 
within the data (Table 3), broadly corresponds to an axis of physical 
swimming dynamics, contrasting swimming speed against swimming 
duration and total distance travelled. The secondary principal compo
nent encompasses a further 23.1% of data variance, seemingly forming 
an axis contrasting the total number of responses against their magni
tude (number of tail-flicks). Comparison of PCA scores by Kruskal-Wallis 
evidenced significant differences in both PC1 (χ2 = 349.91, df = 6, p <
0.001) and PC2 scores (χ2 = 114.08, df = 6, p < 0.001) between 
experimental treatments. 

Under ambient sound playback conditions, post-hoc analysis of PCA 
scores (Table S6) for behavioural response dynamics found the LOEC of 
cadmium to be 6.31 μg L− 1, which led to a noticeable and significant 
shift towards prioritising swimming distance and duration at the 
expense of speed, with individual responses comprising fewer tail-flicks. 
Similarly, juveniles from the Low[Cd] ambient playback treatment also 
demonstrated fewer tail-flicks per individual response, but did not 
display any specific response in relation to speed or distance. Piling 
playback in the Control[Cd] treatment also led to a significant shift in 
juvenile behaviour towards more responses of fewer tail-flicks, max
imising total distance and duration. Disparities in escape responses were 
also seen upon co-exposure to cadmium and piling playback. Whilst the 
general trend of elevated cadmium resulting in escape responses of 
lesser magnitude and greater frequency persisted, under ambient play
back conditions this paired with juveniles covering an overall greater 
distance, whereas those exposed to piling playbacks had faster swim
ming speeds at the expense of distance and duration. 

3.3.5. Biometrics 
Neither carapace length (two-way ANOVA: sound: F = 0.228(1, 80), p 

= 0.634, cadmium: F = 0.241(3, 80), p = 0.868; sound × cadmium: F =
0.699(2, 80), p = 0.500) nor dry tissue weight (Kruskal Wallis test: χ2 =

4.609, df = 6, p = 0.565) of juvenile Nephrops differed significantly 
between treatment groups. 

3.4. Experiment 2: biomarker assays 

3.4.1. Oxidative stress biomarkers 
One replicate sample from the Low[Cd] ambient playback treatment 

exhibited spurious results across multiple biomarkers and was thus 
censored from all analysis as an outlier. Biomarker quantities were 
highly variable (Fig. 6), with only MT varying significantly between 
treatment groups (Kruskal-Wallis test, χ2 = 14.565, df = 7, p = 0.032), 
with significantly lower quantities present in larvae exposed to Medi
um[Cd] piling playback treatments relative to both their respective 
Control[Cd] treatments (Dunn's test, Z = − 2.718(7, 7), p = 0.007, pFDR =

0.092) and larvae experiencing ambient playback (Z = − 3.669(7, 7), p <
0.001, pFDR = 0.007). Full details of statistical outputs can be found in 
Table S7 and Table S8. 

Principal component scores were consistent with trends of the indi
vidual results (Fig. 7). The primary principal component (PC1) 
accounted for 37.0% of variance within the data, primarily aligning with 
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(caption on next column) 

Fig. 4. Timing of N. norvegicus moulting. Violin plot showing timing of tran
sition moults between zoeal stages of N. norvegicus larvae as measured from day 
of hatching. A) Zoea I to Zoea II; B) Zoea II to Zoea III; C) Zoea III to juvenile. 
Control[Cd], Low[Cd], Medium[Cd], and High[Cd] represent Cd2+ ion concentra
tions of 0.08 μg L− 1, 0.71 μg L− 1, 6.48 μg L− 1, and 63.52 μg L− 1 respectively. 
Absent violin in High[Cd] piling playback treatment is a consequence of no 
larvae surviving to metamorphosis. Solid and hatched plots represent ambient 
and piling playback sound treatments respectively. Solid and dashed vertical 
bars within plots represent median and quartile values respectively. Vertical 
markers beside violins denote significant differences between groups (Dunn's 

test, dashed lines p < 0.05, solid lines corrected pFDR < 0.05). 
◂ 
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GPx and CAT activities, whilst the secondary principal component 
(PC2), representing a further 21.1% of data variance, seemingly aligned 
primarily to MT. When contrasted using ANOVA, PC1 scores did not 
differ significantly between treatment groups (Table S9), whereas PC2 
scores were significantly driven by both cadmium (F[1,46] = 6.104, p =
0.017) and an interaction between sound and cadmium (F[3,46] = 5.830, 
p = 0.002). Further post-hoc analysis (Table S10) attributed these dif
ferences to the Medium[Cd] treatments, with differences occurring in the 
Medium[Cd] piling playback treatment relative to Control[Cd] piling 
playback treatment (Z[7, 7) = 2.361, p = 0.018, pFDR = 0.102) and be
tween the sound treatments (Z[7, 7) = 3.890, p < 0.001, pFDR = 0.003), 
mirroring statistical significance attributed to the individual biomarkers 
and reinforcing assertions of PC2 being driven by MT. 

4. Discussion 

4.1. Sound exposures 

Speaker playbacks and acoustic properties of tanks are unlikely to 
enable realistic recreation of sounds as experienced in the ocean. All 
presented sound metrics reflect values as recorded within the exposure 
vessels at each occupied location within the exposure system. As such, 

values are fully representative of the received sound levels within the 
waterbody of the exposure vessels, accounting for inherent transmission 
losses and tank acoustic effects. 

Currently, only Germany imposes legal limits on sound produced by 
pile driving, with SPL limits 190 dBpk-pk re 1 μPa and 160 dBSELss re 1 
μPa2 s as measured at 750 m from the piling source (Müller et al., 2019). 
Whilst SPLpk-pk levels in this study were well below the 190 dBpk-pk re 1 
μPa limits, accompanying SELss levels far exceed the limits. A compar
ison of the relative power spectral density (PSD) of sound pressure be
tween the piling as recorded in situ and as received as playback (Fig. S5) 
clearly demonstrates that playbacks result in lesser proportion of sound 
at frequencies <2000 Hz and an increase in the proportion above this. 
The larger proportion of sound at frequencies exceeding 2000 Hz (Fig. 
S5) in the current study have also inflated SELss and SEL values 
compared to those of natural environments. Sound levels in the sub- 
3000 Hz range in the current study are however comparable with similar 
studies (Nedelec et al., 2014, 2017). Despite some inevitable discrep
ancies between in situ piling sound and experimental playbacks, some 
frequency dependent features were nonetheless maintained between the 
in situ and playback signals in the lower frequency domain, and dis
crepancies in the upper frequency domain may be irrelevant in the 
context of Nephrops sensory capability. 

There is clear evidence that some decapod larvae can utilise sound as 
an orientation and settlement cue, and hence are auditorily capable 
(Radford et al., 2008; Stanley et al., 2010). To date, it is unknown 
whether the sensory capabilities of Nephrops larvae are comparable with 
those of mature specimens. Assessments of behavioural responses of 
mature specimens suggest that Nephrops is only responsive to the par
ticle motion aspect of sound, with a displacement response threshold of 
0.888 μm independent of the assessed frequency range of 20–200 Hz 
(Goodall et al., 1990), but an audiogram has not yet been established for 
the species. Mature Nephrops nonetheless have an array of mechanore
ceptive structures associated with both physical orientation and sound 
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Table 3 
Eigenvalues and proportion of variance PCA of juvenile N. norvegicus tail-flick 
escape response.  

Principal component Eigenvalue Proportion of variance 

PC1  2.415  48.31% 
PC2  1.156  23.12% 
PC3  0.820  16.40% 
PC4  0.467  9.33% 
PC5  0.142  2.84%  

C.A. Stenton et al.                                                                                                                                                                                                                              



Marine Pollution Bulletin 179 (2022) 113667

9

reception, including cuticular setae widely distributed across their 
exoskeleton and statocysts located in the basal portion of the sensory 
antennules (Katoh et al., 2013). 

Given the uncertainties in the sound perception capabilities of 
Nephrops larvae, and the discrepancies in tank-based sound studies, it is 
impossible to adequately assess the realism of in situ vs playback sounds 
as experienced by the organisms, nor was this the principal aim of the 
study. Nonetheless, both sound pressure and particle motion in the 
present study were consistently higher during piling playback than in 
the ambient playback sound treatment regardless of sound frequency. At 
a minimum, the study should therefore be considered in the context of 

exposure to additional sound sharing characteristics to that resultant of 
pile driving. 

4.2. Cadmium exposures 

Quantified cadmium concentrations were approximately 65% of 
nominal concentrations. Such discrepancies are expected given losses 
associated with adsorption and cross-reactivity with other chemical 
species. These losses do not impact the study as quantified values were 
used for all modelling and metric purposes. Waterborne cadmium con
centrations in the Control[Cd] were consistent with background levels of 
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British coastal waters (Neff, 2002). Low[Cd] and Medium[Cd] treatment 
concentrations were consistent with those reported of coastal regions 
featuring discrete and or point-sources of cadmium (Abe, 2007; Delly 
et al., 2021). High[Cd] treatment concentrations are considered envi
ronmentally unrealistic, but provide useful context for modelling and 
risk assessment purposes. 

Uptake of cadmium by the Nephrops larvae is thought to have pre
dominantly occurred from the waterborne fraction via the cuticle, which 
is poorly calcified and permeable in larval-stage Nephrops (Eriksson and 
Baden, 1997). Absorption via the gills, a known uptake site of toxic 
metals in aquatic crustaceans (Henry et al., 2012), is unlikely in this 
instance given that gills are absent or rudimentary in larval-stage 
Nephrops (Spicer and Eriksson, 2003). Direct ingestion of cadmium 
bioaccumulated within their Artemia prey is also considered to have 
been minor given the frequency of water changes and Artemia replace
ment. Bioaccumulation of cadmium within the Nephrops larvae was not 
assessed due to tissue availability being considered insufficient to meet 
limits of detection of available analytical methods. 

4.3. Mortality 

Modelled data show dose-dependent increases in mortality rate with 
regards to cadmium in both sound treatments. Mortality in the Con
trol[Cd] treatment was lower in larvae exposed to piling playbacks, but 
increased at a greater rate with increasing cadmium concentration 
compared to treatments experiencing ambient playbacks, leading to a 
switch in predominating mortality. Notably, whilst overall mortality 
below the 9.62 μg[Cd] L− 1 equivalence concentration was lower for 
larvae exposed to piling playback, they showed greater sensitivity to 
elevating cadmium relative to larvae in the ambient playback sound 
treatment. This context is important, as it suggests survival of larvae in 
cadmium-contaminated water may be enhanced by anthropogenic 
sound exposure, whilst larvae commonly exposed ro anthropogenic 
sound in otherwise more pristine environments may be more susceptible 
to chemical pollution events. 

Observed mortality rates across experimental treatments are 
hypothesised to reflect differences in oxidative stress responses between 

treatments (discussed in detail below). Results suggest that the Low[Cd] 
concentration was sufficiently high to cause toxicity, but not to invoke a 
suitably strong antioxidant response. Piling playbacks meanwhile trig
gered a larger oxidative stress response, which consequently offered 
additional protection from the cadmium. Correspondingly, the switch in 
the driver interaction from initially antagonistic to synergistic, modelled 
to occur above 9.62 μg[Cd] L− 1

, equates to the concentration above which 
the cadmium toxicity protection afforded by the oxidative responses to 
piling playback is seemingly overwhelmed, with piling-induced oxida
tive stress not only ceasing to be beneficial but actually increasing the 
burden. 

Scrutiny of the raw mortality data (Fig. S6) shows that Zoea I larvae 
reared in ambient playback sound conditions and exposed to Low[Cd] 
were significantly more susceptible to cadmium toxicity than those 
exposed to piling playbacks. This pattern was also mirrored, albeit to a 
lesser extent, in the Medium[Cd] treatment. Furthermore, larval mor
talities during the study coincided with moulting, suggesting that the 
process of moulting increases susceptibility to acute metal toxicity; 
possibly reflecting the stressful and energetically intensive undertaking 
of moulting itself (Bacqué-Cazenave et al., 2019; Chang and Mykles, 
2011). Whilst tissue limitations of the Nephrops larvae and exuviae 
precluded a similar analysis of metal distribution in the present study, 
the commonality of metal distributions between the investigations of 
Bergey and Weis (2007) and Perugini et al. (2014) suggests that rather 
than being selectively sequestered into the exuviae prior to moulting, 
cadmium may actually have been reabsorbed into the soft tissues along 
with calcium, as also seen in the grass shrimp Palaemonetes pugio 
(Keteles and Fleeger, 2001). If this was the case, it would suggest that 
chronic exposure led to continued accumulation of cadmium in Nephrops 
with limited ability to depurate. Permeability to, and absorption of 
cadmium is also likely greater in recently moulted individuals as seen in 
the shore crab Carcinus maenas (Bondgaard and Bjerregaard, 2005). 
Correspondingly, it may be that the process of moulting effectively re
sults in short-term concentration of cadmium in soft tissues, which are 
known to accumulate metals in Nephrops. Perugini et al. (2014) found 
that approximately 85% of the total cadmium loading within Nephrops 
was distributed in the ‘brown meat’ (including the gills and 
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hepatopancreas), with the remainder distributed between the exoskel
eton, legs, and claws. These observations are consistent with the role of 
the hepatopancreas in the detoxification of metals in decapod crusta
ceans (Ahearn et al., 2004), and evidence of the hepatopancreas being 
the primary location of cadmium accumulation even in the case of 
waterborne exposures (Canli et al., 1997). 

4.4. Developmental and biometrics 

Following metamorphosis, carapace length and wet-weight of juve
niles were consistent across treatment groups, demonstrating little 
variation. 

Piling playbacks experienced by Nephrops larvae in the absence of 
cadmium caused developmental delays of two days compared to the 
ambient playback treatment. This delay was not statistically significant, 
however this is believed to be a Type II error resulting from two notable 
outliers in the ambient playback sound Control[Cd] group. This assertion 
is supported by results demonstrating significant delays in timings of 
Nephrops metamorphosis in response to ship sound playbacks (Bolger, 
2022) and developmental delays observed in scallops (Pecten novaeze
landiae) exposed to seismic pulse playbacks (de Soto et al., 2013). 

Delays in development may result, at least in part, from differences in 
metabolic rates and/or energy budgeting. Metal exposures can induce 
dose-dependent increases in metabolic rate and developmental duration 
in several taxa including crustaceans (Lyla and Khan, 2010; Vernberg 
et al., 1974). Such variations in developmental rate in response to 
environmental conditions and stressors are not uncommon. Metabolic 
consequences have been evidenced in response to osmotic stress (Curtis 
and McGaw, 2010), and temperature is well known to impact meta
bolism and energy assimilation of invertebrates, influencing their 
growth and development (Chiasson et al., 2015; Dickey-Collas et al., 
2000; Han and Li, 2018; Xiao et al., 2014). 

Metals such as cadmium can also have teratogenic and endocrine- 
disrupting effects (Takiguchi and Yoshihara, 2006), adding another 
facet to potential impacts where complex, hormonally driven processes 
such as crustacean moulting are concerned. Moulting in crustaceans is 
predominantly mediated by the negative regulation of moult-inhibiting 
hormone (MIH) produced by the X-organ, which inhibits the release of 
ecdysteroid hormones produced by the Y-organ (Devaraj and Natarajan, 
2006). Cadmium at concentrations of 3–900 μg L− 1 elevated the levels of 
ecdysteroid in embryos of the amphipod Gammarus fossarum (Abidi 
et al., 2016), suggesting low concentrations of cadmium could alter the 
balance of these hormones mediating growth and development. 
Disruption of ecdysteroid receptors in the Y-organ can also disrupt 
moulting (Zou, 2005), which may explain observations of moult inhi
bition in the crab Chasmagnathus granulata induced by cadmium despite 
consistent ecdysteroid levels (Rodríguez Moreno et al., 2003). Never
theless, in the current study, endocrine-related effects of cadmium on 
growth and development are not thought to be the primary mechanism 
driving the observed differences in developmental rate. Firstly, post- 
moult feedback between MIH and crustacean hyperglycemic hormone 
levels is proposed to effectively reset moult cycles after each moult- 
phase (Techa and Chung, 2015), which would explain inconsistencies 
in intermoult periods at different developmental stages. This also sug
gests acute exposure to endocrine disruptors may have limited impacts 
on continued development of larvae as MIH is rapidly cleared from 
haemolymph, and therefore episodic releases of the hormone are un
likely to contribute to a critical threshold (Chung and Webster, 2005). 
Secondly, only modest deviations in moult timing were observed in the 
current study (around 5% compared to controls). In comparison, tar
geted inhibition of MIH in the prawn Fenneropenaeus indicus reduced 
intermoult period to around 50% of that of controls (Devaraj and 
Natarajan, 2006). 

Although the mechanisms controlling the moult process itself are 
relatively well studied (Chang and Mykles, 2011), a consensus on trig
gers and timing of ecdysis events is apparently lacking, adding to the 

difficulties in identifying the mechanism driving the observations of this 
study. It is accepted that multiple factors relating to bioenergetics such 
as food availability, temperature, behaviour, as well as endogenous as
pects such as ‘biological clocks’ impact reproduction, growth, and 
development (Sardà, 1991). Despite this, under consistent and favour
able conditions, other crustacean larvae have been observed to have 
similarly consistent and predictable biometrics following ecdysis, albeit 
at variable ages (Anger, 1998). This, and the timing of ecdysis in 
Nephrops larvae in the present study, suggest a certain plasticity that 
would be beneficial — enabling energetic prioritisation to body condi
tion preceding the energetically intense moult process under sub- 
optimal conditions, but also expediting development in more favour
able conditions. It is important to state that even the relatively minor 
developmental delays observed represent a protracted period in the 
planktonic phase of Nephrops life-cycle, and could therefore have con
sequences on larval dispersion and susceptibility to predation pressures. 
Resultantly, developmental delays could prove ecologically significant 
despite lacking statistical significance. 

4.5. Behavioural fitness 

Differences in behavioural responses to simulated threats were 
observed in first stage juvenile Nephrops following experimental expo
sures. Principal component analysis evidenced that the provoked tail- 
flick responses can be considered in terms of two axes of variation: an 
axis that is considered to represent the ‘sprint-marathon’ continuum, 
and a second interpreted as reflecting whether individual reactions 
comprise a greater number of responses of lesser magnitude, or fewer 
responses of greater magnitude. 

Maximal swimming speed of the juveniles appeared to be highly 
constrained and showed little variation, undoubtedly reflecting the 
consistency in the size of the juveniles assessed, given swimming speed 
is constrained by maximal displacement of water and therefore corre
lates with carapace size (Newland et al., 1988). Total distance travelled 
was highly correlated with the duration of the tail-flick response, both of 
which were negatively correlated to swimming speed. Therefore, a 
reduction in swimming speed must result from a reduction in muscular 
contraction power. It is however uncertain whether these differences 
between ‘sprinters’ and ‘marathoners’ are mediated by physiological 
limitations in musculature condition, energy partitioning, behaviour 
choices, or a combination of these factors. Irrespective of the causal 
drivers, significant differences in the composition of tail-flick responses 
were evident between treatments. Both response axes demonstrated a 
LOEC of 6.48 μg[Cd] L− 1 in both ambient- and piling playback treat
ments. Likewise, significant interactions between piling playback and 
cadmium were seen at all concentrations, though there was little con
sistency in terms of magnitudes and/or directionality of effects. In the 
context of swimming dynamics, it is difficult to assess the ecological 
implications of how such differences are likely to impact the long-term 
survival prospects of individual Nephrops given this would be context- 
and threat-specific. For example, those prioritising speed may have an 
advantage against ambush predators, but at the detriment of resilience 
against more persistent foraging predators, and vice versa. 

The ability to perceive and respond to potential threats, primarily 
predators, is of undoubted importance to long-term survival, as even 
slight changes in response rate to perceived threats could have serious 
consequences. Observations on response rates were consistent with the 
experimental exposures potentially having had energetic consequences 
during development. However, where responses were provoked, PCA 
analysis implied no correlation between swimming dynamics (speed and 
distance), and response dynamics (number of responses and tail-flicks 
per response), implying responses may better reflect a continuum of 
either behavioural boldness or corresponding reaction to threat, rather 
than being indicative of energetic budgeting. 

Variation in response dynamics could also theoretically reflect dif
ferences between non/reflex-reactions, however this seems less likely 
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given different nervous pathways are responsible for initiation and 
continuation of tail-flick responses (Faulkes, 2009). Tail-flick responses 
are a low-latency reflex reaction mediated by medial giant (MG) and 
lateral giant (LG) nerves in response to mechanosensory stimulation of 
the anterior cephalothorax and abdomen respectively (Jackson and 
MacMillan, 2000). Whilst a similar non-reflex swimming response with 
higher latency mediated by non-giant nervous pathways has previously 
been characterised in Nephrops (Newland et al., 1988), only the MG 
pathway is considered of relevance to the assessment methods used 
here. Crayfish (Procambarus clarkia) exposed to predators showed sur
vival rates of 50% when MG mediated responses were triggered, 
compared to just 20% for non-reflex responses due to the difference in 
response latency (Herberholz et al., 2004). As such, if piling playback 
has impacted on the ability of the MG pathway to function in the current 
study, this would also likely have a considerably detrimental impact on 
long-term survival potential. 

Alternatively, observations may reflect a reduction in sensitivity to 
vibratory stimulus given high-intensity impulsive sound has been 
observed to cause mechanical damage to statocysts in both lobsters and 
scallops (Day et al., 2016, 2017, 2019, 2020). Reduction in synaptic 
transmission between sensory and motor neurons resultant of habitua
tion to stimuli could also be a factor (Zucker, 1972), as could cross- 
modal sensory reduction in response to sound and vibration, postu
lated by Roberts and Laidre (2019). 

4.6. Oxidative stress biomarkers 

TBARS is a group of biomarkers indicative of lipid peroxidation 
(LPO), being the final product of other similar LPO biomarkers including 
malondialdehyde (MDA) (Camejo et al., 1998; Tsikas, 2017), and the 
only biomarker assessed that is directly indicative of pathology. The PCA 
analysis indicated that TBARS were predominantly mediated against by 
MT and GSH, whilst, SOD, GPx, and CAT were not strongly correlated 
with reducing pathology of cadmium and sound exposure. Glutathione 
(GSH) directly scavenges free radicals by acting as a hydrogen ion 
donator (Fanucchi, 2014), suggesting not only were free radicals the 
predominant cause of LPO, but that direct scavenging of these free 
radicals was the primary method for regulating against such ROS. This is 
further supported by the consistently high degree of SOD inhibition rates 
observed between treatments given that SOD catalyses the conversion of 
superoxide ions to hydrogen peroxide, which is then further catalysed 
into water and oxygen by both GPx and CAT (Fanucchi, 2014). The weak 
correlation shared between TBARS and both GPx and CAT further sug
gests that the presence of hydrogen peroxide influences LPO, albeit to a 
much lesser extent. This is consistent with the role of hydrogen peroxide 
as a non-radical oxidising agent (Phaniendra et al., 2015), and with 
observations by Badisa et al. (2007) who demonstrated that presence of 
cadmium can further potentiate the production of radicals from 
hydrogen peroxide. It is also possible that the weak correlation of TBARS 
to other biomarkers is indicative of a mechanism of cadmium toxicity 
unrelated to LPO. 

Mitochondrial respiration inherently generates ROS as a by-product 
of ATP synthesis (Andreyev et al., 2015). Consequently, several highly 
conserved cellular antioxidant defences have evolved for mediating 
against oxidative stress, with commonly identified mechanisms in 
crustacea including the antioxidant GSH, and the enzymes GPx, CAT, 
and SOD (Fanjul-Moles and Gonsebatt, 2011). Where substantial and/or 
prolonged exposure to oxidative stress results in antioxidant capacity 
being exceeded, oxidative damage will occur. Cadmium exposure results 
in the production of free radical ROS — directly driving oxidative stress 
(Singh et al., 2017). Such exposures in crustacea can result in multi
faceted effects including causing gill damage, altering metabolic activ
ity, inducing differences in gene expression, and cause cellular apoptosis 
and necrosis (Torreblanca et al., 1989; Wang et al., 2013). 

To date, the study of Charifi et al. (2018) is the only one having 
assessed oxidative stress in relation to co-exposure to anthropogenic 

noise and cadmium stress in a marine invertebrate, the Pacific oyster 
(Magallana gigas). Waterborne concentrations of approximately 14 
μg[Cd] L− 1 led to a significant positive correlation in expression of genes 
associated with SOD and GPx, whilst genes for CAT and MT were also 
positively correlated, though not significantly. However, when M. gigas 
was also exposed to ship noise of 150 dBRMS re 1 μPa, no significant 
correlations in gene expression were identifiable. Blue mussels (Mytilus 
edulis) exposed to ship noise peaking at 150–155 dB re 1 μPa2 Hz− 1 

exhibited significantly elevated TBARS in comparison to the control 
group, yet SOD, GSH and GPx were unaffected (Wale et al., 2019). The 
present study did not observe similar increases in quantity of TBARS in 
response to sound, potentially due to the significantly lower RMS sound 
levels, but could equally reflect differences in species/taxa specific re
sponses. Juvenile Nephrops that had been exposed to peak ship noise of 
122 dB re 1 μPa2 Hz− 1 throughout their larval development, showed no 
significant difference in SOD, GSH, GPx, CAT or TBARS (Bolger, 2022). 
This may evidence sound-specific differences in biological response, i.e. 
between ‘continuous’ ship noise versus ‘impulsive’ pile driving noise, 
but more likely reflects differences between life-stages. Even temporally 
close life stages can exhibit considerably different physiological re
sponses, with disentanglement of differences resultant of natural 
development being fraught with difficulty (Rato et al., 2017; Styf et al., 
2013). Differences in life-stage responses also likely contribute to the 
lack of a consistent trend between the oxidative stress data and mortality 
data in the present study. This will be further compounded by survi
vorship bias inherent of the oxidative stress protocols which precluded 
the assessment of organisms which had died during exposures. 
Regardless, oxidative stress being a driver of larval mortality supports 
many of the observed trends in the data of the present study. The mor
tality data show that piling playback had an antagonistic effect to total 
larval mortality in the presence of cadmium at concentrations ≤6.48 μg 
L− 1. Given that the current data suggest that piling playback alone re
sults in limited stress, this antagonistic effect is consistent with asser
tions that exposure to low-level stress promotes an antioxidant response 
resulting in enhanced defence capacity (Niki et al., 2005). Similar ob
servations in Nephrops embryos have been noted in response to ocean 
acidification, where oxidative stress was significantly higher in control 
groups compared to acidified treatments (Styf et al., 2013). 

Biomarker assay results not only support the assertions advanced 
above in relation to life-stage specific physiological responses, but also 
suggest that oxidative defences in response to sound exposure either 
develop earlier than those of metals such as cadmium, or more likely, 
that responses to the piling playbacks during this developmental stage 
were more acute than those to cadmium. 

5. Conclusion 

Exposure to piling playbacks and cadmium caused a wide range of 
physiological effects on larval Nephrops, with the drivers each having 
individual effects, but also demonstrating various interactions when co- 
occuring. The multifaceted nature of these effects makes direct assess
ment of risk and harm of these drivers on the species difficult to judge. In 
some scenarios, exposure to piling playbacks could be considered 
beneficial, promoting larval survival and growth rates in cadmium- 
contaminated waters, however the opposite is also true for more pris
tine environments. Extrapolation between laboratory-based findings 
and real-world environmental impacts should be approached with 
caution, especially given the known discrepancies in the characteristics 
of in situ sounds vs experimental playbacks. Nonetheless, evidence of 
synergism leading towards net-negative impacts on larval survival at 
environmentally plausible cadmium concentrations of 9.62 μg L− 1 

highlights that consideration should be given to how the combination of 
metal pollutants and sound exposure modifies the risks posed as 
compared to each driver occurring in isolation. Future studies directly 
addressing current uncertainties regarding exposure dynamics, 
including if and how sound perception directly affects heavy metal 
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kinetics in decapod crustaceans, would contribute greatly to the un
derstanding of this driver combination. 

Ultimately, the results of this study simultaneously support both the 
adage “what doesn't kill you makes you stronger”, and that of “the straw that 
broke the camel's back” — highlighting the need for more integrative and 
case-specific consideration of anthropogenic impacts in ecological 
contexts. 
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Contam. Toxicol. 85, 391–396. https://doi.org/10.1007/s00128-010-0103-0. 

Han, Z., Li, Q., 2018. Different Responses Between Orange Variant and Cultured 
Population of the Pacific Oyster Crassostrea gigas at Early Life Stage to Temperature- 
salinity Combinations. https://doi.org/10.1111/are.13680. 

Hasanuzzaman, M., Fujita, M., 2013. Cadmium-Characteristics, Sources of Exposure, 
Health and environmental Effects, Chemistry Research and Applications. Nova 
Science Publishers, Incorporated. 
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