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Abstract
Purpose Quantitative ultrasound (QUS) infers properties about tissue microstructure from backscattered radio-frequency 
ultrasound data. This paper describes how to implement the most practical QUS parameters using an ultrasound research 
system for tissue differentiation.
Methods This study first validated chicken liver and gizzard muscle as suitable acoustic phantoms for human brain and 
brain tumour tissues via measurement of the speed of sound and acoustic attenuation. A total of thirteen QUS parameters 
were estimated from twelve samples, each using data obtained with a transducer with a frequency of 5–11 MHz. Spectral 
parameters, i.e., effective scatterer diameter and acoustic concentration, were calculated from the backscattered power spec-
trum of the tissue, and echo envelope statistics were estimated by modelling the scattering inside the tissue as a homodyned 
K-distribution, yielding the scatterer clustering parameter α and the structure parameter κ. Standard deviation and higher-
order moments were calculated from the echogenicity value assigned in conventional B-mode images.
Results The k-nearest neighbours algorithm was used to combine those parameters, which achieved 94.5% accuracy and 
0.933 F1-score.
Conclusion We were able to generate classification parametric images in near-real-time speed as a potential diagnostic tool 
in the operating room for the possible use for human brain tissue characterisation.

Keywords Quantitative ultrasound · Ultrasound phantoms · Tissue characterisation · Parametric imaging · Binary 
classifier · Machine learning

Introduction

Ultrasound has significant advantages for intraoperative 
imaging including real-time capability, portability, and 
ease of use in combination with other technologies such as 
navigation systems in the neurosurgical theatre [1]. How-
ever, ultrasound applied conventionally also has limita-
tions, which may be the reason the technique has not been 
adopted by all neurosurgeons. It requires specific experience 
to obtain optimum image quality as it is qualitative in nature 

and hence relies strongly on clinical interpretation. Further-
more, there exists an inherent trade-off between image reso-
lution and penetration depth.

Quantitative ultrasound (QUS) is a technique that infers 
properties of tissue microstructure based on analysis of 
radio-frequency (RF) ultrasound data before image pro-
cessing. The speckled pattern in B-mode images arises from 
scattering that occurs when ultrasound encounters acoustic 
inhomogeneities with dimensions similar to or smaller than 
its wavelength—around 200 µm in brain tissue at a typical 
medical ultrasound imaging frequency of 7.5 MHz. Compel-
ling evidence has been published on the ability of QUS to 
detect cancerous regions in several soft tissues. In particular, 
it has benefits in detection of ocular [2] and prostate [3, 4] 
cancers, metastases in lymph nodes [5, 6] and in classifica-
tion of breast masses [7], with recent studies adopting mul-
tiparametric and machine-learning approaches [8].

Despite its success, the use of QUS in neuro-oncology 
has not yet been explored fully, especially in glioma surgery. 
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One study showed that measurements of acoustic attenua-
tion and backscatter coefficient could be used to differentiate 
healthy brain, oedema, and meningioma in vivo at 5 MHz 
[9]. Another instance of QUS in neural tissue looked at 
simple spectral parameters to measure murine response to 
radiotherapy through the skull and was found to be a reliable 
indicator of treatment [10]. However, a full QUS analysis for 
healthy and cancerous human brain tissue has yet to be done.

Fresh human samples of brain and brain tumour of an 
adequate size are difficult to obtain for logistical, safety, and 
ethical reasons. It can be difficult to obtain fresh samples of 
healthy tissue due to the rapid deterioration of brain tissue 
when removed from the body. Secondly, tumour tissue of 
an adequate size is difficult to access as the tumour is often 
ablated in small sections, and the tumour bulk should be 
retained for pathological research [11]. Even brain tissue 
banks, which offer frozen and fixed healthy brain tissue, 
often only provide small samples that are only suitable for 
clinical brain sciences, and not ultrasound research.

To improve the situation and increase the potential for 
use of ultrasound in the neurosurgical theatre, we propose 
a user-independent classification tool based on QUS tech-
niques to classify phantoms of healthy brain tissue and brain 
tumours using chicken liver and gizzard muscle. First, we 
evaluated the suitability of chicken liver and gizzard to act 
as phantoms of brain and brain tumour via acoustic char-
acterization. We found that the speed of sound and attenu-
ation of the tissues were similar over the frequency range 
1–10 MHz. A total of thirteen QUS parameters from the 
phantom of chicken liver and gizzard muscle were then esti-
mated from 12 samples of each using data obtained with a 
medical ultrasound research system with a transducer with a 
frequency of 5–11 MHz. The obtained QUS parameters were 
used in training the K-nearest neighbour algorithm (KNN), 
which is described in the following section. The KNN can 
achieve high classification accuracy with nine parameters at 
a reduced processing time compared with the original thir-
teen parameters. The differentiated parametric images with 
a near-real-time processing speed can be used as a potential 
diagnostic tool in the operating room.

Materials and methods

Macroscopic acoustic properties

Twelve samples of fresh chicken liver and gizzard muscle 
were purchased from a local Halal butcher. The samples 
were cut into small slices of uniform, but varying thick-
ness with a scalpel, and all measurements were made in a 
temperature-controlled environment at 20 °C. The density of 
the tissue was calculated by measuring the mass and estimat-
ing the volume via the Archimedes Principle. To calculate 

the speed of sound, c, the tissue was placed on the surface of 
a single-element 10-MHz transducer (unfocused immersion 
transducer, aperture 10 mm; Olympus Scientific Solutions 
Technologies, MA, USA). A holder was designed to sur-
round the transducer, supporting the tissue to sit parallel to 
its surface.

The transducer was connected to an ultrasonic pulser-
receiver (DPR300; JSR-Imaginant, NY, USA) operating in 
pulse-echo mode, and the receiver output was connected 
to an oscilloscope (InfiniiVision 2000 X-Series, 200 MHz; 
Keysight Technologies, CA, USA). The time, ∆t, between 
successive echoes was measured using the oscilloscope 
measuring function, and the speed of sound in the tissue 
was calculated according to c = 2d/∆t, where d is the sam-
ple thickness. This procedure was repeated for 12 samples 
of both liver and gizzard, and the average value was taken.

Calculation of attenuation was based on the transmission 
loss method [12]. A needle hydrophone (0.2-mm diameter, 
8-dB preamplifier; Precision Acoustics Ltd., Dorset, UK) 
was positioned at the natural focal point of the transducer 
in a tank of degassed water. An empty sample holder was 
placed in the acoustic path, and measurements were taken 
for the reference voltage, Vwater . Next, a tissue sample of 
known thickness was encased in agar to hold it securely in 
the sample holder, and a reduced voltage was recorded by 
the hydrophone, Vsample . Attenuation due to the insertion of 
the tissue sample at a single frequency can be calculated 
from:

where αsample is the attenuation of the test sample, d is the 
sample thickness in cm, and αwater is the attenuation of water 
in dB/cm at the frequency of interest. This procedure was 
carried out using immersion transducers designed to operate 
at three different frequencies: 1, 5, and 10 MHz (all unfo-
cused immersion transducers; Olympus Scientific Solutions 
Technologies, MA, USA). Measurements were repeated five 
times for each of the twelve samples at each frequency, and 
the attenuation coefficient was estimated as the gradient of 
a best-fit straight line through the average values found for 
each frequency.

Quantitative ultrasound (QUS)

As an alternative to conventional B-mode imaging, QUS 
has been studied in a variety of applications over the last 
50 years [13]. Scattering arises from small spatial changes 
in the acoustic impedance, i.e., the product of density and 
speed of sound, around a bulk value. If the wavelength of 
ultrasound is larger than or of the same order as the imped-
ance deviation then ultrasound energy will be scattered in 

(1)�sample = −
20

d
log10

(
Vsample

Vwater

)
+ �water,
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directions dependent on the size, shape, and orientation of 
the scatterer relative to the incident wave [14]. Some of the 
energy will be scattered back to the transducer, and the sig-
nal received by the transducer, prior to any processing, is 
referred to as the RF data.

Spectral methods

The frequency dependence of the RF data can be used on its 
own to characterise tissue. This was demonstrated in pio-
neering studies [15] via measurements of the backscatter 
coefficient, i.e., the amount of ultrasound energy scattered 
back at 180° and received by the transmitting transducer 
[13]. To understand the physical basis of the frequency 
dependence, mathematical models describing the size, 
shape, and distribution of scatterers within tissue were 
subsequently developed. The one that has shown the most 
accuracy and been used most often is the spherical Gauss-
ian model developed by Lizzi et al. [16, 17]. It relates the 
backscattered power spectrum from tissue regions to two 
key parameters describing tissue microstructure: the effec-
tive scatterer diameter, 2aeff , and the acoustic concentration, 
defined as �z2

var
 where ρ is the effective concentration of 

scatterers per mm3 and z2
var

 is the relative acoustic imped-
ance difference between the scatterers and the surrounding 
material. Assuming a Gaussian form factor, the theoretical 
backscatter coefficient can be written as:

where c is the speed of sound. In order to solve for the 
effective scatterer diameter and acoustic concentration, 
the transducer geometry and frequency dependence of the 
instrumentation must be known, the latter requiring calibra-
tion through a reference measurement. The scatterer size 
estimate, in particular, has shown success in characterising 
cancerous tissue. Oelze et al. made estimates from suspected 
cancerous lymph nodes and found that metastatic nodes 
had significantly higher aeff than cancer-free nodes. Simi-
lar results were observed in rat mammary tumours in vivo, 
where estimates of scatterer size inside the tumour region 
were 44% larger than outside [18].

Statistical methods

Statistical methods, called echo envelope techniques, were 
developed in parallel with spectral methods, with the aim 
to model the distribution of echo amplitudes from tissue 
scattering regions. The echo envelope signal is obtained 
from the magnitude of the Hilbert transform of the RF data 

(2)W(f ) =
�
4

36c4
f 4�z2

var
exp

⎛⎜⎜⎜⎝
−

aeff�
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√
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�
,

from a tissue scattering region [19]. This signal is then mod-
elled mathematically to yield parameters to describe the 
organisation structure, density, and concentration of scat-
tering components [20]. Various models have been used in 
the literature to describe the echo envelope statistics, the 
most fundamental being the Rayleigh distribution, which 
describes randomly located and densely packed scatterers 
[21]. Others include, but are not limited to, the Rice distribu-
tion, the homodyned K-distribution, the K-distribution, and 
the Nakagami distribution [22]. The Nakagami distribution 
is most commonly used for tissue characterisation and is an 
approximation of the homodyned K-distribution.

In the present study, the homodyned K-distribution was 
used to model the echo envelope statistics from tissue scat-
tering regions as it represents a general scattering distri-
bution with a varying density of random scatterers with or 
without a coherent component [23].

Solving for the model parameters of the homodyned 
K-distribution can provide additional statistical QUS 
parameters  which can be implemented into the binary 
classification.

QUS data acquisition

For the QUS study, the experimental set-up consisted of 
the tissue submerged in water and placed on a quartz flat 
below the centre of a linear array probe (Verasonics, Inc., 
WA, USA) with a frequency of 5–11 MHz, connected to a 
Vantage 128 ultrasound research system (Verasonics, Inc., 
WA, USA) in a temperature-controlled room at 20 °C, as 
shown in Fig. 1a. The ultrasound research system was pro-
grammed to provide a plane wave by excitation of all ele-
ments simultaneously without beam forming, and then to 
acquire and store the RF signal received by each element. 
Each signal was sampled at 31.25 MHz, and the resulting RF 
data were stored in the host computer for offline processing. 
For processing, the RF data sets were loaded into a custom 
MATLAB (The Mathworks, Cambridge, UK) framework, 
allowing the user to select a region of interest (ROI), as in 
Fig. 1b.

The ROI was divided into windows of 3 mm × 3 mm, 
corresponding to at least 10 wavelengths in the axial direc-
tion, and 12 transducer elements in the lateral direction. The 
windowed RF data were input into the algorithm, which cal-
culated the QUS parameters for that specific window loca-
tion. Details of the calculation of parameters from the RF 
data are provided in the following sections of this paper. To 
increase the resolution of the parametric image, a sliding 
window was used with 66% overlap. This allowed param-
eters to be calculated for the larger 3 mm × 3 mm window, 
but the resulting parametric image had a pixel value for each 
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1 mm × 1 mm region, as shown in Fig. 2, albeit with some 
correlation between values in successive pixels.

QUS analysis

Scatterer size and acoustic concentration

Estimation of scatterer size and acoustic concentration 
began by measuring a calibration power spectrum for 
each element in the array from a quartz flat placed at the 
same axial distance, R, as the centre of the tissue ROI. The 
power spectrum was defined as the squared magnitude of 
the gated time signal; in this study, a Hamming window 
was used as the gating function:

where L is the length of the ROI and Vref is the reference 
signal amplitude. The power spectrum from each tissue ROI, 

(3)Wref(f ) =
|||FFT

[
Vref(t, L) ∗ Ham(t, L)

]|||
2

Wt(f ) , was measured in a similar way, and the experimental 
backscatter coefficient for each ROI was estimated using 
[24] with 12 active elements:

where R is the axial distance from the transducer to the 
centre of the ROI, D is the active area of the 12 transducer 
elements, L is the gate length, � is the reflectivity coefficient 
of a water and quartz interface, and A(f , L) is an attenuation 
compensation function for a gated signal [25]. Note that, fol-
lowing convention, all lengths were defined in mm. The scat-
terer size was estimated from the backscatter coefficient by 
expressing it in decibel form and applying linear regression to 
solve for slope and intercept values [26]. The size could then 
be compared to the theoretical description of the backscatter 
coefficient, with parameters estimated as follows:

(4)
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Fig. 1  Experimental set-up of 
data acquisition from tissue 
using Verasonics Vantage 
system

Fig. 2  Diagram showing the 
sliding window technique for 
QUS parametric image forma-
tion
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Homodyned K‑distribution parameters

Using the same sliding window technique, homodyned 
K-distribution parameters were estimated for each window 
within the ROI. This requires the estimation of the model 
parameters 

(
�, �2, �

)
 , for which several methods exist. The 

method based on the mean and two log moments of intensity 
of the echo envelope signal was chosen in this study due 
to its high accuracy and speed [23]. First, the echo inten-
sity distribution for a tissue region was found by taking the 
square of the magnitude of the Hilbert transform of the RF 
data. The X and U statistics were then calculated experimen-
tally from this region by calculating the mean of the echo 
envelope signal and using the expressions below:

where I indicates the expectation value of the variable I. 
Next, by assuming the echo envelope signal amplitude, A, is 
distributed according to the homodyned K-distribution [23], 
the algebraic expressions for the X and U statistics could be 
obtained via I , log(I), and I log(I), where I = A2.

The two nonlinear equations for X and U were solved 
for the model parameters 

(
�, �2, �

)
 through a series of algo-

rithms described by Destrempes et al. [23]. Two functions 
of the model parameters are invariant under scaling of the 
mean value, so they can be used as QUS parameters for 
tissue characterization: the scatterer clustering parameter, 
α, and the structure parameter k = E2∕

(
2�2

�

)
 . It is worth 

noting that these parameters are particularly useful for tissue 
characterisation as they are system independent, so they do 
not depend on the amplitude or frequency of the ultrasound 
system.

Echogenicity parameters

Further parameters can be estimated solely from the grey 
level or echogenicity values of the B-mode image produced 
by the ultrasound system. After log compression of the RF 
data, the image is displayed according to the dynamic range. 
In this study, a dynamic range of 80 dB was used, and the 

(5)−10 log10 �b(f ) = M
(
a2
)
f + I

(
a,CQ2

)

(6)M = 1.85 − 265a2

(7)I = 58.3 + 114 log (a) + 14.3
[
log (a)

]2
+ log

(
CQ2

)
.

(8)U ∶= log I − log I = UHK

(
�, �2, �

)

(9)X ∶= I log I∕I − log I = XHK

(
�, �2, �

)
,

distribution of echogenicity values in a given ROI yielded 
the variance and higher order moments of each B-mode 
image from simple statistics.

Machine learning based classification

The QUS parameters obtained in the previous section allow 
for easy implementation into a machine learning classifier. 
A summary of the 13 parameters used is shown in Table 1.

The k-nearest neighbour algorithm was trained using k = 5 
from several combinations of the parameters from the spec-
tral, statistical, and echogenicity-based methods. The QUS 
pixel data from 10 of the 12 samples of each tissue type were 
randomly chosen and used as training data for the machine 
learning classifier. This resulted in a dataset T that included 
824 sets of parameters for liver and 648 for gizzard, as liver 
was thicker on average. The two remaining samples were 
used to test the performance of the classifier.

Table 1  Summary of QUS parameters used in machine learning 
training algorithm

Symbol Description

a Effective scatterer diameter
CQ2 Acoustic concentration

E Echogenicity value mean

E
2 Echogenicity value variance

E
3 Echogenicity value skewness

E
4 Echogenicity value kurtosis

E
6 Echogenicity value 6th moment

X X statistic
U U statistic
E2 Coherent signal power
σ2 Diffuse signal power
α Scatter clustering parameter
κ Structure parameter

Table 2   Acoustic characterisation of liver and gizzard

Tissue Density (kg/m3) Speed of 
sound  (ms−1)

Attenuation coef-
ficient (dB/cm/
MHz)

Liver 1067 ± 23 1539 ± 85 0.66 ± 0.16
Gizzard 1051 ± 8 1510 ± 44 0.81 ± 0.18
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Results

Acoustic characterisation

The results for density, speed of sound, and attenuation coef-
ficient for liver and gizzard are summarised in Table 2.

The speed of sound values agree with published values 
for healthy brain and glioblastoma. An attenuation value 
measured for each frequency, showing the variance on the 
mean, along with a summary of the literature values, are 
given in Fig. 3. The attenuation coefficients were deter-
mined to be 0.66 and 0.81 dB/cm/MHz for liver and gizzard, 
respectively. When compared to the value for healthy brain, 
the attenuation value for liver agrees well over the frequency 
range of interest. Values in the literature manifest signifi-
cant variation and, importantly, the two reported instances of 
ex vivo cancerous brain tissue show attenuation in glioma to 
be only slightly above the values for healthy brain, whereas 
the meningioma shows a larger difference.

We thus conclude that our results are evidence that liver 
and gizzard are reasonable phantoms for brain and brain 
tumour over the present frequency range of interest, in 
agreement with Stewart et al. [27], who concluded these 
were suitable phantoms in terms of steady-state mechani-
cal properties. As attenuation is derived mainly from an 
absorption component and a scattering component, the mac-
roscopic scattering properties indicate that these materials 
are suitable for preliminary studies of QUS characterisation, 
even though the accuracy of the underlying tissue micro-
structures as models of human brain tissue may be limited.

QUS parametric images

QUS parametric images indicative of the size of acoustic 
scatterers provide a fast way of distinction between healthy 
and cancerous tissues [28]. In this study, we proposed to use 
QUS parametric B-mode images as a differentiation method. 
Those images were generated from B-mode images with a 
colour overlay (Fig. 4). The overlay of colour was formed 
by assigning each pixel a colour based on the parameter 
value in that ROI, with reasonable colour bar axes. These 
images were produced for all thirteen QUS parameters for 
all samples. Examples of four parametric images for two 
samples of liver and gizzard are displayed in Fig. 4. The 
images highlight the significant differences in the parameter 
values for liver and gizzard for selected spectral, statistical 
and, echogenicity parameters. The scatterer size was found 
to be significantly higher in gizzard, suggesting that the scat-
tering sources are larger agglomerations of scatterers, further 
evidenced by a higher clustering parameter. There was also 
a larger variance in echogenicity values in gizzard and a 
lower value of skewness of the echogenicity distribution. 
Although Fig. 4 also shows intra-sample variability between 
two gizzard samples, the colour coding in gizzard and liver 
shows huge potential for liver and gizzard differentiation 
using QUS parameters.

Whilst pixel values were seen to be fairly consistent 
throughout relatively large regions within each sample, the 
‘edge effect’ was observed. This is an artefact of the sliding 
window method because the pixel values around the edge 
tend to be different to the bulk of the sample. It is particu-
larly evident in the liver samples and could be reduced by 
using a larger window percentage overlap. There will always 
exist a trade-off between parametric image spatial resolution, 
computation time, and variance in statistical QUS measure-
ments. The ideal window size, or gate length, has been con-
sidered in various studies of spectral parameters [29, 30], but 
there are fewer studies relating to homodyned K-distribution 
parameters. In the present study, a window size of 3 mm 
was used, which corresponds approximately to 10 times the 
wavelength of ultrasound in tissue at 5 MHz. The effect of 
ROI size on homodyned K-distribution parameters is dem-
onstrated in Fig. 5 which shows the parameters tend to a 
limiting value at around 3 mm.

Machine learning‑based near‑real‑time QUS 
analysis

The computational cost is important if QUS is to be used 
as a real-time imaging tool for intraoperative tissue identi-
fication. For context, our analysis was conducted on a PC 
with the following specification: Windows 10 64-bit operat-
ing system, Intel Core i7-9700 K CPU @3.60 GHz, 16 GB 
RAM. The time taken to image a 1 cm × 1 cm region, similar 

Fig. 3  Comparison of attenuation values of healthy and cancerous 
brain tissue both in vivo and ex vivo. The dotted line shows soft tis-
sue phantom standard guidelines of 0.5 dB/cm/MHz. The experimen-
tal results for liver and gizzard are shown with error bars as standard 
deviation of the mean at each frequency. The dependence of attenua-
tion on frequency is assumed linear in this study
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to the images shown here, was calculated for the various 
parameter sets.

Echogenicity images were the quickest, with an aver-
age time of 4.7 s, followed by spectral parameters, which 
took 6.3 s. The algorithms involved in solving for param-
eters of the homodyned K-distribution require a tolerance 
value, which can be tuned to give more accurate or faster 
results. The tolerance value used in this study was 0.0001 
for both α and γ estimations. This resulted in a total time for 
a 1 cm × 1 cm QUS image of 22 min.

Figure 6 shows the numerical results for some QUS 
parameters for all 1 mm × 1 mm sections of tissue via the 
sliding window technique. One can observe the clustering of 
data, even when considering a 2-dimensional visualisation 
here. However, all correlations of those sample parameters 

show a degree of overlap that creates an uncertainty of 
applying those parameters to a clinic setup.

To provide rigorous evaluation of classification and 
explore a possible reduction in the number of parameters 
required achieving near-real-time QUS analysis, vari-
ous combinations of QUS parameters were used to train a 
binary classifier based on an unsupervised machine learning 
method. The method chosen was the k-nearest neighbours 
algorithm, using five neighbours and validating over sixfold. 
A sixfold cross-evaluation of test data was calculated using 
a custom MATLAB function. In sixfold cross-validation, 
the dataset T is randomly divided into six equally sized (up 
to one instance) non-overlapping subsets Ti, called folds. 
For each fold Ti, a training set Tri is defined as T − Ti, the 
k-nearest neighbour classifier model mi is learned from Tri, 

Fig. 4  QUS images from two samples of both liver and gizzard. ROIs 
are selected from the original image, and QUS parameters are calcu-
lated and displayed and registered over the B-mode image. Parame-
ters shown are scatterer size, scatter clustering parameter, echogenic-

ity variance, and skewness, with the colour bar based on maximum 
and minimum values for all tissue types. The images show that all 
of these parameters exhibit classification potential, but there are still 
some outlying pixel results for some parameters
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and mi’s error is estimated on Ti. The mean of all these error 
estimates is returned as the final estimate.

The accuracy and F1-score for various parameter sets are 
shown in Table 3, with the typical confusion matrix shown 

for onefold, and the average of sixfold for the real-time 
parameters in Fig. 7.

The result with the greatest individual accuracy came 
from the spectral parameters, followed by the statistical 
parameters, and then the echogenicity parameters. There is a 

Fig. 5  Effect of ROI size on homodyned K-distribution parameters

Fig. 6  Results of QUS parameters. a Two echogenicity parameters 
showing distinct clustering of results for liver and gizzard. b Spectral 
parameter results highlighting the very small intra-sample variance. c 
The U and X statistic used to estimate the homodyned K-distribution 

parameters. d The results for scatter clustering parameter and struc-
ture parameter, with notable discretisation of results for κ, which may 
be due to the tolerance values of the algorithm
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remarkable increase when spectral parameters are combined 
with the other sets, giving an almost perfect classification. 
Interestingly, we did not see this improvement when only 
statistical and echogenicity parameters (nine parameters in 
total) were combined. The improvement when all three sets 
were combined was very small because of the already high 
performance of the combinations of two sets.

In terms of computational cost, it would be optimal to use 
only spectral and echogenicity parameters while working 
towards real-time application with a total image formation  
time of 11.7 seconds. To illustrate visually how the near-
real-time parameters performed, the predictions based on 
echogenicity and spectral methods were displayed over the 
testing samples. The capability of this technique to identify 
the two tissue types correctly can be seen clearly in Fig. 8. 
The accuracy of these particular four testing samples, which 
were randomly chosen, is 98%, with almost all of the incor-
rectly identified pixels located at the edges of the images. 
This problem could be overcome in future by using a larger 
window overlap or a higher frequency of ultrasound to 
allow more wavelengths within a smaller window to provide 
greater statistical accuracy.

A binary classification image like those shown could pro-
vide valuable information to surgeons in several seconds if 
a large set of training data could be collected from human 
brain tissue and tumour. While the resolution of this image is 
reduced to 1 mm from the original B-mode, the tools avail-
able to the neurosurgeon impose an accuracy of 2 mm in 
theory. For this application, the accuracy of the statistical 
estimates, or larger window sizes, is of more importance 
than final image resolution, which is suited to around 1 mm 
for surgical tools.

Related work

The purpose of acoustic phantoms is to mimic the acoustic 
properties of fresh human tissue over an ultrasound frequency 
range of interest. Commercially available soft-tissue phan-
toms are produced following the International Electrotechni-
cal Committee (IEC) standard guidelines of a speed of sound 
value of 1540 m/s and attenuation coefficient of 0.5 dB/cm/
MHz [31]. However, the brain has been shown to have a 
slightly higher speed of sound and attenuation than typical 
soft tissue [9, 32, 33]. Recently, a 3D perfused brain-tissue 

Table 3  Sixfold cross evaluation results

All parameters Near-real time Spectral Statistical

Accuracy (%) F1-score Accuracy (%) F1-score Accuracy (%) F1-score Accuracy (%) F1-score

Fold 1 90.3 0.870 90.6 0.876 79.9 0.767 80.5 0.762
Fold 2 97.9 0.974 97.9 0.974 61.8 0.525 85.1 0.814
Fold 3 96.3 0.951 92.0 0.887 79.3 0.642 66.3 0.760
Fold 4 96.7 0.956 97.7 0.970 80.7 0.678 71.0 0.664
Fold 5 95.4 0.940 93.5 0.914 82.4 0.725 84.3 0.819
Fold 6 96.9 0.968 97.8 0.979 95.7 0.957 67.3 0.639
Ave. 95.5 0.944 94.9 0.933 79.9 0.715 75.7 0.743

Fig. 7  Results of confusion matrix. a Results from fold 1 of near-real-time parameters, b normalised results for fold 1, and c average normalised 
results of near-real-time parameters over all sixfold
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phantom was constructed for ultrasound thermal therapy and 
imaging, which had a speed of sound of 1545  ms−1 and an 
attenuation coefficient of 0.74 dB/cm/MHz measured over the 
range 1–2.5 MHz [34]. Further progress towards a suitable 
brain tumour phantom came when a study tested the mechani-
cal characteristics of agarose and hydrogel-based phantoms to 
determine suitable mechanical phantoms for brain and brain 
tumour and found chicken liver and gizzard muscle to be most 
suitable in terms of steady-state moduli [27].

Discussion

With regard to future work, the present study made the 
assumption that a good macroscopic ultrasound phantom cor-
responds to a good QUS phantom. A further study provided 
evidence of using those parameters for characterising brain 
and brain tumour tissue [35]. However, due to the difficulty 
of obtaining human fresh brain and brain tumour samples, 
the effect of brain and brain tumour tissue’s inhomogeneity in 
QUS parameters is still unknown. Nevertheless, a framework 
has been demonstrated that can classify phantom materials 
using a research ultrasound system, with encouraging results. 
Further testing of this technique will come from in vivo and 
ex vivo measurements of human brain and brain tumour tissue. 
If a large data set can be accessed, a tool to identify tumour 
boundaries in neurosurgery could be developed in the future.

To further reduce the processing data of classification, we 
also intend to explore a method for supplying unprocessed 
RF ultrasound data directly into a supervised deep-learning 
system, such as a convolutional neural network (CNN) with-
out QUS parameter calculation.

Conclusion

There is a need for a real-time imaging tool to aid neuro-
surgeons in complete removal of brain tumours. Many brain 
tumours, particularly gliomas, are extremely difficult to resect 
fully because of their infiltrative nature and similarity to 
healthy brain tissue [35]. This study determined the acoustic 
properties of chicken liver and gizzard muscle and, through 
comparison with data from the literature, showed that these 
tissues were suitable phantoms for brain and brain tumour, 
respectively, in terms of density, speed of sound, and attenu-
ation. Subsequently, QUS parametric images were formed 
using a sliding window technique. These showed promise for 
tissue differentiation, with parameters such as the scatterer 
diameter and the scatter clustering parameter showing sig-
nificant differences in liver and gizzard. Further value from 
QUS data was demonstrated when parameters were combined 
to train a machine learning classifier. This gave almost perfect 
classification results while using only nine out of the total 
of 13 QUS parameters, which achieved near-real-time clas-
sification for clinic settings. In terms of diagnostic value and 

Fig. 8  Prediction of liver or 
gizzard from classification 
algorithm based on echogenic-
ity and spectral parameters from 
ten training samples chosen 
randomly. Binary results are 
superimposed on the B-mode 
image. The pixel resolution is 
1 mm



527Journal of Medical Ultrasonics (2022) 49:517–528 

1 3

real-time optimisation, the combination of echogenicity and 
spectral parameters reduced the computation time to 6.3 s, 
while still achieving high classification accuracy for our ulti-
mate goal of real-time tissue differentiation.
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