
Using Active Constructs in User-Interfaces
 to Object-Oriented Databases

Kenneth J. Mitchell, Jessie B. Kennedy, Peter J. Barclay
Computer Studies Department, Napier University,

Canal Court, 42 Craiglockhart Avenue, Edinburgh EH14 1LT, Scotland, UK
e-mail: <kenny, jessie, pete>@dcs.napier.ac.uk

Abstract

This paper examines the use of active constructs in
the definition of user-interfaces to object-oriented
databases. A development environment for user-
interfaces to databases is presented which features the
interactive use of active features of an object oriented
data language through visual programming facilities.
Examples are provided highlighting the salient issues
of this approach, including dynamic query interfaces
and complex event management.

1. Introduction

Object-oriented databases have continued to attract
interest in application domains which have proved
impracticable for traditional database technology. Over
the same period, object-oriented user-interface
technology has spread to many computer application
frameworks.

This paper is concerned with findings in object-
oriented databases, active database management
systems, user-interface technology and human
computer interaction with the aim of furthering the
development of integrating technologies for user-
interfaces to object-oriented databases.

Highlighting the perceived benefits of integrating
programming languages and database systems when
discussing object data management, Cattel [7] states:

The most important functionality advantages of
object data management systems over relational
database management systems are the closer
association between programming language and
database system... and the more complex data
structures for objects...

Similarly, the active database management system
manifesto [10] predicts the incorporation of the event
driven paradigm into many classes of information
system as a mechanism of collaboration between
disparate system components:

Events, and responses to them, will therefore become
a paradigm (perhaps the basic paradigm) of future
information systems.

These two observations suggest user-interfaces to
object-oriented databases may benefit from direct
association between programming language and
database system supported by the incorporation of the
event driven paradigm. In previous work, the unification
of object-oriented database and user-interface
technologies in a well defined framework [19] has been
described. Here, the use of active constructs in defining
complex behaviours for user-interfaces to object-
oriented databases is demonstrated and some
fundamental benefits of this unification are shown.

In particular, database integrity modelling features,
such as constraints and triggers, often provided by
active database management systems, may be applied
uniformly to development of user-interfaces to object-
oriented databases. We identify ways in which such
active features enable the concise specification of
advanced user-interface mechanisms. One exemplary
case from information visualisation is the well defined
specification of dynamic queries and their associated
interface controls. We also consider complex event
conditions and responses, declarative updates of
multiple visual views and responses to external process
events.

A user-interface to databases development
environment, DRIVE [20] has been implemented which
dynamically interprets a conceptual object oriented data
language with active constructs. This supports the
interactive specification of active features through
visual programming facilities. Such active features
become effective immediately upon specification.

The following section gives an overview of
contributing areas from which we are integrating ideas.
A summary of the framework for user-interfaces to
databases provides a context for this work. Section 3
highlights the interactive specification of prototype
user-interfaces to databases through visual
programming facilities and classifies our current system
in terms of the active database management system

manifesto. Section 4 introduces the main exemplar of
this paper, the Transaction Explorer. This concerns an
advanced user-interface facilitating the analysis of a
database of residential and commercial property sales
transactions in Edinburgh. Section 5 describes in detail
the specification of dynamic queries using active
language constructs. Section 6 highlights further
important uses of active features, such as complex event
conditions and responses, responses to external
process events and declarative updates of multiple
visual views. The paper concludes with the benefits of
our approach and suggestions for further work.

2. Background

2.1. Object-oriented databases

With the increasingly complex data requirements of
modern information systems many people have been
drawn to the use of object-oriented databases (OODBs).
This is most apparent in application domains which rely
on the ability to manage compositional and
classification hierarchies of data items, and data with
closely associated behaviour. The sustained investment
in this approach suggests there is significant benefit to
be gained from such technology.

In contrast to the relational data model, data models
for OODBs vary widely. Considerable effort has been
made to standardise object-oriented data models [8] in
the absence of a tractable mathematical definition.
OODBs are generally considered to be an integration of
object oriented programming language and database
concepts. This is typically provided either by extending
existing object oriented programming languages with
database functionality or extending relational databases
systems with object oriented concepts. An evolution
towards seamless integration of programming language
and data language has been identified [7].

2.2. Active database management systems

The modification of data in databases frequently
results in situations where inconsistencies arise or some
further action is needed. Dealing with such events may
be required to maintain the semantic integrity of the
database. In modelling database integrity, constraints
may be used to specify conditions which hold
throughout the lifetime of the data, and triggers may be
defined to specify events and conditions upon which
further actions will be taken. In addition, rules may be
used to compute data values from other values,
providing derived data. These features are often
supported in active database management systems
(ADBMSs).

ADBMSs have been a “hot topic” in recent years
and in common with relational and object-oriented

database management systems an identification of their
common features exists in a manifesto [10]. A caveat of
ADBMSs is the potential for mis-management of
triggers. In complex sets of triggering rules, since an
action of a trigger may in turn satisfy other triggers’
conditions, determining their termination is an
undecidable problem. However, with care and
development environment support their power can
exploited to define database characteristics which would
be impracticable if not impossible with traditional
database functionality.

2.3. User-interfaces to databases

The usability of user-interfaces can be a critical factor
in the success of database systems. Few would doubt
the improvement for certain tasks gained by the use of
techniques such as forms, query-by-example [28] and
graphical schema editors over textual language
interfaces. With advances in human computer
interaction and the availability of more powerful
graphics work-stations, information visualisation
techniques [2] now enable the exploration of data of
ever growing volume and dimensionality, by for example
dynamic queries [24], pixel-oriented visualisation
techniques [14] and advanced layout algorithms [9][11].
Sound principles for user-interfaces to databases (IDSs)
are emerging supported by direct manipulation [23],
sense-making [22] and Information Visualisation
Artefacts (IVAs) [25].

2.4. A framework for user-interfaces to
databases

In [19] we have presented a framework for IDSs and
in [15] we show its relevance to information
visualisation systems. This is a high-level, contextual
framework facilitating discussion of human-data
interaction. Based on Abowd and Beale’s model of
human-computer interaction [1], it has four main
components: the user, the database, the visualisation
and the interaction.

To enable the specification of IDSs in terms of this
framework, each component has been modelled in an
object-oriented modelling language, NOODL. NOODL is
a simple high-level language originally designed to
restore a conceptual level to object-oriented databases
[4]. The model of the framework contains the following
main class categorisations: user, data, interface, and
visualisation classes. It permits multiple interface
objects associated with each data object and separates
visualisation objects to enable the reuse of visual
interface elements. Users are modelled explicitly with
features for user-specific views, access privileges and
visual user-embodiment.

For the purposes of this paper we are concerned only
with data, interface and visualisation classes. Data

classes correspond to all the classes of the database
schema. Interface classes provide the control and
linkage between data and their visualisations in a similar
way to the presentation, abstract and control model
(PAC) [21]. An interface class has properties linking a
referent (data object), a metaphor (visualisation object)
and compositional properties for hierarchies of interface
objects. Visualisation classes model the properties and
events of user-interface elements. Specifications under
this model are automatically generated through
language interpretation in DRIVE [20] (Database
Representation Independent Virtual Environment).

2.5. User-interfaces to object-oriented
databases

OODBMS vendors typically supply schema and
object browsers to view the state of the database.
Although it is a relatively straightforward task to
display tables from relational databases, the nature of
object-oriented data models requires the construction of
hierarchical browsers with specific presentations
predefined for each data type. Updates can usually be
made to atomic property values of database objects,
such as numbers and text, but more advanced kinds of
modifications to the database are rarely supported.
Kadyamatimba et al [13] have developed a generic user-
interface for OODBs based on the desktop metaphor,
which provides facilities for the population and
manipulation of data instances including display and
maintenance of bi-directional associations. Smalltalk’s
meta language constructs enable programmers to
modify the database schema at run-time and therefore
permit the development of tools to interactively evolve a
database application’s schema. This includes the
potential for manipulating the behaviour of database
objects.

In DRIVE [20], a meta-model of the NOODL language
is used to represent and interpret the constructs of a
NOODL IDS specification. This mechanism provides
immediate incremental feedback during the interactive
modification of schemas, instances, complex and atomic
property values, and behaviour.

Development environments exist for many relational
database products. Such tools may employ a visual
programming environment where modifications to IDS
designs can be made interactively. Indeed,
environments for advanced information visualisation
techniques using relational tables are now becoming a
commercial viability [3]. In OODBs such development
environments are mainly provided by vendors of object-
oriented programming languages as application
frameworks such as OWL or OSF. Although such
language compilers have advanced a long way towards
the facility of visual programming environments, they
do not provide immediate feedback on modifications to
the design of user interfaces to object oriented

databases. DRIVE attempts to remedy this by
supporting incremental IDS construction using an
interpreted design language.

Figure 1. IDS editor within DRIVE

3. Interactive application of active user-
interface to database (IDS) design features

3.1. The user-interface to database (IDS)
editor

Figure 1 depicts DRIVE in the process of editing the
properties of a data class. This combines a hierarchical
list view of the IDS with a node specific dialog editor.
When the designer selects an element in the IDS list, the
view on the right changes to display the controls
required to edit that element. Interestingly, the majority
of nodes correspond to editors for adding, editing and
deleting from ordered sets. This technique allows
access to edit the entire contents of the IDS including
schema and instance data.

3.2. Context sensitive NOODL definition
editor

With the structural data aspects of the IDS specified,
the behaviour of the application may be developed in
terms of the IDS schema using the definition editor.
Figure 2 shows the designer specifying a constraint on
a property of a data class. The two lists above the
current definition show the range of valid operators and
operands from which the user can select. At this point
in the predicate’s definition, NOODL’s self keyword has
been selected and the lists are showing the possible
items which may follow. As this is a constraint on the
Transaction class, only the properties and operations of
this class are valid here. The message (RHT_PRD_ERR)
in the lower right of the image indicates that the current
definition is incomplete. Once a constraint is validated it

immediately becomes active in the IDS. This scheme is
employed for all behaviour specifications in DRIVE,
including operations, triggers and derived properties.
An important advantage of this editor is that it frees the
designer from the syntax of the language used and
reduces the interaction to only a few mouse clicks. We
believe this approach is preferable to traditional textual
code editing; however a usability study to investigate
this hypothesis is necessary.

Figure 2. Context sensitive definition editor

3.3. Categorisation of DRIVE as an active
database management system

There are essentially two ways to manage constraints
and triggers in a database management system. The
most common method is to add monitor processes to
check the conditions of constraints and triggers upon
particular events. This is a defining aspect of ADBMSs.
The alternative approach is to check the conditions
upon each data modification. This approach is rarely
used outside of application code hard-wired for this
purpose. Widom and Ceri [26] note several
disadvantages of this approach:

1. Adding, changing, or removing a constraint or
trigger requires finding and modifying the relevant
code in every application

2. The correct constraint-checking or triggering
behaviour is guaranteed only when every
application implements it correctly

3. Additional application-to-database communication
is required after every modification

However, as a consequence of DRIVE’s unified IDS
model and its integrated NOODL interpreter, these
disadvantages can perhaps be countered:

1. The relevant code for checking constraint and
trigger conditions is automatically handled by the

definition editor. If a property is specified in a trigger
condition, this trigger is added to the property’s
‘integrity pool’ (and accordingly removed if
necessary). Each time that property is updated, all its
relevant integrity pool conditions are checked.
Because the definition editor manages integrity
pools dynamically, there is no redundant checking
of irrelevant conditions.

2. The correct constraint-checking or triggering
behaviour is guaranteed by the uniform use of
integrity pools across all IDS prototypes

3. Additional application-to-database communication
is potentially eliminated through the use of a unified
model of application and data

The active database management system manifesto
[10] presents a summary of the characteristics found in
ADBMSs. Although not an ADBMS as defined in the
manifesto, DRIVE exhibits the behaviour of many
features identified therein. The triggers defined in
DRIVE are composed of declarative conditions and
actions using NOODL constructs. Widom and Ceri [26]
suggest this approach can be easier to use than the
more common Event-Condition-Action rules of
ADBMSs, at the expense of a loss of flexibility.
However, with the ability to define trigger conditions
specified on visualisation class states we believe the
decrease in flexibility is limited. This is shown through
our examples in section 6.

In support of rule management and evolution, DRIVE
facilitates the creation, modification, and deletion of
triggers at any time during the lifetime of the prototype
IDS. The rules, specified as part of the IDS definition,
may be browsed at any point. Additionally, a toggle
may be used to activate or deactivate any individual
constraint or trigger.

In terms of the manifesto, the execution model in
DRIVE supports event detection, condition evaluation
and execution action. It supports multi-grained binding
modes for classes, collections, objects, property values
and queries. However, it offers only a sequential causal
dependent coupling mode (the triggered transaction
begins only after the triggering transaction commits), no
event consumption other than the use of Boolean
conditions specified on IDS states and no persistent
event history other than a debugging log file.

Finally, as described above, DRIVE supports a
design environment with browser, designer, debugger,
maintenance and trace facilities. However, no rule base
tuner or analyser for advanced rule management
currently exists.

We begin our presentation on the use of active
constructs for user-interfaces to object-oriented
databases by introducing the Transaction Explorer’s
dynamic query interface.

4. Transaction Explorer

In 1992 dynamic query interfaces (DQIs) were
introduced as a new method of information exploration
which provides a means of refining database queries
with continuous visual feedback on user interactions.
The Dynamic HomeFinder [27] for exploring real-estate
records showed that querying with this technique is
more efficient and effective than other query interfaces.

Figure 4 shows the Transaction Explorer prototype, a
tool for analysing a property sale transactions database,
constructed with DRIVE. The 2D view shows a
HomeFinder style overview with squares showing the
geographical locations of properties satisfying the
current query criteria. Each square is coloured according
to the class of sale of the property transaction, e.g.
yellow for residential sale, red for commercial lease. The
3D view is essentially the same as the overview, with
the exception of the use of height to represent the
relative cash value of each property transaction.
Clicking with the mouse on any property transaction in
either of these views results in the associated details
being displayed in the details view. Each graphical view
may zoomed independently using DRIVE’s consistent
navigation controls [20]. The right hand panel contains
the interactive widgets for specifying dynamic queries.
Range bar controls [27] define price, date and
geographical ranges for property transactions appearing

in the graphical views. Specific ranges may be entered in
the min and max text boxes beneath each range bar. Text
search boxes permit the specification of simple wild card
tokens to match with the textual property values of the
transaction database. Although feedback on text
searches is not continuous, (it is debatable whether it
should be) each view is updated upon committing a
regular expression. For continuous visual feedback on
textual data, alphasliders [3] may be employed. The
other controls concern filtering property transactions
according to the class of sale and adjusting the height
scale factor of the 3D view.

Together, these features satisfy the demands of the
visual information seeking mantra of ‘overview, zoom
and filter, and details-on-demand’ [23]. The class
definition below shows a NOODL specification of the
original relational property transaction database
imported into DRIVE.

Note the use of an enumerated SaleType and Date
(using Julian dates) and Vector2D base types. Each of
these are particularly useful in mapping to visual
representations with DRIVE. In addition, the value
constraint shown partially specified in an earlier example
ensures a sensible range of price values for property
transactions in the database.

5. User-interface design with active features

Figure 3. The Transaction Explorer prototype constructed with DRIVE

5.1. Dynamic query updates as declarative
active responses

Given a NOODL real estate transaction as defined
above, we can define queries on property values of
objects of the Transaction data class (e.g. Value), using
parameters specified by property values of visualisation
objects (e.g. minRange and maxRange properties of the
RangeBar class in Figure 4). This would determine the
visibility of the graphical representation of objects in
the interface (e.g. the presence or absence of a specific
property transaction in the visualisation).

Figure 4 gives a NOODL specification of a range bar
visualisation class. This shows the various properties of
RangeBar as defined by DRIVE’s custom environment
library for dynamic query controls. The constraints
defined on these properties further support the
definition of RangeBar semantics. Next we show one
method of accomplishing dynamic queries using active
constructs to specify the interaction between the data
classes and visualisation classes.

The following schema
extract highlights the classes
of the Explorer prototype
which are concerned with
dynamic queries based on
property price. This specifies
dynamic queries for property
transaction values defined in
NOODL using the frame-work
for IDSs.

class PriceRangeBar { Visualisation Class }

isa RangeBar
properties

interface : PriceRangeInterface ref metaphor ;
override minText : Text is “£” + self.minLimit ;
override maxText : Text is

“£” + self.maxLimit / 1000000 + “M”

class TransactionShape { Visualisation Class }
isa Shape
properties

interface : TransactionInterface ref metaphor ;
override position : Vector3D is

self.position.x(self.interface.referent.GridRef.x),
self.position.y(self.interface.referent.Value/self.height) ,
self.position.z(self.interface.referent.GridRef.y) ;

override visible : Bool is
self.interface.te.pricerange.metaphor.minRange <
self.interface.referent.Value <
self.interface.te.pricerange.metaphor.maxRange ;

height : Real
operations

select ;
move

constraint
0 < self.height < 100

class PriceRangeInterface { Interface Class }
properties

metaphor : PriceRangeBar ref interface ;
te : TransactionExplorer ref pricerange

class TransactionInterface { Interfaces Class }
properties

referent : Transaction ref interface ; {link to Data Class}
composite : TransactionExplorer ref shapes ;
metaphor : TransactionShape ref interface

trigger
self.metaphor.select =>

self.composite.detail.referent(self.referent)

class TransactionExplorer { Interface Class }
properties

user : Analyst ref accessor ;
pricerange : PriceRangeInterface ref te ;
shapes : #TransactionInterface ref composite

class Transaction { Data Class }
properties

Class of Sale : SaleType ;
Property Code : Text ;
Characteristics : Text ;
Reference No : Number ;
Registration Code : Text ;
Sale Code : Text ;
Value : Number ;
Name of Seller : Text ;
Name of Buyer : Text ;
Origin of Buyer : Text ;
Date : Date ;
Flat Position : Text ;
Street Number : Text ;
Street : Text ;
Town : Text ;
Post Code : Text ;
Grid Ref : Vector2D

constraint
Value Constraint is 0 < self.Value < 2000000

RangeBar { Visualisation Class }
properties

name : Text ;
position : Vector2d ;
size : Vector2d ;
minLimit : Number ;
maxLimit : Number ;
minRange : Number ;
maxRange : Number ;
minText : Text ;
maxText : Text

constraints
self.minLimit < self.maxLimit ;
self.minRange < self.maxRange ;
self.minRange >= self.minLimit ;
self.maxRange <= self.maxLimit

class

Figure 4. Example range bar visualisation class with properties identified

;
detail : DetailInterface ref composite
The PriceRangeBar class reuses the functionality of

the RangeBar class and defines constants for the min
and max text labels. It also defines a link to the
PriceRangeInterface class (in accordance with the
principles of the IDS framework) which connects the
control’s visual properties with the TransactionExplorer
interface class.

The TransactionExplorer class is a composite
interface class which contains all the necessary
components for co-ordinating real estate transaction
data and their visual representations. In particular, the
set of TransactionInterface objects are linked through
the shapes property, and pricerange and detail are
classified as component properties in terms of the IDS
framework. The user property defines an accessibility
for the user of the IDS. In the framework, if an accessor
is defined in connection with a composite interface
class, then that user has access to all components and
sub-components of that class (unless otherwise
constrained).

The TransactionInterface class has the Transaction
data class as a referent and the TransactionShape
visualisation class as a metaphor. The metaphor
provides a visual representation for each transaction in
the database. It inherits the features of the generic
shape class for representing shapes in a 3D
visualisation and is provided as part of DRIVE’s 3D
widget environment library (TDW) [6]. For this
visualisation, the position of each shape is overridden
to define its locations in terms of the properties of its
associated property transaction values. This active
derived property specifies that x, y and z co-ordinates of
the Vector3D type are mapped to the grid reference and
scaled price properties of the Transaction class.

As stated earlier, the active constructs of NOODL
such as constraints and triggers are managed by the use
of dynamic integrity pools. Derived property values are
also handled by this mechanism.

The central point of this visualisation for dynamic
queries pivots on the visibility property of the
TransactionShape class. In common with the position
property, this is defined as an overridden, derived value.
Here, the min and max ranges of the PriceRangeBar are
used in a Boolean comparison with the value of the
property transaction, whose result is assigned to the
visibility of the 3D shape.

The active features implemented in DRIVE ensure
that this visibility condition is maintained if/when the
range bar is dragged, the min and max ranges are
dragged, textually specified or modified in the database
and the value of the associated property transaction is
altered in the database. Such updates trigger
corresponding updates to the user’s display.

With the flexibility of expression provided by the
NOODL language, alternative methods for the

specification of dynamic queries can be found. The
definition detailed here merely provides an example of a
possible use of active language constructs in user-
interface design.

Ioannidis [12] presents an alternative perspective on
dynamic queries in terms of SQL. In this work he
identifies:

• multiple interacting dynamic queries. Being based on
the relational model, the multiple interacting dynamic
query views are specified using user-defined foreign
keys between employees and department tables.
Although implementations can be tailored to handle
this, it is subject to the well-documented problems of
using user-defined keys which do not arise through
the use unique object identifiers managed by object-
oriented database systems.

• general dynamic views. These are defined by
arbitrary queries with parameters that are
interactively modified with immediately displayed
results. Such queries may involve the use of
mathematical functions based on database
properties.

• hypothetical updates. This is the ability to modify
many data items hypothetically through dynamic
query controls. Thus allowing refinement of a
database modification query, which may then be
committed.

All such features of DQIs are expressible using
NOODL. In addition, he also identifies potentially
efficient mechanisms for their implementation. Such
optimisations are crucial to the success of DQIs for
large datasets. Currently DRIVE does not address
optimisations which are specific to dynamic queries, but
their incorporation is not precluded.

Before moving on to further examples, it is noted that
given constraints defined on data (e.g. the Value
Constraint of the Transaction class) it may be possible
automatically to define corresponding user-interface
constraints based on the intrinsic properties of the data.
For example, the Value Constraint may be used to derive
the min and max limit values of the PriceRangeBar. The
automatic resolution of such derived constraints would
be difficult to police. In practice this example may be
resolved by defining minValue and maxValue constants
as properties of the Transaction class and defining data
and visualisation class constraints in terms of these
constants. In a wider sense, visual variable constraints
may be concept-ualised as an extension of the existing
identification of the appropriateness of particular visual
variables [22] (visual representations) for its associated
data.

6. Further examples

6.1. Complex triggering conditions

As stated earlier, conditions may be defined with
Boolean predicates on database states (and derived
database states). Staying with the Transaction Explorer
DQI, multiple range bar controls can be used to define
conjunctive queries on the data. For example, to
combine the use of price and date range bars, the
visibility condition of the TransactionShape could be
specified as,

override visible : Bool is
(self.interface.te.pricerange.metaphor.minRange <

self.interface.referent.Value <
self.interface.te.pricerange.metaphor.maxRange)

and
(self.interface.te.daterange.metaphor.minRange <

self.interface.referent.Date <
self.interface.te.daterange.metaphor.maxRange)

If a disjunctive query is required, e.g. to analyse two
disjoint price regions simultaneously, the NOODL
specification could be,

override visible : Bool is
(self.interface.te.rangeA.metaphor.minRange <

self.interface.referent.Value <
self.interface.te.rangeA.metaphor.maxRange)

or
(self.interface.te.rangeB.metaphor.minRange <

self.interface.referent.Value <
self.interface.te.rangeB.metaphor.maxRange)

Negation operators could also be applied, e.g. to
visualise those property transactions that do not lie in a
certain price range. Clearly, the complexity of triggering
conditions is limited only by the expressiveness of the
language used and the computability and tractability of
the implied implementation.

6.2. Declarative view updates

An important feature of DRIVE’s implementation of
the IDS framework is the declarative definition of
multiple co-ordinated views.

All visualisation classes within DRIVE make use of
an environment manager. This is a dynamic application
interface which supports the run-time registration of
visualisation classes, including their active properties,
and event operations. Active properties are those which
are directly updated or represented in the user-interface.
Event operations are simple user-interface events. It is
through these properties and operations that
environment libraries provide a custom built user-

interface interpretation of visualisation classes. This
approach is based on a dynamically configurable
version of the concept of intended graphic
interpretation in G-LOTOS [5] and later in NIOME [17].
This is the mechanism used in TDW [6], dynamic query
and standard widget environment libraries.

With the visualisation, interface and data classes of
the IDS framework, a further declarative semantic can be
used to support co-ordination of multiple views.
Importantly, this describes the use of an inherent
semantic of the NOODL data language and not a hard
coding of specific behaviours. If the referent (data
object) of an interface object is updated, then the
derived properties of all of the interface object’s
metaphors (visualisation objects) are also modified in
relation to the properties of the newly assigned data
object. This active update is possible, because the
referent property appears in all visualisation properties
derived from properties of data objects. This means that
all derived properties using the referent property are
added to the referent’s integrity pool, which is checked
upon each modification. All properties and operations in
a NOODL schema may be subject to this semantic and
therefore must be maintained by an associated integrity
pool.

This declarative construct is exemplified in the
Transaction Explorer schema extract for the co-
ordination of the graphical views with the detail view.
Whenever a shape is selected, a trigger defines that the
detail view’s contents are updated with that shape’s
data object, e.g.

self.metaphor.select =>
self.composite.detail.referent(self.referent)

Specifying a trigger condition on a visualisation
class’ event operation defines that the trigger action will
be executed upon receiving notification of the event
through the environment manager.

6.3 External process triggers

A final example is described which suggests the
possibilities for using IDSs which can respond re-
actively to events for external processes. In the above
example the mechanism for responding to user-interface
events was introduced. Here, the same technique is
applied to logging the user-interface behaviour of any
application running under MS Windows 95/NT
operating systems.

Many windowing operating environments rely on the
concept of message passing, e.g. as a mouse moves
across the screen, messages are continuously sent to
the window currently under the mouse notifying it of
the current mouse position. The window can choose to
respond to this as fits the desired application behaviour.
For example, such a message sent to a range bar window

when preceded by a mouse button down message
would be interpreted as a command to drag the range
bar’s slider to the new position.

In DRIVE this event is handled by the range bar
widget from dynamic query environment library, which
deals with the widget’s graphical update and then
communicates through the environment manager to
update the active properties of the RangeBar
visualisation class. A method can be used to trap all
messages sent during the operation of a windows
session. In this example, these messages are stored and
then passed on to their original destination using a
custom windows event class, as defined below,

class WindowsEvent { Visualisation Class}
properties

window : Number ; { active property }
message : Number ; { active property }
hiparam : Number ; { active property }
loparam : Number ; { active property }
time : Time { active property }

operation
event { event operation }

To store sequences of these events in a database for
later analysis, a simple trigger must be defined to create
a data event object and append it to an event set upon
notification of an event,

self.metaphor.event =>
self.referent(new (DataEvent)) ,
self.referent.window(self.metaphor.window) ,
self.referent.message(self.metaphor.message) ,
self.referent.hiparam(self.metaphor.hiparam) ,
self.referent.loparam(self.metaphor.loparam) ,
self.referent.time(self.metaphor.time) ,
self.composite.referent.log.add(self.referent)

Once stored, an event set can be visualised in the
normal manner using DRIVE’s existing visualisation
classes or by creating custom ones. Figure 5 shows
such a visualisation using a TimeRangeBar widget to
manipulate a custom defined TimeLens visualisation.

Window

Message

Parameters

Figure 1. Windows event log with 2D time lens

This visualisation displays the numerical values as
luminance bars for each event’s parameters. All the
recorded events are ordered in a line across the screen.
A lens is used to magnify a selected area of this display,
which is controlled by the TimeRangeBar.

Increasing the size of the range bar increases the
number of events displayed within the magnified region,
and so reduces the magnification. Decreasing this range
effectively zooms in on the details of a gradually smaller
number of events. Also, check boxes are used to allow
the user to filter out common message types.

The 2D TimeLens visualisation of windows
messaging behaviour may be used to analyse the
usability of any windows interface at a very fine grain.
Long bands of continuous colour indicate either
hesitation by the user or delays in computer application
processing. Obtaining the details of events in these
regions can yield further insights into the application’s
behaviour.

7. Conclusion & further work

In this paper we have shown the use of active
constructs in user-interfaces to object-oriented
databases. Active constructs allow us clearly and
concisely to define advanced user-interface
mechanisms, which may be automatically interpreted to
realise functional prototypes. With designs constructed
in an environment supporting such constructs in a well
defined framework, a foundation exists for the principled
specification of user-interfaces to object-oriented
databases whose components are integrated but not
monolithic, reusable but not ad hoc and aptly prescribed
but not unnecessarily constrained.

A potential criticism of an interpreted architecture for
the realisation active constructs is that it is too slow.
Acknowledging this, we recognise the need for further
investigation of optimisation techniques for the rapid
interpretation of IDS specifications. With respect to the
interpretation of visualisation classes the most
advanced graphics hardware and software may be
utilised through the environment manager. A similar
technique using a data manager may provide a means of
incorporating accelerated interpretations of IDS
definitions for specific aspects of the language,
particularly with respect to data classes.

In specifying derived properties in visualisation
classes based on properties of data classes there
typically exists at least three references, e.g.

self.interface.referent.Value

This may be avoided by the use of behaviour classes
[16], where visualisation, interface and data classes are
defined as participants in a collaboration. With a
collaboration, defining the above property specifier may
be shortened to Value. Thus the visibility condition

from the property transaction example could be
specified simply as:

visible : Bool is minRange < Value < maxRange

Modifying the NOODL meta model to incorporate the
use of behaviour classes may prove interesting.

References

[1] G. Abowd & R. Beale (1991) Users, systems and
interfaces: A unifying framework for interaction,
HCI’91:People and Computers, 73-87.

[2] ACM SIGMOD Record Special Issue on Information
Visualisation, T. Catarci & I. Cruz (eds.). ACM-
SIGMOD Record, 24(4), Dec. 1996.

[3] C. Alhberg (1996) Spotfire: an information exploration
environment, in [2].

[4] P. Barclay & J. Kennedy (1991) Regaining the
conceptual level in object oriented data modelling, 9th
British National Conference on Databases, 269-305,
Butterworths.

[5] T. Bolognesi & D. Latella (1989) Techniques for the
formal definition of the G-LOTOS syntax, IEEE
Workshop on Visual Languages , 43-49.

[6] J. Boyle & K. Mitchell (1996) Embedding three
dimensional graphics inside a user interface development
framework, Technical Report. Robert-Gordon
University, Aberdeen.

[7] R. Cattel (1994) Object Data Management, Addison-
Wesley.

[8] R. Cattel (1994) The Object Database Standard,
Morgan-Kaufmann.

[9] M. Chalmers (1993) Using a landscape metaphor to
represent a corpus of documents, European Conf. on
Spatial Information Theory, Spring-Verlag.

[10] K. Dittrich, S. Gatziu & A. Geppert (1995) The active
database management system manifesto, ACT-NET
Consortium, ACM SIGMOD Record.

[11] M. Hemmje, C. Kunkel & A. Willet (1994) Lyberworld -
A visualisation user interface supporting full text
retrieval, ACM SIGIR.

[12] Y. Ioannidis (1996) Dynamic information visualisation,
in [2].

[13] A. Kadyamatimba, J. Mariani & P. Sawyer (1996)
Desktop objects: directly manipulating data and meta
data, 3rd International Workshop on Interfaces to
Databases, Springer-Verlag Electronic WIC.

[14] D. Keim (1996) Pixel-oriented database visualisation, in
[2].

[15] J. Kennedy, K. Mitchell & P. Barclay (1996) A
framework for information visualisation, in [2].

[16] B. Marshall, J. Kennedy & P. Barclay (1996)
‘B_classes: A Construct and Method for Modelling Co-
operative Object Behaviour’, Technical Report, Napier
University, Edinburgh.

[17] K. Mitchell (1994) Schema visualisation. MSc Thesis.
Napier University, Edinburgh.

[18] K. Mitchell, J. Kennedy & P. Barclay (1995) Using a
conceptual data language to describe a database and its
interface, 13th British National Conference on
Databases, 101-119, Springer-Verlag.

[19] K. Mitchell, J. Kennedy & P. Barclay (1996) A
framework for user-interfaces to databases, in Procs of
Workshop on Advanced Visual Interfaces, ACM press.

[20] K. Mitchell & J. Kennedy (1996) DRIVE: An
environment for the organised construction of user-
interfaces to databases, 3rd International Workshop on
Interfaces to Databases, Springer-Verlag Electronic WIC.

[21] L. Nigay, P. Mulhem & J. Coutaz (1996) Software
architecture modelling for information retrieval systems,
FADIVA’96.

[22] P. Pirolli & S. Card (1995) Information foraging in
information access environments, ACM SIGCHI’95.

[23] B. Shneiderman (1983) Direct manipulation: a step
beyond programming languages, IEEE Computer, 16, 57-
59.

[24] E. Tanin, R. Beigel & B. Shneiderman (1996) Incremental
data structures and algorithms for dynamic query
interfaces, in [2].

[25] L. Tweedie, R. Spence, H. Dawkes & H Su (1996)
Externalising abstract mathematical models, ACM
SIGCHI’96.

[26] J. Widom & S. Ceri (1996) Active database systems,
Morgan-Kaufmann.

[27] C. Williamson & B. Shneiderman (1992) The dynamic
HomeFinder: evaluating dynamic queries in a real estate
information exploration system, ACM SIGIR’92, 339-
346.

[28] T. Zloof (1975) Query by Example, Proceedings of the
National Computer Conference, 431-437.

