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Abstract—The protection of critical national Infrastructures
such as drinking water, gas, and electricity is extremely important
as nations are dependent on their operation and steadiness.
However, despite the value of such utilities their security issues
have been poorly addressed which has resulted in a grow-
ing number of cyber-attacks with increasing impact and huge
consequences. There are many machine learning solutions to
detect anomalies against this type of infrastructure given the
popularity of such an approach in terms of accuracy and
success in detecting zero-day attacks. However, machine learning
algorithms are prone to adversarial attacks. In this paper,
we propose an energy consumption-based machine learning
approach to detect anomalies in a water treatment system and
evaluate its robustness against adversarial attacks using our
novel dataset. Our evaluations include three popular machine
learning algorithms and four categories of adversarial attack set
to poison both training and testing data. The captured results
show that although some machine learning algorithms are more
robust against adversarial confrontations than others, overall, the
proposed anomaly detection mechanism which is built on energy
consumption metrics and its associated dataset are vulnerable
to such attacks. To this end, we propose a blockchain approach
to protect the data during the training and testing phases of
such machine learning models. We deploy our proposed smart
contracts in a public blockchain test network and investigate
their costs and mining time.

Index Terms—adversarial attacks, machine learning, critical
national infrastructure, industrial control systems, water treat-
ment systems, anomaly detection, blockchain

I. INTRODUCTION

Critical National Infrastructure (CNI), such as: transporta-
tion, communication, police systems, national health services,
and utilities like: oil, gas, electricity, and drinking water, are
a country’s public assets. The nation’s health and safety and
their ability to continue day to day jobs and businesses with
no interruption depends on the continuous operation of those
assets with no failure and no interruption. However, despite the
importance of such assets their cybersecurity issues are poorly
addressed. Additionally, the increased level of connectivity
for the devices that form a given CNI and the appearance
of Industry 4.0 [1] leads to a growing number of cyberattacks
against such systems both in occurrence and impact. Criminals
and state-sponsored hackers are increasingly going after CNI
to disturb society and harm nations.

In 2020, 56% of utility sectors, which include electricity,
natural gas, and drinking water, reported at least one cyber-
attack on their infrastructure that cause either loss of data
or operations shutdown [2]. For example, hackers targeted
a U.S. water supply system located in Oldsmar, Florida in
2021 [3] and poisoned the amount of sodium hydroxide, also
known as lye, from 100 parts per million to 11,100 parts per
million. Luckily the attempt was identified by the operator
who successfully reversed the change before the toxic level of
chemical reached the drinking water.

Machine learning algorithms have proven their success in
detecting known and unknown attacks and producing reliable,
repeatable decisions and results in a wide range of networks
from traditional computer networks and CNI to wireless tech-
nologies. This includes a variety of attacks and applications
such as: phishing emails [4], insider threat detection [5],
Internet of Things (IoT) attacks [6], mobile malware detection
[7], water services [8], and fake news detection [9] as well as
predictive maintenance and business process automation.

However, ML techniques are known to be vulnerable to
adversarial attacks where hackers and criminals employ the
adversarial perturbations during the training and/or testing
phases to exploit a given model and cause miss-classification.
For example, to classify benign events as malicious, and vice
versa, leading to attack detection evasion and disturbance of
the systems which force the entire model to fail.

In order to address such adversarial attacks, blockchain-
based techniques provide a secure, transparent and immutable
way for storing the training or testing data. The third gen-
eration of blockchain technology introduces smart contracts
enabling combine computer protocols with user interface for
executing the conditions/ terms proposed in a real contract.
The smart contracts also extend the usability of blockchain-
based approaches in various domains or infrastructures (e.g.,
CNI) so as to record generated critical data in a blockchain
network while ensuring their protections under different poli-
cies or regulations [22], [23]. The combination of blockchain
and machine learning has recently investigated profoundly in
order to improve the security of both training and testing data.
In [24], a blockchain-based federated learning architecture was
presented through which local learning model updates are



securely exchanged and verified using a blockchain network.
Moreover, a blockchain-empowered secure data sharing archi-
tecture was designed for multiple parties within an industrial
IoT environment [25]. The architecture developed a privacy-
aware data sharing model using the integration of blockchain
and federated learning.

Although the aforementioned blockchain-based approaches
have attempted to enhance the security of training/ testing
data, none of them had been focused on clean water treatment
systems. Additionally, based on our best knowledge, there is
no blockchian development nor proposal to protect energy
consumption metrics of CNI’s endpoints (e.g., sensors and
actuators). These features can be employed to detect anomalies
against such systems therefore their protection is hugely im-
portant. To realise such level of protections, this paper presents
the following contributions:

• We implement a virtual testbed representing a clean water
treatment system called VNWTS which was designed,
implemented, and evaluated during the UK COVID-19
lockdown when accessing our physical testbed was not
possible;

• We design a systematical architecture that supports both
ML-based engines and a smart contract factory for im-
proving data security against adversarial attacks;

• We define a set of energy consumption features to assist
us in detecting anomalies against clean water treatment
systems using machine learning algorithms and captured
a novel energy-based dataset using various benign &
malicious scenarios on the testbed;

• We implement an energy consumption-based machine
learning approach to detect anomalies against clean water
treatment systems;

• We implement various adversarial attacks, tested our
proposed energy consumption-based machine learning
approach & its associated dataset against them, and
presented the impact of such attacks on the performance;

• We propose a blockchain-based technique to protect our
energy consumption-based machine learning approach
and its related dataset during the training & testing phases
with the aid of smart contracts.

The rest of the paper is structured as follows. Section II
designs a blockchain-based and ML-supported architecture
for the virtual clean water treatment system and gives the
details of its layers. Section III represents the architecture’s
implementation and describes the interaction among proposed
components. Section IV provides some experimental results,
and finally Section V concludes the paper.

II. SYSTEM ARCHITECTURE

Our proposed system architecture includes six layers of:
VNWTS Testbed, Data Management, ML Training Engine,
Blockchain Virtual Machine, ML Testing Engine, and Interface
as follows.

Interface

ML Testing Engine

Blockchain Virtual Machine

ML Training Engine

Data Management

VNWTS Testbed

Fig. 1. System architecture

A. Layer 1: VNWTS Testbed

The first layer includes our virtual clean water treatment
testbed called VNWTS, which stands for Virtual Napier Water
Treatment System, and includes: sensors, actuators, a PLC, a
SCADA system, a HMI, and our novel Python code providing
communication between the above components. We designed,
implemented, and evaluated the VNWTS testbed during the
UK COVID-19 lockdown when accessing our physical testbed
was not possible because of the strict restrictions. This is
comprehensively explained in our previous publications [11-
14]. The VNWTS testbed, which is fully explained in the next
section, is designed for us to collect a dataset based on energy-
based features for anomaly detection in a given clean water
treatment system. Another route for us was to go for available
data logs such as those from SWaT physical testbed [15].
However, we didn’t follow the approaches proposed in [16]
- [21], since they didn’t include any energy features thus not
addressing our needs. Furthermore, our newly collected dataset
includes novel attacks on system components such as: level &
temperature sensors, hot & cold pump controllers, as well as
PLC memory attacks including changing level & temperature
setpoints in the working memory which are not present in the
existing datasets.

The VNWTS testbed, Figure 2 (left) is implemented in
Simulink, a MATLAB-based graphical programming environ-
ment, which emulates chlorine treatment of drinking water.
Each component of this testbed is a virtual representation of
a real element found in the MPA Compact Workstation Rig
[10] shown in Figure 2 (right) which represents an excellent
scaled-down version of a one of a kind water treatment system.
These virtual components have the same characteristics and
dynamics of the physical elements from the MPA Compact
Workstation Rig and includes: Pipes, Pressure Vessel (x1),
Pumps (x2), Proportional Valve (x1), Water Reservoir Tank
(x1), Flow Sensors (x2), and Water Supply (x2).

The Pipes used in our virtual model have a 18.621 mm
diameter. The Pressure Vessel acts like a normal pipe but
because of its different shape it creates a small decline in



water pressure. The Pumps, which include a voltage supplier,
a DC Motor, and a centrifuge pump, deliver fluid from the
reservoir tanks to another tank (TANK1 in Figure 2, left). The
Proportional Valve simulates water demand models for a small
city. The Water Reservoir Tank is a virtual representation of
the physical tank shown in Figure 2 (right). This tank has the
shape of a truncated pyramid.

Flow Sensors allow the rate of fluid to be measured at
specific points of our virtual plan and Water Supply, one
representing raw water and one representing chlorine.

Additionally, the VNWTS testbed employs a virtual
SIMATIC S7-1500 PLC which is available in the SIMATIC
S7-PLCSIM Advanced V3.0 software distributed by
SIEMENS. Using this software, we successfully emulate the
operation of this particular PLC and its internal elements
such as Input, Output, working memory, and network
functionalities.

Furthermore, we implemented four PI controllers: two to
regulate the speed of the pumps delivering the raw water and
chlorine, one to regulate the delivery rate for each pump,
and one to regulate the water level in the reservoir tank. PI
controller is a control mechanism based on mechanical and
electronic controllers which consists of two control techniques:
proportional and integral.

Moreover, we implemented a Python Communication Mod-
ule acting as an OPC server allowing the exchange of informa-
tion between the testbed components. For example, between
the PLC and Simulink, where PLC receives the readings from
the virtual sensors and controls the actuators such as the pumps
discussed above.

B. Layer 2: Data Management

The second layer includes Data Management which contains
two components for gathering and handling the project data:
Data Collection and Data Pre-Processing.

The Data Collection component gathers the energy traces
of the sensors that compose the VNWTS testbed during the
simulation run time. The value of each sensor is obtained at
a sample rate of 0.1s and saved in a file for later processing.
To make the model realistic, we implemented a water demand
model of a small city for seven days of a week which is based
on a real model of the UK energy consumption. This model
has been completely detailed in our previous work [14] and is
implemented in a proportional valve of our VNWTS, which
is regulated according to the water demand. For example, a
fully open valve represents high water demand, while a slightly
open valve represents low water consumption. Higher energy
consumption is expected during high water demand because
the speed of the pumps increases to maintain the level of the
reserve tank.

During the benign and attack scenarios, the Data Collection
component captures our unique dataset of 3132651 events
including eight features such as: Cold Flow Rate, Hot Flow
Rate, Temperature, Tank Level, Voltage in the warm water
pump, Voltage in the cold water pump, Current in the warm
water pump, Current in the cold water pump, along with

classification (0 for benign and 1 for attack), and Type of
Attack (attack to the level setpoint, attack to the temperature
setpoint and attack to multiple sensors).

The Data Pre-Processing component is employed to improve
the quality of the raw data previously gathered by the Data
Collection module. This phase is extremely important as it
has a significant impact on the performance of the machine
learning algorithms used in the upper layer. For instance,
feature selection could have a huge positive impact in terms
of reducing the computational cost of building a predictive
model along with improving the performance of it. We have
chosen normalization along with three popular feature selec-
tion techniques (Information Gain, Chi-Square and Pearson’s
Correlation) for our data pre-processing phase. The feature
selection removed four features thus reduced the total number
of features from eight to four: Temperature, Tank Level, Cold
Flow Rate, Voltage in cold pump, along with Classification (0
for benign and 1 for attack), and Type of Attack (attack to the
level setpoint, attack to the temperature setpoint and attack to
multiple sensors).

C. Layer 3: ML Training Engine

The third layer includes a ML Training Engine where the
selected machine learning algorithms build models based on
sample data, which is also known as “training data”, to make
prediction or decision (e.g. to predict an event as benign or
malicious AKA attack) without being explicitly programmed
to do so. For this, we have chosen three popular algorithms:
Logistic Regression (LR), Support Vector Machine (SVM),
and Artificial Neural Networks (ANN). We used 80% of the
collected data for training and 20% for testing. Therefore,
in this layer, the ML Training Engine passes the 80% of
the pre-processed data to the three ML models built by the
above algorithms for the pure purpose of training as the
name suggests. Simultaneously, the engine passes the 20%
remaining to the next layer, which is the Blockchain Virtual
Machine, to store and put aside for the testing phase.

D. Layer 4: Blockchain Virtual Machine

This layer uses a Blockchain-based virtual machine such
as Ethereum hosting a smart contract for storing the testing
data in a Blockchain. The contract encompasses two functions,
called store() and get(). The former records “Cold Flow
Rate, Hot Flow Rate, Temperature, Tank Level, Voltage in the
warm water pump, Voltage in the cold water pump, Current
in the warm water pump, Current in the cold water pump”
in the Blockchain. The get function enables users to retrieve
the records (testing data) from the Blockchain. The reason of
using a public Blockchain here is providing the availability of
data with the users in a transparent way.

E. Layer 5: ML Testing Engine

The fifth layer includes a ML Testing Engine where the
performance of the three fully trained LR, SVM, and ANN
models are evaluated on a testing data which includes the



Fig. 2. MPA Compact Workstation Rig & Virtual Water Treatment System

remaining 20% of the total pre-processed dataset. We con-
sidered: accuracy, recall, F1 score, and precision as the four
main metrics to evaluate the performance of the build models.
The ML Testing Engine responsibilities are to: 1) connect to
the Blockchain, 2) download the testing data stored previously
by the ML Training Engine, 3) pass the testing data to the LR,
SVM, and ANN models, and 4) capture the performance of
the built models.

F. Layer 6: Interface

This layer enables users to communicate with the sys-
tem and monitor its functionality as a whole. This includes
monitoring that the VNWTS testbed functions correctly (e.g.
ensuring that the Python Communication Module allows the
exchange of information between the testbed components such
as PLC and sensors to control the pumps). It also monitors
that the two components of the data management layer,
data collection and data pre-processing, work properly. For
example, it ensures that: the data collection captures the raw
data from the VNWTS testbed taking into consideration the
pre-defined energy consumption features, passes them to the
data pre-processing component to do normalization and feature
selection, and eventually making the data ready for the ML
testing and ML training engines. Additionally, the interface
layer observes the data split of 80% for the ML training and
20% for the ML testing engines. This is to ensure that the
training split is successfully passed to the ML models built by
the chosen algorithms, while the testing split is successfully
uploaded to the blockchain and downloaded later for testing
purpose right after the successful completion of the training
phase. The interface is directly connected to a DApp so as to
call the get function in our proposed smart contract and show
the retrieved block contents.

III. ARCHITECTURE REALISATION

The data flow between the different layers of the system is
depicted in Figure 3. This includes VNWTS testbed (Layer
1), Data Management (Layer 2), Machine Learning Engine
(Layer 3 & 5), and Blockchain Virtual Machine (Layer 4).

The layer one data flow between the system components
(Control Station, HMI, PLC, and the Process Under Control
also known as Water Treatment System) which forms a
SCADA is as follows.

The Control Station loads the program that regulates the
water treatment system into the PLC. The Control Station
and the PLC communicate over a LAN network. The PLC
sends diagnostic information to the Control Station, for ex-
ample, confirming that the program which regulates the water
treatment system is/is not loaded successfully (step 1 in Fig.
3). The Control Station enables the HMI to give direction
to the SCADA systems and receive feedback from systems
components such as the PLC. The HMI allows a human to
control and monitor the water treatment process. The Control
Station and the HMI communicate over a LAN network. The
HMI sends diagnostic information to the Control Station, for
example, confirming that there is/is not a communication issue
between itself and the system components (step 2 in Fig. 3).
The sensors associated with the system, such as: ultrasonic
sensor, flowmeters, and pressure sensor, which are hard-wired
to the PLC, provide the status of the water treatment process
to the PLC. For example, the ultrasonic sensor provides the
water level inside the B102 tank while the flowmeters measure
the volumetric flow in the pipes. The PLC implements control
techniques such as: PID, Cascade, and Feedforward which
manage the actuators such as pumps and valves based on the
information received from the hard-wired sensors (step 3 in
Fig. 3). The PLC sends information about the water treatment
process to the HMI, as a result, line operators can ensure
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Fig. 3. Interactions within the architecture

that the process is working properly. The HMI is capable of
controlling the behaviour of the water treatment process by
sending control signals to the actuators or modifying process
variables such as setpoints (step 4 in Fig. 3).

Ten system features, which are captured by the ultrasonic
and the flowmeter sensors and now form a dataset with
millions of both benign and malicious events, pass from the
VNWTS testbed to the Data Manager (1) (step 5 in Fig. 3). The
features are : Cold Flow Rate, Hot Flow Rate, Temperature,
Tank Level, Voltage in the warm water pump, Voltage in
the cold water pump, Current in the warm water pump,
Current in the cold water pump, and the class feature (0 for
benign and 1 for attack), as well as Type of Attack (attack
to the level setpoint, attack to the temperature setpoint and
attack to multiple sensors). The dataset then goes through
a pre-processing phase by the Data Manager. This phase
includes: normalization along with three popular feature selec-
tion techniques (Information Gain, Chi-Square and Pearson’s
Correlation). The pre-processed dataset will then split to 80%
for training and 20% for testing. The 80% of dataset passes
to the ML Engine for creating the machine learning models
(using LR, SVM, and ANN ML algorithms) and training them
(2) (step 6 in Fig. 3). The remaining 20% will be stored in
the blockchain (step 7 in Fig. 3) by deploying the contract and
activating store function (step 8 in Fig. 3). After building the
machine learning models and training them, the final 20% of
the dataset, which was previously stored on the blockchain,
will be retrieved through the get function in the contract and
employed to test the ML engine component (steps 9 and 10
in Fig. 3).

IV. EXPERIMENTAL RESULTS

The experiments has two parts:
The blockchain-based evaluation estimates the required gas

for the deployment and execution of our proposed smart
contracts. Moreover, it investigates the average time taken for
the mining process.

A. Adversarial Machine Learning

For the experimental analysis, we implemented a water
demand model for a small city inspired by a real model of UK
energy consumption for the duration of a week. This includes
normal operation and malicious behaviour of the VNWTS
testbed. For the malicious scenarios, we developed attacks on
VNWTS system components including level & temperature
sensors, hot & cold pump controllers, and PLC memory. We
categorised the implemented attacks in three groups: attack
to the level setpoint, attack to the temperature setpoint, and
attack to multiple sensors.

Given the focus of this paper, which is anomaly detection
based on energy consumption metrics, and after comprehen-
sive study and our previous research in the field we considered
eight energy-based features to capture their values during
benign and malicious scenarios. These included: 1) Cold Flow
Rate, 2) Hot Flow Rate, 3) Temperature, 4) Tank Level,
5) Voltage in the warm-water pump, 6) Voltage in the cold
water pump, 7) Current in the warm water pump, 8) Current
in the cold water pump. The dataset also includes binary
classification (“0” for benign and “1” for malicious event),
and Type of Attack (“1” for attack to the level setpoint, “2”
for attack to the temperature setpoint, and “3” for attack to
multiple sensors).

We captured 3132651 malicious and benign events which
formed a unique energy-based dataset.

We then pre-processed the dataset using normalisation and
three popular feature selection techniques (Information Gain,
Chi-Square and Pearson’s Correlation). While the former
reduces data redundancy and improves data integrity, the latter
reduces the number of input variables when developing a
predictive model. The feature selection techniques, reduced
our eight features to four: 1) Temperature, 2) Tank Level, 3)
Cold Flow Rate, and 4) Voltage in cold pump. The binary
classification (“0” for benign and “1” for malicious event),
and Type of Attack (“1” for attack to the level setpoint, “2”
for attack to the temperature setpoint, and “3” for attack to
multiple sensors) remain unchanged.



We then passed the pre-processed dataset to three popular
machine learning algorithms, Logistic Regression (LR), Sup-
port Vector Machine (SVM), and Artificial Neural Networks
(ANN) to build predictive models equally using 80% of the
dataset for training and the remaining 20% for testing.

For the performance metrics of the three algorithms above,
we considered: accuracy, recall, f1-score, and precision. How-
ever, we only present f1-score and accuracy results in this
paper given the page limitation and that f1-score considers
recall and precision values in the calculation.

Regarding machine learning adversarial attacks, we consider
four categories: random label flipping, targeted label flipping,
Fast Gradient Sign Method (FGSM), and Jacobian Saliency
Map Attack (JSMA). While flipping techniques (both random
and target) focus on training data, FGSM and JSMA targets
testing data. We considered these attacks against only one type
of classification in our dataset: binary classification (“0” for
benign and “1” for malicious event). The impact of adversarial
attacks against the other one, which is the multiclass classifi-
cation where we know the type of attack, will be discusses in
our future publications due to lack of space.

We captured the f1-score for the selected ML algorithm
after employing random flipping, target flipping, FGSM, and
JSMA attacks for the binary classification. They are depicted
in Figure 4 – 6. Overall, SVM outperforms LR in terms of
showing a longer battle against target flipping attack, however,
both algorithms shown the same performance against random
flipping, Figure 4. Similarly, ANN shows longer resistance
against attacks such as FGSM and JSMA in comparison with
LR, Figure 5 -6.

This is the same case for the accuracy reductions for all
three algorithms after adversarial attacks. Overall, ANN and
SVM reveal a longer resistance against all the attacks (random
& target flipping, FGSM, and SJMA) in comparison with LR,
Figure 7-9, and target flipping has a greater impact on the
accuracy in comparison with random flipping, Figure 7.

Fig. 4. Comparing f1-score in random & target flipping for LR vs. SVC

Fig. 5. Comparing f1-score in FGSM for LR vs. ANN

Fig. 6. Comparing f1-score in JSMA for LR vs. ANN

Fig. 7. Comparing accuracy in random & target flipping for LR vs. SVC

B. Blockchain-based Evaluation
We have implemented a Blockchain-based prototype using

Ethereum virtual machine and Remix-IDE in order to write



Fig. 8. Comparing accuracy in FGSM for LR vs. ANN

Fig. 9. Comparing accuracy in JSMA for LR vs. ANN

and compile our proposed smart contract [26]. The contract
has been written with Solidity, which is a popular program-
ming language for encoding contracts in Ethereum [27]. A
public Ethereum test network (Ropsten) was used to deploy
our contract and its transactions in a Blockchain network [28].
After the contract deployment, the amount of gas used for
its execution was calculated as 244340 wei.1 The average
consumed gas was 52700 wei for the store function and was
35455 wei for the get function. These results were calculated
after five times execution of the functions with different
parameters.

Table I represents the average costs and mining time for
executing the transactions and creating blocks. The amount
of gas prices for cheap, average and fast modes for miners
were, respectively, 80, 160 and 320 Gwei. Such values have
been captured from ETH Gas station 2 that show the miners’
motivation in term of gas price for executing the transactions

1Gas is the fee required to successfully run a transaction or deploy a contract
on the Ethereum blockchain and its unit is wei or Gwei.

2https://ethgasstation.info/

TABLE I
TRANSACTION COSTS & MINING TIME

Gas Price (Gwei) 80 160 320
Store (Cost: ETH) 0.004 0.008 0.016
Store (Cost: Gwei) 4637600 8432000 16864000
Get (Cost: ETH) 0.003 0.006 0.011
Get (Cost: Gwei) 2836400 5672800 11345600
Mining Time (Sec) 4857 300 28

and blocks creation on the day of our experiment. The average
cost for running the store function in ETH and Gwei are
represented in the table. The cost in Gwei is calculated as:
used gas × gas price. The same evaluation has been tested
for the get function. Because the number of opcodes in the
store function was more than those in the other one, its cost
was higher than the get function. As seen from the table,
when the gas price increase, the average time taken for mining
transactions/ blocks reduces sharply. For instance, for a gas
price of 320 gwei, miners can create blocks just nearly 28
seconds in average.

V. CONCLUSION & FUTURE WORK

In this paper, we propose an energy consumption-based
machine learning approach built on a novel dataset to detect
anomalies in a virtual model of a water treatment system
named VNWTS. We then evaluate its robustness against
adversarial attacks. The evaluation of the proposed anomaly
detection algorithm against the adversarial machine learning
includes four attack categories: random label flipping, tar-
geted label flipping, Fast Gradient Sign Method, and Jacobian
Saliency Map Attack for three popular machine learning
algorithms: Support Vector Machine, Logistic Regression, and
Deep Learning. Additionally, we consider two popular metrics
for performance comparison: f1-score and accuracy. Address-
ing the captured results, Deep Learning and Support Vector
Machine have shown longer battle against all four categories
of attack in comparison with Logistic Regression considering
both performance metrics. Additionally, the target flipping has
a bigger impact compared with random flipping. We conclude
that, although there is a different level of resistance among the
three algorithms for f1-score and accuracy reduction against
adversarial attacks, the proposed energy consumption-based
machine learning approach, which is built on the novel energy-
base dataset, is vulnerable against such attacks. A smart
contract for logging and getting data into/from a blockchain
network was deployed in Ropsten and the results showed that
an increase in the gas price leads to a noticeable decrease in
the average mining time.

Future work will focus on the implementation of the archi-
tecture on the real testbed. Moreover, the investigation of our
proposed method in a more scalable and decentralised systems
using federated machine learning tools and multichain remains
another challenge for future direction.
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