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Abstract
Precision tuning is an approximate computing technique for trading precision with lower execution
time, and it has been increasingly important in embedded and high-performance computing applica-
tions. In particular, embedded applications benefit from lower precision in order to reduce or remove
the dependency on computationally-expensive data types such as floating point. Amongst such
applications, an important fraction are mission-critical tasks, such as control systems for vehicles
or medical use-cases. In this context, the usefulness of precision tuning is limited by concerns
about verificability of real-time and quality-of-service constraints. However, with the introduction of
optimisations techniques based on integer linear programming and rigorous WCET (Worst-Case
Execution Time) models, these constraints not only can be verified automatically, but it becomes
possible to use precision tuning to automatically enforce these constraints even when not previously
possible. In this work, we show how to combine precision tuning with WCET analysis to enforce a
limit on the execution time by using a constraint-based code optimisation pass with a state-of-the-art
precision tuning framework.
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1 Introduction

In critical and mixed-critical applications, at least some of the tasks that compose the system
workload need to respect strict quality-of-service constraints, particularly in terms of latency.
These constraints may be expressed in terms of deadlines, and a maximum probability of
missing them. To ensure that deadlines are respected, worst-case execution time (WCET)
analysis can be used. In tasks that heavily rely on floating point arithmetic, it is possible to
improve the execution time (and other extra-functional properties such as energy-to-solution)
by applying approximate computing techniques such as precision tuning [4]. This technique
enables trade-offs between computation precision and the aforementioned extra-functional
properties, by allowing some or all the computations to be performed using different data
types than the ones specified in the application source code. While this kind of transformation
is usually performed manually by embedded system developers, it is an error prone operation,
and it is difficult to manually gauge the right data type for each operation even for an
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experienced developer, when the operation chains are long. However, recent developments in
compiler-assisted precision tuning [5] have introduced not only tools to perform the data
type adaptation, but also to explore the vast design space opened by the ability to provide
different data types for different code fragments, via integer linear programming (ILP) [2].

Specifically, this last approach involves the construction of a mathematical model of the
program being compiled, which is then fed into a linear programming solver to produce the
final data type assignments. The mathematical model computes a parametric estimation of
the relative execution time slowdown and of the quantisation error, with respect to a fully
floating-point-based implementation. These estimates are not useful in general to gauge the
real error or execution time of the generated program, because the per-instruction coefficients
employed are ratios rather than absolute errors or instruction timings.

However, in principle, if we replace such coefficients with values corresponding to the
actual error being inserted by a computation or its actual execution time in clock cycles,
the optimiser will gain visibility to a realistic estimation of these metrics. Therefore, this
enables optimising the program for a given maximum error or execution time. Of these
two metrics, the maximum error is often an overestimate that is not fine-grained enough
to accurately predict the actual error on realistic data. This problem arises from the fact
that error estimates not only depend on the specific data type, but on the data itself [5].
On the other hand, execution time only depends on the instruction selection performed
by the compiler and the microarchitecture of the target processing unit, which are both
deterministic factors under our control. As a result, conservative estimates of the execution
time are often accurate down to an acceptable error percentage [11].

Additionally, optimising for a target execution time is useful in real-time systems, where
error-tolerant tasks that must be completed under a certain deadline are plentiful and
common. For instance, closed-loop control algorithms of vehicles or weapons often must rely
on inherently noisy data from sensors such as gyroscopes or LIDAR systems [8]. Therefore
imprecisions in the output are acceptable as long as they are not significant with respect
to the input data itself. Our approach can be combined with WCET analysis to statically
ensure that the execution time of a task stands below a given boundary at a low cost in
terms of error (under 1%) – or, conversely, to prove that precision tuning is not enough to
ensure meeting a timing constraint.

Contribution

In this work we adapt state-of-the-art optimisation-based precision tuning techniques taking
into account the real execution time of an example application and constrain it to a given
upper bound, a new methodology which we call Ahead of Real Time (ART) optimisation.
To that end, we provide a theoretical model that can be used to construct such an optimiser.

We demonstrate the practicality of our approach by applying it to a subset of the
PolyBench [15] benchmark suite. We empirically demonstrate that the execution time
estimated by our methodology matches within a reasonable margin of accuracy (under 30%)
the actual execution time on a microcontroller core representative of the hardware used in
safety-critical applications, and that our approach allows to meet a timing deadline with a
low loss of precision, below 1%.
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Organisation of the paper

The rest of this paper is organised as follows. In Section 2 we discuss related works in the
field of precision tuning and WCET analysis for meeting timing constraints. Subsequently,
in Section 3 we discuss the mathematical models underlying our solution and in Section 4 we
show experimental data that validates the methodology as a whole. Finally, we summarise
our conclusions and discuss follow-up work in Section 5.

2 Related Works

Approximate computing is a broad field that is attracting a large amount of effort from
research groups worldwide. Its increasing relevance is a consequence of the growing spread of
error-tolerant applications in different domains, as well as of the rise of energy cost of ICT
systems, which threatens to grow to over 20% the total world energy demand by 2030 [9].
As a result, a wide range of hardware and software techniques are being scrutinised. While
the full discussion of this topic goes well beyond the scope of this work, a recent survey by
Stanley-Marbell et al. provides an overview of the most relevant approaches [14]. Within
approximate computing, precision tuning is a technique that lends itself to a wide applicability,
as it can be employed whenever a computation is performed using data types that are wider
than the actual application needs, as well as to automated application, since the compiler,
appropriately instructed as to the actual precision needed for the results, can automatically
infer the minimum data type and width, and then explore the cost of switching between
different data types to obtain an optimal solution. Once more, a full discussion of the topic
would require too much space for this work, so we refer the interested reader to a recent
survey that goes into greater detail on precision tuning and the tools that support it [4].

Broadly speaking, precision tuning approaches can be classified according to [4] as static
or dynamic depending on whether dynamic compilation is used to improve the accuracy of
the precision needs by taking into account variations in the workload, or not. The dynamic
approach is not suitable for critical and mixed-critical scenarios, since by nature it alters
the execution time whenever a dynamic compilation is performed. Thus, we constrain our
discussion to static precision tuning.

Within the techniques that are more appropriate for critical and mixed-critical embedded
systems, another taxonomic division occurs between approaches that leverage custom hard-
ware and those that address microcontrollers. The main difference is that in the former case
the target output is a hardware description language, in the latter the target is embedded C
or assembly code. While hardware-oriented tools are certainly relevant, for the purpose of
this work we limit our scenario to the more common case of systems built out of off-the-shelf
microcontrollers provided by semiconductor manufacturers such as Texas Instruments, ST
Microelectronics, or Nordic Semiconductors.

To address this scenario, static precision tuning tools gather the information required
to apply their optimisations to the code without requiring extensive testing, but rather
through static analyses. Among them, the most representative of the state of the art are
Precimonious [13], Daisy [7], and taffo [6], which are all candidates for use in embedded
systems scenarios. Of these, Daisy operates as a source-to-source compiler, which can be
considered a drawback, since it may prevent information from the source from reaching the
compiler optimisation phases directly, possibly introducing overheads. Precimonious and
taffo operate as llvm plugins, thus providing a greater degree of integration. However,
Precimonious public development has not progressed since 2016, making it incompatible with
modern releases of the llvm compiler – it requires llvm 3, whereas taffo can work with
recent versions of the compiler framework, including both versions 11 and 12. Therefore, we
select taffo as the baseline tool for the work presented here.
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Regarding the WCET estimation methodologies, a large amount of work is available
from the literature. A good taxonomy can be found in [1], where the state of the art in
the field is thoroughly analysed. In particular, it is possible to distinguish static analysis
and measurement-based methodologies, as well as hybrid approaches on one hand, and
deterministic and probabilistic approaches on the other. These can be combined to form six
possible different methodologies.

In practice, though, measurement-based deterministic timing analysis (MBDTA) is most
commonly employed in the industry, followed by static deterministic timing analysis (SDTA),
which is used for simpler hardware and software systems. MBDTA still has limitations in
that it requires good input data set, and, from the point of view of our work, the need
to perform measurements makes it unfeasible in the exploration of a huge design space.
While probabilistic methods are gaining increasing momentum [3], static methods are still
comparatively less developed than measurement-based ones. Therefore the probabilistic
approach is less suitable for our purpose.

In conclusion, the need to analyse a huge number of solutions in the design space, and
the relative immaturity of static probabilistic timing analysis leads us to choose SDTA as the
basic methodology for the WCET analysis performed in this work. Yet, the considerations
and the proposed methodology would fit well with any static timing analysis, as long as the
analysis method could be used as a constraint in the integer linear programming approach
used to solve the design space exploration problem.

3 Proposed model and methdology

In this section, we show how approximate computing can be used to enable the trade-off
between numerical precision and WCET. We achieve this by applying precision tuning
through ILP model optimisation.

We demonstrate the effectiveness of our approach by implementing it within a compiler-
based precision tuning tool – taffo. First, we briefly introduce taffo and the state-of-the-art
ILP model on which our new methodology is based upon. Then, we describe how the ART-ILP
model is adjusted and modified to provide realistic execution time estimates and optimisations.
Finally, we discuss how to exploit the ART methodology to leverage the precision-WCET
trade-off.

3.1 The architecture of TAFFO
taffo is a state-of-the art precision tuning toolkit based on the LLVM compiler framework [10].
taffo is independent from the program source language due to its analyses being based on
the llvm-ir intermediate language, and it supports automatic tuning using both floating
point and fixed point data types. It consists of five independent passes, which take the form
of a loadable plugin for LLVM-based compilers. The pass-based architecture allows taffo
to be expandable, easy to use and robust.

The taffo tool requires the programmer to define some contextual information related
to the value ranges of the inputs and the extent of the area of code that needs to be tuned.
This information is inserted through annotation of the source code. The first pass of taffo,
called Initializer, reads such annotations and converts them in the internal data structures
required by the rest of taffo.

From the user-provided information, taffo then analyses the program to conservatively
derive the numerical intervals each variable in the program will have at runtime. This pass
is called the Value Range Analysis or vra. The information derived by the vra is then



D. Cattaneo, G. Magnani, S. Cherubin, and G. Agosta 4:5

used to determine which reduced-precision data type to use for each variable, a procedure
called Data Type Allocation (dta). The dta can operate based on two different algorithms:
a peephole-based algorithm which always chooses the fixed-point data type with the highest
valid point position for each variable, and a new optimiser based on ILP techniques [2].
This step is able to optimally mix floating point and fixed point data types by exploiting a
mathematical model of how changes to the precision mix affect the speedup and the output
error. The software uses the Google OR-Tools C++ framework [12] as model solver backend.

Down in the pipeline, the Conversion pass is responsible for applying the data type
changes on the program being tuned, and finally the Feedback Estimator pass statically
analyses the error using state-of-the-art estimation methods [5].

3.2 The ART-ILP model

In the intermediate representation of a compiler, a program is described in terms of a control
flow graph, where each node is called a basic block and contains a list of instructions. This
kind of representation is not directly suitable for modelling the execution time of a program
or its error-tolerance, a different formulation is needed. In the following we focus on the
execution time, and we present the model used by the dta pass of taffo.

Let us consider a single basic block B, represented as a list of instructions. There are
various kinds of instructions, but for the purposes of precision tuning we only consider
mathematical instructions and cast or type conversion instructions. These are the only
instructions that are affected by the precision tuning optimisation. Typically, cast instructions
are inserted only when a variable in the intermediate representation needs to be converted
from one type to another. Without loss of generality, we consider all mathematical instructions
to have a single data type, which applies to all of the operands and its result value. Due
to this constraint, which casts are present in the program only depends on the data type
assignment of each mathematical instruction.

From these considerations we can begin building a mathematical model describing a
program, specifically an integer linear programming (ILP) problem. ILP problems have the
following form:

k1,1x1 + k2,1x2 + · · · + kn,1xn ∈ [l1, u1)
k1,2x1 + k2,2x2 + · · · + kn,2xn ∈ [l2, u2)
· · · · · ·
k1,mx1 + k2,mx2 + · · · + kn,mxn ∈ [lm, um)

min
∑n

i wixi.

The first set of disequalities are called the constraints, while the final expression is called
objective function, and represents the quantity that the optimiser must attempt to minimise.
Each constant ki,j and wi is called a coefficient or weight. The goal of the optimiser is to
find an assignment to each variable xi that both satisfies the constraint and minimises the
objective function. Additionally, each xi must be an integer.

Now, in order to exploit such a model for precision tuning, we introduce multiple sets of
variables that represent every possible type choice for each instruction. For each mathematical
instruction a, and for each data type t, we introduce a variable xa,t ∈ [0, 1] that represents
the choice of using the given data type for that instruction. Each type choice is mutually
exclusive, and as a result we must introduce the following constraints:∑

t xa,t = 1 ∀i ∈ B.

NG-RES 2022
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In order to take into account the execution time in the optimisation, such variables must
appear in the objective function. As a minimum, we must introduce the following term:

Tm,B =
∑

i∈M(B),d

time(i, t) × xi,t

where time(i, t) is the average execution time of instruction i with data type t, and M(B)
is the set of mathematical instructions in M . Therefore, Tm is the execution time of all
mathematical instructions in a given basic block.

This partial expression of the execution time must be augmented by a second term
for the execution time devoted to cast operations. In fact, an excessive amount of casts
may counterbalance any advantage provided by lowering precision. Therefore, before each
mathematical instruction, we insert in our model additional virtual cast instructions, used to
represent the execution time of casts whenever they are needed. To take into account the
varying data types between two instructions i and i′ and the casts needed on the operands,
we introduce a constraint for each possible pair of different types t, t′ with this form:

xi,t + xi′,t′ ≤ yi,t,i′,t′ + 1.

The yi,t,i′,t′ variable will be set to 1 during the optimisation process if a cast is necessary.
Therefore, in the objective function the time required for performing casts is expressed by
the following term:

Tc,B =
∑

i,i′∈M(B)

∑
t,t′:t̸=t′

time(i, t, t′) × yi,t,i′,t′ .

An additional term in the objective function represents the error, in terms of a
representation-independent metric called the IEBW, which we won’t describe here because
it’s not involved in our improvements to the existing methodology. We denote this term
as EB . In the objective function, the three terms Tc,B , Tm,B and EB are summed together
and their balance is determined by two weights, W1 and W2, referring respectively to the
execution time component and the error component. Therefore, the objective function for
optimising a basic block B appears as follows:

min W1 (Tc,B + Tm,B) 1
N1

− W2EB
1

N2
.

Two parameters N1 and N2 are added to normalise the weights of the two terms (time
and error) to make them comparable. The values of N1 and N2 are equal to the maximum
possible estimated execution time and error respectively.

3.3 The ART approach
The model we have just described only involves simple basic blocks, which only represent
straight-line pieces of code without control structures such as loops, conditional statements
or branches. The execution time of a serial program can be modelled in a fairly simple way.
Let us denote with time(B) the time required for executing a basic block B, and with NB

the number of times the basic block is executed in a given execution trace E. Therefore, the
execution time of E is the following:

time(E) =
∑

B

NB × time(B).
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On an in-order CPU architecture such as a microcontroller architecture, the execution
time of a basic block B can be modelled with good accuracy as the sum of the individual
execution times of each instruction i in the basic block:

time(B) =
∑
i∈B

time(i).

Notice that in this work we do not consider out-of-order and multicore architectures, and
we also ignore the effect of instruction and data caches.

In the linear programming model we described in Section 3.2, we further categorised
the instructions in a basic block in three sets: mathematical instructions M , represented
by x variables in the model, cast instructions C, represented by y variables in the model,
and other instructions which do not appear in the model. Therefore, from a solution to the
ILP model – which consists of assignments to the model’s variables – we can estimate the
execution time of a basic block with the following expression:

time(B) = Tm,B + Tc,B + TB\(M∪C).

This formulation adds a constant factor TB\(M∪C) that represents the execution time
of instructions that are neither arithmetical instructions or cast instructions, and are not
affected by the optimisation process. When also accounting the execution of an entire
program, we must estimate the worst-case or upper-bound NB for each basic block in the
program, which we call max(NB). This can be done in a conservative way by well-known
control flow static analysis techniques, which are commonplace for WCET analysis [11].The
estimation for the execution time thus becomes:

time(E) =
∑

B

max(NB)(Tm,B + Tc,B + TB\(M∪C)).

Notice that this expression is indeed in the form acceptable for a linear constraint.
Therefore, we can statically impose a limit on the worst-case execution time (WCET) of a
program by introducing the following constraint in the linear programming model:

time(E) ≤ Tmax.

4 Experimental Evaluation

To experimentally evaluate the ART methodology in practice, we performed a set of experi-
ments aimed at testing the quality of the execution time estimation.

As example applications, we chose some selected benchmarks from the PolyBench/C
suite, version 4.2.1 [15]. This benchmark suite consists of several programs written in the C
programming language that encompass a large variety of computational kernels. Of the entire
set of benchmarks, we chose the ones with the highest execution time variance depending on
the optimisation parameters: 2mm, 3mm, covariance, lu and nussinov. The benchmarks are
unmodified, exception done for the addition of the required annotations for taffo.

Hardware-wise, the platform targeted for the estimation was a STM3220G-EVAL ST
Microelectronics embedded evaluation board, with a 120 MHz Cortex-M3 ARM processor,
128 KB of on-chip internal RAM, and 2 MB of external RAM.

The experiment was conducted as follows. First, the number of clock cycles required for
every instruction was profiled on the embedded board by running a specifically-designed
software. These metrics were intentionally increased by a fixed percentage (25%) to take
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Figure 1 Time and error measurements compared with the time estimates provided by the model
used in the ART methodology. On the horizontal axis is the value of the W1 optimisation parameter.
On the the two vertical axes, left to right, are clock cycles and percentage relative mean error.

into account the fact that additional instructions may be introduced by later program
transformations performed in the compiler. This data is stored in a configuration file suitable
for usage by the optimiser.

At this point, each of the benchmarks was compiled both without using taffo, and
with taffo. Both compilations were performed using LLVM clang version 12.0.0. For what
concerns the taffo compilations, each benchmark was compiled 25 times, every time with a
different setting regarding the weight of the mathematical and cast execution component
W1 and the precision component W2. We call these separate compilations versions. The
initial value of W1 was zero, and each subsequent compilation increased W1 by 40 until
reaching the value of 1000. W2 was derived from W1 via the equation W2 = 1000 − W1.
Each version of each benchmark (included the non-mixed-precision version) is then run on
the aforementioned embedded board. No supporting operating system is used except for
the lightweight hardware abstraction layer provided by the manufacturer of the board. The
execution time of each run and the output data from the computation performed by the
benchmark is logged by means of the built-in serial port.
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During the compilation of the mixed-precision versions, the taffo Data Type Allocation
pass also computes the estimated execution time of the program.

In Section 4 we show, for each benchmark, the real and estimated execution times in
clock cycles, and the percentage relative mean error in the output. The estimated execution
time is consistently overestimated with respect to the real execution time. We believe this is
due to two factors. Firstly, the 25% margin added to the cycle count of every instruction,
which however is intentional to provide a safety margin. Secondly, the maximal basic block
execution counts NB are themselves overestimated by the static analyses we perform, based
on the scalar evolution pass of LLVM.

Secondly, we observe that the execution time prediction is consistent with the measured
execution time: speedups happen exactly when they are predicted by the model. The
estimate of the amount of speedup with the increase of W1 is however underestimated. This
is primarily due to the overestimation of the NB parameters, as we mentioned, since the
ratio of overestimation is not consistent for each basic block. However, in general these
are not issues for what concerns WCET estimation, as an overestimation is better than an
underestimation in this context.

Finally, we observe that the error either remains constant or gradually increases with W1
– or more properly, with the decreasing of W1. Some momentary irregularities are observed
in the covariance and lu benchmarks. This happens when the error and execution time
terms of the objective function have similar values, due to the N1 and N2 normalisation
parameters. In general, the error is lower than 1% for all benchmarks. This is consistent
from the behaviour we expect from the integer-linear-programming-based optimiser.

From the data we can conclude that the ART methodology is effective for WCET
optimisation, as the estimated execution time is indeed reflective of real execution time, and
it is also conservative enough to provide an acceptable margin for handling perturbances
such as non-maskable interrupts or other higher-priority concurrent tasks.

5 Conclusions

In this work we introduced and described the ART methodology, a way to exploit precision
tuning to enforce worst-case execution time constraints on a given computational kernel or
program. This methodology has been implemented as part of the taffo precision tuning
framework, based on LLVM and the Google OR-Tools toolkit, and has been evaluated on
an embedded-systems board by exploiting the PolyBench benchmark suite. The results
highlighted the approach’s ability to enforce a constraint on the worst-case execution time
automatically by adjusting the precision of the data types used in the program.

Future improvements to this work encompass the usage of a similar methodology to
also enforce a given boundary on the precision loss. Additionally, follow-up development
include the development of a model that also supports out-of-order architectures, data and
instruction caches, and parallel applications and architectures.
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