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ABSTRACT 
This paper describes how parallel processing applies to finite-element simulations. The methods discussed 
are the Parallel Gaussian Elimination arid the Parallel Active Column Solver. Both methods reduce the time 
taken to determine the global coefficient matrix. The paper discusses the suitability of row- and column- 
based approaches when applying the Parallel Gaussian method to parallel processing. The Parallel Active 
Column Solver uses a skyline storage technique. 

lntralduction 

The finite-element method was initially developed for 
mechanical and civil engineering applications. Over the years 
it has since been applied to electromagnetics [l-31. One 
problem with it is that the simulation time becomes relatively 
long when applied to large complex problems. This paper 
discusses methods in reducing this time by applying parallel 
processing. 

A system may seem complex when viewed over a large 
region, but when split into smaller sections its behaviour can 
be easily approximated. In the finite-element method the total 
region divides into a number of non-overlappiing sub-regions, 
called finite elements. In two dimensions, simple polygons, 
such as triangles and/or squares, make-up the elements. 
Figure 1 shows a region divided into triangles. 
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Figure 1 : Conversion of a structure into firiite-ellements 

Rt:gardless of the element shape, the field is approximated 
with a different expression for each element. Where (adjoining 
edges meet, the field representations must maintain field 
contirmity. Normally the equations to be solved are stated in 
terms not of the field variables but of an integral-type 
function such as energy. The field solution then makes this 
function stationary. The total function is thie surn of the 
integral over each element. 

This paper investigates two methods that solve finite- 
element problems using parallel processing. The techniques 
used are Gaussian elimination using banded storage and 
active column equation solver using skyline storage. 

The banded storage is a row-oriented and the skyline 
method uses a column-oriented approach. 

Finite element method 

The finite-element method uses :small sub-regions to simplify 
the solution. Each sub-region is an element of the global 
structure. 

Figure 2: Triangular finite-elements 

The potential V, within an element, e, is the summation of 
the effect of each element on that element. As an 
approximation over the whole region, V(x,y) can be given by: 

e=l 

where N is the number of triangular elements. The 
approximation of V for a triangular element can be expressed 
as : 

v, (x, y )  = a + bx + cy 

It can be shown [l-31 that thie energy associated with an 
element e is 

we = - & [ V e - p ] [ v e ] T  1 
2 

where, regarding Figure 2, [V,] represents the voltage 
matrix: 
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where, [ V I =  1;- 

and the element matrix is: 

[cl= 

Matrix [C] is the element coefficient matrix. The matrix 
element c;) of the coefficient matrix is the coupling between 
nodes i and j .  Its value is obtained from the location of the 
points of the triangle, for example for a triangular element: 

- - 
c l ,  ‘12 cl, ‘14 ‘15 

c21 c22 c23 ‘24 c25 

‘31 ‘32 ‘33 ‘34 c35 

‘41 ‘42 ‘43 ‘44 c4S 

-‘5l ‘ 5 2  ‘53 ‘54 c55- 

The energy associated with the summation of all the mesh 
elements is: 

1 N 

W = C W e  = T E [ V ] [ C ] [ V ] T ,  
e=l 

i 

1Vn J 
and n is the number of nodes, N is the number of elements, 
and [C] is the global coefficient matrix. This matrix contains 
the individual assemblage of element coefficients. The 
example in the Figure 3 has 5 points on the mesh. This leads 
to a 5x5 global coefficient matrix in the form: 

The Cij factor is the coupling between the nodes i and j .  
The first five coefficients of the global coefficient matrix are: 

Matrix C has certain qualities that makes it easy to fill and 
some of the terms become zero, these are: 

1. 

2. 

that the matrix is symmetrical (Cij=Cji) just as the element 
matrix; 
the matrix is sparse and banded because Cij is zero when 
no coupling exists between nodes i and j .  

3 1 

5 4 2 

Figure 3: Connection of finite-elements 

The solution of the voltage potentials can either be 
iterative or can use the band matrix method. With the band 
matrix method, a node has either a fixed potential ( f )  or a free 
potential (p). The applied electric field sets the fixed 
potentials. To solve for the potentials the energy is written in 
terms of the fixed potentials (V,) and the free potentials (V,), 
to give: 

w = -E[Vf 1 VJ[  cff C ~ ] [  21 
2 CPf C P P  

The energy change with respect to the voltage potential 
will tend to zero and since the fixed potentials (V,) are 
constant then: 

and thus 

This is in the form of simultaneous equations, [ A ] [ V = [ B ] ,  
and therefore can be solved using a Gaussian elimination 
technique. The global coefficient matrices will both be 
symmetrical, as illustrated in Figure 4. 

A solution could also be found by determining the inverse 
of the matrix Cff and using 
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This method may be impractical if the global coefficient 
matrix Cff is large. 

uplper-h#alf 
of global 
coeficient 
matrix 
is the same 

Figure 4: Symmetrical coefficient matrix 

Paraillel Gaussian Elimination Technique 

The Gaussian elimination technique allows the use of 
parallelism with row- or column-oriented algorithms. For the 
row-oriented approach, each processor holds al set of rows. In 
the column-oriented approach each processor holds a set of 
colurnns. For both methods a round-robin assignment 
alloc,ates each processor with either a row or column. This 
helps to equalize the computational load on them. 

I Processo 

Figure 4: Allocation of rows to processors 

Tlhe row-oriented approach uses a pivot row. This row 
contains the pivot diagonal entry of the global coefficient 
matrix and is used to reduce the rows below it. Processors 
are arssigned the rows below the pivot row and perform 
arithmetic operations concurrently on their respective rows, 
as illustrated in Figure 4. The column entries below the pivot 
diagcml entry become zero simultaneously at the enld of each 
step of forward reduction. The forward reduction is 
performed from left to right until the global coefficient matrix 
reduces to an upper triangular form. Unknowns are then 
deterimined using back substitution. 

In1 the column-oriented approach the vector of multipliers 
is cakulated for each forward reduction step. Then all 
processors access this vector and their respective pivotal row 
element to perform arithmetic operations, column-wise 

concurrently, using the appropriate multiplier. 

Parallel Active Column Solver 

This algorithm is based on work carried out by Farhat [4] and 
uses the upper triangular part of the global coefficient matrix 
to store columns using a skyline storage scheme. The columns 
are distributed in round-robin fashion among the processors. 
The solution takes the form: 

for the solution the jth column of [A] is 

The factorization process starts with the first row and 
calculates the rows of the mlatrix [A]  using the above 
equation. This continues until the final row. The calculation 
of the elements of row i requires column j=i which, at that 
time, is called the active column. All processors access the 
elements of the active column and calculate the elements of 
row i concurrently. 

The solution of [v can then be found using forward 
substitution. The algorithm given next shows the steps 
determining the free voltage point [U for an equation in 
form [A] [VI=[B] .  

for i=l to n do 
begin 

for j=1 to i-1 do 
begin 

end 
scalar[jl=A[j] [il/A[il [il 

mult=B[i] /A[i] [i] 

for k=i to n do 
begin 

sum= 0 
f o r  j=1 to i-1 do 
begin 

end 
sum=sum+scalar [ j 1 *A [ j 1 [ kl 

if (k>i) B[kl=B[k]-mult*A[i] [k] 
end 

end 

for k=n downto 2 do 
begin 

mult=B[kl /A[kl [kl 

f o r  j=k-1 downto 1 do 
begin 

end 
B[jl=B[jl-A[jl [kl *mult 

end 

for 
the 
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f o r  i=l to n do 
begin 

end 
V[il=B[il /Aril [i] 

Conclusion 

The paper shows the application of parallel processing in 
finite-element simulations. Parallel processing reduces the 
time taken to determine the global coefficient matrix. 

For the Parallel Gaussian technique, the column-oriented 
approach works well on shared memory systems but may 
cause problems on local memory systems. As only the upper 
half of the global coefficient matrix is usually stored and 
operated upon, the vector of multipliers cannot be computed 
by one processor without inter-processor communication. 
Thus for portability across shared and local memory system 
the row-oriented approach is preferable. 

In initial tests it has been found that the parallel row- 
oriented technique is slightly faster than the active column 
solver. 
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