
1

DRIVE

An Environment for the Organised Construction of
User-Interfaces to Databases

Kenneth J Mitchell and Jessie B Kennedy

Computer Studies Department, Napier University
Canal Court, 42 Craiglockhart Avenue, Edinburgh EH14 1LT, Scotland, UK

e-mail: <kenny,jessie>@dcs.napier.ac.uk
phone: +44-0131-455-5340 ; fax: +44-0131-455-5394

Abstract This paper describes a runtime user-interface development
environment (UIDE) for the novel capability of interactively using and
specifying user-interfaces to object-oriented databases (IDSs). A framework
provides the foundation for IDSs constructed. This concerns interpreting an
IDS, specified in a conceptual object-oriented data language, using a persistent
meta model. A generic environment model facilitates dynamic integration of
existing user-interface widgets into the meta model. This achieves the goal of
providing a database representation independent visual environment (DRIVE).
The architecture and use of DRIVE are described and the benefits of this
approach are discussed.

Keywords User-Interfaces to Databases (IDS), Human-Computer Interaction
(HCI), User-Interface Development Environment (UIDE), Conceptual
Modelling, Direct Manipulation Interfaces, Multiple Coordinated Views.

1. Introduction

As the issue of providing user-interfaces to databases (IDSs) becomes the focus of
increasing numbers of research groups, there is a call for tools that act as sketch pads
for new interaction and presentation ideas. Unless such tools follow a well-defined
organised approach, results will be harder to reproduce in commercial systems and
remain limited to the original tool of conception.

Creating such tools raises critical problems in terms of their flexibility and
performance. Supporting diverse interactive components and coordinating them
uniformly with respect to database components [14] presents a challenge to all IDS
developers. In addition, the interactive specification of IDS elements through direct
manipulation [17] with immediate feedback on modifications [7] requires a particular
solution when the data resides in a database. Typically this problem is exacerbated by
an impedance mismatch between the user-interface programming language and the
database’s data model.

In regard of these issues, a database representation independent visual environment
(DRIVE) is presented which serves as a tool for using and specifying existing and
prototype IDSs in a runtime user-interface development environment (UIDE).

2

To ensure well-defined organised IDS construction, DRIVE enforces the relationships
and dependencies identified in our framework for user-interfaces to databases [11]
using a conceptual object-oriented data language. The architecture presented provides
a means for coordinating disparate interface components using a persistent meta
model of the IDS framework together with an environment model. This scheme has
the following distinct advantages:

• interactive support for IDS schema and object definition and manipulation without
requiring the support of schema evolution in the object oriented database system
used.

• explicit consideration for users of IDSs as modelled within the IDS framework,
allowing user-specific configurations incorporating security measures.

• dynamic integration of existing and novel user-interface objects, such as widgets
and controls, in an environment model.

The following section briefly describes our IDS framework with particular emphasis
on the mapping to the conceptual language. Section 3 shows an IDS prototyped in the
DRIVE UIDE, which is used as an exemplar for the following technical content.
Section 4 presents DRIVE’s architecture based on runtime interpretation of a
persistent meta model of the IDS framework. Section 5 details the environment
model, which dynamically binds visualisation classes of the framework meta model to
external user-interface objects. Section 6 describes the process of IDS construction, for
interactive manipulation of conceptual language specifications. Finally, conclusions
and some further work are discussed.

2. Background

The framework that provides the foundation for IDS construction in DRIVE is based
on Abowd and Beale’s [1] interaction framework, which identifies four major
components of an interactive system, ie. system, input, output and user. In applying
this framework specifically to IDSs, modifications and extensions to these components
have been made. We have identified an IDS to be the composition of database,
interaction, visualisation and user components. In addition, the common features of
each of these IDS components have been identified, eg. a visualisation component has
a referent, metaphor and layout.

In our IDS framework [11], we have shown how such a detailed classification of
components may be mapped to a conceptual language that embodies the relationships
and dependencies among the components of an IDS.

For this purpose, we have chosen the modelling language NOODL for IDS
specification. NOODL (Napier’s object-oriented data language) is based on the
modelling approach described in [2]; it has been used to model and to support the

3

implementation of novel database applications, and also for the investigation of
specific modelling issues such as declarative integrity constraints and activeness and
the incorporation of views in object oriented data models. It also includes a query
language [4].

A NOODL schema contains a list of class definitions, which show the name and
ancestors of each class. A class definition also includes the names, sorts, and,
optionally, definitions of the properties of each class. It may also contain operations,
constraints, and triggers. Full details of NOODL may be found in [3].

Figure 1 depicts the classes and properties of a meta-model of the IDS framework
using NOODL constructs. In mapping the framework to NOODL, certain components
are depicted as NOODL classes, some as properties, while other are modelled using
operations, constraints or triggers. An example schema based on the above template is
given in the appendix.

In common with Rumbaugh’s user interface modelling approach [15] multiple
interface objects are associated with each data object. This permits database updates to
be broadcast to each relevant interface object. Thus realising the facility for multiple-
coordinated views. Much work in the field of HCI reflects this conceptual
organisation. Conceptual architectures for user interface management systems (UIMS)
typically involve the identification of the system (data) in separation from input and
output (interface) components. This is evident in the archetypal Seeheim workshop
model with application interface, dialogue control and presentation components;
Smalltalk’s model, view, and controller (MVC) paradigm; and the presentation,
abstraction and control model (PAC)[14].

This meta model provides a number of features, including,

• multiple interface objects associated with each data object
• interface object composition for specification of layouts
• explicit user modelling

 referent

 interfaces
 interface

metaphor

 components

 interfaces

 users
DATAUSER INTERFACE

VISUALISATION

AUTHORITY

SOPHISTICATION

 sophistication

 user

 user

 authority

 composite

Fig 1 A NOODL meta-model of the IDS framework

4

If an architecture exists which supports the NOODL data model, then concise
specifications, using the IDS framework meta model, may be interpreted to
automatically realise functional IDSs.

Fig 2 Integrated 2D and 3D widgets in the Virtual Museum IDS

3. Example IDS

Figure 2 shows a display from the prototype IDS specified using the DRIVE UIDE
(see appendix for the NOODL specification). The display shows various views of the
museum, which may be altered interactively with the mouse and keyboard in designer
mode. If an object is moved or altered in one view, then the change will be updated in
the other views. The dialog box in the lower right of the display shows the details of
the currently selected artefact. This shows the effect of the browse operation of the
Artefact Interface class and serves as an example of the novel applications possible with
integration of 3D graphics technology with traditional 2D graphics.

5

4. Architecture

Fundamental to the provision of such tools is their architecture. Figure 3 shows three
architectures where database (DB) and user-interface (UI) components are linked in
alternative ways. Gray and Cooper [9] have identified a need for architectures of
integration, where relationships amongst IDS components are managed using some
integrating model. This is necessary both to maintain multiple coordinated views of
data [15] and provide the composition of interactive components from disparate
origins. In opposition to this are architectures of seclusion, where specific IDS
components are defined inside and in terms of the user-interface development
environment’s (UIDE) model. However, if such UIDE’s incorporate an integrating
environment model (EM) supporting coordinated management of disparate interactive
components, then the ‘closed world’ criticism of such tools is no longer appropriate.
In DRIVE there exists such an environment model, which coordinates existing user-
interface components with IDSs specified using the NOODL data model.

Essential to the IDS design process is immediate feedback on modifications [7].
Consequently, an architecture for runtime interpretation of IDS designs is desirable.
Mogetto [16] is a good example of a runtime architecture. Embedded interface
(MOG[8]) objects are manipulated interactively by means of an event switch, which
channels inputs to the interface object’s editing behaviour. However, as recognised by
Sawyer et al. [16], changes are restricted at runtime to those which only locally affect
display configurations and default query callbacks. Deeper changes such as editing
application functionality require (often time consuming) recompilation. If such
changes are to be permitted at runtime then responses to events originating from the
database must be considered in addition to providing an interpreted computationally
complete data language.

DRIVE consists of three major components, an IDS component, an environment
model, and a design environment. The IDS component uses a persistent NOODL meta
model to instantiate the IDS framework meta model under the NOODL data model.
The environment model manages the integration of a set of user-interface widgets
with the NOODL visualisation classes of the IDS component. The design environment

 IDS

IDS

Seclusion Integration DRIVE

DB

UI UI UI
UI UI UI UI UI UI

EM

NOODL IDSDB

Fig 3 A comparison of alternative IDS architectures

6

consists of tools for editing and executing multiple textual and graphical IDS
specifications.

Data, user, interface and visualisation classes combine to make up the IDS
component. The environment model contains a scheme for handling interaction
events and mapping them to the appropriate IDS objects, via instances of visualisation
classes. A visualisation class may be derived in conjunction with existing user-
interface widgets, such as OWL[13] controls, and advanced interface widgets, such as
the 3D widget set’s (TDW)[6] access widget.

The NOODL classes of an IDS are built upon a persistent data model layer. This
layer, (similar to ObjectStore’s Meta Object Protocol [12]) implemented with the
POET [5] persistent C++ extension, provides a means of dynamically creating
persistent IDS schemata together with their data. This data model is implemented as a
vanilla C++ meta model and may be made to persist with object oriented database
systems (OODB) supporting single inheritance, complex objects and polymorphic
behaviour.

5. Environment Model

Figure 4 shows the classes of the IDS specified in the appendix together with
corresponding environment and user-interface widget classes managed by the
environment model. Each IDS class is grouped according to the respective framework
component modelled. The headings in italics identify the language used to define each
particular class, with NOODL classes, C/C++ environment classes and (in this case)

Window Interface

Visitor

ArtefactMuseum Interface

Artefact Interface

Artefact Detail Interface

Shape

Form

3D Window

tdw_Shape

tdw_Scene

TWindow

TEdit

T3DWindow

env_Shape

env_3DWin

env_Form

UI Classes Environment
Classes

IDS Classes

NOODL Data Model

TDW
OWL
C++

C/C++
Medium

Visualisation Interface

User

Data

Fig 4 Categorisation of classes in the example IDS under DRIVE

7

C++ user-interface classes. The lines between classes represent object linkage, using
either the obverted properties of the IDS framework (for the NOODL classes) or C
pointer references. With this linkage strategy the vast majority of existing user-
interface widgets may be utilised.

To achieve linkage between NOODL visualisation classes and C/C++ environment
classes the NOODL meta model allows access to the properties of visualisation classes
via the environment manager. In tandem with this, visualisation classes can access the
features of environment classes with the environment manager, described next.

env_Class

set<Data*> VISdata;
set<Data*> GUIdata;

set<Event*> INevents;
set<Event*> OUTevents;
set<Event*> EditINevents;
set<Event*> EditOUTevents;

Event* Create;
Event* Destroy;

TEdit TextField

char* text;
int xy[2];
int col;
void LButtonClick(int x, int y);
void MouseMove(int x, int y);
void Comit();

name : Text ;
pos : Vector2d ;
col : Colour
select
move

env_Manager (C/C++ DLL Functions)

ClsId RegisterEnvClass();
CreateEnvObject(ClsId,ObjId);
DeleteEnvObject(ClsId,ObjId);
RegisterCallback(ClsId,ObjId,EvId,Event*);
RegisterData(ClsId,ObjId,DataId,Data*);
Property* AccessData(ClsId,ObjId,DataId);

 SwitchMode(FLAG);
NotifyInputCallback(msgId); NotifyOutputCallback(msgId);

Fig 5 Generic runtime environment classes

5.1 Environment manager

Figure 5 details the operation of the environment manager in relation to user-interface
widget, environment and visualisation classes, from left to right respectively. The
environment manager contains a set of environment classes. It performs three
functions,

• provides dynamic registration of environment classes for user-interface widgets.

• maps input and output events between corresponding user-interface and
visualisation classes

• channels events according to the mode of operation (designer or execution mode)

8

Dynamic registration of environment classes is achieved by placing the environment
manager in a dynamic link library (DLL), which is initially linked to DRIVE.
Whenever a new type of widget is required, the code module (normally also a DLL)
containing the widget code links with the environment manager and calls the
appropriate C functions to register the environment class. These calls must define a
template for the corresponding visualisation class as well as register the properties
and callbacks of the environment class.

Consider when a user clicks the left mouse button on an artefact in the virtual
museum example (appendix). Normally, this event is handled by the widget and the
LButtonClick callback function is called within the encapsulated widget to respond to
this event. However, in order to map this user-interface event to a NOODL select
event, it must be forwarded to the environment manager with a message identifier
using the NotifyInputCallback. This function matches the LButtonClick event with the
select input callback of the registered env_Shape environment class and calls it.

In the virtual museum specification, the browse trigger of the artefact’s interface
object is fired when the select event occurs. This trigger assigns its referent to the
referent of the associated Artefact Detail interface object, which then triggers a change
in the Form visualisation object’s text fields. Such a change will result in an output
event, which then must be forwarded to the environment manager using the
NotifyOutputCallback. The output callback accesses the text fields of the Form
visualisation object and updates the TEdit user-interface widgets according to the
newly selected artefact.

Clearly, if many interface objects share the same referent, a change in the linked data
object will trigger updates in all associated visualisation objects. In this way, the
mechanism for multiple coordinated user-interface widgets may be realised.

With all events channelled through the environment manager, a simple switch is
sufficient to realise a change in mode of operation. If designer mode is set then all
events will be forwarded to the appropriate environment class’ edit callbacks. If
execution mode is set, then they will be sent to normal callbacks. Although, this
technique has been employed in MOG objects [8], the editing behaviour is internal to
the encapsulated MOG object. Here, output callbacks allow editing behaviour and
application functionality to be defined in the NOODL IDS.

5.2 Environment classes

It is possible to categorise the features of environment classes according to the
input/output direction of events. Each input callback may contain code to modify a
visualisation class’ active property from its VISdata set or trigger a visualisation class’
event operation. These may read information about the widget’s state using its
GUIdata set. For example, in figure 5, the commit input callback would read TEdit’s
text string pass it to the TextField visualisation class’ text. Conversely, each output

9

callback may modify a user-interface widget class’ property via the GUIdata set and
read information from the VISdata set.

Two other callbacks are required for creating and deleting environment objects at
runtime. The create callback is called after a visualisation object is created or
retrieved from the database. It must initialise the user-interface widget’s state using
the environment manager’s CreateEnvObj and assign the GUIdata set using the
VISdata set to read information from the derived visualisation object. The destroy
callback is be called after visualisation object is deleted or unloaded from memory. It
must remove the user-interface widget from memory and then call the environment
object’s destructor using the DeleteEnvObj function.

5.3 Integrating advanced user-interface widgets

The environment model is general enough to make use of the majority of existing
user-interface widget sets. The term environment is purposely chosen to indicate that
an IDS can interact with potentially much more than standard widgets. Through
environment objects an IDS may communicate data to and from novel environments
(eg. dynamic data streams, special I/O peripherals, other databases, etc.). This
flexibility has been exploited in the task of designing three dimensional database
environments using the 3D Widget set (TDW) [6]. Figure 5 shows the use of TDWs to
construct a 3D environment representing the artefact of a museum. Each artefact uses
a tdw_Shape to represent itself. These shapes are registered in a 3D scene
(tdw_Scene) and rendered in a window (T3DWindow). This derived OWL window
handles keyboard and mouse events (such as navigation and selection), which are
passed to the shape that currently has the user’s focus. In this way the user can
directly manipulate the shapes in the 3D environment and change the state of the
database through the environment model.

6. NOODL Data Model Interpreter

In order to manage the components of an IDS defined in the NOODL data model
under the IDS framework, each class must identify the component to which it belongs,
eg. a Visitor class must belong to the user component of the IDS framework. In this
way the properties, operations and triggers of the framework meta model are
constrained by the interpreter to appear only in their appropriate classes. The
mechanism for enforcing this rule marks every property, operation and trigger with its
identity in terms of the framework. These are detailed below.

6.1 Framework Class Templates

All classes may act as the referent of one or more interface classes and so may have
one or more interface (obverted) properties, eg. from the Artefact data class,

detail_interface : Artefact_Detail_Interface ref referent

10

which defines the link to an interface class or classes. Data classes are constrained to
this type of framework property only. The remaining features are particular to the type
of framework component the class belongs.

User classes have authority, sophistication, and accessors properties defining the
links to Authority, Sophistication and their accessible Interface classes. User classes
may have operations defined as tasks, which are used to model the purpose of the
user. Authority and sophistication classes have user properties linking back to their
user classes. In the simplified virtual museum example, a Visitor is a user class with
one accessor property linking it to a set of Window Interfaces, specifying that visitors
interact via a number of windows.

Interface classes are permitted to have referent, components, composite and metaphor
properties. The referent property defines the link to the subject of the interface
component. Components and composite properties allow hierarchies of interface
objects to be built and managed, including support for layouts. The Museum Interface
class contains both a set of Artefact Interfaces and one Artefact Detail Interface. The
metaphor property links an interface class to a Visualisation class. In addition,
interface classes have interface actions [14] and responses for operations and triggers,
respectively. In terms of the framework, the definition of interface action operations
specifies the medium of the interaction component and the definition of interface
response triggers specifies the effect of the interaction. The browse trigger mentioned
in section 5.1 defines a response to the browse interface action operation, which
permits a visitor to select an artefact to view its details.

Visualisation classes may have a set of active properties and event operations, which
enables the environment model to respond to events in the external user-interface
widgets. For example, the properties and operations of the TextField class in figure 5
are all active properties and event operations.

In addition to these framework features, each class may use standard NOODL
constructs to model an IDS. However, with these features certain classes will depend
on the existence of other classes, ie. authority and sophistication classes may not exist
without user classes, and interface classes may not exist without a referent, metaphor
and user. Indeed, the default IDS schema must contain at least one user class, in order
to permit access to the IDS.

This provides a general scheme the organised construction of advanced IDSs. The
next section covers their interactive specification.

11

Fig 6 IDS Editor using PorkTree

7. IDS Construction

Given an architecture supporting the runtime interpretation of NOODL IDS
specifications the facility exists within DRIVE to compile textual NOODL script files
into the IDS framework meta model and generate working IDSs. In addition, with a
runtime NOODL interpreter it is possible to entirely construct IDSs within DRIVE.
Once a designer is satisfied, concise NOODL script specifications may be written out
and documented.

7.1 IDS Editor

Interactive specification of IDSs is carried out through the IDS editor. This combines
a hierarchical list view of the IDS schema with a node specific dialog. When the user
selects an element in the schema list, the view on the right changes to display the
controls required to edit that element. Hierarchical list views are becoming common
place in windows applications. Sub-lists may be expanded or collapsed by double
clicking the mouse button on the composite list node. This has been achieved with
respect to an OODB by means of a persistent object resource key tree (PorkTree).

Figure 6 shows the virtual museum specification with the PorkTree expanded to show
the default properties of an interface class. Classes are strictly grouped according to
their categorisation in the IDS framework.

12

Each node in the PorkTree contains an object of the IDS framework meta model and a
dialog object. With this information a node acts as a unique key to the desired object.
When a node is selected in the list view, the dialog object is passed the persistent meta
model object for editing. The PorkTree contains nodes for editing the entire schema,
from lists of class ancestors to individual properties. In addition to the schema
information, IDS objects and their values also form part of the PorkTree.

This method works well for a few levels of sub-division, but if the tree becomes over-
complicated access to deep sub-nodes is sluggish and impractical. For this reason, the
definitions of derived properties, operations, constraints and triggers are specified in
an additional definition editor.

Fig 7 Context sensitive NOODL definition editor

7.2 Context Sensitive Definition Editor

Given that DRIVE’s design environment has access to the IDS component, and
therefore all the constructs of the NOODL data model, it is possible at any point
within the definition of an NOODL expression to determine the set of valid operators
and operands. This is exploited in the definition editor where the context of the
expression is represented by the elements in the operator and operand lists. With these
lists the user can define complete operation definitions and constraint expressions,
simply by selecting the available element and pressing the add button. Figure 7
represents the definition editor after the browse operation of the Artefact Interface
class (see appendix) has been partially specified. The operand box is filled with the
active properties and event operations of the artefact interface’s associated Shape

13

metaphor. The operator box contains complete, settor and delete elements to signify
the completion of the current expression and the metaphor’s settor and delete
operators, respectively.

As with the PorkTree dialogs, the context sensitivity of the editors gives the designer
support for constructing IDSs within the framework without deviating from the
semantics of the data model. This is particularly useful for designers unfamiliar with
NOODL where no knowledge of syntax is necessary. Consideration for advanced
designers has been acknowledge by the provision of keyboard and mouse shortcuts.
Typically, this method requires significantly less keyboard and mouse interactions
than using a traditional text editor. Further, because the number of valid operators and
operands is frequently less than 20, the performance of this editor does not hinder the
specification process.

Fig 8 Drag’n’drop placement of an edit field

7.3 Direct Manipulation of User Interface Widgets for Editing

With each environment class registered, a corresponding visualisation class is added
to the NOODL IDS specification and the design environment manages an associated
palette of widgets that may be added to the IDS. This is activated when a developer
enters designer mode. Each widget may be dragged and dropped into an appropriate
user-interface window. This includes the creation of new windows and dialog boxes
(by dragging onto a non-composite area). Figure 8 depicts the creation of a EditField

Checkbox
Radio Button
Button
Edit Field
Text Field
Combo Box
List Box
Horizontal Scrollbar
Vertical Scrollbar
Group Control
Window
3D Window
Form
3D Form
3D Button
3D Check Box
3D Text Field
3D Edit Field
3D Shape
3D Grid

14

in the artefact detail form. The edit field button on the palette has been pressed and
the shaded box with cross hairs above it is the cursor used for placement. Once
created, the widget’s defined editing behaviour allows the designer to modify (move,
size, etc.) it directly.

8. Conclusions

In this paper we have shown a database representation independent visual
environment (DRIVE), which serves as a tool for using and specifying existing and
prototype IDSs in a UIDE. A general philosophy of widespread mutability of IDS
elements has been achieved in a dynamic interactive environment. An IDS component
has been detailed, which ensures well-defined organised construction within our
framework for user-interfaces to databases. User security is safe-guarded by defining
the set of accessible interface objects within the IDS framework.

Tight coupling in DRIVE’s design environment with NOODL data model constructs
enable context sensitive editors to provide highly specialised support for novice
designers ensuring the validity of designs under the IDS framework. The encapsulated
editing behaviour of environment objects achieves direct manipulation of user-
interface widgets.

The environment model permits dynamic integration of existing and novel user-
interface objects, through independent environment objects. Such objects are linked to
the application at run-time using an environment manager. If an existing widget is
required which is unable to link with the environment manager, then it should be
possible to provide a messaging interface, which uses the operating system’s message
protocol (eg. Windows messages) or a shared file messaging protocol. Indeed,
dynamic reconfiguration or replacement of the IDS framework component is possible
using the same technique in the reverse direction.

Currently, DRIVE supports NOODL IDS specifications integrating a range of simple
2D and 3D widgets. We intend investigating techniques for composing and mapping
between such widgets, which may be reproduced in commercial applications.
Empirical evaluations of such applications will doubtless follow.

9. References

1. G.D. Abowd & R. Beale (1991) Users, systems and interfaces: A unifying
framework for interaction, HCI’91: People and Computers, 4, 73-87.

2. P.J. Barclay & J. Kennedy (1991) Regaining the conceptual level in object
oriented data modelling. In: Proceedings of BNCOD (Jackson and Robinson, eds).
Wolverhampton: Butterworths. 9, 269-305.

15

3. P.J. Barclay (1993) Object oriented modelling of complex data with automatic
generation of a persistent representation. Phd Thesis. Edinburgh: Napier University.

4 P.J. Barclay & J.B. Kennedy (1994) A conceptual language for querying
object-oriented data, British National Conference on Databases, 12:13, 187-204.

5. B.K.S. Software (1994) POET (Version 2.1) - Programmer’s & Reference
Guide. B.K.S. Software.

6. J. Boyle & K. Mitchell (1996) Embedding three dimensional graphics inside a
user interface development framework, Technical Report submitted for publication.
Robert-Gordon University, Aberdeen.

7. Cardelli, L. (1988) Building User Interfaces by Direct Manipulation, in
proceedings of ACM SIGGRAPH Symposium on User Interface Software.

8. A. Colebourne, P. Sawyer & I. Sommerville (1993) MOG user interface
builder: a mechanism for integrating application and user interface, Interacting with
Computers, 5:3.

9. P. Gray & R. Cooper (1995) Thoughts on the Requirements for 3D
Visualisation Systems, 2nd International FADIVA Workshop, Glasgow University.
Glasgow.

10. K.J. Mitchell, J.B. Kennedy & P.J. Barclay (1995) Using a Conceptual
Language to Describe a Database and its Interface, British National Conference on
Databases, 13:7, 101-119.

11. K.J. Mitchell, J.B. Kennedy & P.J. Barclay (1996) A Framework for User-
Interfaces to Databases, in proceedings of the International Workshop on Advanced
Visual Interfaces’96.

12. M.O.P. (1994) ObjectStore : Meta Object Protocol. Object Design Ltd.

13. O.W.L. (1994) ObjectWindows (Version 2.0) for C++ - Programmer’s Guide.
Borland International Inc.

14. N.W. Paton, R.L.Cooper, D. England, G. al-Qaumari & A.C. Kilgour (1994)
Integrated architectures for database interface development, in IEE proceedings of
Computers & Digital Technology, 141:2, 73-78.

15 J.Rumbaugh (1995) Modelling models and viewing views: A look at the
model-view-controller framework, Journal of Object Oriented Programming, , 14-22.

16

16. P. Sawyer, A. Colebourne, J.A. Mariani & I Sommerville (1995) Database
object display definition and management with Moggetto, 3rd Working Conference on
Visual Database Systems, Lausanne, Switzerland.

17. B. Shneiderman (1983) Direct Manipulation: a Step Beyond Programming
Languages, IEEE Computer, 16, 57-69.

10. Appendix - Example IDS Specification

This schema specifies the prototype IDS shown under the DRIVE UIDE in figure 8.
The specification concerns a museum’s database which is interacted with through a
desktop virtual reality user interface. The data of the database is specified by the
Artefact class, which holds its name, description and catalog_id. This information is
displayed through the linked interface classes, Artefact Interface and Artefact Detail
Interface.

Users of this system are modelled by the class Visitor. Sophistication and authority
properties have been omitted, because no particular sophistication or authority is
appropriate to this example. The user interacts with a number of Window Interface
instances, through which s/he may browse the artefacts of the museum.

Each window uses a 3D window metaphor, which provides a virtual environment for
the to navigate. The referent of a particular user’s window, is a Museum Interface
object, which uses a Shape metaphor.

The museum interface is composed of a collection of Artefact Interfaces and an
Artefact Detail Interface. Each Artefact Interface also uses a Shape metaphor and the
position of its shape must lie within the bounds of the museum’s shape. If the user’s
intention is to browse a particular artefact, then the artefact detail interface’s referent
will be set to the selected artefact’s referent. This has the effect of showing a form
describing the details of the currently selected artefact.

schema Virtual_Museum

class Artefact (* Data Class *)
properties

interface : Artefact_Interface ref referent ; (* interface *)
detail_interface : Artefact_Detail_Interface ref referent ; (* interface *)
name : Text ;
description : Text ;
catalog_id : Number

class Visitor (* User Class *)
property

accessors : #Window_Interface ref users (* accessor *)
operation

browse is self.accessors.museum.artefacts.browse (* task *)

class Window_Interface (* Interface Class *)
properties

17

museum : Museum_Interface ref interfaces ; (* referent *)
users : #Visitor ref accessors ; (* user *)
metaphor : 3DWindow ref interface ; (* metaphor *)

class Museum_Interface (* Interface Class *)
properties

interfaces : #Window_Interface ref referent ; (* interface *)
metaphor : Shape ref interface ; (* metaphor *)
artefacts : #Artefact_Interface ref museum; (* component *)
detail : Artefact_Detail_Interface ref museum (* component *)

class Artefact_Interface (* Interface Class*)
properties

referent : Artefact ref interface ; (* referent *)
metaphor : Shape ref interface ; (* metaphor *)
museum : Museum_Interface ref artefacts (* composite *)

operation
browse is self.metaphor.select (* interface action *)

constraint
self.metaphor.position.is_inside(self.museum.metaphor.extent)

trigger
browse => self.museum.detail.referent(referent) (* interface response *)

class Artefact_Detail_Interface (* Interface Class *)
properties

referent : Artefact ref detail_interface ; (* referent *)
metaphor : Form ref interface ; (* metaphor *)
museum : Museum_Interface ref detail (* composite *)

class Shape (* Visualisation Class*)
properties

interface : Artefact_Interface ref metaphor ; (* interface *)
name : Text ; (* active *)
position : Position ; (* active *)
extent : Extent ; (* active *)
orientation : Orientation ; (* active *)
colour : Colour (* active *)

operations
select ; (* event *)
move (* event *)

class Form (* Visualisation Class *)
properties

interface : Artefact_Detail_Interface ref metaphor ; (* interface *)
fields : #Text (* active *)

class 3DWindow (* Visualisation Class *)
properties

interface : Window_Interface ref metaphor (* interface*)
...

end (* Virtual Museum *)

