
A Study of Arithmetic Circuits and 
the Effect of Utilising Reed-Muller 

Techniques 

Zhigang Guan 

A thesis submitted in partial fulfilment of the requirements of Napier University for 

the degree of Doctor of Philosophy in the Department of Electrical, Electronic & 

Computer Engineering 

September 1995 



CONTAINS 
PULLOUTS 



Abstract 

Reed-Muller algebraic techniques, as an alternative means in logic design, became 

more attractive recently, because of their compact representations of logic functions 

and yielding of easily testable circuits. It is claimed by some researchers that Reed­

Muller algebraic techniques are particularly suitable for arithmetic circuits. In fact, no 

practical application in this field can be found in the open literature. 

This project investigates existing Reed-Muller algebraic techniques and explores their 

application in arithmetic circuits. The work described in this thesis is concerned with 

practical applications in arithmetic circuits, especially for minimizing logic circuits at 

the transistor level. These results are compared with those obtained using the 

conventional Boolean algebraic techniques. This work is also related to wider fields, 

from logic level design to layout level design in CMOS circuits, the current leading 

technology in VLSI. The emphasis is put on circuit level (transistor level) design. The 

results show that, although Boolean logic is believed to be a more general tool in logic 

design, it is not the best tool in all situations. Reed-Muller logic can generate good 

results which can't be easily obtained by using Boolean logic. 

F or testing purposes, a gate fault model is often used in the conventional 

implementation of Reed-Muller logic, which leads to Reed-Muller logic being 

restricted to using a small gate set. This usually leads to generating more complex 

circuits. When a cell fault model, which is more suitable for regular and iterative 

circuits, such as arithmetic circuits, is used instead of the gate fault model in Reed­

Muller logic, a wider gate set can be employed to realize Reed-Muller functions. As a 

result, many circuits designed using Reed-Muller logic can be comparable to that 

designed using Boolean logic. This conclusion is demonstrated by testing many 

randomly generated functions. 

The main aim of this project is to develop arithmetic circuits for practical application. 

A number of practical arithmetic circuits are reported. The first one is a carry chain 

adder. Utilising the CMOS circuit characteristics, a simple and high speed carry chain 

is constructed to perform the carry operation. The proposed carry chain adder can be 

reconstructed to form a fast carry skip adder, and it is also found to be a good 

application for residue number adders. An algorithm for an on-line adder and its 

implementation are also developed. Another circuit is a parallel multiplier based on 

5:3 counter. The simulations show that the proposed circuits are better than many 

previous designs, in terms of the number of transistors and speed. In addition, a 4:2 

compressor for a carry free adder is investigated. It is shown that the two main 

schemes to construct the 4:2 compressor have a unified structure. A variant of the 

Baugh and Wooley algorithm is also studied and generalized in this work. 

i 



Acknowledgements 

I would like to express my gratitude to Prof. Almaini for his good guidance, patience, 

understanding, friendship and encouragement throughout this work. 

I would also like to express my gratitude for the studentship offered to me by the 

Department of Electrical, Electronic and Computer Engineering, Napier University. 

I would like to thank Mr. P. Thomson for his guidance and kindly help during the first 

stage of this project. I also offer my sincere thanks to my former colleagues Ms. L. 

Xu, Ms. L. McKenzie, and Mr. N. Zhuang. Our good-natured discussions and their 

advice are invaluable. Thanks are also due to the staff members in Dept of EECE, 

Napier University, for the generous support given to me. 

Finally, this thesis is dedicated to my wife Qiao Zhang, my daughter Xiaoqiao Guan, 

and my parents Yanjun Guan and Zhifang Wang, I could not have completed this 

thesis without their unending support and help. 

ii 



Declaration 

No portion of the work referred to in this thesis has been submitted in support of an 

application of another degree or qualification of this or any other university or 

institution of learning. 

Zhigang Guan 

iii 



List of Abbreviations 

BSD Binary Signed-Digit 

CFA Carry Free Adder 

CMOS Complementary MOS 

CPA Carry Propagation Adder 

DAG Directed Acyclic Graph 

ECAD Electronic CAD 

ESOP Exclusive or SOP 

EXOR EXclusive OR 

FA Full Adder 

FPGA Field Programmable Gate Array 

IC Integrated Circuit 

KRM Kronecker Reed-Muller 

LCA Logic Cell Array 

isb least significant bit 

LSI Large scale integration 

MOS Metal Oxide Silicon 

msb most significant bit 

NMOS N channel MOS 

PLA Programmable Logic Array 

PMOS P channel MOS 

POS Product Of Sums 

PP(s) Partial Product(s) 

PPG PP Generator 

RBA Redundant Binary Adder 

RM Reed-Muller 

RNS Residue Number System 

SD Signed-Digit 

SOG Sea Of Gates 

SOP Sum Of Products 

VLSI Very Large Scale Integration 

XOR eXclusive OR 

XPLA XORPLA 

iv 



List of Accompanying Material 

1). Z. Guan, A E. A. Almaini, and P. Thomson,"A simple and high speed CMOS 

carry chain adder architecture", Int. J. Electronics, Vol. 75, No.4, Oct. 1993, pp. 

743-752. 

2). Z. Guan,"Logic Realization Using Mixed Representations Based on Reed-Muller 

Forms", Proc. lEE Colloquium on Synthesis and Optimization of Logic Systems, 

London, March 14,1994, pp. 211-2/4. 

3). Z. Guan, P. Thomson, and A E. A Almaini,"A Parallel CMOS 2's Complement 

Multiplier Based on 5:3 Counter", Proc. IEEE Int. Con! Comput. Design, Boston, 

Oct. 10-12, 1994, pp. 298-301. 

4). Z. Guan, and AE.A Almaini,"One Bit Adder Design Based on Reed-Muller 

Expansions", Int. J. Electronics, to be published. 

v 



Contents 

Abstract. ......................................................................................................................... .i 

Acknowledgements ....................................................................................................... .ii 

Declaration ................................................................................................................... .iii 

List of Abbreviations .................................................................................................... .iv 

List of Accompanying Material.. .................................................................................... v 

Chapter 1: Introduction 

1.1 Reed-Muller Logic ................................................................................................... 1 

1.2 Arithmetic Circuits ................................................................................................... 3 

1.3 Objective .................................................................................................................. 4 

1.4 Thesis Outline ........................................................................................................... 5 

Chapter 2: Reed-Muller Logic 

2.1 Introduction .............................................................................................................. 7 

2.2. The algebra of GF(2) ............................................................................................... 8 

2.3 Zero Polarity RM Canonical Expansion ................................................................. 1 0 

2.4 Relationships Between ai and bi Coefficients ...................................................... 12 

2.5 Fixed Polarity RM Canonical Expansions ............................................................. 13 

2.6 Relationships Between ai and Ci Coefficients ...................................................... 14 

2.7 Kronecker RM(KRM) Canonical Expansions ....................................................... 17 

2.8 Relationships Between ai and ei Coefficients ...................................................... 18 

2.9 Inconsistent Forms .................................................................................................. 20 

2.10 Dual Forms ofRM Expansions ............................................................................ 20 

2.11 Map Method ......................................................................................................... 23 

2.11.1 Folding Technique ........................................................................................ 24 

vi 



2.11.2 Map Minimization ........................................................................................ 30 

2.12 Tabular Method .................................................................................................... 34 

2.13 Summary ............................................................................................................... 36 

Chapter 3: CMOS Implementation 
of Logic Circuits 

3.1 Introduction ............................................................................................................ 38 

3.2 CMOS Circuits ....................................................................................................... 39 

3.3 Switching Network Theory ................................................................................... .43 

3.4 Some Techniques for Fast MOS circuits ............................................................... .47 

3.5 PLA Implementation .............................................................................................. 49 

3.6 Gate Implementation .............................................................................................. 51 

3.7 Transistor Implementation ...................................................................................... 53 

3.8 Mixed Representations Based on RM logic .......................................................... .59 

3.9 Layout Evaluation .................................................................................................. 61 

3.10 Testing ofRM circuits ......................................................................................... 65 

3.11 Summary .............................................................................................................. 69 

Chapter 4: Number Systems and Two Operand 
Adders 

4.1 Introduction ............................................................................................................ 71 

4.2 Number Systems for Arithmetic Circuits ............................................................... 72 

4.2.1 2's Complement Number System ................................................................... 72 

4.2.2 Signed-Digit Number System ......................................................................... 73 

4.2.3 Residue Number System ................................................................................ 75 

4.3 Review of Two Operand Adders ............................................................................ 77 

4.4 Design Methodology .............................................................................................. 81 

4.5 Carry Lookahead Circuit.. ...................................................................................... 85 

4.6 Carry Chain Adder .................................................................................................. 90 

Vll 



4.7 Residue Adders ..................................................................................................... 101 

4.8 On Line Adder ...................................................................................................... 107 

4.9 Summary ............................................................................................................... 112 

Chapter 5: Carry Free Adders and Parallel 
Multipliers 

5.1 Introduction .......................................................................................................... 113 

5.2 Review of Multipliers ........................................................................................... 114 

5.3 A General Structure for Parallel Multiplier .......................................................... 118 

5.4 Carry Free Adders ................................................................................................. 120 

5.5 Redundant Binary Adder(RBA) ........................................................................... 122 

5.6 Conversion between 2's Complement and RBSD Numbers ................................. 125 

5.7 5:3 Counter ........................................................................................................... 126 

5.8 A Unified Structure for 4:2 Compressor .............................................................. 131 

5.9 Implementation Comparison and Evaluation ....................................................... 132 

5.10 A Variant of Baugh and Wooley Algorithm ....................................................... 139 

5.11 Parallel Multiplier based on 5:3 Counter ............................................................ 144 

5.12 Summary ............................................................................................................. 147 

Chapter 6: Conclusion 

6.1 Summary of Results ............................................................................................. 149 

6.2 Future Work .......................................................................................................... 152 

Appendix A: The schematics and simulations of a 8x8 parallel multiplier based on 

5:3 counter 

References 

Vlll 



Chapter 1 

Introduction 

1.1 Reed-Muller Logic 

Reed-Muller logic is an algebraic technique for logic circuit design based on AND 

and Exclusive OR (Modulo 2 arithmetic) operations. There is no universal definition 

and name for Reed-Muller logic. In the literature, it can be found that many different 

names are used, such as exclusive OR-switching function[Wu 82], EXOR 

10gic[Besslich 83], Reed-Muller expansion of Boolean functions[Harking 90], Reed­

Muller 10gic[Almaini 91], Reed-Muller algebraic techniques[Green 91B], Reed­

Muller representation (expansion, form) of Boolean 10gic[Saul 92], modulo-2 

expressions [Lui 92], AND-EXOR expression[Sasao 93B], Reed-Muller 

polynomial[Tran 93A], etc .. All these names are often used to describe the same thing, 

that is, at first, a logic function is represented in exclusive OR sum of products instead 

of inclusive OR sum of products, and then, the function is minimized by employing 

certain rules based on two basic operations, AND and Exclusive OR. 

In this thesis, Reed-Muller logic, Reed-Muller expansion, Reed-Muller function, the 

Reed-Muller domain, etc. are employed. In contrast, Boolean logic, Boolean 

expansion, Boolean function, the Boolean domain, etc. are used to describe the 

traditional Boolean logic design where a function is represented in inclusive OR sum 

of products. 

This technique was first introduced by Zhegalkin in 1927. He described a special kind 

of Exclusive Sum of Products (ESOP), which includes only uncomplemented Boolean 

variables. Later, Reed[Reed 54] and Muller[Muller 54] used ESOP for logic circuit 

design and error detection, since this time ESOP expressions have been called Reed-

1 



Chapter 1: Introduction 

Muller expressions (expansions, representations, forms, etc.) in the literature because 

Zhegalkin's work, written in Russian, was unknown [Steinbach 93]. 

Reed-Muller logic, as an alternative means in logic circuit design, can be employed to 

describe an arbitrary switching function completely. Systematic methods to simplify a 

logic function in the Reed-Muller domain have been developed[Muller 54, Wu 82, 

Green 86, 9IB, Tran 87, 89, Almaini 91]. In the Boolean domain, a group of 

coefficients for a given logic function in its canonical form have certain physical 

meanings. Normally, "0" indicates that the output ofa circuit is low, and "1" indicates 

that the output of a circuit is high. The coefficients directly correspond to a truth table 

that defmes the function completely. In the Reed-Muller domain, the coefficients for a 

given logic function in its canonical form do not have certain physical meanings. In 

general, a logic function in the Reed-Muller domain is derived from a corresponding 

function in the Boolean domain via coefficient conversion. 

For a long time, It had been conjectured that the realization of a class of logic 

functions in Reed-Muller expansions was more economical than the conventional Sum 

of Products (SOP), its counterpart in the Boolean domain. Later, this conjecture is 

proved mainly in Sasao and Besslich's work[Sasao 90, Sasao 93A, Sasao 93B]. In 

their work, many statistical data are used to show that two level Reed-Muller 

expansions, in general, require fewer products to represent a given logic function than 

SOP, the conventional two level Boolean expansion. These functions include 

arithmetic functions, randomly generated functions, symmetric functions, etc .. 

Consequently, a logic function in Reed-Muller expansion with less products can often 

generate a more economical circuit. 

A lot of precious work about Reed-Muller logic, especially in theory, has been done in 

the past. Some results may be feasible for commercial products. The first automatic 

logic synthesis system to make use of the mixed-polarity Reed-Muller expansion is 

GATEMAP[Pitty 88, Salmon 89]. GATEMAP concurrently maintains three different 

representations of each logic function throughout all stages of its operation. These 

three representations are: 1). sum-of-products of the function; 2). sum-of-products of 

the inverse of the function; 3). mixed-polarity of the function. Finally, the best one is 

chosen to implement the function. A wide variety of functions are tested by 

GATEMAP. Reed-Muller equations are found to be normally of comparable size to 

the sum-of-products, with exceptions being where the Reed-Muller equations are 

significantly smaller. 

Another main advantage of Reed-Muller logic considered by many researchers is that, 

when a logic circuit is realized with Reed-Muller expansion in two level fixed polarity 

form, it requires a short test set to detect a single stuck-at fault (stuck-at 0 and stuck-at 

1) in the circuit, and the test set is independent of its actual function being 

2 



Chapter 1: Introduction 

realized [Reddy 72]. Based on the same principle of Reddy's, the function-independent 

test set for detecting single stuck-at fault and single bridging fault (AND and OR 

bridging faults) is explored [Bhattacharya 85, Damarla 89]. 

Although Reed-Muller logic has the two obvious advantages over the conventional 

Boolean logic, it is still unpopular compared with the applications in the Boolean 

Domain. Many researchers believed that the main reason for this is lack of efficient 

algorithms for its minimization[Besslich 83, Saul 90, Sarabi 92]. Therefore, most of 

the previous work done has been devoted mainly to focus on various algorithms to 

minimize a given logic function in the Reed-Muller domain and convert between the 

two domains in the most efficient way[Wu 82, Besslich 83, Green 96, 91B, Tran 87, 

89, Helliwe1l88, Saul 90, 91, 92, Almaini 91, Sasao 93A, B, McKenzie 93]. 

1.2 Arithmetic Circuits 

Since the inception of digital computers, much effort has been directed towards the 

search for faster and simpler arithmetic techniques. Because of the high hardware cost, 

the earlier computers consisted only of simple and economical arithmetic circuits, 

such as adder, multiplier, etc.. Many complex arithmetic operations were 

accomplished by software. 

With the advance of microelectronics, especially in VLSI technology, many complex 

arithmetic circuits have become feasible and common. These arithmetic circuits 

consist not only of dividers, square roots, matrix multipliers and trigonometric 

processors for general purpose or scientific calculation, but also of some special 

arithmetic processors for digital signal processing, such as, convolvers and FFT 

processors. 

The earlier approach to designing arithmetic devices concentrated mainly on simple 

and high-speed circuits. With the development of VLSI technology, in order to deal 

with the increasing complexity of design, fabrication and test, regularity, modularity, 

regular and local connection are also emphasized. This is because, a regular and 

modular circuit not only is easily realized in VLSI, but also benefits testing. In 

addition, a regular and modular circuit can be easily pipelined, which will increase the 

throughput of a system in overlapped fashion. 

The previous study of many researchers shows that, a lot of complex arithmetic 

operations, in practice, can be decomposed into two simple and basic operations, 

addition and multiplication [Hwang 79, Urquhart 84, Joseph 84, Scott 85, Koren 93]. 

Based on this, arithmetic circuit study may be classified into two categories. One is to 

attempt to study basic arithmetic circuits, such as adders and multipliers, and 

3 



Chapter 1: Introduction 

minimize them not only at a higher level, but also at a lower level, such as logic level, 

circuit level, and layout level. This study is closely related to a logic design tool, for 

example, Boolean logic or Reed-Muller logic. The other is to attempt to investigate 

some complex arithmetic circuits and minimize them at a higher level, such as system 

level or architectural level, in which it is assumed that the basic components, adders, 

multipliers, and registers, etc., have been minimized. This study is rarely related to the 

logic design tool. Therefore, the implementation of many complex arithmetic 

processors is influenced directly by the performance of the adder and the multiplier. 

Owing to this reason, addition and multiplication have been the most widely studied, 

and many practical algorithms and implementations for various adders and multipliers 

have been presented. 

It should be mentioned that subtraction and division also are very important basic 

operations. Subtraction can be achieved by addition in 2's complement number 

without any additional hardware. Division is often studied at a higher level, rather 

than at logic level or circuit level, this is because division is inherently composed of a 

sequential series of addition and subtraction. Consequently, the implementation of a 

divider, ultimately, depends heavily on the adder. In other words, compared with other 

arithmetic circuits, studying the adder and multiplier not only is emphasized at a 

higher level based on number systems, mathematical rules, etc., but also is 

emphasized at logic level and circuit level for their actual implementations. 

Addition and multiplication also can be classified into fixed-point operation and 

floating-point operation. Float-point operation is more complex than fixed-point 

operation, but it is often studied at a higher level rather than at logic level and its 

implementation is still based on the implementation of fixed-point operation. 

Therefore, in this project, only fixed-point adders and multipliers are discussed, 

because they are more closely related to logic and circuit optimization. 

In addition, only binary logic will be considered in this work. Although multi-valued 

logic has many theoretical advantages, its practical application is widely limited 

because of the shortage of reliable and stable basic components. Also, many 

algorithms in binary logic can be steadily developed into their counterparts in multi­

valued logic. 

1.3 Objective 

"It is well-known that many useful circuits such as arithmetic units and parity 

checkers are heavily XOR oriented and it is more economical to implement their 

modulo-2 expressions"[Lui 92, Helliwell 88, Perkowski 89, 90, Saul 91, 92, 93, 

4 



Chapter 1: Introduction 

Sarabi 92, Csanky 93, Lester 93]. In fact, except for modulo 2 sum, few successful 

examples can be found relating to practical arithmetic circuits. One of the main 

reasons for this may be that, in most of the previous work about Reed-Muller logic, 

the minimization of functions is carried out without regard to target technology. 

Because the implementation complexity of Reed-Muller logic differs from that of 

Boolean logic, it is difficult to estimate and compare the results of Reed-Muller logic 

with that of Boolean logic accurately if only the number of products (literals) is 

employed. Also, arithmetic functions are established based on PLA or ROM 

implementation, and there is no architectural or structural design when using these 

functions. In this way, the results can not be easily generalized and therefore, they are 

not often employed in practical applications. 

In this project, logic circuit optimization using Reed-Muller techniques is explored, 

and compared with Boolean techniques in MOS circuits, especially in CMOS circuits. 

The comparison is carried out mainly at the circuit level (transistor level), instead of 

the gate level, and the results are measured by the number of transistors. This makes 

the comparison more practical in actual designs. That is, one important difference 

from most previous work is that, it is desirable to know the minimum circuits more 

than the most compact logic functions in this work. 

The use of Reed-Muller techniques for the synthesis of arithmetic circuits is studied. 

The circuits consist mainly of adders and parallel multipliers which are more closely 

related to circuit optimization, and the results are compared with that based on 

Boolean logic. This helped to gain greater insight into the subject of arithmetic 

operations, to evaluate the suitability of Reed-Muller techniques, and ultimately to 

develop more efficient arithmetic circuits. 

1.4 Thesis Outline 

Chapter 2 reviews the background theory of Reed-Muller logic that is used in later 

chapters. Representation of Reed-Muller logic for logic functions is first introduced. 

Secondly, the basic operations of Reed-Muller logic are described. Finally, some 

algorithms to minimize Reed-Muller functions are studied. 

Chapter 3 describes basic circuits in CMOS. In order to compare Reed-Muller logic 

with Boolean logic in CMOS circuits, switching network theory is first introduced. 

Reed-Muller functions and Boolean functions realized in static CMOS circuit style are 

studied and compared. This study is explored from the gate level to the layout level, 

5 



Chapter 1: Introduction 

but mainly at the transistor leveL The main result about testing Reed-Muller circuits is 

reviewed. The possibility to minimize Reed-Muller circuits is investigated. 

Chapter 4 first introduces some commonly used number systems and reviews the 

previous work about two operand adders, and then the design methodology for a 

general arithmetic circuit is discussed. Later, the possibility of using Reed-Muller 

logic to improve the carry lookahead circuit, as an example, is investigated. A simple 

and fast CMOS carry chain adder architecture is presented. This design can be 

reconstructed for the carry-skip adder, and is also developed for residue number 

adders. Finally, an algorithm for the on-line adder and its implementation are 

proposed. 

Chapter 5 commences with a review of the main results of multipliers proposed 

previously by other researchers. Parallel multipliers in the review are emphasized. A 

general structure for parallel multipliers is described and carry free adders are 

discussed. Two main types of the most widely used carry free adder modules, the 

redundant binary adder and the 5:3 counter, are investigated. A unified structure for 

these two modules is explored. Comparison and evaluation based on a survey of the 

literature is presented. Finally, a parallel multiplier based on the 5:3 counter is 

proposed. A variant of the Baugh and Wooley algorithm is generalized in the 

proposed design. 

Chapter 6 concludes the thesis by summarising the main findings and contributions. 

Some related issues to be further explored for future study are suggested. 

6 



Chapter 2 

Reed-Muller Logic 

2.1 Introduction 

Reed-Muller (RM) logic, as an alternative means for logic design, is based on two 

basic operations in modulo 2 arithmetic: modulo 2 addition and modulo 2 

multiplication. These two operations are identical to Boolean Exclusive-OR (EXOR 

or XOR) operation and AND operation. The resulting algebra is that of the finite or 

Galois field GF(2). This mode of representation supports the familiar mathematical 

operations such as matrices, transforms, polynomials, etc.[Green 86]. The resulting 

circuits are much easier to test than their counterparts in the Boolean domain[Reddy 

72]. 

Unlike the situations in the Boolean domain, there exist a great deal of canonical 

expansions[Davio 78, Green 91A, Sasao 93B] in the RM domain, this makes it more 

difficult to minimize a logic function in the RM domain than in the Boolean domain. 

In addition, for a given logic function, its canonical expansions in the Boolean domain 

correspond directly to a truth table that completely specifies this function. For a logic 

function in the RM domain, there is no similar relationship between its canonical 

expansions and a truth table. This means that, no general means, like a truth table in 

the Boolean domain, can be used to specify a logic problem in the RM domain 

initially. In general, a RM function is derived from a Boolean function by a coefficient 

converSIOn. 

In this chapter, the background theory of RM logic is introduced. This shall be used in 

subsequent chapters. 

7 



Chapter 2: Reed-Muller Logic 

2.2 The algebra of GF(2) 

The definitions for the two basic operation in GF(2) are shown in Table 2.2.1. 

Assume that a, b, and c are two-valued variables, and symbols "EB" and "." 

represent modulo 2 addition (XOR operation) and modulo 2 multiplication (AND 

operation), respectively. The symbol "." for AND operation can be missed if no 

confusion arises, i.e., a· b = ab . 

Table 2.2.1. Arithmetic operation tables ofGF(2). 

(1). Modulo 2 addition. (2). Modulo 2 mUltiplication. 

a b aEBb a b 

o 0 0 o 0 

o 1 1 o 1 

1 0 1 1 0 

1 1 0 1 1 

Some basic laws can be described as follows 

1. Closure laws aEBb and a·b are also two-valued 

2. Associative laws 

3. Distributive laws 

4. Commutative laws 

5. Identities 

aEB bEB c = (aEB b)EB c = a EB(bEB c) 

a· b·c = (a· b)·c = a·(b ·c) 

a·(bEB c) = a· bEB a·c 

aEBb=bEBa, a·b=b·a 

aEBO=a, a·l=a 

a·b 

0 

0 

0 

1 

(2.2.1 ) 

(2.2.2) 

(2.2.3) 

(2.2.4) 

(2.2.5) 

It is easily seen that these five laws are similar to that in Boolean algebra, the 

difference is that operator "EB" is used to replace operator "+", where "+" is the 

inclusive OR operation, simply called OR operation. 

There are two distinct operations which are quite different from that in Boolean 

algebra, they are: 

8 



6. 

7. 

Chapter 2: Reed-Muller Logic 

aEBa=O 

aElH=a 

(2.2.6) 

(2.2.7) 

a EB a = 0 is also called inverse operation, namely, every element is its own additive 

inverse. This means that addition and subtraction are the same in modulo 2 operation, 

1.e., a= -a. 

The two distinct operations lead to very significant differences in the resulting 

algebra, and consequently in logic circuit design, implementation, and test aspects. 

From (2.2.6) and (2.2.7), other important properties can be derived as follows 

aEBb=aEBb 

aEBb=aEBb=aEBb=lEBaEBb 

(2.2.8) 

(2.2.9) 

(2.2.8) and (2.2.9) present flexibility in logic circuit implementation. According to 

(2.2.8), AND gates can be replaced by more economical NAND gates. (2.2.9) shows 

that electrical polarity is easy to adjust for a given logic circuit realized in RM 

expansion. 

There exist many other operations for RM expansions, most of them can be derived 

from these basic operations 1 ~ 7. For example, a EB a = 1 can be easily deduced from 

equations (2.2.6) and (2.2.7). 

Connectives between inclusive OR (OR) and exclusive OR (XOR) are: 

cw+ab=aEBb 

a + b = a EB b EB ab 

fIa+h a=fIaEBh a 

(2.2.10) 

(2.2.11) 

(2.2.12) 

Equation (2.2.12) is often termed Shannon's decomposition, it can be also written as 

(2.2.13) 

9 



Chapter 2: Reed-Muller Logic 

2.3 Zero Polarity RM Canonical Expansion 

A given logic function with n variables can be described by a truth table that is in its 

vector form 

where Qi E{O,l}, termed Boolean coefficients or Qi coefficients, represent the output 

values of a truth table. 

In the Boolean domain, the disjunctive canonical expansion, or so called sum of 

product (SOP) canonical expansion, can be used for representing a given logic 

function. The expansion is based on minterm m i , and it forms an equivalent algebraic 

expression to the truth table, it is 

2 n_l 

f(xn-l ,···,xl ,xo)= LQimi =Qomo +Qlml +······+Q2 n _l m 2n _l 
i=O 

where L represents logical summation (OR operation). 

(2.3.1) 

If each of the n variables is restricted to appear only in true form, and also a 

coefficient vector is defined as 

where bi E{O,l}, termed bi coefficients, then, a matrix operation of n vectors with a 

form [1 xi] is written as 

{[I Xo ]*[1 Xl ]*[1 x2 ]* ...... *[1 xn-l n·B 

=[1 Xo Xl xlxO x2 x2xO ...... xn-l ···x2 x l x O ]·B (2.3.2) 
=[b o blxo b2xI b3xlxO b4x2 b Sx2 x O ...... b2n_1Xn-1 ···X2 Xl XO ] 

10 



Chapter 2: Reed-Muller Logic 

where "*" indicates the Kronecker product[Green 86]. An example IS used to 

illustrate the Kronecker product. Assume that two 2 x 2 matrixes 

A = [aoo a01 ], 
a10 all 

the Kronecker product of them is 

B=[b
OO b01

] 
b10 bll 

A*B= [
aoo [B] aOl [B]] 
a10 [B] all [B] 

(2.3.3) 

(2.3.4) 

In general, if A is a p x q matrix and B is a r x s matrix, then A * B is a pr x qs matrix. 

The" * " operation is associative but not commutative, i.e., 

A*B*C= A*(B*C)=(A*B)*C 

A*B=I=B*A 

(2.3.5) 

(2.3.6) 

If the XOR operation is used to be connectives between the elements in (2.3.2), an 

expansion can be represented as 

f(Xn-l '···'Xl ,Xo )=b o EBblxo EBb 2x l EBb 3 x lxO EBb 4 x 2 EBb S x2 x O EB 

.... ··EBb 2"_lx n-l ···X2 X I X O 
(2.3.7) 

Equation (2.3.7) is the so-called zero polarity RM expansion or positive polarity RM 

expansion, which can be used to describe any given logic function with n variables. 

11 



Chapter 2: Reed-Muller Logic 

2.4 Relationships Between a i and b i Coefficients 

Unlike ai coefficients (Boolean coefficients), bi coefficients don't correspond to the 

output of a truth table, that is, b i coefficients can't be obtained directly from a truth 

table, because bi coefficients don't have a definite logical significance. ai 

coefficients and b i coefficients can be transformed to each other. This transform is 

based on a transform matrix Tl that is defined as 

For a two variable function, the transform can be written as 

bo =ao 

b1=aOffial 

b2 =aO ffia 2 

b3 =ao ffial ffia2 ffia3 

In matrix form, this transform is expressed as 

over GF(2) 

where T2 is a transform matrix for two variables. It is easily verified that 

12 

(2.4.1 ) 

(2.4.2) 

(2.4.3) 



Chapter 2: Reed-Muller Logic 

(2.4.4) 

In general, the transform from a i coefficients to b i coefficients in matrix form can be 

expressed as 

(2.4.5) 

and 

(2.4.6) 

Furthermore, it can be established that 

(2.4.7) 

so that 

T-1 =T n n (2.4.8) 

this means that the matrix is self-inverse. Thus 

(2.4.9) 

2.5 Fixed Polarity RM Canonical Expansions 

The zero polarity RM canonical expansion is just one of a large number of possible 

expansions. If each of the n variables is restricted to appear in its true form or its 

13 



Chapter 2: Reed-Muller Logic 

complemented form, but not both, this leads to 2 n combinations from n variables, 

which correspond to 2 n so called fixed polarity RM canonical expansions. 

Like the zero polarity expansion, a coefficient vector C is defined as 

where Ci E{O,I}, termed Ci coefficients. 

Assume that :;; i represents x i or Xi' but not both, in a consistent way throughout a 

logic function. Thus 

(2.5.1) 

Similarly to that for the zero polarity RM expansion, the vector (2.5.1) can be written 

as 

.. .. . 
f(xn-l '···'XI ,Xo )=co $cI Xo $C2 Xl $c} Xl Xo $C4 x2 $C5 x2 Xo $ 

(2.5.2) 

Clearly, the zero polarity RM expansion is a special case of the 2 n fixed polarity RM 

expansions. 

2.6 Relationships Between a i and C i Coefficients 

It is possible to employ similar matrix techniques as above to transform between a i 

coefficients and C i coefficients. 

14 



Chapter 2: Reed-Muller Logic 

For convenience to describe the following transformation, a polarity number is defined 

as 

P=(Pn-IPn-2 ······PO h 

where PiE {O, I} , corresponding to the position of xi' This is a binary representation of 

the decimal integer P. If the true form of x i is used, then Pi = 0; and if its 

complemented form is used, then Pi = 1. For example, for a three variable function, 

P = 3 = ( 011 h, this means that x 2 is in its true form and both x I and x 0 are in their 

complemented form. 

Two basic transform matrixes are defmed as 

(2.6.1) 

Clearly, 

(2.6.2) 

since the fixed polarity expanSIOns contain the zero polarity expanSIOn. Thus, a 

generalized matrix W can be expressed as 

W = W *W *······*W P Pn-[ Pn-2 Po 
(2.6.3) 

where w
Pi 

= Wo or WI, depending on the form (true or complemented) of each 

variable. Thus, the transform from a i coefficients to C i coefficients is 

(2.6.4) 

F or example, if Pi = 3 = ( 0 11 h , then 

15 



Chapter 2: Reed-Muller Logic 

(2.6.5) 

Thus 

Co 0 0 0 0 0 0 0 ao 

Cl 0 0 1 0 0 0 0 al 

c2 0 0 1 0 0 0 0 a2 

c3 1 1 1 1 0 0 0 0 a3 
(2.6.6) 

C4 0 0 0 1 0 0 0 1 a4 

Cs 0 0 1 0 0 1 as 

c6 0 0 0 0 a6 

c7 a7 

C i coefficients can be also obtained from b i coefficients. That is 

(2.6.7) 

Similarly to wP ' Z p is expressed as 

Z =z *Z *······*z P Pn-l Pn-2 Po 
(2.6.8) 

Zo and Zl are 

Zo =[~ ~], (2.6.9) 

From equation (2.6.7), it can be seen that 

16 



Chapter 2: Reed-Muller Logic 

(2.6.10) 

(2.6.11) 

2.7 Kronecker RM(KRM) Canonical Expansions 

RM canonical expansion can be further extended if some of the variables can be 

allowed to appear in both true and complemented form in a consistent way. This 

means that another basis vector [Xi Xi] is included along with [1 Xi] and [1 Xi] 

that are used only to generate the fixed polarity expansions. 

By selecting one of these three bases for each variable, it will generate 3 n distinct 

expansions which are called Kronecker RM (KRM) canonical expansions. The KRM 

expansions contain the 2 n fixed polarity RM expansions and some of mixed polarity 

RM expansions. 

Similarly to the previous approach, a coefficient vector for KRM expansions is defined 

as 

where e i E {O ,I}, termed e i coefficients. 

Also, a polarity number is defined as 

where m i E {O, 1,2}. This is a ternary representation of the decimal integer M. If 

[1 Xi] is used, then m i = 0; if [1 Xi] is used, then m i = 1 ; and if [x i Xi] is used, 

then mi =2. 

17 



Chapter 2: Reed-Muller Logic 

For example, when n=3 and M=15=(120h, i.e., lx3 2 +2x3 1 +Ox3 o =15, the KRM 

expansion can be obtained by 

eo 

el 

e2 

X;-X"Jxo} 
e3 

e4 

es 

e6 

e7 

Similarly to the previous cases, the vector (2.7.1) is expressed as 

f(X2 'Xl ,xo )=eOxl EBelXIXO EBe2 X-;- EBe 3 X-;-xo EBe4 x2 x I 

EBeS x2 x l x O EBe6 :X";-X-;- EBe 7 :X";-X-;-xo 

2.8 Relationships Between a i and ~ Coefficients 

(2.7.1) 

(2.7.2) 

Like C i coefficients, e i coefficients can be derived from a i coefficients or b i 

coefficients by employing similar matrix techniques. In order to obtain e i coefficients 

from a i coefficients, three basic matrixes are introduced, they are 

(2.8.1) 

18 



Chapter 2: Reed-Muller Logic 

Since the KRM expansions involve the fixed polarity expansions, then, ei coefficients 

should contain C i coefficients. Thus, 

(2.8.2) 

Like the matrix w, the matrix Q can be expressed as 

Q =Q *Q * ...... *Q m mn_1 mn_2 rno (2.8.3) 

where Qm; = Qo, or Ql, or Q2, depending on the base selected ([1 Xi], or [1 Xi], or 

[x i Xi]) for each variable, respectively. Thus, the transform from a i coefficients to 

e i coefficients is 

(2.8.4) 

In order to obtain ei coefficients from hi coefficients, the three basic matrixes are 

(2.8.5) 

Similarly to the matrix Q, the matrix K is expressed as 

K =K *K *······*K m m n_1 m n_2 rno (2.8.6) 

Clearly, the matrix K and the matrix z should have the following relationships 

19 



Chapter 2: Reed-Muller Logic 

(2.8.7) 

Thus, the transform from b i coefficients to e i coefficients is 

(2.8.8) 

2.9 Inconsistent Forms 

The 3 n KRM expansions, which are generated in a systematic or consistent way, are 

not the only possible canonical expansions. In fact, if the polarity of each literal in the 

zero polarity RM expansion can be freely chosen, there exist 2 n 2 n-l possible RM 

canonical expansions[Davio 78, Green 91A, Sasao 93B]. This is because there are 2 n 

terms for the n variable RM canonical expansion and the 2 n terms contain n 2 n-l 

literals. That is, in equation (2.3.7), any single literal a (a) can be substituted by aan 

( aEl3l). 

These 2 n 2 n-l possible RM canonical expansions have been termed inconsistent GRM 

forms[Green 91B]. In practice, this large set contains 3 n consistent RM expansions, 

i.e. KRM expansions. 

Furthermore, arbitrary products terms combined by XORs are called an Exclusive OR 

sum of products (ESOP) which is the most general AND-XOR expression. There are at 

most 3 tn different ESOPs[Sasao 93B], where t is the number of the products. 

2.10 Dual Forms ofRM Expansions 

Dual forms of RM expansions are investigated by Green[Green 94]. He introduces an 

operation termed logical equivalence (LEQ). This operation is identical to XNOR 

operation in the Boolean domain. In the following, the basic operations are described. 

For easy comparison with operations (2.2.1)~(2.2.7) described above, the same 

number order is employed, and symbol "E9" is used for LEQ operation, i.e. XNOR 

operation. 

1. Closure laws aE9b also two-valued (2.10.1) 

20 



Chapter 2: Reed-Muller Logic 

2. Associative laws aEBbE9c = (aEBb)EBc = aEB(bEBc) 

3. Distributive laws a·(bEBc)=a·bEBa·c 

4. Commutative laws aEBb = bEBa 

5. Identities a6H = a 

6. aEBa=l 

7. aEBO=a 

Similarly to (2.2.8) and (2.2.9) 

aEBb = aEBb 

aEBb = aEBb = a EBb 

(2.10.2) 

(2.10.3) 

(2.10.4) 

(2.10.5) 

(2.10.6) 

(2.10.7) 

(2.10.8) 

(2.10.9) 

It is not difficult to find that equations (2.10.8) and (2.10.9) have similar properties to 

equations (2.2.8) and (2.2.9). 

There are some relationships between XOR and XNOR operations, they are 

aEBb = a EB b = a EB b EB 1 

aEB bEBcEB ..• = aEB b EB cEB ••• 

aEBbEBcEB ... = a EB b EB c EB ..• 

(2.10.10) 

(2.10.11) 

(2.10.12) 

In the Boolean domain, there exists another algebraic form to describe a truth table, 

this is the conjunctive canonical expansion, also called product of sum (POS) 

canonical expansion, which is based on maxterm Mi' It is 

2 n_l 

f(X n-l ,"',xl ,xo )= IT (ai +Mi )=(aO +Mo )·(al +Ml ) 
i=O 

....... ( a 2 n -1 + M 2 n -1 ) 

where IT represents logical product (AND operation). 

21 

(2.10.13) 



Chapter 2: Reed-Muller Logic 

Similarly to the conjunctive canonical expansion, in the RM domain, dual forms of 

RM expansions can be established. 

Assume that the Kronecker matrix product operates with XNOR and OR, that is 

[a b]. [cd] = [ a + c a + d b + c b + d] (2.10.14) 

/\ 

Also, if B is the dual form of b coefficients, i.e. 

/\ /\ 

where b i E {O ,I}, termed b i coefficients. Therefore, a POS canonical expansion in the 

RM domain can be set up wherein the OR operation provides the "sum" and XNOR 

gives the "product". The basis vector is [0 Xi]. 

/\ 

f(Xn-1 ,""XI ,XO )={[O Xn-l ].······.[0 X2 ].[0 Xl ].[0 Xo ]}oB (2.10.15) 

where the operator" 0" represents matrix multiplication based on XNOR and OR. For 

example, if n = 3 

/\ 

f ( X 2 , x I , x 0 ) = { [ 0 x 2 ]. [ 0 x I ]- [Ox 0 ]} 0 B 

/\ 

= [0 Xo Xl Xl +xo x2 x2 +xo x2 +xI x2 +xI +xo JOB (2.10.16) 
/\ _/\ _/\ _/\ _/\ 

=b7\:B(b6 +xo )\:B(bs +Xj )\:B(b4 +xI +xo )\:B(b3 +X2) 

22 



Chapter 2: Reed-Muller Logic 

Similarly to the situations in ESOP form, the dual forms of the fixed polarity 

expansions can be deduced by using the extra basis vector [0 X;] for some variables, 

and those for KRM expansions can be derived by employing the third basis vector 

[x i Xi 1 In addition, the transforms of the dual coefficients can be established by 

using a similar matrix technique[Green 94]. 

2.11 Map Method 

The map method is an efficient and powerful means to deal with coefficient 

conversion and minimization for a logic function in the RM domain, it also forms a 

basis of many other algorithms. A RM coefficient map termed b i coefficient map 

(simply called bi map) was introduced by Wu et al[Wu 82]. The bi map can be used 

to transform a i coefficients to b i coefficients and C i coefficients, and also, it can be 

employed to minimize a RM expansion. The minimized result is in a mixed polarity 

RM representation. This map, refined by Tran[Tran 87], who generalized the b i map 

to deal with incompletely specified functions. In addition, minimization of a RM 

expansion can be carried out, not only on RM coefficient maps, but also on Karnaugh 

maps, even on any of the transition maps[Tran 87,89]. 

The b i map, in format, is similar to the Karnaugh map (k map), but its entries do not 

represent the function output in the same manner as do the minterm entries plotted on 

a k map. For ease of comparison, a four variable k map and a four variable bi map 

are shown together in Fig. 2.11.1 

X
1 

x 
3 Xo 

X 2 
00 01 11 10 01 11 10 

00 a o a
1 

a
3 

a
2 00 bo b 1 b3 b2 

01 a 4 as a
7 

a 
6 

b4 b s b 7 b s 01 

11 a 12 a 13 a 1S a
14 11 b12 b13 b1S b 14 

10 as as a 11 a 10 10 b s b s b 11 b10 

(a). k map in the Boolean domain. (b). b i map in the RM domain. 

Fig. 2.11.1. Maps for four variables. 

23 



Chapter 2: Reed-Muller Logic 

It should be noted that the meaning of the subscript i in k map is different from that in 

bi map. In k map, "0" means that a variable appears in its complemented form and 

"1" means that a variable appears in its true form. In b i map, "0" means that a variable 

does not appear and "1" means that a variable appears in its true or complemented 

form, depending on the polarity[Green 86]. 

2.11.1 Folding Technique 

A folding technique[Wu 82, Besslich 83, Tran 87] can be employed to transform ai 

coefficients to b i coefficients and C i coefficients. This can be used to find a fixed 

polarity expansion with the minimum "1" entries in the map. The procedures are as 

follows: 

(a). Constructthe k map ofa given logic function f(xn-l '···'Xl ,Xo ), where the 

number of variables are less or equal to six. 

(b). Decide the required polarity of fixed polarity RM expansion. 

(c). Select a particular variable Xi' fold Xi over Xi and XOR the two portions. 

The resulting XOR values make up the portion x i and the portion X; remains 

the same as that of the old map. 

(d). Repeat step (c) for all the other variables from the last map generated in (c). 

An example is employed to show the folding technique. A four variable logic function 

is given in the Boolean domain 

f(X3 'X2 ,Xl ,Xo)= ~)2,3,5,8,10,14) (2.11.1) 

i.e. a 2 = a 3 = a 5 = a 8 = a 10 = a 14 = 1 , transformation of a i coefficients (Boolean) to b i 

coefficients (zero polarity) is shown in Fig. 2.11.2 

24 



Chapter 2: Reed-Muller Logic 

X , x, 
x x 

l 
X 

0 l 
X 

0 

X
2 00 01 11 10 X

2 00 01 11 10 

00 1 1 00 1 

01 1 
fold x: 

01 1 

11 1 11 1 1 

10 1 1 10 1 1 1 1 

k map 

{tfOld x: 
x, X , 

x x 
l 

X 
0 l 

X 
0 

x
2 00 01 11 10 x

2 00 01 11 10 

00 1 00 1 

01 1 1 1 
fold x

2 01 1 1 

11 1 1 1 1 11 1 1 

10 1 1 10 1 1 

{tfOld x, 

x, 
x 

l 
X 

0 

x
2 00 01 11 10 

00 1 

01 1 1 1 

11 1 

10 1 1 1 

b, map 

Fig. 2.11.2. An example to illustrate folding technique. 

Note that the order of performing these individual folding operations does not affect 

the final result. 

From the b i map, b2 =b 5 =b 6 =b 7 =b g =b 9 =b lO =b 12 =1. Hence 

25 



Chapter 2: Reed-Muller Logic 

A similar folding technique can be employed to find anyone of the 2 n -1 fixed 

polarity RM expansions (not include P = 0) from a b i map. This is achieved by 

folding x i over X;, instead of X; over Xi. For example, if polarity number 

P = 13 = ( 11 0 1 h is required for equation (2.11.2), this means that variables x 3, x 2 and 

x 0 are required to convert to their complemented forms. This folding process is 

illustrated in Fig. 2.11.3. At the same time, the patterns for P = 8 = (1000 h and 

P=(l2)=(l100h are obtained. 

X
1 

x
1 

x 
3 

X 
0 

x 
3 

X 
0 

x
2 

00 01 11 10 X
2 

00 01 11 10 

00 1 00 1 1 

fold X3 

01 1 1 1 01 1 1 1 1 

11 1 11 1 

10 1 1 1 10 1 1 1 

b; map (p =0) P =8 

~ fold x, 

-
x

1 -
x

1 

x 
3 Xo 
- 00 01 11 10 x

2 

x 
3 Xo - 00 01 11 10 x

2 

00 1 00 1 1 

01 1 1 01 1 1 1 1 

11 1 11 1 

10 1 1 1 10 1 1 

P =13 P =12 

Fig. 2.11.3. Folding for P=13=(1101h· 

26 



Chapter 2: Reed-Muller Logic 

Thus, for P = 8 

for P=l2 

for P=13 

I(X3 ,x2 'Xl ,xo )=xI E9xIXO E9X"2 E9x 2XO E9x2xI 

E9x2xlxO E9x3XO E9X3xI E9X) x2 

(2.11.3) 

(2.11.4) 

This can be checked by using ~ E9l to replace X i step by step from equation (2.11.2) 

to equation (2.11.5). 

As described above, it can be seen that a general procedure is: a k map is first 

converted to a b i map for the polarity number P = 0, and then, the b i map is 

converted to a fixed polarity as required. 

In practice, a coefficient set for a given fixed polarity can be obtained directly from a 

k map in n steps, which employs a tri-state map introduced by Tran[Tran 89]. A tri­

map is self-explanatory, its format is similar to that for k map. 

In a tri-state, a variable has three states, true, complement and non-existent. Their 

respective labels in the maps are "1", "0" and "_". A variable in a tri-state map can 

exist in two of the three different states. The states of each variable can be readily 

found out by examining these labels. k maps with true and complement states are 

special cases in the tri-state maps. Polarisation is the process of converting a variable 

to a particular form, either true or complemented. 

27 



Chapter 2: Reed-Muller Logic 

Polarisation for a given logic function starts from its k map, and the folding technique 

is used to polarize each variable, depending on the polarity required. A so called 

transition map is obtained every time a variable is polarized. The transition map 

obtained from the polarisation of the last variable is the RM coefficient map. 

A tri-state map can be better understood by the illustration shown in Fig. 2.11.4, the 

same example as Fig. 2.11.2 is used. From the last map, it can be seen that, although 

the final result is the same as that in Fig. 2.11.3, the patterns for" 1" entries in these 

two maps are different. In other words, different map formats have different 

explanations. There is a simple relationship between the two patterns. Assume that 

g3g2glg0 and h3h2hlho in binary form are employed to represent the number ofthe 

cell in the two maps, then, the following relationship is set up 

P = 1101 is the polarity required. This can be readily generalized. 

28 



Chapter 2: Reed-Muller Logic 

X, x, 
x x • x • • x • 

x, 00 01 11 10 x, 00 01 11 10 

00 1 1 00 1 1 

fold x. 
01 1 01 1 1 

11 1 -1 1 

10 1 1 -0 1 1 

k map 

jJfOld x: 

x, X , 
x x • x • • x • 

x, -0 -1 11 10 x, 00 01 11 10 

00 1 1 00 1 1 1 1 

0- 1 1 1 
fold x, 

0- 1 1 

-- 1 -- 1 

-0 1 1 -0 1 

~ fold x • 

x. x, X • x, 
x. x • 

x, -0 10 

x. x. 00 1 
x. x, 

0- 1 1 1 

x, x. 

x, x. 

-0 1 -1----)(, x, x. 

P=13 

Fig. 2.11.4. A tri-state map to transform fixed polarity coefficients. 

The folding technique can be readily extended to an incompletely specified function, 

in which, it includes some terms called don't care. Even though a don't care can be 

assumed to be an arbitrary value, "0" or "1", the result of a X OR operation for two 

29 



Chapter 2: Reed-Muller Logic 

don't care values does not have an arbitrary value but depends on those two don't care 

values that were assumed before the operation[Tran 87]. 

2.11.2 Map Minimization 

The b i map can be employed to minimize a RM expansion, which is similar to the 

Karnaugh map. The major consideration is to obtain the minimum number of products 

for a given logic function in RM expansion, and the result can lead to a mixed polarity 

form. 

Similarly to the Karnaugh map, the grouping is allowed for any group of 2 n adjacent 

cells. A significant difference between b i map and k map is that each "1" entry can be 

grouped only an odd number of times, and a "0" entry can also be grouped with" 1" 

entries if it is grouped for an even number of times. 

This minimisation procedure is 

(a). If a group is within the true domain of a variable ~ i , the true form ~ i appears 

in the product. 

(b). If a group is within the complemented domain of a variable ~ i , this variable 

does not appear in the product. 

( c). If a group spans both the true and complemented domains of a variable ~ i , the 

complemented form ~ i appears in the product. 

Where ~ i is x i or X;. 

Two patterns of Fig. 2.11.3 are used to illustrate the minimization in Fig. 2.11.5 

30 



Chapter 2: Reed-Muller Logic 

XI 

X3 Xo 

X 2 00 01 11 10 

XXX 

X 

XI 2 I 0 

3 Xo 

11/ x
2 

00 01 10 

00 X
3

X I 00 1 

X3 X 2 Xo 

01 X 2 X I X
O ------------

~ 01 1 1 
'-

11 1 
X3 x2 Xo 

10 1 

11 1 \J 
(2) 10 1 1 

/ 

(a). P=O=(OOOOh. (b).P=13=(1 lOl h· 

Fig. 2.11.5. Two examples to illustrate map minimization. 

From the map (a) 

(2.11.6) 

From the map (b) 

(2.11.7) 

It should be noted that the true forms of variables X'3 , X'2 ,X'l and x'o in the map (b) 

are explained with X3, x 2 ,x 1 and XO, respectively, because of the polarity number 

P = 11 0 1. Equations (2.11.6) and (2.11.7) can be easily checked from equations 

(2.11.2) and (2.11.5). 

When minimization is carried out in a tri-state map, the minimization procedure stated 

previously should be modified to cover a non-existent state It_It. Thus, the 

minimization procedure is: 

31 



Chapter 2: Reed-Muller Logic 

(a). If a group is within the true domain of a variable Xi' the true form x i appears 

in the product. 

(b). If a group is within the complemented domain of a variable Xi' the 

complemented form X; appears in the product. 

(c). If a group spans both the true and complemented domains of a variable Xi' the 

complemented form X; appears in the product. 

(d). If a group spans both the true and non-existent domains of a variable Xi' the 

complemented form x i appears in the product. 

(e). If a group spans both the complemented and non-existent domains of a variable 

xi' the true form x i appears in the product. 

This minimization procedure covers the cases not only for a tri-state map, but also for 

a transition map. In the following, an example for a tri-state map is given, see Fig. 

2.11.6. This map is the last map in Fig. 2.11.4 

Fig. 2.11.6. A minimization example in a tri-state. 

From Fig. 2.11.6 

(2.11.8) 

32 



Chapter 2: Reed-Muller Logic 

A RM function can be minimized in a k map. According to equation (2.2.12), if two 

terms are mutually exclusive, inclusive OR (+) can be replaced by exclusive OR (ffi). 

Therefore, equation (2.3.1) can be rewritten as follows 

2 n_I 

f(Xn-I ,""XI ,Xo)= 2:>i mi =aOmO ffialmI ffi······ffia2n_Im2n_l 

i=O 

(2.11.9) 

Equation (2.11.9) reveals that XOR operation can be a connective between all 

adjacent cells in a k map. This means that, for a given logic function, a k map can be 

employed to minimize its ESOP form or SOP form. The k map also directly generates 

a mixed form that contains both inclusive OR (+) and exclusive OR (ffi ) in a two level 

representation. Fig. 2.11.7 shows an example for minimizing a logic function in ESOP 

in a k map. 

x x x 
X

1 
3 2 1 

x X 
3 0 

x
2 

00 01 11 10 

00 [ 1 1 1 

01 rf\ 0 '" \--- ~ 

11 \J 1 ~ 
X3 X O 

10 1 1 
I----- '----

Fig. 2.11.7. Using k map to minimize a logic function in ESOP. 

From Fig. 2.11.7 

(2.11.10) 

33 



Chapter 2: Reed-Muller Logic 

Equation (2.11.10) can be also written as 

(2.11.11) 

This is because the term x;- x 2 x 1 circled conforms not only to RM rules, but also to 

Boolean rules. 

As a k map can be used to minimize a logic function in the RM domain, the other 

maps may seem to be perplexing. When the "1" entries are lumped together or there 

are few "1" entries in a k map, a minimal expansion may be easily obtained directly 

from the k map. For a logic function with a high content ofXOR operation, the "1" 

entries may be scattered in the k map, and patterns of XOR operation are not easily 

recognized, especially because "0" entries can be circled with" 1" entries. Tran shows 

an example for this[Tran 89]. 

2.12 Tabular Method 

Although the map method does provide a powerful and compact means of 

representation for the display and manipulation of logic functions, it has its practical 

limitations. In general, the maps can only handle logic functions of six or less 

variables. In order to overcome this problem, similar to the Quine-McCluskey method 

in the Boolean domain, a tabular technique for RM logic was introduced by Almaini 

et al[Almaini 91, 94]. The tabular technique can convert aj coefficients to hi 

coefficients and C i coefficients, and it can be used manually or programmed on a 

computer. In theory, it can be used for any number of variables. The technique is 

illustrated by means of an example. Assume that a logic function in the Boolean 

domain is 

f(X2 'Xl ,xo)= 2:(0,2,3,5) (2.12.1) 

(a). List all the minterms in binary form. 

34 



Chapter 2: Reed-Muller Logic 

(b). Select any variable Xi. For every term containing a "0" in position i (X7), 

generate an additional term with a "1" in position i (x i ). 

(c). Compare newly generated entries with the ones that already exist cancelling 

pairs whenever they occur since x· i EI1 x· i = 0 • 

(d). Repeat (b) and (c) for all other variables. The resulting uncancelled terms are 

the RM product terms in zero polarity. 

Minterms 

000 

010 

011 

101 

000 

o 1 Ox 
011 

100 

101 

I I Ox 
I I Ix 

000 

o I I 

I 0 Ix 

100 

Terms generated by x 2 

100 

I I 0 

I I I 

Terms generated by Xl 

o I Ox 
I I Ix 

I I Ox 

Terms generated by x 0 

001 

I 0 Ix 

From the remaining terms, the RM expansion is 

35 



Chapter 2: Reed-Muller Logic 

(2.12.2) 

The procedure can be reversed to convert b i coefficients back to a i coefficients. The 

tabular method has been developed to deal with don't care conditions[McKenzie 93]. 

It can be seen that the basic principle of the tabular technique is similar to that of the 

map folding technique. Therefore, the tabular technique can be developed to deal with 

such situations, in which, any C i coefficients are transformed from the b i coefficients, 

any C i coefficients are found directly from a i coefficients in n+ 1 steps for any n 

variable function[Almaini 91], and so on. 

In addition, like the Quine-McCluskey method in the Boolean domain, the tabular 

technique can be readily developed for minimizing a RM function according to the 

rules in the RM domain[Helliwell 88, Green 93]. 

2.13 Summary 

This chapter introduced the background theory of RM logic that underlies many 

algorithms of RM logic in aspects of coefficients conversion, manipulation and 

minimization. There are a great deal of RM canonical expansions for a given logic 

function, and there is no known method for predicting the best polarity except for 

exhaustive search[Wu 82]. This makes it more complex for the manipulation and 

minimization in the RM domain than that in the Boolean domain. Sometimes, it may 

be difficult to decide the minimum expansion of a logic function unless all the 

canonical expansions of this function have been considered. 

The map method in the RM domain is an efficient tool not only for minimizing a logic 

function, but also for transforming between RM coefficients and Boolean coefficients. 

The maps described in this chapter are the most commonly used maps in the RM 

domain, but not the only ones. For example, a so called ternary map [Green 90] has 

different format, which can be used to deal with the KRM Expansions. A ternary map, 

in principle, is similar to the maps discussed in this chapter. Like a Kamaugh map, a 

map in the RM domain is restricted to handle a logic function of not more six 

variables. 

A tabular method, similar to the Quine-McCluskey method in the Boolean domain, 

can be employed to resolve this problem. In practice, in order to treat logic functions 

with more variables, near minimal solutions, namely heuristic algorithms, are 

employed instead of absolutely minimum algorithms[Sasao 93A]. Owing to the 

36 



Chapter 2: Reed-Muller Logic 

complexity of exclusive-ORing "1" terms with "0" terms in minimization, no single 

method can guarantee a global minimum[Tran 93A]. 

RM expansions usually are two-level logic representations. Based on similar logic 

algebraic principle in the Boolean domain, it is not difficult to develop them in a 

multi-level structure[Saul 91]. For multi-output functions, algorithm strategies in the 

Boolean domain may be adopted to the RM domain[Lin 93, Saul 93, Sasao 93A]. 

37 



Chapter 3 

CMOS Implementation 
of Logic Circuits 

3.1 Introduction 

In the earlier days of logic design, a logic function was implemented by only using 

discrete components, such as INV, NAND, NOR, AND, OR, XOR and XNOR gates. 

Therefore, counting the number of gates used was often employed to estimate a 

hardware implementation cost. With the advance of integrated circuit (Ie) technology, 

some complex gates, such as AOI (AND-OR-INV), OAI (OR-AND-INV), or even a 

single complex gate constructed of a series and a parallel circuit, can be used to realize 

a logic function. This is specially true in MOS circuit technology[Wu 85]. It is well 

known that a circuit implemented by complex gates is often more compact and faster, 

when compared to a logic function realized by individual gates. 

The representation and minimization of logic functions, sometimes considered to be 

technology-independent, are in practical applications technology-dependent. For 

example, the implementation based on NAND gates for a given logic function is 

preferred in TTL technology, and the implementation based on NOR gates is better 

than other gates in NMOS technology. Therefore, a minimized SOP form for a logic 

function is often changed into NAND-NAND form for TTL circuit, and NOR-NOR 

form for NMOS circuit. This can be readily achieved by employing De Morgan's 

theorem. 

38 



Chapter 3: CMOS Implementation a/Logic Circuits 

For a given circuit technology or circuit style, an efficient method of logic design is 

required not only to concisely represent a logic function and easily minimize the 

function, but also to allow a simpler hardware realization. 

CMOS technology offers many advantages over other IC technologies due to its high 

speed, high component density, low power requirement and low cost. It is thus 

dominant in digital circuits[Wu 87, Hurst 92, Weste 93]. Therefore, this work is 

concerned mainly with CMOS circuits. 

In this chapter, basic CMOS circuits are first described, then switching network 

theory, which was derived from the earlier Boolean logic design and now is a 

powerful tool in MOS circuit design[Wu 85], is reviewed. The circuit 

implementations based on Boolean logic and RM logic are investigated and compared. 

This investigation is related to gate level design, transistor level design and layout 

level design, but the comparison at the transistor level is emphasized. The 

implementations in PLA and FPGA, which are often considered to favor RM 

10gic[Sasao 90, Csanky 93], are also studied. The mixed representations based on RM 

logic are introduced to minimize the implementation for RM logic. The main results 

about testing RM circuits are reviewed. 

3.2 CMOS Circuits 

CMOS circuits may be divided into two categories, dynamic circuits and static 

circuits, according to whether they require a clock, or not. Dynamic CMOS circuits 

and static CMOS circuits can be further divided into different circuit styles, which 

may be suitable for different applications. Weste and Eshraghian describe their 

advantages and disadvantages[Weste 93]. 

The complementary CMOS circuit (also called the true CMOS circuit) is a typical 

static circuit, and also, its design theory underlies other circuit styles. In applications, 

the complementary CMOS circuit is one of the most commonly used circuit styles, it 

is widely employed to construct standard cells in the gate library of a CAD suite, gate 

array, functional cells, and so on [Hurst 92, Weste 93], because it is reliable and simple 

for design. All complementary gates may be designed as ratio less circuits. That is, if 

all transistors are the same size the circuit will function correctly (compared to some 

other MOS logic families where this is not the case)[Weste 93]. Therefore, this section 

is concerned mainly with this circuit style. 

39 



Chapter 3: CMOS Implementation of Logic Circuits 

a -tt----CJ 

i~ r-+~It---f 

o 
'-+---411--- f a --1-__. b _r----. 

b 

(a). Inverter. (b). 2 input NAND gate. (c). 2 input NOR gate. 

Fig. 3.2.1. Three basic CMOS circuits. 

In the complementary CMOS circuit, the minimum basic gates are composed of three 

gates, INV, NAND and NOR, which are shown in Fig. 3.2.1. The so-called minimum 

basic gates, here, mean that these three gates can't be decomposed further, and also, 

any kind of gates can be constructed by only using these three basic gates. An AND 

(OR) gate is constructed by a NAND (NOR) gate with an INV. According to the 

series and parallel principle, (N)AND gate and (N)OR gate can be easily extended for 

multi-input gates, but in practice, the number of inputs is restricted to four if high­

speed circuits are desirable. 

Since electrons have a higher mobility than holes, N type transistors are inherently 

faster by a factor of about 2.5 than P type transistors. Therefore, the NAND gate is 

better than the NOR gate in respect to speed, because ofthe slower P type transistors 

in parallel and faster N transistors in series for a NAND gate. 

XOR and XNOR gates are often classified as complex gates. The reason for this is 

that, firstly, a single two input X(N)OR gate is usually more complex to realize than a 

single two input (N)AND gate or (N)OR gate; secondly, unlike (N)AND and (N)OR 

gates, X(N)OR gates canit be extended for the multi-input gates by simply employing 

the series or parallel principle. Therefore, in many situations, a multi-input X(N)OR 

gate is constructed by several two input gates. This problem also occurs in many other 

circuit technologies. 

40 



Chapter 3: CMOS Implementation of Logic Circuits 

a I - - -a 

f 

L - ~ 

b 
b 

(a). Transistor form. (b). Gate form. 

Fig. 3.2.2. Complementary CMOS XOR gate. 

a 

f ~-___ -f 

b ----1----' 

b --_----' 

(a). XOR gate with buffer output. (b). XOR gate without buffer output. 

a --_------, 

f ~+----____ - f 
b _>--II 

b -+--I 

(c). XNOR gate with buffer output. (d). XNOR gate without buffer output. 

Fig. 3.2.3. Pass transistor XOR and XNOR gates. 

The simplest two input XOR gate known in complementary CMOS requires ten 

transistors, it is shown in Fig. 3.2.2. In many practical applications, two kinds of 

X(N)OR gates with pass transistors are widely employed, which are shown in Fig. 

41 



Chapter 3: CMOS Implementation of Logic Circuits 

3.2.3. If both true and complemented forms of each variable are available, this is 

called double rail logic, less transistors can be used to construct an X(N)OR 

gate[Weste 93]. In the following, it is assumed that single rail logic is available, i.e., 

only the true form for each variable is available as a primary input unless otherwise 

stated. 

Both AOI gate and OAI gate are a combination of AND and OR with an INV, which 

are not simply constructed at the gate level, but at the circuit level (transistor level). 

The former is used to realize a logic function in SOP form, and the latter is used to 

realize a logic function in POS form. A more complex gate can be constructed by a 

combination of transistors in series and parallel with bridging connections as shown in 

Fig. 3.2.4 (a) 

a-9 

a-j 

(a). A complex gate. (b). Block diagram. 

Fig. 3.2.4. A complex gate implementation in CMOS circuit 

for the function in equation (3.2.1). 

In Fig. 3.2.4 (a), the transistors controlled by variable c perform bridging connections. 

The function of the circuit in (a) is 

f = ab + ace + bed + de (3.2.1) 

42 



Chapter 3: CMOS Implementation of Logic Circuits 

From this example, it is easily seen that the implementation of a logic function by 

using a complex gate, sometimes, is much simpler than that by using individual gates. 

3.3 Switching Network Theory 

Switching network theory[Wu 85, Maziasz 87, Dagenais 91, Zhu 93], a graphical form 

of Boolean logic, is a systematic approach to the design of MOS circuits. The 

resulting circuits contain a network of transistors in parallel and series; sometimes, 

they may generate bridging connections. This means that any single complex gate can 

be designed by this theory. 

Switching network theory was developed from the earlier relay circuits[Kohavi 78], in 

which, a relay can be considered as an ideal bilateral switch. Since MOS circuits have 

been used in logic circuits, the switch concept is accepted in the area of logic circuit 

design because a transistor in MOS circuit is similar to a bilateral switch[Wu 85]. 

In switching network theory, a transistor in MOS circuits, the non-ideal switching 

component, is modelled as a voltage-controlled switch, which is illustrated by Fig. 

3.3.1 

d d 

g-j~ 1-j~ ~ ~ O-j~ ~fy 94~ 04~~ ~ 1 4~ ~fy 
s s 

(a) N transistor (b) P transistor 

I a -j~ a 4~ b-1 b-9 :1 a 4$ a-j$ a ~b 

(c) symbol. (d) Series (e) Parallel 

Fig. 3.3.1. Representations of switching network theory. 

Switching network theory is a graph-oriented method. It employs a topology approach 

to simplify a MOS circuit. In this theory, each transistor (N type or P type) is 

43 



Chapter 3: CMOS Implementation of Logic Circuits 

represented by one edge corresponding to a literal in a Boolean function. Each edge is 

labelled by the name of the input variable on the gate of the transistor it represents. 

Initially, a network graph is derived from a Boolean function which, in general, is in 

SOP form. This graph is composed of edges and nodes, each edge represents a 

transistor with its gate control variable, and each node indicates that: (1) two 

transistors connection, (2) Transistor to VDD or GND, (3) transistor to a variable. 

An edge-merging procedure is used to merge any pair of edges that have the same 

variable and the same node in the initial network. A check is then conducted to see 

whether this merging is valid or not. One way of checking is by tracing all paths from 

one terminal to the other[Kohavi 78]. A valid merge should not change the logic 

function represented by the initial network. If the merging is valid, then the pair of 

edges become one; otherwise, the merging is not performed. Clearly it is a trial and 

error procedure. 

For many circuit styles, such as NMOS, dynamic CMOS, or pseudo NMOS, etc., a 

network for the N block will be processed. For a logic function to be implemented in 

the complementary CMOS circuit, two networks, one for the N block and its 

complemented network for the P block, are required. These two networks correspond 

to two logic functions that are complementary to each other. 

An example is employed to illustrate this procedure, 

Example 3.3.1: 

Equation (3.2.1) is rewritten in standard SOP form, it is 

7 = ab + aee + bed + de (3.3.1) 

its switching network is represented in Fig. 3.3.2. N and S in Fig. 3.3.2 are called 

terminals, which correspond to VDD, GND, or a common point for output. In (a) of 

Fig. 3.3.2, each product term forms a path between the terminals N and S, this is an 

initial network. For a path, the order of edges can be changed, this is because the order 

of literals in a product term can be changed. In (b), two a edges are merged, and in (c), 

two e edges are merged. In (d), b and d are exchanged, and in (e), two d edges are 

merged. After two c edges and two d edges are merged, the final network is shown in 

(t). 

44 



Chapter 3: CMOS Implementation of Logic Circuits 

N s 
N s N s 

(a). The initial network. (b). Merging a. (c). Merging e . 

N s N s 
. ~ 
N~~S 

(d). Exchange b and d. (e). Merging d. (t). The result. 

Fig. 3.3.2. An example for edge-merging procedure. 

It is easily seen that it is impossible for the final network to be further minimized, 

since it contains a single edge for each variable. This means that it is the minimum 

network. The final network, then, is converted into a MOS circuit by substituting a 

transistor for each edge in the network, which corresponds to the N block in (a) of Fig. 

3.2.4, it contains a transistor controlled by variable c in a bridging connection. 

As stated above, if the circuit under consideration employs NMOS, dynamic CMOS, 

or pseudo NMOS, etc., the minimization is finished. For the complementary CMOS 

circuit, another network for the P block should be obtained. This network for the P 

block is derived from the complementary function of a logic function. Since the circuit 

under consideration is in single-rail logic, i.e., only the non-complemented form for 

each variable is available, thus, the complementary function of equation (3.3.1) is 

f=ad+ace+bcd+be (3.3.2) 

It can be found that in equation (3.3.1), each variable appears in its true form, and in 

equation (3.3.2), each variable appears in its complemented form. In this way, it can 

reduce the number of INV s required for the primary inputs, because the same working 

state for P type transistor and N type transistor is controlled by the opposite voltage. 

Similarly, the initial network is shown in (a) of Fig. 3.3.3, and the final result is in (b), 

which is converted into the P block in (a) of Fig. 3.2.4. 

45 



Chapter 3: CMOS Implementation of Logic Circuits 

N s 

c 

(a). The initial graph. (b). The result. 

Fig. 3.3.3. The complementary graph. 

A complex circuit can be always decomposed into some simpler series-parallel 

circuits. A bridging connection may be considered a special series circuit, i.e., a 

transistor is shared by more than one path. A transistor shared by more than one path 

is not equal to a bridging connection. For example, in (f) of Fig. 3.3.2, a is shared by 

two paths, one is a-b, the other is a-c-e, and a is not a bridging connection. 

From switching network theory, it is seen that Boolean logic can be applied to the 

design at the circuit (transistor) level in MOS circuits, in which the AND operation is 

explained by a series circuit and the OR operation is explained by a parallel circuit. 

Another advantage of Boolean logic can be seen from switching network theory, that 

is, although the Boolean expansion may be minimal, the corresponding series-parallel 

network may still be further simplified, i.e., generating a bridging connection (or so 

called non-series-parallel connection). This can be illustrated by continuing the 

previous example. The minimal expansion of equation (3.3.1), in terms of the number 

of literals, is written in multi-level form, thus 

7 = ab+ace+bcd+de= a( b+ce )+d( e+bc) (3.3.3) 

It requires eight transistors in N block to implement equation (3.3.3), but in practice, it 

only requires five N transistors to implement the final network in Fig. 3.2.4. 

X(N)OR operation can not be simply explained by one of the two basic circuit 

principles, series and parallel, this is why an X(N)OR gate is more complex than 

(N)AND and (N)OR gates in nearly all circuit technologies. Therefore, switching 

46 



Chapter 3: CMOS Implementation of Logic Circuits 

network theory is not very suitable for RM logic. This means that, RM logic can not 

be used in transistor level design to the same degree in which Boolean logic can. 

3.4 Some Techniques for Fast MOS Circuits 

In order to design a high speed MOS circuit, there are some techniques that should be 

considered. Although this work is concerned mainly with the issue of logic circuit 

minimization which attempts to eliminate the unnecessary components for correct 

logical operation, the logic circuit design can be better understood by briefly 

reviewing some of these main techniques. 

(a). Redundant Logic 

Some extra components may be added to a logic circuit to improve its speed of 

operation. Because these extra components are not necessary for correct logical 

operation, they are termed redundant logic. For instance, the carry lookahead circuit, 

which can speed up the operation speed of a carry ripple adder, is redundant logic. 

That is, for some logic circuits, redundant logic increases the number of components, 

but reduces the delay. 

(b). Dynamic style 

MOS circuits have associated capacitance which gives the MOS gate a storage 

capability, which can be exploited if a design can guarantee that all storage nodes in 

the gate are refreshed within a defined time period. This is the so called dynamic 

CMOS circuit. Dynamic CMOS circuits can reduce the number of P transistors (pull­

up) and increase speed, because only the faster N transistor network is used to 

estimate logic values. 

Since clock signals are introduced in dynamic circuit design, it may be more complex 

as compared to static circuit design. 

(c). Inverting Logic 

A single MOS gate is usually inverting. For example, an AND gate can be divided 

into a NAND gate with an INV. Therefore, the delay of an AND gate is roughly equal 

to the delay of the NAND gate plus the delay of an INV. This also applies to OR, 

AOI, OAI, and many other complex gates. It can be readily seen that employing 

inverting logic, in many situations, not only increases the performance speed of a 

logic circuit, but also reduce the number of components required. 

47 



Chapter 3: CMOS Implementation of Logic Circuits 

In general, RM logic can handle inverting logic better than Boolean logic, because the 

electrical polarity ofaX(N)OR gate is easy to adjust, as described in chapter 2. 

(d). Transistor Size Optimization 

Optimizing transistor widths in a circuit can increase the speed of the circuit. The 

effect of the width of a certain transistor depends on the position of the transistor in 

the circuit and on the sizes of all other transistors in the circuit, and this effect also 

varies depending on the fabrication technology used. The size of each transistor can 

be calculated to satisfy the requirements in a design. This technique requires careful 

and computationally intensive simulation because the parameters can not easily be 

isolated[McAuley 92]. 

(e). Transistor Reordering 

The order of transistors in a MOS logic gate can have a significant effect on the 

propagation delay of the gate. Therefore, a discretional placement of devices in a 

MOS logic gate could lead to poor performance or unnecessary transistor sizing. In a 

MOS gate, finding a good transistor order can decrease the delay of the gate. Unlike 

transistor size optimization which normally improves speed at the expense of some 

additional area, this technique achieves significant reduction in propagation delay 

with little effect on layout area [Carlson 93]. 

A general rule is that, the most capacitive nodes are positioned as near as possible to 

VDDandGND. 

(I). Asynchronous Logic Circuit 

In synchronous circuit design, the capacitive load of the clock buffer increases as the 

size of a VLSI chip increases, which not only slows the system, but also increases the 

power consumption. The improvement of the speed in synchronous circuit design has 

become complex since a large chip area may yield a significant skew for the clock 

signal. An asynchronous circuit technique, sometimes called self-timed circuit, has 

been developed to solve these problems. It is worth mentioning that Asynchronous 

Logic Circuit is not as well known or accepted[McAuley 92], because few successful 

examples can be found in the literature. 

48 



Chapter 3: CMOS Implementation o/Logic Circuits 

3.5 PLA Implementation 

The Programmable Logic Array (PLA) , which is specifically designed for random 

logic applications[Hurst 92], is a kind of structured circuit and widely used in 

practical applications. For PLA implementation, RM logic, in theory, may generate 

more economical circuits for many logic functions as compared to Boolean 

10gic[Sasao 90, 93A, 93B]. 

For PLA implementation in Boolean logic, the criterion of minimizing a logic 

function is often considered to be the number of products. The number of literals is 

not important for a PLA implementation. This is because in a PLA, the 

implementation area of the AND plane is directly proportional to the number of 

products, and the implementation area of the OR plane is directly proportional to the 

number of outputs. This can be seen in Fig. 3.5.1, which is a simplified PLA 

architecture. For a fixed sized PLA to realize a logic function, absolute minimization 

may not be necessary provided the number of products is not greater than the device 

capacity. 

y 
l1) 

X, 

I 
I 
I 
I 
I 
1 

X n-1 

L[) 

Po P, - - - - - - - - - - - P k-1 

I 
I 
I 

AND I 
I 
1 

~~---------

I 
I 

OR I 
I 
1 

'0 
, 1 

, m-1 

Fig. 3.5.1. A simplified PLA architecture for SOP. 

Similarly, a simplified PLA architecture for ESOP can be drawn in Fig. 3.5.2., this 

kind of PLA is often called XPLA, i.e., XOR PLA. 

49 



Chapter 3: CMOS Implementation of Logic Circuits 

X, ~ 
l[) 

I 

I 

I 

I 
I 

I 

X~1 

L[) 

I 

I 
I 

AND I 
I 

I 

----------

XOR 

e--
I--

I 
I 
I 

I 

e--

f 0 

f 1 

f m-1 

Fig. 3.5.2. A simplified XPLA architecture for ESOP. 

When compared, the PLA and XPLA have identical architectures for realizing the 

AND plane, but the realization of the OR plane is different from the realization of the 

XOR plane. The former has a simple and regular layout structure corresponding 

directly to physical realization, it is hard to construct the latter as efficiently as the 

former. One possible layout strategy for the XOR plane is described by Saul et al[Saul 

93], but it is not easily generalized, particularly for a larger circuit with multi-outputs. 

According to current technologies known in (X)PLA implementation, because the 

XOR plane for RM logic is not as simple and regular as the OR plane for Boolean 

logic, RM logic may be restricted in its application to a smaller range, in which, for a 

logic function, the number of products in ESOP form is obviously bigger than that in 

SOP. 

Although PLA provides an excellent means to implement a logic function, large PLA 

structures are not necessarily desirable. Folded PLA can reduce implementation area. 

Unfortunately, the folding of different groups of variables interacts so that optimal 

PLA folding is a difficult problem[Geiger 90]. 

Note that even though PLA appears in a AND-OR form, in NMOS circuits, its 

practical implementation usually employs NOR-NOR logic, and in CMOS, it usually 

uses dynamic CMOS circuits or pseudo NMOS circuits. The complementary CMOS 

circuits are not feasible for PLA implementation. 

50 



Chapter 3: CMOS Implementation of Logic Circuits 

3.6 Gate Implementation 

Logic functions based on gate implementation are widely employed in practical logic 

design. The vendors supply various standard gate based chips, and these standard 

gates also appear in the standard cell environment in ECAD packages. So called 

standard gates mean that these gates are designed for general purpose, e.g., the ability 

of fan-out, and also, the gate types and their inputs are limited, e.g., a AOI or a OAI 

gate. 

In most ECAD suites, each standard gate library corresponds to a specified fabrication 

technology, and an arbitrary gate like that in (a) of Fig. 3.2.4 can rarely be found in 

the library. It is possible for an arbitrary gate to be involved in several 

libraries[Detjens 87] or to be generated dynamically[Maziasz 87], which should be 

classified into the design of transistor level or layout level. 

Because logic design is always technology-dependent, it is hard to compare without 

considering the technology used. In the following, some of the most commonly used 

technologies are discussed. 

(a). Implementation based on binary tree form: 

, , , , , , , , 
, , , 

, , 
, , , , 

Fig. 3.6.1. Implement logic functions in binary tree form. 

51 

Leaf 



Chapter 3: CMOS Implementation of Logic Circuits 

This is a simple technology mapping strategy, and can be described by a binary tree. 

A binary tree is a special case of directed acyclic graph (DAG), in which, the fan-in of 

each component is restricted to two, and it is shown in Fig. 3.6.1. This kind of 

implementation is also called a circuit tree [Green 86]. In RM logic, three types of 

circuit elements and their costs are used to estimate the implementation complexity for 

a given function[Green 86, 91B], they are: 

1. the inverter 1 cost unit 

2. the two input AND gate 2 cost units 

3. the two input XOR gate 3 cost units 

In practice, the leaf cells in Fig. 3.6.1 can be realized by employing multi-input AND 

gates. Based on the cost for the two input AND gate, the cost for a three input AND 

gate may be defined as 3 units and the cost for a four input AND gate may be defined 

as 4 units respectively. This kind of implementation can be categorized into the 

conventional individual gate implementation. If this conventional implementation 

method for RM logic is used to realize RM functions in two level representation with 

fixed polarity, the resulting circuits are considered very easy to test[Reddy 72]. 

As RM logic in the conventional implementation is limited to using few kinds of 

gates, for many functions, it may make RM logic hard to compare with Boolean logic 

in terms of the gate costs, since Boolean logic can use more kinds of gates, including 

some highly efficient gates, such as AOI and OAI. When a RM function is only 

restricted in a two level form with fixed polarity, it usually needs more hardware to 

realize the function than that in a multi-level form with mixed polarity. Consequently, 

a trade-off between the implementation complexity and the testability should be 

decided in a practical application. 

It should be mentioned that because the logic functions in RM logic are usually more 

compact[Sasao 90, 93A, 93B], it is believed that there are still some functions that are 

realized in the conventional implementation of RM logic better than that in Boolean 

logic, in terms of the implementation complexity. 

Because the gate costs discussed here can't be used to estimate the implementation 

cost accurately without regard to actual target technology, the comparison of 

implementation cost between RM logic and Boolean logic will be carried out in the 

next section. 

(b). Implementation based on gate array and SaG: 

Gate array and Sea of Gates (SOG) are popular styles in use for implementation of 

general logic functions. Both of them have a common point, that is, their structures are 

52 



Chapter 3: CMOS Implementation of Logic Circuits 

the core of the chip that contains a continuous array ofN and P transistors. A circuit is 

achieved by using design-specific metalization and contacts. The main difference 

between gate array and SOG is that they use different strategies to connect these fixed 

transistors. For example, wiring in an SOG chip occurs over the top of unused 

transistors, while in a gate array the routing is constrained to a routing channel[Weste 

93]. 

In gate array and SOG, the logic synthesis, in fact, is carried out more at the transistor 

level or the layout level rather than at the gate level. An arbitrary complex gate 

without a break in diffusion, termed sharing diffusion, may be constructed. Therefore, 

the comparison of implementation cost between RM logic and Boolean logic in gate 

array and SOG can be also carried out in later sections. 

(c). Implementation based on FPGA: 

Field programmable gate array (FPGA) combines the advantages of both 

programmable logic and the gate array[Almaini 94], and is a common and fast means 

to implement logic functions. There exist some different kinds of FPGA products that 

may have different characteristics. 

Consider the architecture of the Xilinx 2000 logic cell array (LCA)[Detjens 90] as an 

example. Unlike the fixed PLA structure, the structure of Xilinx 2000 is flexible and 

multi-level. In the Xilinx 2000 logic cell array, a four-input XOR gate uses the same 

space and is as fast as a four-input AND gate, because it is a table look-up based 

FPGA[Csanky 93]. It is believed that realizing a function in RM logic is usually more 

economical than that in Boolean logic. Other products that favor the implementation 

in RM logic are mentioned by Csanky et al[Csanky 93]. 

Another example of FPGAs is the product of SigneticslPhilips Components Ltd., 

which uses an AND gate based structure [Hurst 92]. It is not suitable for the 

implementation in RM logic, but for a NAND-NAND implementation in Boolean 

logic. 

3.7 Transistor Implementation 

Implementation cost of logic circuits at the circuit level is usually estimated by 

counting the number of transistors required, for this reason, the circuit level is often 

termed the transistor level. Although the most compact logic functions, which are 

often measured by the number of products or the number of literals, are always 

desirable in logic synthesis, sometimes, the most compact logic functions do not 

guarantee generating the simplest circuits measured by the number of transistors. This 

53 



Chapter 3: CMOS Implementation of Logic Circuits 

is mainly because the complexity of some kinds of gates in a logic representation 

doesn't exactly correspond to the complexity of circuits. This issue varies depending 

on the logic functions under consideration. In the following, two typical examples are 

used to illustrate this and explain the difference between RM logic and Boolean logic. 

Assume that the functions in their mixed polarity have been minimized before they are 

implemented, CMOS static circuits are used, and the XOR gate in Fig. 3.2.3 is 

employed, i.e., a single XOR gate with six transistors. As stated earlier, it is hard to 

find a highly efficient multi-input XOR gate, therefore, it is assumed that several two 

input XOR gates in a tree connection are employed to implement a multi-input XOR 

gate. Before showing and discussing these examples, for convenience, meanings of 

some symbols should be given first. 

Is function representation based on Boolean logic 

IR function representation based on RM logic 

N p is the number of products; 

Nz is the number of literals; 

N g is the number of gates; 

Nt is the number of transistors in two-level implementation; 

N tm is the number of transistors in multi-level implementation; 

Tmax is the worst performance time (simulated using Hspice simulator with Cadence 

2.411 library). 

Example 3. 7.1. 

A majority function (the carry function of a full adder) is a three variable function, it 

is expressed as 

1= L m (3,5,6, 7) (3.7.1) 

its map pattern is 

b 

a c 00 01 11 10 

o 

Fig. 3.7.1. Majority function. 

54 



Chapter 3: CMOS Implementation of Logic Circuits 

From Fig. 3.7.1, the absolute minimal Boolean expansion and RM expansion in two­

level representation are 

Is =ab+ae+be 

j R = ab (J) ae (J) be 

(3.7.2) 

(3.7.3) 

It is interesting to find these two expansions are similar, and the difference is that one 

uses OR operators to connect products and the other uses XOR operators to do that. 

This is because all circles in Fig. 3.7.1 conform to both the Boolean rules and the RM 

rules. 

The implementations are: 

Boolean domain 

Np 3 

Nz 6 

N g 1 AOI, 1 INV 

Nt 14 

N tm 12 

RMdomain 

Np 3 

Nz 6 

N g 3 AND2s, 2 XORs 

Nt 30 

N tm 24 

From this example, it is seen that a logic function has the same number of products 

and the same number of literals in both Boolean logic and RM logic, the 

implementation in Boolean logic is much more economical than that in RM logic, 

because Boolean logic can employ an arbitrary complex gate, and RM logic only uses 

individual gates with a complex XOR gate. 

Example 3.7.2. 

A logic function from[Tran 89] which was used to illustrate a good example for RM 

logic to minimize logic functions, it is a four variable function and is expressed as 

j= Lm(O,3,4,5,6,8,9,12,13) (3.7.4) 

55 



Chapter 3: CMOS Implementation of Logic Circuits 

its map patterns are 

e abed e abd 

a d 11/ b 00 01 10 11 /10 
a d 

b 00 01 

e d 
00 (;\ (2) 00 1 Ie 1~) 

t----, 

I~e-01 1 1 abd 
b e e 

01 1 1 1C0e-
---------------

abed 

11 1 1 11 1 1 

-

,\1 J 10 1 10 1 1 
a e 

(a). Boolean domain. (b). RM domain. 

Fig. 3.7.2. An example from [Tran 89]. 

From Fig. 3.7.2, it is not difficult to find that this function is more easily minimized in 

the RM domain than in the Boolean domain. Their logic representations in two level 

form are 

f B = c d + b c + a C + Gb d + a bed 

f R = c ffi a bd ffi Gbc d 

The implementations are: 

Boolean domain 

Np 5 

Nz 13 

N g 1 AOI, 5 INVs 

Nt 36 

Tmax 3.5 ns 

Reed-Muller domain 

Np 3 

Nz 8 

N g 1 AND3, 1 AND4,2XORs,4INVs 

Nt 38 

Tmax 2.4 ns 

56 

(3.7.5) 

(3.7.6) 



Chapter 3: CMOS Implementation of Logic Circuits 

From the implementation in the Boolean domain, it is seen that the performance time 

Tmax becomes much slower as the number of transistors in series increases, because a 

single AOI gate is used to realize this function. Therefore, a logic function with 

products (or literals) of more than a certain value should be partitioned into groups 

and realized. In general, the number of transistors in series is restricted to three or four 

if high speed circuits are desirable. 

In addition, equation (3.7.5) can be expressed in a multi-level form to reduce Nt. 

Thus, equation (3.7.5) is rewritten as 

Is = (cd + be+ae)·(abd + abed) = e(d +b + a)·a(bd + bed) (3.7.7) 

From equation (3.7.7), it can be seen that the number of literals Nt is 10, i.e., it is 

reduced by 3 in the multi-level representation. Equation (3.7.7) is decomposed into 

two parts which can be realized by two complex gates instead of one, and a NAND 

gate is employed to connect these two complex gates. The circuit is shown in Fig. 

3.7.3. The total number of transistors used is N tm=32, in which, 8 transistors are used 

for 4 INVs that are not shown in Fig. 3.7.3 

I 

I 

a -1 

~ - - - - - - - - - - - - - - - - - - - - - - -I 

I 
--------, I 

I 

----------1 
I I 
I I I 

I I 

I 
I 

I I 

I I 
I I 
I I 
I I 

I I 

I 
I 
I 
I I 

I 

: f 

NAND 

~--------------. 
Complex gate 1 

Complex gate 2 

Fig. 3.7.3. Implementing equation (3.7.7). 

57 



Chapter 3: CMOS Implementation of Logic Circuits 

This circuit was also simulated and Tmax was 2.1 ns. It can be seen that this realization 

not only reduces the number of transistors, but also improves the speed. 

In contrast, the implementation for equation (3.7.6) is illustrated in Fig. 3.7.4, in 

which, only logic gates are shown, because the conventional implementation method 

in RM logic is generally gate based implementation. The number under each gate 

indicates the number of transistors to realize this gate. In total, 38 transistors are 

required. 

a 

b 

6 

c 

2 

6 

d 

2 

Fig. 3.7.4. The implementation for equation (3.7.6). 

Similarly to the case in the Boolean domain, the multi-level representation for 

equation (3.7.6) is also considered, which can reduce the number of literals. 

Therefore, equation (3.7.6) is rewritten as 

(3.7.8) 

It is seen that, 40 transistors are required to implement the function in multi-level 

form. Although the multi-level representation contains less literals than the two level 

representation does, see equation (3.7.6), the implementation for the multi-level 

representation requires more transistors. The implementation in multi-level form is 

illustrated in Fig. 3.7.5 

58 



Chapter 3: CMOS Implementation of Logic Circuits 

a 

b 

c 

d 

Fig. 3.7.5. The implementation for equation (3.7.8). 

When the two circuits in Figs 3.7.4 and 3.7.5 were simulated Tmax for the two circuits 

were 2.4 ns and 3.0 ns, respectively. 

3.8 Mixed Representations Based on RM logic 

From example 3.7.2, it is interesting to know that, although a function in the RM 

domain looks significantly more compact than its counterparts in the Boolean domain, 

if it is realized by using the conventional implementation method, the resulting circuit 

is still more complex than that in the Boolean domain. This is firstly because more 

complex XOR gates are required in RM logic, and secondly because the conventional 

implementation in RM logic is normally restricted to using a smaller gate set that only 

includes INV, AND, and XOR due to testability considerations. 

In practice, more economical NAND gates can be employed to replace AND gates. 

This is because in a RM function, even number of terms can be complemented at the 

same time and the validity of the function is not changed. This property is easily 

derived from equation (2.2.8). The resulting circuit can retain the important 

characteristic of RM logic, the good testability. This will be further discussed in 

section 3.1 O.l. 

Furthermore, if only the minimum circuit is desirable, all gates used in Boolean logic, 

even including an arbitrary complex gate, may be employed to realize a RM function. 

This is based on equation (2.2.12), in which, it is shown that if two terms are 

relatively exclusive, then, an XOR operator can be replaced by an OR operator. This 

59 



Chapter 3: CMOS Implementation of Logic Circuits 

can be illustrated by one of the previous examples. For instance, equation (3.7.8) is 

rewritten as 

fR = cEB a(bdEB bed) = cEB a(bd+bed) = eEB a(bd+bed) (3.8.1) 

From equation (3.8.1), it is readily seen that, firstly, an XOR operator is replaced by a 

OR operator because the term bd and the term bed are relatively exclusive; and 

secondly, the bar above variable e is moved onto a(bd+bed) according to equation 

(2.2.9). This also illustrates that it is easy to adjust the electrical polarity of a circuit in 

RM logic. Realizing equation (3.8.1) only requires 24 transistors, this is shown in Fig. 

3.8.1. Six transistors are used for INVs, not included in Fig. 3.8.1. 

r-----------------------l 

a-9 

c 

I 
~------------ ______ I 

XOR 

Complex gate 

Fig. 3.8.1. A circuit to perform equation (3.8.1). 

Compared with the previous implementation in Fig. 3.7.4, which requires 38 

transistors, it significantly reduces the number of transistors. The circuit is even 

simpler than that based on Boolean logic, which needs 32 transistors, see Fig. 3.7.3, 

60 



Chapter 3: CMOS Implementation of Logic Circuits 

and it also has roughly the same speed as its counterpart realized in Boolean logic, 

since the gates used by these two circuits in their critical paths are similar. 

The author's experience shows that, in many RM logic functions, at least 50% XOR 

operators can be replaced by OR operators. In this way, many RM functions may be 

realized more economically than their counterparts in the Boolean domain. 

Now, it is not difficult to find that, a RM function can be implemented by employing 

all gates used in Boolean logic if the testability is not considered. Because the 

function is first minimized in the RM domain and then the Boolean techniques are 

employed to minimize the final implementation, equation (3.8.1) is called the mixed 

representation based on RM 10gic[Guan 94A]. The mixed representation 

implementation is more economical than the conventional method based on the 

individual gate implementation. 

It should be mentioned that a more general mixed representation was suggested by 

Saul[Saul 92], that is, a logic function is originally minimized by combining both 

Boolean techniques and RM techniques. Its result should be better than that based 

only on Boolean techniques or that based only on RM techniques. In practice, a 

systematic and efficient algorithm for minimizing logic functions by combining both 

Boolean techniques and RM techniques is still unknown, even for some special form 

oflogic functions[Dubrova 95]. 

3.9 Layout Evaluation 

Layout synthesis can only reduce the area for a given circuit, and it can't simplify the 

circuit further. Therefore, before layout, circuits should be simplified as much as 

possible. 

Layout synthesis is a very complex procedure and it varies depending on application. 

For instance, the channel width of a transistor on a non-critical path can be reduced to 

a smaller size, and multi-metal layers are used to improve the ability of global 

connections, etc., these are generally independent of logic representation. In here, only 

the factors related to logic representation will be considered. A well known factor 

concerned with this problem is sharing diffusion, which is discussed in the following. 

In general, in order to achieve minimum layout, the designer has to share as much 

diffusion area as possible[Chen 87], and this is achieved by finding the same layout 

sequence for P type transistors and N type transistors in a complex gate. A similar 

graphical method to switching network theory is employed to find a good sequence of 

transistors for layout, and the starting point is two dual graphs for two dual minimized 

networks, which correspond to a Boolean function and its dual function. 

61 



Chapter 3: CMOS Implementation of Logic Circuits 

An example is used to illustrate sharing diffusion for layout synthesis. A given 

Boolean function is 

(3.9.1) 

This function is a sub-function of equation (3.8.1). The circuit to perform equation 

(3.9.1) is the complex gate of Fig. 3.8.1. In Fig. 3.9.1, the circuit and its graphs for P 

network and N network are shown 

a--9 -a 

e------f b 
-a 

d 

(a). Circuit. (b). P network. (c). N network 

Fig. 3.9.1. the circuit to perform equation (3.9.1) and its graphs. 

In order to reduce the layout area, it is necessary to find a pair of paths on the dual 

graphs with the same sequence of labels which represent transistors. This path is often 

termed an Euler path[Maziasz 87], and the pair of paths are called a dual Euler path. 

An Euler path means that a path goes through each edge once and only once in a 

graph. From the dual graphs in Fig. 3.9.1, the sequence of labels in a possible dual 

Euler path is 

62 



Chapter 3: CMOS Implementation o/Logic Circuits 

a-b-c-d-d-h 

According to this sequence of transistors, a so called functional cell layout 

style[Maziasz 87], which is an efficient approach to realizing the layout of a logic 

function in automatic design in the standard-cell style, is employed to demonstrate 

sharing diffusion. In a functional cell, the cell's height is assumed to be fixed by 

technology consideration, its width can be minimized by ordering the transistors in the 

layout so that chains of transistors can share common diffusion regions [Uehara 81, 

Chen 87, Maziasz 87]. Complementary transistor pairs are vertically aligned in the 

layout. This allows their gate terminals to be connected by vertical polysilicon 

columns without the use of crossovers. The symbolic layout is seen in Fig. 3.9.2 

- -
a b c d d b 

~ 
VDD 

Metal 

D Poly 

~ Diffusion 

0 Contact 

GND 

Diffusion abutment 

Fig. 3.9.2. Layout in a functional cell. 

From Fig. 3.9.2, it is seen that the source/drain connections are achieved by sharing 

diffusion. In result, there is no break in the diffusions, which leads to a smaller layout 

area, because a break in diffusion requires more space. Although only the layout in a 

functional cell is shown here, the basic principle of sharing diffusion is suitable for 

many situations, for example, the layout of gate array or SOG for a given gate is 

similar to that of functional cells[Weste 93]. In addition, full custom design is also 

classified into this category. The main difference is that the restriction to fixed height 

is also relaxed and the size of diffusion can be decided depending on application. 

63 



Chapter 3: CMOS Implementation of Logic Circuits 

Here, only a simple logic function in Boolean logic is employed to show sharing 

diffusion. In practice, a more complex gate than that in Fig. 3.9.1 can be realized by 

sharing diffusion without a break[Maziasz 87]. For some complex gates, there may 

not be a single Euler path, then the graph can be decomposed into several sub-graphs 

which have Euler paths. In such cases, a minimum set of dual Euler paths should be 

found to achieve optimal layout. 

In order to understand the layout synthesis of sharing diffusion better, a layout based 

on individual gate implementation for the same function as above is shown in Fig. 

3.9.3 

-a 

b 
f 

d 

b 

c 

d 
8 

(a). Circuit. 

G1 G2 G3 G4 

------- ----------------------------------------------
I 
I 

I ------------- I· . 
function cell 

Diffusion Diffusion breaks 

(b). Layout, only diffusions are shown. 

Fig. 3.9.3. A layout based on individual gate implementation. 

64 



Chapter 3: CMOS Implementation of Logic Circuits 

From Fig. 3.9.3, it can be easily seen that the implementation based on individual 

gates not only requires more transistors, but also yields some diffusion breaks which 

need more area for the layout. 

From the above analysis, it can be seen that, because the conventional implementation 

in RM logic is similar to that based on individual gates, the approach to sharing 

diffusion is hardly applied to it unless the mixed representations are used, as described 

previously. In this way, RM logic may lose one of its main advantages, ease of testing. 

In contrast, a logic function realized in a Boolean expansion can have a better sharing 

of diffusion. This is because, to design logic circuits in a Boolean expansion, an 

arbitrary complex gate can be employed, and realizing a given logic function with a 

complex gate usually has better sharing potential than realizing the same function with 

individual gates. Moreover, a single dual Euler path may be found for a single 

complex gate. For instance, Fig. 3.9.3 shows the same function implemented by 

individual gates as that in Fig. 3.9.1, implemented by a single complex gate. 

Implementing logic functions employing complex gates, compared to traditional 

individual gate implementation, can reduce the layout size by 20%[Chen 87]. 

3.10 Testing ofRM circuits 

It is well known that good testability is one of the most important merits in RM logic. 

Perkowski and Jeske state that the main advantage of a logic function realized with 

the RM expansion is its essentially improved testability[Perkowski 90]. In addition, 

Helliwell and Perkowski conjectured that the gains from easy testing may even exceed 

possible disadvantages in such cases where the XOR realization is more costly than 

SOP[Helliwell 88]. 

Reddy is considered to be the first author to present the testability properties of RM 

circuits[Reddy 72]. The basic concept used by Reddy is applied to many other 

researchers' work[Bhattacharya 85, Damarla 89, Sarabi 93]. Reddy investigated two 

level RM circuits in fixed polarity form and presented a simple approach to test these 

circuits. The results obtained by Reddy for testing single stuck-at-faults, stuck-at-O (s­

a-O) or stuck-at-l (s-a-l), are summarized as follows 

(a) If the primary input leads are fault-free, then there exists a realization for an 

arbitrary n-variable logic function that requires a fault detection test set with only 

n+4 tests and this test set is independent of the function being realized. 

(b) lfthe primary input leads could be faulty, then only n+4+2 ne tests are required for 

detecting faults, where ne is the number of primary inputs appearing in an even 

65 



Chapter 3: CMOS Implementation of Logic Circuits 

number of product terms in the Reed-Muller expansion for the function being 

realized. 

(c) lfthe primary input leads could be faulty, then by adding an extra observable 

output and an extra AND gate, n+4 tests of (a) will be sufficient and these tests 

will again be independent of the function being realized. 

Assume that an arbitrary n variable logic function f(xn-l , ... ,Xl ,Xo )is realized in 

circuit and its primary input leads are fault-free, the following four test patterns are 

applied to the inputs of the circuit 

xn-l ..... Xo y 

[0 
0 0 

f] Tl = 1 
1 1 4 test patterns (3.10.1) 

o . 0 0 

1 . 1 

where y is fixed to "0" or "1" as the circuit is in normal mode [Reddy 72]. [0 ... 000] or 

[ 0 ... 00 1] is used to detect a s-a-1 at the output of any AND gate. [1...11 0] or [1...111] 

is used to detect a s-a-O fault at any AND gate input or output. A s-a-1 fault at anyone 

of the inputs to the AND gates is detected by one of the n test patterns in the set T2 

xn-l Xo Y 

1 1 1 0 d 

1 1 0 d 

T2 = 
n test patterns (3.10.2) 

0 d 

where d means "don't care", i.e., "0" or "1 fl. Then a fault test set T is 

(3.10.3) 

66 



Chapter 3: CMOS Implementation of Logic Circuits 

i.e., T=(n+4) is independent of the function f(xn-l , ... ,Xl ,xo). 

In order to detect the faults of primary input leads, 2 ne test patterns are required, 

where ne is the number of variables appearing in an even number of product terms, 

which is not independent of the function f(xn-l ' ... 'Xl ,xo). For more detail, refer to 

[Reddy 72]. 

Later, some researchers developed Reddy's theory and extended it to bridging 

faults [Bhattacharya 85, Damarla 89]. Sarabi and Perkowski present a good survey for 

the testability of RM circuit[Sarabi 93]. 

In fact, it is found that the XOR gate plays a critical role in test, that is, a stuck fault at 

one input always propagates through a XOR gate, regardless the value on the other 

input. As stated in section 3.8.1, NAND gates can be employed to replace AND gates 

in the conventional implementation of RM logic, and the resulting circuit can retain 

the good testability. In the following, a simple example is used to demonstrate this. 

A RM function is 

f = 1 EB b EB ab EB be = 1 EB b EB ab EB be (3.10.4) 

its implementation is shown in Fig. 3.10.1 

a 

b 

c 

y=1 

Fig. 3.10.1 RM circuit for equation (3.10.4). 

67 



Chapter 3: CMOS Implementation o/Logic Circuits 

its test patterns are: 

(3.10.5) 

where [ 0000 ] or [ 0001 ] is used to detect a s-a-O at any NAND gate output; [ 1110 ] or 

[ 1111] is used to detect a s-a-O at any NAND gate input and a s-a-l at any NAND 

gate output. 

abc y 

T2 ~U ~ : ~l (3.10.6) 

T 2 is used to detect s-a-l at anyone ofthe inputs to the NAND gates. 

Because each variable in this example appears in an odd number of product terms, T 1 

and T 2 are enough to test any single stuck fault in the circuit. 

From the above example, it can be seen that it doesn't change the testability of an RM 

circuit when even number of AND gates are exchanged with NAND gates at the same 

time, and even the test patterns do not need to be modified. This conclusion is 

believed to be also suitable for the work done by Bhattacharya et al and Damarla and 

Karpovsky[Bhattacharya 85, Damarla 89], in which a bridging fault is considered for 

testing an RM circuit. This is because nearly all the strategies for testing an RM 

circuit are based on the basic principle that one change at any input of an XOR gate 

will affect its output. 

68 



Chapter 3: CMOS Implementation o/Logic Circuits 

3.11 Summary 

In this chapter, the CMOS circuit implementations for both Boolean logic and RM 

logic are studied, ranging from a logic function to be realized in PLA form, to a logic 

circuit to be mapped into layout. 

In general, the theory and application of Boolean logic is wider and more mature than 

RM logic. Boolean logic can be employed from logic level design to layout level 

design. At a lower level synthesis, such as transistor level or layout level, the 

minimization may not be directly achieved by the Boolean algebraic form, but by its 

graphical form, e.g., switching network theory. Boolean logic based on two basic 

operations, AND and OR, underlies its main advantage, that is, these two operations 

are directly mapped to series and parallel circuits. In contrast, the XOR operation can 

not be explained by simply employing series or parallel circuits, therefore, unlike 

Boolean logic, RM logic based on AND and XOR operations is not easily applied to a 

circuit level or layout level design. 

Although RM logic can't be easily applied to a lower level design, it can be found that 

RM logic produces many efficient solutions that Boolean logic does not. Particularly, 

some mapping technologies based on look-up table may be very suitable for RM logic 

to implement. In addition, if the testability of a circuit is not considered at logic (gate) 

level, but at a high level, e.g., a functional level, the implementation cost may be 

largely reduced by substituting some of the XOR operators to OR operators and 

employing highly efficient complex gates. In this way, the realization of many logic 

functions in the RM domain is comparable with that in the Boolean domain. 

100 four variable randomly generated functions are tested, the results are listed in 

Table 3.11.1 

Table 3.11.1 Minimization results of randomly generated functions. 

A B C 

41 30 28 

A-RM two level expansions with mixed polarity (from a RM logic synthesis program 

developed at Napier University.); 

B-the mixed representations based on A; 

C-Boolean expansions. 

In Table 3.11.1, the numbers indicate the average number of transistors required in the 

CMOS circuit for a function. In this test, it is found that 33 of 100 functions in the 

69 



Chapter 3: CMOS Implementation of Logic Circuits 

mixed representations require less transistors than their counterparts in Boolean logic, 

and only 8 of 100 functions in RM two level expansions with mixed polarity need less 

transistors than that in Boolean logic. 

The basic principle of testing RM logic circuits is reviewed. Using more economical 

NAND gates to replace AND gates in RM circuits is discussed, and this result doesn't 

change testing a RM circuit. 

From this section, it can be seen that an easily tested circuit in RM logic is obtained at 

the expense of hardware cost. In practical applications, a trade-off between hardware 

cost and test should be decided. Because testing a circuit in RM logic is based on the 

gate fault model, this is difficult to apply to a large circuit[LaLa 85]. In addition, most 

arithmetic circuits are regular and iterative circuits[Hwang 79], a cell fault 

model[Parthasarathy 81, Wu 90] for testing these circuits is considered to be 

preferable[Cheng 87, Chatterjee 87, Bhatia 91]. For these reasons, it is assumed that 

the cell fault model is used for test in this project. In this way, no knowledge of actual 

realization of the cell is needed[Parthasarathy 81]. Therefore, a loose definition of RM 

logic is used in later chapters, that is, a minimized RM function can be realized in the 

mixed representations, since only the minimum circuits measured by the number of 

transistors are required. 

70 



Chapter 4 

Number Systems and Two 
Operand Adders 

4.1 Introduction 

High performance adders are used not only for addition, but also for subtraction, 

multiplication, and division. For most more complex arithmetic processors, such as 

matrix multiplication, convolvers, FFTs, etc., the adder is one of the most critical 

building blocks. The speed of an arithmetic processor depends heavily on the speed of 

the adders used in the system. 

An adder circuit, compared with other arithmetic circuits, is related more closely to a 

lower level design, e.g., a logic level design or circuit level design in which, logic 

representation and its implementation are emphasized. In contrast, the design of a 

complex arithmetic processor is mainly emphasized at a higher level, e.g., a structured 

level or functional level where, the basic building blocks and their relationship are 

emphasized. Because this project is mainly related to logic minimization and its 

implementation in arithmetic design, various adders are comprehensively studied. 

In addition, the fixed-point structure will be discussed later. A floating-point structure 

is more complex than the fixed-point structure, but its implementation is based on the 

implementation for the fixed-point structure. A floating-point structure is usually 

studied at a higher level of abstraction. 

An important factor that will largely influence the algorithm and implementation in 

arithmetic design is the number representation used, and different number 

representations may result in different hardware designs. 

71 



Chapter 4: Number Systems and Two Operand Adders 

In this chapter, firstly, some of the most widely used number systems are described, 

this gives a necessary background for the later content. Secondly, the previous work 

about the most commonly used adders and RM logic applied to arithmetic circuit 

design are reviewed. Thirdly, the design methodology for arithmetic circuits 

employed in this work is discussed. Then, the most widely used carry lookahead 

scheme, as a typical example, is investigated in both RM logic and Boolean logic, and 

a comparative study is carried out. Later, a CMOS carry chain adder architecture is 

proposed, and developed for realizing various residue additions. Finally, a non­

traditional on-line adder, which computes from the most significant bit first, is 

presented. 

4.2 Number Systems for Arithmetic Circuits 

There exist many number systems[Scott 85], some of them may be only of academic 

interest, because they are too complex to be realized in circuit. In the following, three 

kinds of the most commonly used number systems are described. 

4.2.12's Complement Number System 

Any n bit 2's complement number A may be expressed as 

(4.2.1) 

where ai= 0 or 1, i E{O,l, ...... ,n-l}. The value of A can be calculated as 

n-l 2 n- 2 2 n- 3 21 2 0 
A = -an-l x2 +an-2 x +an-3 x + ...... al x +ao x 

n-2 

2 n- 1 ~ 2i = -an-l x + L.Jai x 
(4.2.2) 

i=O 

In the 2's complement number system, the most significant bit (msb) of a number 

determines its sign, i.e., a number is positive when its msb is "0" and it is negative 

when its msb is "1". The range is 

72 



Chapter 4: Number Systems and Two Operand Adders 

(4.2.3) 

This is a conventional and also the most widely used number representation. There are 

two main advantages for 2's complement number system: (1). addition and subtraction 

can be performed in an adder without increasing any additional hardware cost; (2). the 

circuit to perform addition, the most fundamental arithmetic operation in computer 

system, is usually simpler, in comparison with most other number systems. For these 

reasons, hardware implementations for other number representations are often based 

on that for the 2's complement number system, and also, the implementation result for 

the 2's complement number system is often used as a criterion to measure the 

performance efficiency for other number systems. 

It should be mentioned that although a sign-magnitude number is different from a 2's 

complement number, their hardware implementation techniques are similar. In 

general, the implementation of the former is relatively simple. In other words, the 

study of the hardware implementation technique for the 2's complement number 

system is more general, it can usually cover that for the sign-magnitude number 

system. 

4.2.2 Signed-Digit Number System 

Signed-digit (SD) number representation was first introduced by Avizienis[Avizienis 

61] to attempt to achieve high speed arithmetic operations, because it allows addition 

and subtraction operations with a carry (or borrow) restricted to two adjacent digital 

positions of the operands. In a SD number system, number representations allow 

redundancy to exist, which makes it possible for addition and subtraction operations 

without a long carry chain. For this reason, a SD number system is also called a 

redundant number system. 

In the conventional fixed-radix systems, the digit set is restricted exactly to r 

values{O,l,······,r-l}. The sign part and magnitude part are often separated, or the sign 

information is contained in the msb. Therefore, the numbers in these systems are 

usually considered non-sign numbers. In the SD number system, each digit contains a 

sign and the most significant non-zero digit of a number determines its sign. For a 

given radix r, each digit of a number is allowed to be more than r values, thus, the 

following 2a + 1 values can be taken 

73 



Chapter 4: Number Systems and Two Operand Adders 

{a,a -l, ...... ,l,O,l, ...... ,a -l,a} (4.2.4) 

where x equals - x . The maximum value of a can be equal to the radix r, in this 

case, it will yield a high level of redundancy which may make the implementation too 

costly, since a large digit set requires a large number of bits to represent each digit. In 

order to avoid high redundancy, the maximum magnitude of a must be within the 

following region[Hwang 79, Koren 93] 

[" r-1l IT :s;a:S;r-l (4.2.5) 

where r x l stands for the smallest integer that is larger than or equal to the real 

number x. For many applications, in order to yield minimum redundancy in a 

balanced digit set, one can choose the following value for the maximum 

magnitude[Hwang 79] 

a =l~J (4.2.6) 

where Lx J stands for the largest integer that is less than or equal to x. Therefore, 

r h' d r-l h . dd a = - w en r IS even an a = - w en r IS 0 . 
2 2 

In general, the hardware implementation for SD number operations is more complex 

than that for 2's complement, since each signed digit needs more than one bit to 

represent it. In many situations, a SD number may be required to convert to or from a 

natural non-signed number. When a non-signed number is converted to a SD number, 

it may not need any hardware, because a non-signed number can be generally 

considered a special case of SD number representations, namely, all digits have the 

same sign, positive or negative. When a non-signed number is converted from a SD 

number, it can employ the following equation 

74 



Chapter 4: Number Systems and Two Operand Adders 

(4.2.7) 

where A;D (A;' ) is sum of all positive (negative) digits. The range of SD numbers is 

(4.2.8) 

4.2.3 Residue Number System 

Unlike the previous two kinds of number systems, residue number system (RNS) is a 

non-weighted number system. RNS does not consist of a single radix only, but of a k-

tuple of integers, ml, m2, m3, ...... mk, where each individual member is termed a 

modulus. Moduli should be chosen so that they are pairwise relatively prime. An 

integer X is represented in RNS by a k-tuple (Xl ,x2 'X3 ,······,Xk) where Xi is a non­

negative integer defined as 

i=1,2,.·····,k (4.2.9) 

Where q i is the largest integer so chosen that 0::;; Xi < mi' X i is called the residue of X 

modulo mi' IXl m ; and X mod mi are commonly used. 

In RNS, addition, subtraction and multiplication are carry-free, therefore, parallel 

processing can be performed for these three operations. Identities for these three 

operations are 

Addition: 

(4.2.10) 

Subtraction: 

75 



Chapter 4: Number Systems and Two Operand Adders 

IX-Yl m; =IIXlm; -IYl m; 1m =Ixi -Yi 1m; 
I 

(4.2.11) 

Multiplication: 

(4.2.12) 

The largest possible range of RNS can be determined by the following equation 

(4.2.13) 

For a given M, if only non-negative integers are needed, the range can be set to 

[ 0, M -1] . If, on the other hand, negative numbers are also desired, then the range can 

b M -1 M -l·f . dd M M ·f· [K 93] e set to [---,--] 1 MIS 0 ,or [--,--1] 1 M IS even oren . 
2 2 2 2 

Unlike addition, subtraction and multiplication, division is very complex In 

RNS[Szabo 67, Koren 93]. Because most logic systems use binary numbers, a number 

in RNS should usually be converted to or from a binary number, which is described as 

(a). Binary to RNS: 

(4.2.14) 

(b). RNS to Binary: 

Chinese Remainder Theorem (4.2.15) 

76 



Chapter 4: Number Systems and Two Operand Adders 

1\ M 
where mi =-. 

mi 

Conversion from a residue number to a binary number is often considered to be a 

bottleneck problem, which restricts applications of RNS in many situations. In 

addition, some operations, such as division, comparison, sign detection, and scaling, 

etc .. are very complex and slow[Szabo 67, Koren 93], therefore, RNS is now rarely 

used for general-purpose computer systems, but it may be suitable for some digital 

signal processors, because additions, subtractions and multiplications can operate in a 

parallel fashion. 

In fact, addition and subtraction in the 2's complement number system can be 

considered a special case of modulo operations with modulus equal to n, the length of 

a number representation. 

4.3 Review of Two Operand Adders 

Adders, as one of the most important parts in any computer architecture, have been 

extensively studied. A ripple-carry adder is very simple and includes a group of full 

adders (FAs) connected in series. It is also the most regular adder and has no global 

connection, which make it easily extendible to any length and realisable in VLSI. 

Unfortunately, ~ ripple-carry adder may be too slow for many applications, since its 

speed is linearly proportional to the length of operands, therefore, some faster adders 

have been developed. 

In order to speed up the addition operation, the long carry propagation should be dealt 

with. The essentially serial nature of carry propagation is the most difficult problem in 

speeding up addition. There are two main approaches that can deal with this problem: 

one is to reduce the carry propagation time; the other is to detect the completion of the 

carry propagation and avoid wasting time while waiting for the worst case delay, 

which is n x T FA , where n and T FA stand for the length of a ripple-carry adder and the 

delay of a basic cell FA, respectively. The second approach leads to a variable 

operation time and requires an asynchronous logic design, which may be inconvenient 

and increases the complexity in a synchronous design[Hwang 79, Koren 93]. 

Therefore, in most situations, the first approach is employed. The adders employing 

the first approach are discussed in the following. 

There exist three main schemes to speed-up addition. They are: 

(1). carry lookahead scheme; 

77 



Chapter 4: Number Systems and Two Operand Adders 

(2). pre-computed scheme (for the conditional sum adder and the carry-select 

adder); 

(3). carry-skip scheme. 

These three schemes underlie most of the previous algorithms developed for designing 

a two operand adder, and many of these algorithms, in fact, can be found to be a 

variant of one of these schemes. 

The carry lookahead scheme is the most commonly used means for accelerating carry 

propagation. The main principle of the carry lookahead scheme is an attempt to 

generate all incoming carries in all stages simultaneously and avoid a ripple-carry 

operation. This is achieved by adding some extra components which form the carry 

lookahead circuit. However, in practice the number of stages over which the 

lookahead can be applied is limited by the complexity of the gating structure, since 

more significant stages require successively more logic. It is common to construct 

four stage carry lookahead units. For a long adder, a two level or multi-level carry 

lookahead scheme is used. Direct realization of a carry lookahead adder, which is 

derived from the conventional individual gate implementation, is not very efficient in 

VLSI, due to its irregular layout. Brent and Kung developed a regular layout for 

implementing a carry lookahead adder [Brent 82]. Another interesting variant of the 

carry lookahead adder was first suggested by Ling[Ling 81]. In his work, Ling showed 

that an arbitrary function could be propagated, unlike the conventional adder, where a 

function propagated has a definite physical significance[Doran 88]. Ling stated that 

this scheme not only reduces the component count in design, but also requires fewer 

logic levels in adder implementation. In fact, at present it is unclear whether the 

advantage of Ling's adder is widely accepted or not, because Ling's scheme reduces 

the complexity of the carry lookahead unit, but increases the complexity of 

summation. Consequently, the latter may offset the gain of the former. The best static 

CMOS implementation for the carry lookahead unit known was proposed by Lee et 

al[Lee 93]. Their circuit is designed at the transistor level rather than at the gate level, 

and a four bit high-speed carry lookahead circuit based on transistor sharing in multi­

output static CMOS complex gate is presented. 

Another scheme for speeding up the addition operation is the conditional sum adder 

which was presented by Sklansky[Sklansky 60]. The main idea behind this scheme is 

that, for a given group of operands, say k bits, two sets of outputs are generated. Each 

set includes a k bit sum and an outgoing carry. The incoming carry of one set is 

assumed to be zero, while that of the other is assumed to be one. The eventual 

incoming carry is used to select the correct output value from the two sets which are 

pre-computed. A variant of the conditional sum adder is the carry-select adder. The 

78 



Chapter 4: Number Systems and Two Operand Adders 

difference between them is how to divide operands into groups. Although the 

conditional sum adders and the carry-select adders are utilised less often than the carry 

lookahead adders, the technique of pre-computation is employed in some 

designs[Srinivas 92, Guan 93]. 

Another well known adder called the carry-skip adder was invented by Babbage in the 

1800's[Kantabutra 93]. Later, a fast carry circuit based on the carry-skip technique 

was developed by Kilburn et al[Kilburn 60] at Manchester University in 1960. For 

this reason, the carry circuit is termed the Manchester carry chain. The original 

Manchester adder was designed in TTL circuitry, and its basic principle can be 

applied to MOS circuits[Chan 90]. The carry-skip adder is a more generalized adder. 

A critical factor of designing a carry-skip adder is related to how to decide the sizes of 

blocks for a given word. Guyot et al[Guyot 87] presented a method of finding near­

optimum block sizes for designing a carry-skip adder, they reduced their optimization 

problem to a geometrical problem. Chan et al [Chan 90, 92]presented algorithms for 

computing the best block sizes for a carry-skip adder, and also for a carry lookahead 

adder. Kantabutra thought the methods of Guyot et al and Chan et al are 

computationally intensive, and do not yield a simple, intuitive understanding of 

optimum block sizes[Kantabutra 93]. In his work, Kantabutra used a circuit design 

procedure based on simulating the components to be used in a real adder. Thus, an 

adder obtained by using this procedure is very likely to be closer to optimum than the 

previous methods proposed by Guyot et al and Chan et al. 

Adders described previously are usually designed in 2's complement representation. 

Some 2's complement adders can be obtained by employing other number 

representations. One example was presented by Srinivas and Parhi[Srinivas 92]. They 

proposed a so-called sign-select adder by making use of binary SD representation. 

This sign-select adder first uses redundant number addition in parallel, and then, a fast 

converter is used to transform the binary signed digit number into 2's complement 

form. The sign-select adder was concluded by their authors to be better than the carry 

lookahead adder and the carry select adder. Later, it was shown in our work[Guan 93], 

that the redundant number addition in the sign-select adder is not necessary, and the 

converter of the sign-select adder can be modified to a carry chain adder. This is 

because all known algorithms for converting binary signed digit numbers to 2's 

complement numbers, in fact, are derived from equation (4.2.7). That is, a carry 

(borrower) problem can not be avoided in the converter. In most situations, the speed­

up methods stated above, i.e. the carry lookahead scheme, the pre-computed scheme, 

and the carry-skip scheme, can be used for the converter. 

There is a common point for designing all the adders mentioned above, that is, any 

arithmetic design project can be divided into two phases, first is to develop efficient 

79 



Chapter 4: Number Systems and Two Operand Adders 

algorithms and the second is to develop their logic implementations[Hwang 79]. The 

design following these two phases in this project is called the structured design which 

is discussed in the next section. 

Compared with the conventional Boolean logic, many researchers think RM logic can 

be more economical for arithmetic design, and if RM logic is used in designing 

arithmetic circuits it will yield better results[Helliwell 88, Perkowski 90, Saul 92, 93, 

Lester 93, Csanky 93]. In fact, except for the parity check which can be also explained 

by mod 2 sum, it is hard to find a good example in practical applications to 

demonstrate this. 

A survey on RM logic in the literature shows that only Saul has used RM logic to 

design some arithmetic circuits[Saul 92]. Saul has done much significant work to 

improve algorithms for minimizing RM functions. He developed a procedure for 

multi-level RM minimization and used it to design an eight bit counter and a four bit 

adder using a gate library containing a wide range of gates, which includes AOI and 

OAI, and the resulting circuits were compared with that designed using Mis!! based 

on Boolean logic. The circuits designed using RM logic were over 20 percent smaller 

and between 25 and 50 percent faster. 

Saul's work[Saul 92] is not sufficient to prove the superiority of RM logic over 

Boolean logic in arithmetic design, and it seems only to prove RM logic over Boolean 

logic in some situations. One problem which restricts Saul's result to a practical 

application is that, the arithmetic functions used by Saul may be not very practical. 

For example, a four bit adder has only eight input variables and a carry-in variable is 

neglected. Another problem is that Saul's designs belong to the unstructured design, 

therefore, the result is hardly generalized. In addition, the result is not compared with 

currently existing arithmetic circuits. 

In fact, it is not clear whether RM logic can find better applications in arithmetic 

design or not. The conclusion that RM logic can find better applications in arithmetic 

may come from two main results: (1). mod 2 sum, which is often realized by XOR 

gates, is widely used in arithmetic circuits; (2). benchmarks consist of many 

arithmetic functions, it is found that many of these functions in the RM expansion are 

more compact than the Boolean expansion. In practice, many benchmark arithmetic 

functions, at present, may be employed to measure a synthesis program rather than to 

design practical circuits. The main reason for this is that, many benchmark arithmetic 

functions are established in an unstructured fashion (unstructured design and 

structured design will be discussed later), and these functions may be not feasible for 

currently practical arithmetic circuits that are inherently well structured. 

One aim of this project is to attempt to improve and develop arithmetic circuits using 

RM logic, and it focuses on practical circuit modules that are based on the structured 

80 



Chapter 4: Number Systems and Two Operand Adders 

design, rather than on the benchmark arithmetic functions that are based on 

unstructured design as will be explained in the next section. 

4.4 Design Methodology 

Arithmetic circuit design, in general, can be classified into two categories: 

unstructured design and structured design. 

In unstructured design, an arithmetic circuit may be implemented as a pure 

combinational circuit. For instance, the truth table of an arithmetic circuit with n 

inputs and m outputs is first listed, then, the logic representation is simplified, and 

finally, the simplified logic representation is realized. In general, the implementation 

of these circuits is preferred in PLA or ROM, see Fig. 4.4.1, because the layout of 

these circuits is often irregular. 

n 
Inputs PLA, ROM, etc 

Fig. 4.4.1. Unstructured design. 

m 
I 

: Outputs 

Unstructured design may be feasible for small size operands, but for large size 

operands, say, a 64 x 64 multiplier, it may be impossible. Even though a 64 x 64 

multiplier can be realized in the unstructured design, the resulting circuit may be very 

complex and its speed may be too slow. For any length of operands, e.g., longer than 

500-bit[Takagi 92], this design method is no longer feasible. 

The structured design methodology allows us to handle very complex design with two 

of the most commonly used engineering approaches, hierarchy and abstraction, and 

this methodology encourages the use of regular computing structures, and the design 

is hierarchical[Geiger 90]. This structured design methodology for VLSI was 

emphasized by Mead and Conway[Mead 80]. In structured design, a design procedure 

for arithmetic circuits may be generally divided into four steps shown by Fig. 4.4.2, 

81 



Chapter 4: Number Systems and Two Operand Adders 

which is similar to ideal hierarchical design stages for CAD [Hurst 92]. In Fig. 4.4.2, if 

the second step, the structured design, is eliminated, then, this procedure becomes an 

unstructured design procedure. 

Function Specification 

I---~---' 
I Structured Design I 

L---T---~ 

Logic Synthesis 

I 
Circuit Realization 

Fig. 4.4.2. A procedure of structured design. 

The structured design is briefly described as 

Step 1 (Functional Specification): 

This seeks to relate a set of system inputs to the desired outputs. Simply speaking, 

what to design, an adder, a multiplier, even a complex arithmetic processor. 

Step 2 (Structured Design): 

This is carried out at an architectural or structural level design, which deals with 

defining blocks and the interconnection of blocks. Furthermore, a block can also 

be divided into some smaller blocks until getting some blocks with appropriate 

sizes, these are known as basic blocks, such as, full adder, multiplexers, registers, 

etc .. The structured design depends mainly on the number representation and its 

design algorithm, and it may be hardly affected by employing Boolean logic and 

RM logic. A design at this stage is often (but not always) considered to be 

independent of circuit technology. For many arithmetic circuits, the bit-slice 

principle is one of the most commonly used approaches in structured design. 

82 



Chapter 4: Number Systems and Two Operand Adders 

Step 3 (Logic Synthesis): 

Logic functions required in the design are synthesized and optimized in terms of 

certain criteria. There exist some different representations corresponding to a 

logic function, e.g., Boolean expansions and Reed-Muller expansions. The design 

based on different logic, Boolean or RM, may lead to a different result. 

Step 4 (Circuit Realization): 

Various circuit technologies can be chosen, such as TTL, NMOS, CMOS, 

BiCMOS, etc.; and also various circuit styles can be employed, such as PLA, 

CMOS, dynamic CMOS, etc .. According to the circuit style chosen in design, this 

may be further divided into some sub-steps. For example, it can be divided into 

transistor level synthesis, layout level synthesis, and layout realization. From 

Chapter 3, it can be seen that the design based on Boolean logic or RM logic may 

significantly affect transistor level synthesis and layout level synthesis. 

Although a structured design needs one step more than an unstructured design, and 

probably takes more time to generate a circuit, it has some advantages: 

(1). Circuit complexity, in many applications, grows linearly or near-linearly with the 

number of inputs. Thus, the number of logic elements needed, when there are 

many inputs, is likely to be less than that based on an unstructured design in 

which the rate of increase is nearly exponential. 

(2) The design process is relatively simple and is essentially independent of the 

number of inputs. This means that a design result can be generalized. For example, 

the basic circuit structure of an n bit adder can be suitable for an n+k bit adder, 

which, in an unstructured design, is not the case. In other words, the result based 

on a structured design has good extendibility. 

(3) It is relatively easy for a smaller block to be absolutely minimized, and it is very 

difficult for a large logic function to be absolutely minimized. For a large function, 

absolute minimization has to be abandoned and heuristic (near minimal) solutions 

are employed[Sasao 93A], a good result is obtained, but it is unknown how close 

this result is to the optimum value. 

(4) The resulting circuits are well formed and their interfaces are well defined, 

namely, they are modular. Consequently, some of the widely used modules can be 

elaborately designed and employed repeatedly. 

83 



Chapter 4: Number Systems and Two Operand Adders 

(5) The structured design may generate a regular circuit configuration which is very 

suitable for VLSI implementation. The resulting circuit is easily pipelined, 

because in this situation, the circuit is easily decomposed into pipelined stages. 

In addition, testing a circuit can benefit from a regular circuit. 

Because of the advantages described above, the structured design may take a shorter 

time to achieve a final circuit. In fact, most arithmetic circuits are based on the 

structured design, particularly for a circuit with a large number of inputs. 

As stated above, an unstructured design is only feasible for a small circuit, but a 

structured design can be suitable for a larger and more complex circuit. Especially a 

completely structured design, like an iterative network (which is defined as a digital 

structure composed of a cascade of identical circuits or cells[Kohavi 78]), can be 

easily realized for an extremely large circuit, where the completely structured design 

means that all blocks are identical and all interconnection in the circuit is regular. One 

example of this is a carry-ripple adder, its size is easily extended, in addition, the 

circuit for a carry-ripple adder can be easily tested and the testing only uses eight 

patterns independent of the length of the adder[Cheng 87]. In practice, most designs 

may be not completely structured, the structured design attempts to make a circuit as 

regular as possible. From the view of VLSI, the interconnections in a circuit are 

required as locally as possible. 

In theory, after a design is processed at a higher level, the result (data) is passed to the 

next level to be processed, step by step. The boundary for each processing level is 

clear and well defined. In this way, it favours automatic design. In practice, at present, 

manual design is often combined into an automatic design, which, sometimes may 

blur the boundary and definition of an hierarchical design. 

It should be noted that structured design and structured circuits have different 

meanings. A structured design emphasizes the design procedure for a system, that is, a 

system possesses an inherent regularity for the designers to find. A structured circuit 

means that, an irregular circuit is implemented employing structured means, i.e. a 

structured circuit. 

The PLA may be the most commonly used structured circuit, and it presents a simple 

layout process to simplify a random and irregular circuit implementation, rather than 

optimize the circuit. It is hard to divide all circuits into regular circuits and irregular 

circuits. Generally speaking, arithmetic circuits are mostly regular, and many control 

circuits are irregular. 

84 



Chapter 4: Number Systems and Two Operand Adders 

4.5 Carry Lookahead Circuit 

In this project, many existing circuit modules in practical arithmetic designs are re­

considered in RM logic. In most situations, it is not found that RM logic can improve 

the previous results. In the following, the carry lookahead circuit is taken as an 

interesting example to show the effect of utilising different logic representations, 

because generating this circuit is significantly related to a logic representation. 

The carry lookahead adder is one of the most commonly used arithmetic circuits, and 

the carry lookahead scheme is used not only for the carry lookahead adder, but also 

for other arithmetic circuits, such as Ling's adder[Ling 81] and the converter from 

redundant number to 2's complement number[Yen 92]. The structure of the carry 

lookahead adder can be illustrated by Fig. 4.5.1 

A B 

Carry Propagation/generation Unit 

Carry lookahead Unit 

Summation Unit 

,It 

s 

Fig. 4.5.1. The structure of carry lookahead adder. 

The carry propagation/generation unit and summation unit are very simple and 

regular. The difficult part of the design is the carry lookahead unit. A group of 

equations for a four bit carry lookahead circuit can be derived from equation (3.7.2), 

they are recursive and expressed as 

85 

(4.5.1) 

(4.5.2) 



Chapter 4: Number Systems and Two Operand Adders 

C2 = g2 + P2g1 + P2PlgO + P2PIPOcin 

c3 = g3 + P3g2 + P3P2g1 + P3P2PlgO + P3P2PIPOcin 

(4.5.3) 

(4.5.4) 

where g i = a i . b i denotes carry generation and Pi = a i + b i denotes carry propagation, 

respectively. It should be mentioned that the definition of carry propagation can be 

different in the literature. For example, Pi = a i + b i is used by Koren[Koren 93], and 

Pi = a i tB b i is used by Hwang and Almaini[Hwang 79, Almaini 94]. In equations 

(4.5.1)-(4.5.4), carry propagation Pi =ai +bi and Pi =ai tBbican be exchanged with 

each other, and this will not affect the validity of the result. In some cases, this 

exchange is not valid, e.g. in a CMOS carry chain adder[Guan 93], Pi =ai tBb i can 

not be replaced by Pi = ai +bi · 

From Example 3.7.1 in Chapter 3, it can be seen that the carry function has the same 

form in Boolean logic and RM logic without regarding operators + or tB. If equation 

(3.7.3) is initially used instead of equation (3.7.2) and if a carry variable substitution 

continues to be applied, then, another group of equations for representing a four bit 

carry lookahead circuit in RM expansion can be obtained. 

Assume that the same representation of variables as those in equations (4.5.1~4.5.4) 

are used. According to equation (3.7.3), a group of equations for the carries of a four 

bit adder can be expressed as 

Co = aobo tB aOCin tB bOcin = aobo tB (ao tB bO)cin = go tB POCin 

CI = albl tB alcO tB blco = albl tB (al tB bl)co = gl tB PICO 

~=~~tB~qtB~q=~~tB~tB~~=~tBhq 

~=~~tB~~tB~~=~~tB~tB~~=~tBP3~ 

Substituting for C2, CI and Co, C3 can be written as 

C3 = g3 tB P3C2 = g3 tB P3(g2 tB P2cI) = g3 tB P3g2 tB P3P2CI 

= g3 tB P3g2 tB P3h (gl tB PI co) = g3 tB P3g2 tB P3P2g1 tB P3P2Pl Co 

= g3 tB P3g2 tB P3hgl tB P3P2Pl (go tB POCin) 

= g3 tB P3g2 tB P3P2g1 tB P3hPlgO tB P3P2PIPOcin 

86 

(4.5.5) 

(4.5.6) 

(4.5.7) 

(4.5.8) 

(4.5.9) 



Chapter 4: Number Systems and Two Operand Adders 

Consequently, a group of equations for a four bit carry lookahead circuit are 

Co = go EI3 POCin 

Cl = gl EI3 PlgO EI3 PIPOCin 

C2 = g2 EI3 P2g1 EI3 P2PlgO EI3 P2PIPOCin 

C3 = g3 EI3 P3g2 EI3 P3P2g1 EI3 P3P2PlgO EI3 P3P2PIPOCin 

(4.5.10) 

(4.5.11) 

(4.5.12) 

(4.5.13) 

It can easily be seen that these two groups of equations (4.5.1~4.5.4 and 

4.5.1O~4.5.13) still have the same form without regarding operators + or EI3. If the 

conventional implementation based on individual gates[Hwang 79, Chan 92] is 

employed, it is clear that the circuit to be realized in Boolean logic is better than that 

in RM logic, since a multi-input XOR gate is more complex and slower than a multi­

input OR gate. In practice, the conventional implementation in Boolean logic is also 

not very efficient in CMOS circuit, because it was designed at gate level and requires 

94 transistors[Chan 92], which is much more expensive than a static implementation 

based on a design at transistor level which requires 38 transistors[Lee 93] (note the 

authors stated the number transistors was 32, because single-rail logic is considered 

here, the extra 6 transistors for three INV s should be added for the three variables 

appearing in both true and complemented forms in their design). 

If a dynamic CMOS circuit implementation is considered, then, the circuit in Boolean 

logic can be further simplified. According to switching network theory described 

earlier, the minimized networks for equation (4.5.1)~(4.5.4) are as follows 

87 



Chapter 4: Number Systems and Two Operand Adders 

N 

N P 
1 

c 
9 o 

P 9 0 
1 

•• 9 
0 

in C 
in 

s 
S 

(a). CO. (b).Cl 

N 

N P 
3 

P 
2 

9 
3 

9 
2 9 

2 

9 
1 

U 9 
0 

9 
1 

4 9 
0 

p 
o 

c 
in 

c 
in 

s s 

Fig. 4.5.1. The minimized networks. 

From Fig. 4.5.1, it can be found that a four bit carry lookahead circuit can share 

transistors at circuit level design, and a dynamic CMOS circuit for implementing a 

four bit carry lookahead scheme is shown in Fig. 4.5.2. It requires only 22 transistors. 

When the design is carried out at gate level, the resulting circuits can only share gates. 

In contrast, sharing transistors can make a circuit simpler. 

88 



Chapter 4: Number Systems and Two Operand Adders 

elk -"'-~-~I------al-----dl 

Fig. 4.5.2. A four bit carry lookahead circuit in dynamic CMOS. 

In order to obtain a minimum implementation in the RM domain, equation (4.5.13) is 

expressed in multi-level form, thus 

(4.5.14) 

According to equations (2.2.8) and (2.2.9), equation (4.5.14) can be rewritten as 

(4.5.15) 

Realizing equation (4.5.15) leads to the mlmmum implementation for the carry 

lookahead scheme in the RM domain, this implementation shares gates as much as 

possible and is shown in Fig. 4.5.3, 

89 



Chapter 4: Number Systems and Two Operand Adders 

c, 

Fig. 4.5.3. The minimum implementation in RM logic. 

This implementation will yield the minimum number of transistors, a NAND gate 

with four transistors and an XNOR gate with six transistors, a total of 40 transistors is 

required. Unfortunately, this circuit is too slow to satisfy time constraints in practical 

applications. 

In this section, it can be seen that, from the view of the optimum implementation, 

Boolean logic is usually superior to RM logic for recursive functions, because the 

XOR operators in recursive RM functions cannot easily be exchanged with OR 

operators, this lead to their final implementation in individual gate fashion. 

4.6 Carry Chain Adder 

As stated earlier, structured design is used in this project. That is, a logic function is 

not established for the whole circuit but for the basic building blocks. In this section, a 

CMOS carry chain adder architecture is presented, which is from our previous 

work[Guan 93]. 

Similarly to the carry lookahead adder, the carry chain adder can be also divided into 

three parts which are shown in Fig. 4.6.1 

90 



Chapter 4: Number Systems and Two Operand Adders 

A B 

\ 

Carry Propagation/generation Unit 

Carry Chain 

Summation Unit 

! 
5 

Fig. 4.6.1. The structure of carry chain adder. 

In structure, the carry chain adder is similar to the carry lookahead adder. The main 

difference between them is that, a carry chain circuit is used to replace the carry 

lookahead circuit for speeding up a carry propagation. 

MOS transistors can be employed to construct a highly efficient carry chain[Chan 90]. 

Chan and Schlag used dynamic CMOS circuits to realize a carry chain. In the 

following, a static CMOS carry chain is described. The experiment shows that the 

static CMOS carry chain[Guan 93] is as fast as the dynamic CMOS circuit[Chan 90], 

and also uses the same number of components as the dynamic version. The resulting 

static CMOS carry chain adder proposed has two main advantages over the dynamic 

version, that is: (1). it is easier for implementation because it doesn't need to consider 

the clock issue; (2). its carry propagation/generation circuit is simpler. 

In the design for the static CMOS carry chain, when aibi = 00, it is defined as "0" 

carry generation; and when a i b i = 11, it is defined as "1" carry generation. This is 

shown in Table 4.6.1 

91 



Chapter 4: Number Systems and Two Operand Adders 

Table 4.6.1. Carry propagation/generation functions. 

ai bi State XOR Carry-in Carry-out 

0 0 gi(O) 0 x 0 

0 1 Pi 1 x x 

1 0 Pi 1 x x 

1 1 gi (1) 0 x 1 

Where x is a binary variable applied to carry-in, i.e. equal to "0" or "1", g i (0) and 

g i (1) stand for "0" carry generation and "1" carry generation, respectively. From 

Table 4.6.1, it can be seen that an XOR gate can be used to distinguish these two 

states, carry propagation and carry generation. When XOR is "1", it indicates the carry 

propagation state. In this state, a carry-out signal only depends on a carry-in signal 

and is independent of input variables ai and bi . When XOR is "0", it indicates the 

carry generation state which can be further divided into two sub-states, "0" carry 

generation state and "1" carry generation state. It is also found that, in "0" carry 

generation state, both input variables ai and b i are "0", and in "1" carry generation 

state, both input variables a i and b i are "1". This means that, in the carry generation 

state, the carry-out signal can be determined by either a i or b i' and is independent of 

the carry-in signal. In this way, carry propagation and carry generation for each bit can 

be implemented by a single XOR gate instead of two gates, an XOR gate for carry 

propagation Pi = a i EB b i and an AND gate for carry generation g i = a i b i, which are 

used for the conventional implementation[Chan 90, Weste 93]. A complete circuit for 

a four bit adder is illustrated by Fig. 4.6.2 

92 



Chapter 4: Number Systems and Two Operand Adders 

- -, 

Carry Chain I 
Po I 

[ C out C in I ----
I 

L ~ 

53 52 51 

Fig. 4.6.2. A complete four bit CMOS carry chain adder. 

It is worth noting that gi is connected to ai in Fig. 4.6.2. According to the above 

analysis, gi can be also connected to b i instead of ai. 

A long carry chain may heavily decrease the propagation speed of a carry, because the 

delay of the carry chain is proportional to n 2 [Pucknell 88], where n stands for the 

number of pass transistors in series. For solving this problem, a long carry chain 

should be divided into small sections and a buffer is inserted between every two 

sections. 

In CMOS circuits, an INV can be used as a buffer with the minimum delay. In order 

to employ one INV as a buffer, a so-called "a" carry adder is introduced. "a" carry 

adder means that a carry signal is inverted, i.e., using "a" to replace "I" and "I" to 

replace "a" in the carry chain. It is achieved by adding an INV for the carry generation 

signal applied to each g i and c in. Therefore, the inverted carry signal is propagated 

along the carry chain. Finally, the sum S i should be non-complemented, this is 

obtained from the following equation 

s· =a· fBb· fBC:-1 =a· fBb· fBlfBc· 1 =a· fBb· fBc· 1 =p---:-fBc. 1 / 1 / /- / I /- I I 1- 1 /- (4.6.1) 

Operation of equation (4.6.1) is based on equations (2.2.7) and (2.2.9). Fig. 4.6.3 

shows a four bit "a" Carry adder 

93 



Chapter 4: Number Systems and Two Operand Adders 

alb 1 

C
out 

c. 
In 

53 52 51 50 

Fig. 4.6.3. A four bit "0" carry adder. 

For simplicity, the adder in Fig. 4.6.2 is also called "1" carry adder. In this way, any 

length of adder can be constructed by alternately connecting a "1" carry adder and a 

"0" carry adder with an INV as a buffer, see Fig. 4.6.4 

"1" carry "0" Carry "1" carry 

adder adder adder 

Fig. 4.6.4. A carry chain adder in series structure. 

94 



Chapter 4: Number Systems and Two Operand Adders 

It is possible to use only "1" carry adders and employ buffers to separate the blocks 

and these blocks are divided in terms of optimum delay[Guan 93]. In this situation, 

the design is more regular since only one basic cell needs to be designed, but the 

experiments show that the speed is about 10% slower than that based on two kinds of 

F As, "0" carry adder and "1" carry adder. In my experiment using Cadence suite with 

MIETEC 2.4 Illibrary, the worst time for a 32 bit adder with only "1" carry adders is 

20.1 ns , and the worst time for a 32 bit adder with "1" carry adders and "0" carry 

adders is 17.9 ns, assuming that a block consists of a four bit adder. 

The circuits of "0" carry adder and "1" carry adder, which are designed and used in the 

experiment, are shown in Fig. 4.6.5, these two circuits were designed using Cadence 

suite with MIETEC 2.4 Illibrary. 

The "0" carry adder requires 18 transistors and the "1" carry adder requires 16 

transistors. It is believed that both of these circuits are simpler than many existing 

versions of F As. It should be mentioned that these two kinds of F As are only 

minimised in circuit, measured by the number of transistors, but not optimized in the 

sizes of transistors, because this work is mainly concerned with the issue of logic 

minimization. Therefore, most of the circuits in the author's experiments, except 

buffers, use the standard size of transistors in a library. The circuits may be further 

optimized if the sizes of some transistors are changed. 

95 



Chapter 4: Number Systems and Two Operand Adders 

b~--------~------~ 

Ci 

f-----__ s 

tq~I~~---------------------------~p 

Co 

(a). "0" carry adder. 

CI 

N 
~------~~~'~-----------------------~p 

Co 

(b). "1" carry adder. 

Fig. 4.6.5 The circuits of "0" carry adder and "1" carry adder. 

96 



Chapter 4: Number Systems and Two Operand Adders 

In order to obtain higher speed, two identical carry chains can be constructed in a so­

called the carry chain select adder, which is derived from the pre-computed technique 

for the carry-select adder. The difference between them is that, the conventional carry­

select adder duplicates two identical ripple-carry adders [Hwang 79, Koren 93] which 

leads to a requirement for more components, and the carry chain select adder only 

duplicates carry chains and summation circuits. Consequently, the carry chain select 

adder uses less components and is as fast as the carry-select adder. Fig. 4.6.6 

illustrates a four bit carry chain select schematic 

o 
C out 

C ~ut 

2:1 MUX 

53 

2:1 MUX 2:1 MUX 

52 51 

Fig. 4.6.6. Carry chain select schematic. 

2:1 MUX 

50 

o 
C in 

o 

1 
C in 

In Fig. 4.6.6, a superscript indicates that a carry-in signal is pre-set to "0" or "1". The 

CMOS carry chain adder was compared with the sign-select adder[Srinivas 92] and is 

found better than it[Guan 93]. It is worth mentioning that the sign-select adder was 

97 



Chapter 4: Number Systems and Two Operand Adders 

considered by its authors to be better than the carry lookahead adder and carry-select 

adder. 

In this section, a CMOS carry chain adder architecture is presented. From this design, 

it can be found that in logic synthesis, a logic representation and its minimization is 

not as important as that for the carry lookahead circuit, because the algorithm used is 

directly concerned with a transistor level design. The only thing concerned with logic 

representation is equation (4.6.1), in which, it is seen that it is easy for RM logic to 

adjust an electrical polarity in a design. 

Although in the original design both Boolean logic and RM logic are hardly used, the 

basic building block (a FA shown in Fig. 4.6.2) is explained well by RM logic, which 

leads to another one bit adder design[Guan 95], i.e., a 5:3 counter which will be 

discussed in next chapter. 

Based on the carry chain adder proposed, two 32 bit carry-skip adders were 

constructed using the 2.4/-l library and simulated by Hspice simulator in the Cadence 

suite. The first adder, shown in Fig. 4.6.7, is divided into regular blocks (44444444), 

and the worst time is 11.2 ns. The second adder, shown in Fig. 4.6.8, is divided into 

near-optimal blocks (3458543) according to reference [Guyot 87], and the worst time 

is 8.5 ns. 

The results are compared with a 30 bit carry-skip adder constructed and simulated in 

2/-l CMOS, which was presented by Kantabutra[Kantabutra 93]. Kantabutra' s adder is 

optimized in blocks (24566421), its worst time is 12 ns. Although Kantabutra's adder 

is optimized in blocks, these two carry-skip adders mentioned above, the first not 

optimized and the second nearly optimized in blocks, are still faster. This has been 

demonstrated by an experiment in which, a four bit adder was constructed using the 

circuit[Kantabutra 93] and simulated using the same conditions as that in [Guan 93]. 

The worst delay ofthis four bit adder is 3.8 ns which is slower than 2.5 ns, the worst 

delay of the four bit adder of our design[Guan 93]. 

98 



Chapter 4: Number Systems and Two Operand Adders 

c 
U 

£[ 
~:J 

~o ~s 

~q 

~ 

zo ZS -.::t 
Zq -.::t 

-.::t 
-.::t 
-.::t 
-.::t 
-:::t 
-.::t 
'--' en 
~ 

£0 £S U 
£q 0 -,.0 

l-< ce -::l 
bl) 
Q,) 
l-< 

C .,..., 
N l-< 

'" Q,) 
0 "0 
<.> "0 

:;: ce 

• 0.. 
~ 
en 

I 
>-. 
l-< 
l-< 
ce 
U ..... 

:E 
C"l 
("<") 

~ 
t"-

'" -.::t 

oh .,..., 
~ 

99 



~ 
0 
0 

-$- cf1 C8 ¢ ~ £I=: 

FA NAND4 NAND3 NAND2 NOR2 OR2 

Fig. 4.6.8. A 32 bit carry-skip adder in near-optimal blocks(3458543). 

cB ., 
INY Transmission gate 

9 
{j 
~ 
"'"'l 

~ 

~ 
~ 
(\:) 
"'"'l 

~ 
~ 

~ 
r:.., 

~ 
~ o 

~ 
(\:) 

~ 
~ 

~ 
(\:) 

~ 



Chapter 4: Number Systems and Two Operand Adders 

4.7 Residue Adders 

The basic principle of the CMOS carry chain adder proposed can be employed to 

improve the implementation of residue adders, this is discussed in the following. 

There are several approaches to implement residue number addition, and the approach 

based on two binary adders is considered to be the fastest[Dulgate 92]. In the 

conventional design, two binary adders are used to implement a residue adder, one 

adder is used to implement the addition operation for variable+variable in the first 

cycle, and the other adder is used to perform the operation for variable+constant in 

the second cycle. This operation can be further described in the following. 

In the RNS, if two operands A and B < m, then (A+B) mod m can be defined as follows 

A+B<m 

A+B~m 
(4.7.1) 

where A + B ~ m is called the overflow condition. Two n bit binary adders may be used 

to implement this addition operation where 2 n ~ m, see Fig. 4.7.1 

A B 

Full adder 

Adder 1 

s 

Adder 2 

Total 

) 

--------7 

MUX&ORgate 

(a). Two adders with MUX. (b). Implementation time (worst delay). 

Fig. 4.7.1. Parallel scheme. 

101 



Chapter 4: Number Systems and Two Operand Adders 

In the first cycle, Adder 1 computes A + B, in the second cycle, Adder 2 computes 

A+B+2n -m, where 2 n -m is a correction factor, and finally, the correct sum result 

is selected by a MUX according to the following rule 

{
Sum2 

MUXoutput= 
Suml 

Carryl = 1 or Carry2 = 1 

Otherwise 
(4.7.2) 

The example in Table 4.7.1 illustrates this operation. Here, m=5, n=3, the correction 

factor is 23 - 5 = 3, two 3 bit binary adders are employed to implement modulo 5 

addition. 

Table 4.7.1. Modulo 5 addition using two binary adders. 

A+B Sum 1 Sum 2 Carry 1 Carry 2 Output 

0 0 3 0 0 Sum 1 

1 1 4 0 0 Sum 1 

2 2 5 0 0 Sum 1 

3 3 6 0 0 Sum 1 

4 4 7 0 0 Sum 1 

5 5 0 0 1 Sum 2 

6 6 1 0 1 Sum 2 

7 7 2 0 1 Sum 2 

8 0 3 1 0 Sum 2 

Another possible scheme is that the output of the overflow detection circuit is used to 

control Adder 2 to add the correction factor or not. An example of modulo 13 

addition is shown in Fig. 4.7.2 

102 



Overflow 

Chapter 4: Number Systems and Two Operand Adders 

A B 

Adder 1 

s 

---7 
Overtlow 

Total 

Adder 2 

(a). Two adders without MUX. (b). Implementation time(worst delay). 

Fig. 4.7.2. Serial scheme for modulo 13 addition. 

Implementation of this scheme, generally speaking, belongs to serial operation, and 

the complexity and delay of the circuit depend heavily on the modulo to be selected. 

For instance, modulo 12 in this fashion is simpler and faster than modulo 13, because 

modulo 12 contains partial parallel operation, see Fig. 4.7.3. 

A B 
Full adder 

) 

Adder 1 

" Adder 2(low part) 

Overflow 

Adder 2(high part) 

------------------~~ 
Total 

(a). Modulo 12 adder. (b). Implementation time. 

Fig. 4.7.3. The serial scheme for modulo 12 addition. 

It is worth mentioning that the decimal adder is a special case in RNS, i.e. the modulo 

10 adder. In the following, the parallel scheme will be discussed. The approach is also 

suitable for the serial scheme. 

103 



Chapter 4: Number Systems and Two Operand Adders 

From Fig. 4.7.1, it can be seen that Adder 2 is only used to add one variable (the sum 

for A+B) and one constant 2 n -m(correction factor), that is, one input of each stage 

in Adder 2 is always "0" or "1". In this case, the conventional binary adder can be 

simplified. Assume that x and i stand for the variable and constant applied to each 

stage of Adder 2, respectively, then the truth table for Adder 2 is given as follows 

Table 4.7.2. The truth table for simplified adder. 

One input is always "0" One input is always "I" 

i X Cin sO 0 
Cout 

g P i X Cin sl 1 
Cout g P 

0 0 0 0 0 0 0 1 0 0 1 0 0 1 

0 0 1 1 0 0 0 1 0 1 0 1 0 1 

0 1 0 1 0 0 1 1 1 0 0 1 1 0 

0 1 1 0 1 0 1 1 1 1 1 1 1 0 

Note that superscripts are used to differentiate between applying "0" and "I" to each 

stage in Adder 2, respectively. In Table 4.7.2, g stands for carry generation and p for 

carry propagation. Therefore, each stage in Adder 2 can be expressed as follows 

if i=O for this stage, then 

if i= 1 for this stage, then 

1 -­
S =xEtl cin ' 

o 
Cout = X·Cin 

The simplified adders are shown in Fig. 4.7.4 

104 

(4.7.1) 

(4.7.2) 



Chapter 4: Number Systems and Two Operand Adders 

x x 

out 

c 
out c 

5 5 

i=O i=l 

Fig. 4.7.4. Simplified adder cell for variable + constant. 

It should be noted that no constant i appears in these expressions and circuits. That is, 

the constant i is implicitly included in the simplified adder, and only one input 

(variable x) is applied to each stage of the simplified adder. Therefore, this design 

decreases not only the number of components, but also the connection wires. For 

example, in order to implement modulo 9 addition, a four bit adder is required, and 

24 - 9 = 7 (0111)z is the correction factor used to apply to Adder 2 as the constant 

input, the variable input is X=A+B (the sum of the first cycle addition), this can be 

shown by Fig. 4.7.5 

x, x, x, x, 

~--+-_____ - c ,. 

s, s, s, s, 

Fig. 4.7.5. The simplified adder for x+7. 

Although the simplified adder can be used to replace a complete adder, its speed may 

be still slow. One approach to speed up operation is to employ a carry lookahead 

scheme. Unfortunately, many residue adders only need shorter words, a larger modulo 

is rarely used. The carry lookahead scheme is not suitable for shorter words[Hwang 

79]. An experiment by the author demonstrates that if the length of operands is less or 

equal to eight bits, the CMOS carry chain adder is faster than all other high-speed 

105 



Chapter 4: Number Systems and Two Operand Adders 

adders known, including the carry lookahead adder and the carry-select adder. In 

addition, the CMOS carry chain adder is also simpler than all the other adders, 

including the ripple-carry adder. In the following, the CMOS carry chain adder is 

applied to residue adders. 

The rule to design a simplified adder for variable+constant based on the CMOS carry 

chain is defined in Table 4.7.3 

Table 4.7.3. Rule to design variable+constant 

adder based on CMOS carry chain. 

i=O p=x 
-

p=x i=l 

An example of a complete modulo 9 adder using the CMOS carry chain is shown in 

Fig. 4.7.6 

MUX2:1 

Fig. 4.7.6. Modulo 9 adder. 

106 



Chapter 4: Number Systems and Two Operand Adders 

In this section, residue adders are explored according to the structured design 

approach. In fact, some residue adders are also studied according to the unstructured 

design, that is, a logic function is established for a residue adder, and then, the 

simplified function is used to realize a circuit. In this way, not only can the design not 

be generalized, but also the resulting circuits are slower and more complex than that 

based on the structured design. From this section, it can be seen that the structured 

design, sometimes, is more important than logic representation and its minimization. 

In the next section, another design to show this is presented. 

4.8 On Line Adder 

The traditional addition operation is always performed from Isb to msb due to the 

nature of the carry scheme. Therefore, the traditional addition operation may be not 

efficient in some situations. For example, if the output is only expected to have a 

required precision, the traditional method must compute the digits that will eventually 

be discarded. Another example is that data are transferred in series with msb first. 

In this section, an addition algorithm from msb to Isb is proposed. This algorithm is 

influenced by Ercegovac and Lang's work[Ercegovac 87], where a conversion of 

redundant into conventional representations is developed. 

Algorithm: Two n bit 2's complement number A and B can be expressed as follows 

n-2 n-2 

A 2n-l" 2i = -an-l + L...ai , B=-b 2 n- 1 + "b· 2i n-l L... I 

i=O i=O 

The sum of A and B is 

n-2 

S=A+B=-(an_l +bn- 1 )2 n
-

1 + L(ai +b i )2
i 

i=O 

107 

(4.8.1) 

(4.8.2) 



Chapter 4: Number Systems and Two Operand Adders 

If only the n-k bit precision sum of A and B is wanted, equation (4.8.2) can be written 

as 

n-2 

S[k]=-(an_l +bn- 1 )2 n
-

1 + 2)ai +bi )2 i 

i=k 

(4.8.3) 

The procedure of performing equation (4.8.3) can be described by a recurrent equation 

(4.8.4) 

(4.8.4) 

According to equation (4.8.4), the value of a sum is computed starting from msb, i.e. 

from left to right, and the traditional addition operation is from right to left. However, 

this algorithm requires the propagation of a carry if both a k and b k are equal to 1. In 

order to avoid the propagation of a carry, two conditional forms can be employed, one 

assumes that there is a carry from the lower significant stage, the other assumes that 

there is no carry from the lower significant stage. Accordingly, the algorithm stated 

above can be modified as follows 

{
A[k] 

S[k]= B[k] 
if a carry from k -1 stage 

if no carry from k -1 stage 

Clearly, these two forms always keep a relationship which is 

A[k] = B[k]+2 k 

(4.8.5) 

(4.8.6) 

The operation of this algorithm is implemented from msb to Isb step by step. In every 

step, the truncated sum is kept in B assuming the lower order position to be zero. 

According to equation (4.8.5), the initial values should be 

108 



Chapter 4: Number Systems and Two Operand Adders 

A[n]=I, B[n]=O 

Any other values can be computed from the following equations 

{

B[k+l]+2 k 

A[k]= A[k+l] 

A[k+l]+2 k 

{ 

B[k+l] 

B[k]= B[k+l]+2 k 

A[k+l] 

00 

01,10 

11 

00 

01,10 

11 

The final result is 

S[O]=A[O] 

S[O] = B[O] 

if a carry from -1 stage 

if no carry from -1 stage 

An example is presented to illustrate the procedure 

Example: 

876543210 
A= 10101101 

B= 01100111 

109 

(4.8.7) 

(4.8.8) 

(4.8.9) 

(4.8.10) 



Chapter 4: Number Systems and Two Operand Adders 

k ak bk A[k] B[k] 

8 o 0 1 0 
7 1 0 10 01 
6 o 1 100 011 
5 1 1 1001 1000 
4 o 0 10001 10000 
3 1 0 100010 100001 
2 1 1 1000101 1000100 

1 o 1 10001010 10001001 
0 1 1 100010101 100010100 

Implementation of the algorithm is simple, it requires two n+ 1 bit registers to hold 

A[k] and B[k] since summing two n bit operands may generate a n+ 1 bit result. These 

registers can be shifted one bit left with the insertion of a one or zero in the Isb 

dependent on the variables a k and b k. This also requires parallel loading between the 

registers. Fig. 4.8.1 shows a four bit adder and its simulation generated using the 

Verilog simulator in the Cadence suite. 

In Fig. 4.8.1, the circuit is composed of three parts, shift register A including D flip­

flops AO-A4, shift register B including D flip-flops BO-B4, and a control unit. the 

control circuit is simple and the design is based on equations (4.8.8) and (4.8.9). 

Initially, flip-flop AO is set to one while other flip-flops are set to zero using 

PRESENT and CLEAR inputs. The operands A and B are applied in series bit by bit, 

msb first. The final result is stored in B register. Its every step delay is roughly 

equivalent to the delay of a full adder. The circuit is simple and highly modular, also it 

has a simple and regular interconnection requirement for data and control. Therefore, 

it is very suitable for VLSI implementation. 

110 



Chapter 4: Number Systems and Two Operand Adders 

AO I 

I Control Unit 
C C C C C I 

CLR CLR CLR I 
CLR CLR I 

I 

CLO~K 
I 

I 

PRE 
Q 0 I 

I -- _________ J 

80 
C C C C 

CLR CLR CLR CLR 

CLEAR 

(a). schematic. 

Cadence Wavetorm Display Ix in time_units] 

1-: :i~: : : :: :::::: : : : i : : : : : : : i : : : : : : : : : i : :' : : : : I 

1 : ::: : : : : : i : : : : : : : i : : : : : : : i : : : : : : : : : : : : : : : I 
1 : :i~ : i : : : : i : : : : i : : : i : : : : i : : : i : : : : i : i : : : i : : : I 
0 iA0 

: : : : : : : : : : : : : : : : : : : : : n ! : : : : : : : : : :': : : 1 : :i~l: : : ::::::::: / : : : ::: \::::: : : : : : : : : : : : : I 
0 

L~: : : : : : : : : : ::::: /: : : : ': : : : : : : : : I I : : : : : o IA3 

: : : : : : : : : : : : : : :: / : : : u I : : : : : : : : : : : : : : : : : 
1 : :L~4: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :n 
0 

:0: : 
: : : : : : : : : : : : : : : :::U I : : : : : : : :/ 

o ~1 
: : : : : : : : : : : : : : : : :1 : : : : : : : : : : : ::U I::::: : 

o ~' t-~: ••••••••• : •• :.:::;::.:.;.:.: •• : •• [::.:::.·.:5 
0- LB4 

: : : : : : : : : ' : : : : : : : : : : : : : : : : : : : : : : : : ::n I : : : 
0 10n 20n 30n 40n 50n 60n '0n 80n 90n 

(b). The waveform of simulation (test pattem:A=O 10 1, B= 1011). 

Fig. 4.8.1. A four bit on-line adder. 

111 



Chapter 4: Number Systems and Two Operand Adders 

4.9 Summary 

In this section, the three most widely used number systems are briefly introduced, and 

a review of two operand adders in the literature is presented. Two design methods in 

arithmetic circuits, structured design and unstructured design, are discussed. 

In the literature, it is not difficult to find that nearly all the highly efficient circuits for 

two operand adders designed previously are based on structured design, especially, 

employing the bit-slice principle[Hwang 79, Cavanagh 84, Scott 85, Koren 93]. In 

these existing circuits, the sizes of their basic building blocks are usually smaller, and 

also the types of these blocks are few. The most commonly used building blocks 

include FA, flip-flops, MUXs, etc., and the minimum implementations for these 

circuits have been extensively explored by many researchers and designers. In fact, 

further improving these circuits is not easily achieved by simply using RM logic or 

Boolean 10gic[Guan 95]. 

Although it is shown by some researchers that some benchmark addition functions are 

more compact in the RM domain, their results are not comparable to the existing 

circuits; the main reason for this is that their designs are based on unstructured design. 

The carry lookahead scheme is employed to show that again, the implementation 

based on individual gates that are often used in RM logic is more complex and slower. 

This result is believed to be applicable to most recursive functions. This is because in 

most recursive functions, each variable often appears in its true form or complemented 

form, but not both, in this case, it is hard to replace the XOR operation with the OR 

operation[Sasao 93A, Guan 94A]. But, it is also seen that it is easy for RM logic to 

adjust the electrical polarity, which is mentioned in the previous section. 

At the same time, a CMOS carry chain adder is presented. This adder is flexible, 

according to different applications, a simple serial adder, a carry chain select adder, or 

a skip-adder based on the CMOS carry chain adder can be constructed. These adders 

are faster and simpler than many previous designs[Srinivas 92, Guan 93]. This adder 

is also used for residue addition. 

An algorithm and its implementation for an on-line adder is proposed. This result can 

be applied to such situations in which the output of an addition operation is only 

expected to have a required precision, or a sequence of operations can be speeded up 

by overlapping the operations[Ercegovac 80]. In these situations, the traditional 

addition often can not be performed efficiently. 

From the adders presented, it is seen that the main basic building blocks are still FA, 

flip-flops, MUXs, etc .. This is because the logic representations, the Boolean form and 

the RM form, hardly affect an architectural or structural design. 

112 



Chapter 5. 

Carry Free Adders and 
Parallel Multipliers 

5.1 Introduction 

Like an adder, a multiplier is also considered to be an essential part not only for 

general-purpose computers, but also for various digital signal processors. Adders and 

multipliers are the most important parts for various logic systems, because many 

numerical calculations can be ultimately reduced to two essential operations, addition 

and multiplication. Therefore, like an adder, the speed of a multiplier is also a critical 

design parameter for many logic systems. A multiplier is considered the limiting 

factor in both the performance and die size of most chips today[Goto 92]. Thus, 

multipliers are often designed and fabricated as benchmarks for demonstrating various 

high-speed technologies[Yano 90]. 

In design, the basic principle, shift and add, still underlies many algorithms and 

implementations for multipliers. Depending on applications, a multiplier may be 

implemented in different implementation styles, such as bit-serial, bit-parallel, digit­

serial and on-line. In general, the design for a bit-parallel multiplier (simply called 

parallel multiplier), when compared to the others, is more closely related to the issue 

of logic minimization. In contrast, the design of the others are more concerned with 

timing. Since this project is mainly concerned with logic representations and their 

minimization, parallel multipliers are explored more than the others. It is also related 

only to fixed point multiplication, because floating point operation is based on fixed 

point operation and considered at a higher level. 

113 



Chapter 5: Carry Free Adders and Parallel Multipliers 

A parallel multiplier is traditionally realized in the 2's complement number system. It 

also can be found that some non-traditional number systems, such as the SD number 

system and the RNS, are exploited for implementing a parallel multiplier. The SD 

number system attracted many researchers' interests recently especially regard to its 

application on parallel multipliers[Takagi 85, Kuninobu 87, Srinivas 91, Makino 93, 

Huang 94, Phatak 94]. 

Firstly, a review of the previous work in the literature is presented. Secondly, a 

general structure for the parallel multiplier is described, which outlines most designs 

of parallel multipliers. Thirdly, carry free adders, the core of a parallel multiplier, are 

briefly introduced. The redundant binary adder and the 5:3 counter, two types of the 

most widely used means for implementing the carry free adder, are studied separately. 

The converter from a binary SD number to a binary number is also studied. Later, a 

unified structure for the redundant binary adder and the 5:3 counter is investigated, 

and implementation comparison and evaluation for these two schemes are discussed. 

Finally, a variant of the Baugh and Wooley algorithm is generalized. This algorithm is 

employed in our previous design[Guan 94B], and also this design is further improved 

for large operands. 

5.2 Review of Multipliers 

Compared with an adder, a multiplier is more complex, since multiplication is 

generally implemented via a sequence of addition and shift operations. In the early 

days, because the hardware implementation was very expensive, multiplication was 

often performed by software or by employing an adder with some registers [Hwang 

79]. With the advance of electronics, multipliers became a standard part for many 

logic systems. In design, there are several kinds of multipliers which can be chosen 

according to different applications. 

A bit-serial multiplier (simply called serial multiplier) is the simplest form of 

multiplier. In most situations, it is assumed that the multiplicand bits are applied to the 

circuit in a parallel fashion and the multiplier bits are applied to the circuit in a serial 

fashion, therefore, a serial multiplier is also called a serial-parallel multiplier 

sometimes. The same assumption is used in the following. 

A serial multiplier generates the bits of the product sequentially starting with Ish. In 

each step, one bit of the multiplier is examined to determine the multiplicand to be 

added or not. A serial multiplier is traditionally designed in carry save addition and 

shift structure, and for n bit operation, 2n clock cycles will be required to complete the 

process where n clock cycles are used for n row carry save additions, and the other n 

114 



Chapter 5: Carry Free Adders and Parallel Multipliers 

clock cycles are utilized only to propagate the remammg carries. Gnanasekaran 

modified the traditional implementation[Gnanasekaran 85] so that his circuit operates 

in carry save addition and shift structure for the n first clock cycles and reconfigures 

itself in n bit ripple-carry addition structure at the (n+1) clock cycle. This design 

eliminates the delay due to storage elements during the last n clock cycles, and results 

in about one-third increase in speed for an approximately one-third increase in 

hardware. 

Another interesting design for a serial multiplier was presented by Ait-Boudaoud et 

al[Ait-Boudaoud 91]. They eliminate the broadcast of data over a long path which 

may reduce the clock frequency in VLSI implementation. As a result of this, the 

structure of the circuit is more modular when compared to the previous approaches, 

where the data moves from one cell to its adjacent cell sequentially. This has reduced 

enormously the effect of stray capacitance by the use of long paths. This original 

design is only for unsigned numbers. Recently, Moh and Y oon modified this result to 

a 2's complement case[Moh 95]. 

It is not difficult to find that in nearly all designs for a serial multiplier, the emphasis 

is on a structure and timing design rather than logic minimization, because in the 

structured design, the resulting basic building blocks are still F As which are assumed 

to have been optimized. 

Although a serial multiplier is simple, it can't satisfy many applications with high­

speed, in this situation, a parallel multiplier is required. An array scheme can be 

employed for constructing a parallel multiplier in a very regular structure, but it is still 

considered to be not fast enough for many high-speed applications, since its speed is 

proportional to the length of operands. In order to further advance the speed, Wallace 

suggested a scheme for a fast parallel multiplier[Wallace 64], therefore, this scheme 

was termed the Wallace tree later. In his design, Wallace used F As and realized a 

circuit in tree form to reduce n partial products (PPs) to two in a 3:2 ratio, then, a carry 

propagation adder was used to add these two PPs. An improvement on the Wallace 

tree has been made by Dadda[Dadda 65], who devised an arrangement that uses fewer 

F As, although the same number of levels is required. Dadda found that the last level 

produces two PPs, the preceding level has at most 3, its predecessor at most 4, and so 

on. Thus, a series 2,3,4,6,9,13,19,28 ...... is formed, i.e.l NX~J is used to determine a 

following number, where Lx J means the greatest integer not greater than x and N 

stands for a number in the series (the least number of N is 2). In order to minimize the 

number ofF As in the total structure, the design is started by using only enough F As in 

the first level to reduce the initial n PPs to one having a number of PPs equal to one in 

the series[Dadda 65, Scott 85]. Dadda also generalizes a parallel multiplier design in 

115 



Chapter 5: Carry Free Adders and Parallel Multipliers 

two steps, one is carry free addition and the other is carry propagation addition. In 

carry free addition, he proposes so-called parallel n:m counters, in which, FA is only a 

special form of them. The carry free adder design based on parallel counters was 

further refined by Swartzlander et al[Swartzlander 73, Mehta 91]. In addition, the idea 

of a n:m counter was extended by Stenzel et al to include counters with inputs that 

have different weights[Stenzel 77], namely, these inputs can come from different 

columns in a PP matrix. These counters are described as (ck-l 'Ck-2 ,.··,co ,d) 

counters, where k is the number of input columns, c i is the number of inputs in the 

column of weight 2 i , and d is the length of output as required. Counters like (5,5,4), 

(2,2,2,3,5) and (3,3,3,3,6) were suggested to reduce PP matrix height to two rows. In 

Stenzel et aI's work, many complex counters are often based on ROM implementation, 

which is considered to be impractical for a practical application since ROMs are slow 

and occupy substantial area [Mehta 91]. Besides ROM implementation, it is hard to 

find an efficient circuit for these counters with more than, say, eight inputs, in the 

literature. In most practical designs, the inputs for a counter as a basic building block 

is five or less. 

SD number representations were first introduced by Avizienis[Avizienis 61] for fast 

parallel arithmetic, especially for multiplication and division. Because of the 

redundancy in SD number representations, a carry propagation can be limited to two 

adjacent positions of the operands in addition and subtraction. In this way, a SD 

number adder can be used to perform carry free addition for a parallel multiplier. 

A vizienis presented a structure of SD number adder; this structure was further 

explored by Chow and Robertson[Chow 78] in binary SD form, where the SD number 

adder was called redundant binary adder. Because a number in binary SD 

representation has three values, i.e. {l,O,I}, it is necessary to code it in binary logic, 

which is often termed format or coding. Chow and Robertson indicated that different 

formats will lead to different circuit complexity, and they demonstrated this by 

presenting some formats in logic form. They also presented a procedure for logical 

design of a redundant binary adder. The basic principle to design a redundant binary 

adder described by Chow and Robertson is widely employed. 

The first design to use redundant binary adders in binary tree fashion for a parallel 

multiplier, probably, was proposed by Takagi et al[Takagi 85]. The speed of their 

design is considered to be almost the same as that by a multiplier with the Wallace 

tree, but the circuit is much more regular than that based on the Wallace tree. 

Therefore, this design is more suitable for VLSI implementation. Unfortunately, the 

redundant binary adder used in Takagi et aI's design is too complex, so that this 

multiplier may be not as fast as expected. 

116 



Chapter 5: Carry Free Adders and Parallel Multipliers 

Similarly to the case for FA, the minimum circuit for a redundant binary adder is also 

pursued by many researchers. One version with 42 transistors in CMOS was presented 

by Kuninobu et al[Kuninobu 87], and it is believed that it is the minimum redundant 

binary adder circuit known. For the same length of operands, different formats also 

require different number of levels to implement carry free addition for a parallel 

multiplier. This was found by Makino[Makino 93] et al and Huang et al[Huang 94] 

independently. In both of these two designs, a level of redundant binary adders is 

reduced when compared to the conventional implementation[Takagi 85, Kuninobu 

87]. 

Another interesting application of binary SD representation is the attempt to combine 

binary SD representation with normal binary representation in design, which is called 

hybrid (signed-digit) number representations, and this can be found in some 

researchers' work[Srinivas 91, Phatak 94]. At present, the merit of introducing the 

hybrid number (system) representation in design is not clear, because the designs 

proposed by Srinivas et al and Phatak et aI, in fact, have not improved previous 

designs. 

Since some basic operations, such as addition, subtraction, and multiplication, are 

carry free, therefore, using RNS for a parallel multiplier has been of interest to some 

researchers. A recent design[Razavi 92] shows that 2's complement multiplier based 

on RNS still cannot compete with existing designs based on 2's complement number 

or binary SD number. A critical factor for this is that the conversion between a binary 

number and a residue number is too complex, especially for the conversion from a 

residue number to a binary number which is still a bottleneck problem for many 

practical applications. 

In many situations, a direct and simple operation for 2's complement numbers is 

desirable. Baugh and Wooley have done significant work in this area. They presented 

an algorithm that can generate a PP matrix in which only adders are required instead 

of adders and subtracters[Baugh 73], and this algorithm is called the Baugh and 

Wooley algorithm. It is also possible to reduce PPs initially, and this has been 

demonstrated by a well-known algorithm termed the modified Booth algorithm that 

was developed by MacSorley[MacSorley 61] from Booth's previous work[Booth 51]. 

In his work, Booth presented a two bit scanning approach for multiplication, which 

was modified by MacSorley to three bit scanning, i.e. the modified Booth algorithm, 

and it has been further developed and generalized as multiple bit scanning 

technique[Vassiliadis 89, Sam 90]. It should be mentioned that the modified Booth 

algorithm can also be employed by a serial multiplier. 

117 



Chapter 5: Carry Free Adders and Parallel Multipliers 

It can be also found that for some applications, a serial multiplier is too slow and a 

parallel multiplier is faster than necessary, in this situation, a digit serial multiplier can 

be employed[parhi 90]. 

In multiplier design, the critical task of logic level design is to attempt to generate 

optimum basic circuits, particularly for the circuits which are used highly repeatedly 

in the design. The minimum logic implementation for some of the most widely used 

modules, such as F As, flip-flops, MUXs, redundant binary adders, always attracts 

research interests. 

5.3 A General Structure for Parallel Multiplier 

A general structure for a parallel multiplier can be divided into three functional 

blocks, it is shown in Fig. 5.3.1 

A B 

! ! 
PP Generator 

--------------------- k PPs 

Carry Free Adder 

2 PPs 

Carry Propagation Adder 

! 
s 

Fig. 5.3.1. A general structure for parallel multiplier. 

118 



Chapter 5: Carry Free Adders and Parallel Multipliers 

These three blocks can be often studied separately and described as follows 

Partial Product Generator (PPG): 

PPG is used to generate a PP matrix. A straightforward method to generate a PP 

matrix can employ a group of AND gates, the result will include k=n PPs, where n 

stands for the length of the multiplier. Although this method is simple, it will increase 

the complexity of CFA if 2's complement number is required. This is because both 

addition and subtraction are needed in CF A. The Baugh and Wooley algorithm can be 

used to solve this problem. The Baugh and Wooley algorithm will generate a PP 

matrix from which, only addition is required in CF A. This will simplify a design. The 

multiple bit scanning technique[Vassiliadis 89, Sam 90] may be used to reduce PPs 

initially in the matrix. In this case, the number ofPPs is k=n/(q-l), where q stands for 

the number of bits to be scanned. In general, the complexity of PPG will increase very 

quickly as q increases. Therefore, a large value of q is rarely employed. In most 

situations, q=3 is used, it is known as the modified Booth algorithm. 

Carry Free Adder (CF A): 

k PPs generated in PPG are applied to CF A in which, k PPs are handled in carry free 

addition fashion until two PPs are left, and these two PPs are applied to CP A. CF A 

can be realized using n:m counters, e.g. 3:2 counter (i.e. full adder), 5:3 counter, 7:3 

counter, etc., where n and m indicates the number of inputs and outputs, respectively. 

It is also possible to employ other number systems to implement CF A. Besides the 2's 

complement number system, the binary SD number system is commonly used, in 

which, a binary SD adder (i.e. the redundant binary adder) is required. In this case, a 

converter from binary SD numbers to 2's complement numbers is needed instead of a 

CPA. It should be mentioned that conversion from a 2's complement number to a 

binary SD number is not necessary, because the former can be considered to be a 

special case of the latter. CF A occupies more than half area of the chip for a parallel 

multiplier, therefore, many designs focus on how to reduce the area of CF A. 

Carry Propagation Adder (CPA): 

The two PPs from the CF A are applied to the CP A to calculate the final result. The 

CPA, which is actually a two operand adder described in Chapter 4, can't avoid a carry 

propagation problem. When the CF A is realized in the binary SD number system, as 

mentioned above, the converter is required to replace the CF A. In practice, the 

converter is quite similar to a two operand adder, this is because, nearly all algorithms 

119 



Chapter 5: Carry Free Adders and Parallel Multipliers 

for a converter are derived from equation (4.2.7), which eventually leads to solving 

the same problem, a carry propagation, as that for a two operand adder. 

The structure for a parallel multiplier described above is most widely employed in 

practical designs. So far, many algorithms and implementations for each one of the 

three functional blocks have been presented. 

Another interesting method to design a multiplier with large operands is that, a 

multiplier can be first divided into some relatively smaller blocks, which is based on 

the following idea 

P=AxB=(Ah ·A[ )x(Bh ·B[) 

=Ah xBh +Ah xB[ +A[ xBh +A[ xB[ 
(5.3.1) 

where the subscripts h and I identify the high part and the low part, respectively, and 

the dot "." refers to concatenation. A study shows that this design method still leads to 

a circuit structure similar to that in Fig. 5.3.1 [Mekhallalati 92]. 

5.4 Carry Free Adders 

The CF A is usually realized employing n:m counters whose resulting circuits often 

rely largely on logic optimization methods. A general module of n:m counter is a 

combinational network with n inputs and m outputs where the outputs express the 

count of the number of inputs that are l's. This can be illustrated by Fig. 5.4.1, and the 

relationship between the inputs and outputs is expressed by equation (5.4.1). 

120 



Chapter 5: Carry Free Adders and Parallel Multipliers 

n inputs 

1 1 1 

n:m counter weights 

2 d 2 d-l 2° 

m outputs 

Fig. 5.4.1. A general module ofn:m counter. 

d d-l 0 
Xn-l +X n-2 +······+Xo =ym- 1 2 +Ym-2 2 +······+Yo 2 (5.4.1) 

Where xi ,Y i E {O, I}, d is chosen equal to Llog2 n J, i.e., the largest integer that is less 

than or equal to log 2 n . 

An example in Fig. 5.4.2 is employed to show the CFA constructed usmg n:m 

counters, this is a 7:3 compressor with the 7:3 counters. The so-called 7:3 compressor 

means that the CF A can reduce PPs in a 7:3 ratio. Similarly, other compressors can be 

named. 

7:3 counter 

4 2 

7:3 counter 

4 2 

7:3 counter 

4 2 

Fig. 5.4.2. A 7:3 compressor with 7:3 counters. 

121 



Chapter 5: Carry Free Adders and Parallel Multipliers 

Since a carry free adder is realized using a lot of identical (or similar) modules, a 

critical factor for designing a CF A is to design the basic building block(s). An n:m 

counter can be implemented using various approaches, such as ROM, PLA, and the 

combinational circuit design approach. It can be also implemented based on F As. The 

former two approaches, ROM and PLA, usually do not yield efficient circuits since 

both ROM and PLA are slow and occupy substantial area. When the approach based 

on F As is used, this actually leads to a circuit similar to the Wallace tree, leaving 

some room for improvement. The combinational circuit design approach can generate 

a circuit which usually is faster and simpler than that based on the other approaches, 

and the result of the combinational circuit design approach may be significantly 

influenced by the means of logic minimization. 

Although an arbitrary n:m counter can be employed for CF A implementation, in 

practice, the counters with smaller variables, such as FA, 5:3 counter and redundant 

binary adders, are used much more widely than that with larger variables. The main 

reason for this is that, it is very difficult to find a higher-performance circuit for the 

counters with larger variables, when compared to FA, 5:3 counter, and RBA. 

5.5 Redundant Binary Adder (RBA) 

It is well known that the main shortcoming of the Wallace tree is that it uses F As to 

construct a CF A in a 3:2 ratio, and this leads to an irregular circuit which is difficult to 

realize in VLSI. In order to overcome this problem, a 4:2 compressor scheme is 

suggested, this can reduce a PP matrix to two PPs in a 4:2 ratio. This scheme will 

generate a regular and symmetric circuit that can be realized in binary tree fashion. 

As stated previously, the CF A can be realized not only in the binary number system, 

but also in the binary SD (BSD) number system. In the BSD number system, a basic 

building module which is often called the RBA (the redundant binary adder)[Chow 

78, Takagi 85, Huang 94] is used. This is shown in Fig. 5.5.1 

122 



Chapter 5: Carry Free Adders and Parallel Multipliers 

i+1 i-1 

X i+1 Y i+1 

Fig. 5.5.1 The structure ofRBA. 

Every stage of the RBA has three blocks which are marked 1, 2 and 3. x; and y; are 

primary inputs, and S; is primary output. mi' (1;*, d;, and hi are intermediate 

variables. The variables with "*" indicate that they have three states, for each of these 

variables, two bits will be required to represent it in binary logic. The RBA structure 

can be further decomposed into two levels, the upper level and lower level. The upper 

level is composed of blocks 1 and 2. The lower level consists of only block 3. 

Therefore, the mathematical relationships of RBA are: 

(5.5.1) 

(5.5.2) 

Equation (5.5.1) is for the upper level and equation (5.5.2) for the lower level. Where, 

x;, y;, and S; E {l,O,l}, di and mi E{O,l}, and hi E{l,O}. It should be noted that a; is 

eliminated. 

Chow and Robertson studied nine types of codings for the number representations of a 

RBA and they called them formats[Chow 78]. The logic expansions of these nine 

formats based on Boolean logic were studied by Chow and Robertson. In this project, 

all functions of these nine formats based RM logic are studied using the RM logic 

123 



Chapter 5: Carry Free Adders and Parallel Multipliers 

synthesis programs developed at Napier University. The study shows that only format 

2 has a better result. Table 5.5.1 lists these results, the numbers in the table indicate 

the number of transistors required for a given format. 

Table 5.5.1. RBA comparison between Boolean logic and RM logic. 

Format 1 2 3 4 5 6 7 8 

Boolean 80 50 52 64 52 76 70 74 

RM 82 40 52 64 54 106 84 84 

The structure for a parallel multiplier based on RBAs is shown as follows 

PPs 

I --------

I 
I 
I 
I 

--= •. . --=-: -=-- --=-: --= M 
/ : 

/ I 
4:2 Compressor Tree 

/ 
/ 

/ 

Converter 

[2]- RBA 

o - the simplified RBA 

CFA 

Fig. 5.5.2. A 4:2 compressor structure for parallel multiplier. 

9 

80 

116 

In Fig. 5.5.2, block 1 is a normal RBA, and block 2 is a simplified RBA. Because 2's 

complement number is a special form of BSD number, when PPs are applied to CF A, 

not only is a conversion from a 2's complement number to a BSD number 

124 



Chapter 5: Carry Free Adders and Parallel Multipliers 

unnecessary, but also the adder of the first level can be further simplified[Kuninobu 

87]. In general, a simplified RBA requires less than half of the components for a 

normal RBA and has half the delay of a normal RBA. 

5.6 Conversion between 2's Complement and RBSD Numbers 

When a multiplier is designed using RBA, the resulting BSD number has to be 

converted back to a 2's complement number. In practice, CPA and the converter are 

very similar, the main reason is that both of them require a carry (borrow) propagation 

operation. This is because nearly all algorithms for the converter are derived from 

equation (4.2.7), as mentioned earlier. The main difference between them is that the 

converter may be simplified if some coding, e.g. format 2, is used[Yen 92]. 

In principle, both CPA and the converter contain three parts, i.e., Carry (or Borrow) 

Control Logic (CCL), Carry (or Borrow) Logic (CL), and Summation Logic (SL), 

which is illustrated in Fig. 5.6.1 

PP PP 

Carry Control Logic 

Carry Logic CPA or Converter 

Summation Logic 

s 

Fig. 5.6.1. The unified structure for CPA and the converter. 

The two PPs, generated from the CF A, are applied to the CCL. The CCL consists of 

two simple functions, carry (borrow) generation gi and carry (borrow) propagation 

Pi' The CL can employ many speed-up techniques, such as the carry lookahead, the 

carry skip, the carry select, the Manchester carry chain, and so on. The SL is very 

simple, with one bit corresponding to one XOR gate. 

Two generalized algorithms for the converter are described in the following, both of 

them are independent of format used. 

125 



Chapter 5: Carry Free Adders and Parallel Multipliers 

Algorithm 1 (based on addition): 

carry generation gi = 1 if x; = 1 , otherwise, gi = 0 ; 

carry propagation Pi = 1 if x; = 0 , otherwise, Pi = 0 ; 

carry Ci = Ci-l if Pi = 1, otherwise, Ci = gi (CI = 1); 

k-l 
final result is: ~)i x Si + 1 . 

i=O 

Algorithm 2 (based on subtraction): 

borrow generation gi = 1 if x; = -1 , otherwise, gi = 0 ; 

borrow propagation Pi = 1 if x; = 0 , otherwise, Pi = 0 ; 

borrow Ci = Ci-l if Pi = 1, otherwise, ci = gi (Cl = 0); 

k-l 

final result is: ~)i xSi. 
i=O 

These two algorithms are very similar because addition and subtraction of 2's 

complement numbers are very similar. Note that gi' Pi' and Ci' in circuit, are identical 

for the CL and SL circuits, therefore, the same symbols are used irrespective of carry 

or borrow. Furthermore, CL and SL can be considered format-independent, i.e., they 

are the same for all formats and CP A. 

It should be mentioned that On-the fly algorithm[Ercegovac 87] for a converter used 

in a multiplier without CP A[Ercegovac 90], in fact, is a sequential operation[Komerup 

94], therefore, this algorithm is probably not very suitable for a general parallel 

multiplier. 

5.75:3 Counter 

In order to construct a 4:2 compressor in the 2's complement system, a structure 

similar to that ofRBA[Chow 78] is employed. This is shown in Fig. 5.7.1 

126 



Chapter 5: Carry Free Adders and Parallel Multipliers 

;+1 ;-1 

a c a c 

COull 1 COull 1 
-------- rna rn

1 --------

2 c. 2 C in In 

C out2 S S 

Fig. 5.7.1. A 4:2 compressor based on 5:3 counter. 

In Fig. 5.7.1, it can be seen that the basic building module is divided into two blocks 

and each module includes five input variables, a, b, c, d, and C in , and three outputs, S, 

C outl , and C out2 . mo and ml are intermediate variables, in the design, they can not be 

concerned. The relationship between the inputs and the outputs can be expressed as 

follows 

a+b+c+d+Cin =S+2Coutl +2COUI2 (5.7.1) 

It can be seen that this is a 5:3 counter, but it is different from the normal one 

described previously where, every output has a different weight. In this 5:3 counter, 

there are two outputs which have the same weight. Another important difference from 

the normal one is that, in this 5:3 counter, one output Coutl depends only on a, b, c, 

and d, which are termed local variables. Coull is connected to C in of the next stage. 

The outputs S and C out2 are connected to the inputs of next level. In this way, a carry 

is limited within two adjacent stages. The principle of carry free for a 5:3 counter is 

similar to that for the RBA. 

In the design ofthis special 5:3 counter, S can be easily obtained, it is 

(5.7.2) 

127 



Chapter 5: Carry Free Adders and Parallel Multipliers 

One thing should be dealt with, that is, when two or three of five input variables are 

equal to "1", one of two carries, C out 1 and C out 2, should be set to "1", this is 

illustrated in Table 5.7.1 

Table 5.7.1. The simplified truth table for 5:3 counter. 

Value S Coutl Cout2 

0 0 0 0 

1 1 0 0 

2 0 7 7 

3 1 7 7 

4 0 1 1 

5 1 1 1 

In Table 5.7.1, Value stands for the number of the five input variables equal to one, 

"7" means that either C outl or Cout2 is set to one, but not both. In other words, it 

requires the function of one carry to be decided first. Because C out 1 is restricted more 

strictly than Cout2 (C outl depends on the four local input variables and Cout2 depends 

on all the input variables), the function of Coutl should be determined first. 

In principle, Coutl is set to one when any two of the four local variables equal one, 

therefore, C out 1 can be derived from any two or any three of the four local input 

variables, or all four. In practice, the number of the variables can only be selected as 

three or four, this can be verified using a complete truth table. Appropriate selection 

of the number of input variables for Coutl will make a circuit simple. 

In this design, three local variables are selected for C out l. Assume that these three 

variables are b, c, and d. In fact, this is the carry function of the FA known as the 

majority function, therefore, according to equation (3.7.3), C outl can be expressed as 

C out 1 = be ffi bd ffi cd 

= be ffi bd ffi cd ffi d d (adding term d d = 0 doesn't affect the validity of equation) 

= b( effi d)ffi d( effi d) 
(5.7.3) 

= b (e ffi d)ffi d( e ffi d) (according to equation (2.2.9» 

128 



Chapter 5: Carry Free Adders and Parallel Multipliers 

After Coull has been decided, this also decides a complete truth table for the 5:3 

counter, it is shown by Table 5.7.2. 

Table 5.7.2. The truth table for 5:3 counter. 

Cin a b c d Value S Coull Coul2 

0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 1 0 0 

0 0 0 1 0 1 1 0 0 

0 0 0 1 1 2 0 1 0 

0 0 1 0 0 1 1 0 0 

0 0 1 0 1 2 0 1 0 

0 0 1 1 0 2 0 1 0 

0 0 1 1 1 3 1 1 0 

0 1 0 0 0 1 1 0 0 

0 1 0 0 1 2 0 0 1 

0 1 0 1 0 2 0 0 1 

0 1 0 1 1 3 1 1 0 

0 1 1 0 0 2 0 0 1 

0 1 1 0 1 3 1 1 0 

0 1 1 1 0 3 1 1 0 

0 1 1 1 1 4 0 1 1 

1 0 0 0 0 1 1 0 0 

1 0 0 0 1 2 0 0 1 

1 0 0 1 0 2 0 0 1 

1 0 0 1 1 3 1 1 0 

1 0 1 0 0 2 0 0 1 

1 0 1 0 1 3 1 1 0 

1 0 1 1 0 3 1 1 0 

1 0 1 1 1 4 0 1 1 

1 1 0 0 0 2 0 0 1 

1 1 0 0 1 3 1 0 1 

1 1 0 1 0 3 1 0 1 

1 1 0 1 1 4 0 1 1 

1 1 1 0 0 3 1 0 1 

1 1 1 0 1 4 0 1 1 

1 1 1 1 0 4 0 1 1 

1 1 1 1 1 5 1 1 1 

129 



Chapter 5: Carry Free Adders and Parallel Multipliers 

From the complete truth table, initially, Coul2 can be represented as 

(5.7.4) 

* This initial expression is got from a RM logic synthesis program developed at Napier University. 

Similarly to COUll> Cout2 can be derived as 

Cout2 = Cina$Cind$Cinc$ Cinb$ab$ad$ac 

= Cin(a$ b$c$ d)$ a(b$c$ d) 
= Cin(a$ b$c$ d)$ a(b$c$ d) 

= Cin(a$ b$c$ d)$ a(a$ b$c$ d) 

= Cin(a$b$c$d)$ a(a$b$c$d) 

(5.7.5) 

It can be found that equations (5.7.2), (5.7.3), and (5.7.5) include many common 

factors that can be shared to construct a simpler circuit[Guan 95] as shown in Fig. 

5.7.3 

a 
b 

L-___ ---+---___ -+_~ ... --+--+--C'Ut2 

L-_+-----; '-'>--f---C ,ul1 

Fig. 5.7.3. A 5:3 counter. 

130 

s 



Chapter 5: Carry Free Adders and Parallel Multipliers 

This design is based on RM logic, and it is believed that equation (5.7.2) is the most 

compact expansion for five variable mod 2 sum, which also leads to the minimum 

implementation by using four two-input XOR gates. The other two variables, C out1 

and Cout2 are handled so that their expansions match that of S to generate common 

factors as much as possible[Guan 95]. In this case, it can be seen that the design based 

on RM logic is better than that based on Boolean logic, since it is not easy for the 

initial SOP forms for Cout1 and Cout2 to match equation (5.7.2). 

From this design, it can be seen that RM logic, sometimes, can solve a problem which 

is not easily solved in Boolean logic. 

5.8 A Unified Structure for 4:2 Compressor 

It can be easily seen that the range of values for equation (5.5.1) is {-2~3}. If equation 

(5.5.1) is biased (scaled) by a constant 2, namely, a constant 2 is added to both sides 

of equation (5.5.1), then its range of value becomes {O~5}. In practice, it is not 

necessary for a constant 2 to appear in equation (5.5.1), because the constant is 

assimilated by variables, x; , y; and hi' That is, x;, y; and hi are biased by 1. As a 

result, x; and y; E {O,1,2} , and hi E {O,l} . 

As stated above, in binary logic, two bits will be required to represent x; , y; , or s; . 
Assume that x; , y; , and st are represented by pairs xixT, yiYl and S1ST, respectively. 

Consequently, equation (5.5.1) can be rewritten in the following form 

(5.8.1) 

If it is defined that xi, xl, yi and YT E {O,l} , and xiXT = xi + xT, yiYT = yi + YT , equation 

(5.8.1) becomes equation (5.8.2) 

(5.8.2) 

Equation (5.8.2) represents a 5:3 counter, and its range of value is {O~5}. Compared 

with equation (5.7.1), there is nothing different but the symbols used. According to 

131 



Chapter 5: Carry Free Adders and Parallel Multipliers 

the analysis above, the upper level of the RBA and the 5:3 counter have a similar 

circuit structure and similar relationships between inputs and outputs. The difference 

between them is that, firstly, in the mathematical relationship, the 5:3 counter is a 

RBA biased by a constant 2. Secondly, in logic design, the number representation of 

the 5:3 counter is fixed, but for the RBA, there exist many different number 

representations, which are often called formats or codings as mentioned earlier, which 

is why block 3 (see Fig. 5.5.1) is required. Block 3 is used to transfer the intermediate 

variables c4 and bi - 1 to siSf in a given format. 

Broadly speaking, the upper level of RBA (block 1 and 2) is a type of 5:3 counter 

termed biased 5:3 counter, because there is a simple addition relationship between its 

five inputs and three outputs. In other words, a RBA, in circuit structure, can be 

considered as a 5:3 counter with a coding circuit, this coding circuit is block 3. 

5.9 Implementation Comparison and Evaluation 

The circuit complexity for the RBA may vary depending on the format used. Chow 

and Robertson presented formats 1~9 in Table 5.9.1, and concluded that formats 2, 4, 

and 5 have the simplest logic representations[Chow 78]. In practice, according to the 

author's design and a survey of the literature, the circuit for format 2 is simpler and 

faster than that for formats 4 and 5. 

Table 5.9.1. Various formats for RBA and their Pi and gi functions. 

* Codings (Formats) Xi 

1 2 
Xi Xi 

1 2 3 4 5 6 7 8 9 10 11 CPA 

00 0 0 0 0 d 0 0 1 -1 0 0 0 

01 1 1 1 1 1 1 1 1 1 -1 -1 1 

10 -1 d 0 -1 0 1 -1 0 0 1 1 1 

11 0 -1 -1 d -1 -1 -1 -1 -1 d 0 2 

xl EBx'f 
- - xl+xr - xJ+xl x;+xl 12 12 xJ+xr xl EB xl x;EBy; Pi x2 X?- x2 Xi Xi Xi Xi 

I I I 

12 X~ 1 2 X~ x!x2 1 2 X~ x!xf 
-

x?-
-

gi Xi xi Xi Xi xlG:lxl x!x2 XiYi Xi Xi I ! I I I I I I I I 

Note: d means don't care. 

132 



Chapter 5: Carry Free Adders and Parallel Multipliers 

It should be noted that a function with the simplest logic representation in theory may 

not always generate the minimum circuit implementation in some circuit technologies. 

Here, instead of theoretical analysis, a survey of practical designs in CMOS circuits is 

given, and a comparison and evaluation based on this survey is presented. Table 5.9.1 

lists various codings from the survey. The complexities of gi and Pi are also shown in 

the table. 

Formats 1~9 are those shown by Chow and Robertson, and all their logic 

representations for RBA can be found in [Chow 78]. Of the nine formats, format 1 is 

used by Balakrishnan and Burgess[Balakrishnan 92], and is also employed to design a 

parallel multiplier in hybrid number representation[Srinivas 91]; format 2 is used in 

[Kuninobu 87, Yen 92]; format 4 is used in [Harata 87, Rajashekhara 90]. Formats 3, 

5~9 are hardly used. 

Format 10, probably, was the first one used for a parallel multiplier[Takagi 85]. 

Format 11 is a new one introduced recently by Makino et al[Makino 93] and Huang et 

al[Huang 94] independently. In the following, only format 2, format 11, and the 5:3 

counter will be discussed, because the circuits for format 2 and format 11 are superior 

to those for the other codings in the literature. 

For convenience, some symbols should be defined first. With reference to Fig. 5.9.1 

133 



Chapter 5: Carry Free Adders and Parallel Multipliers 

x 
(2' s Complement Number) 

PPG Logic 

4:2 Compressor Tree 
(5:3 Counter or RBA) 

/ 

Carry Control Logic 

Carry Logic 

y 

/ 
/ 

/ 

/ 

CFA 

CPA 

,--______ ----1. _______ --, (or Converter) 
Summation Logic 

P 
(2' s Complement Number) 

~ - Type 1 adder for RBA or 5:3 counter 

o -Type 2 adder only for RBA 

Fig. 5.9.1. A functional structure for parallel multiplier based on 4:2 compressor. 

The structure in Fig. 5.9.1 is for both a multiplier based on RBA and that based on 5:3 

counter, it comes from a combination of Fig. 5.3.1, Fig. 5.5.2, and Fig. 5.6.1. The 

operation time for each functional block is defined as follows: 

TppG - the operation time of PPG; 

TCFA1 - the operation time of type 1 RBA addition tree; 

TCFA2 - the operation time oftype 2 RBA level; 

TCCL - the operation time of carry control logic; 

TCL - the operation time of carry logic; 

TSL - the operation time of summation logic. 

Similarly, the implementation costs are: AppG , AcFAl' AcFA2' AcCL' AcL, and ASL ' 

134 



Chapter 5: Carry Free Adders and Parallel Multipliers 

(i). format 2: 

This is a natural coding for RBA[Kuninobu 87, Yen 92]. That is, the first bit is the 

sign bit, and the second bit is the magnitude bit. This format may yield a simpler 

RBA. Another advantage for this format is that, it simplifies the CCL circuit, see 

Table 5.9.1. A possible circuit to implement the converter is shown in Fig. 5.9.2 

x~ x~ 

CCL 

o 

CL 

SL 

Fig. 5.9.2. A 4 bit redundant to binary converter. 

The implementation time of a parallel multiplier based on format 2 is: 

12 = TpPG + TCFAI + TCFA2 + TCL + TSL (5.9.1) 

The implementation cost is: 

A2 = AppG + AcFAl + AcFA2 + AcL + ASL (5.9.2) 

(ii). format 11: 

format 11 is based on the following operation in 2's complement number: 

x+Y=x-(-Y)=x-Y -1 (5.9.3) 

135 



Chapter 5: Carry Free Adders and Parallel Multipliers 

Y is l' s complement of Y, i.e., y;- = 1-Yi' Y i E {O ,I} . 

The main advantage for this new coding is that in the CF A, type 2 RBA level is not 

needed. The RBA circuit based on format 11 may be more complex than that based on 

format 2. 

The implementation time of a parallel multiplier based on format 11 is: 

111 = TpPG + TCFAI + TCCL + TCL + TSL (5.9.4) 

The implementation cost is: 

All = AppG + AcFAI + AcCL + AcL + ASL (5.9.5) 

(iii). 5:3 Counter: 

The 5:3 counter and RBA, as stated earlier, have similar circuit structure. In fact, a 5:3 

counter and a RBA with format 11 can be considered identical if x; and Y; in the 

RBA are complemented. This can be verified by Table 5.9.2. In Table 5.9.2, one point 

should be mentioned, that is, for 5:3 counter, hi = 0 means 0 and hi = 1 means 2; but 

for RBA, hi = 0 means -2 and hi = 1 means O. It can be found that Cin , a, b, c, d, S, 

COUll> and Cout2 for 5:3 counter are equal to mi-l, x:' x;, Y:, Y;, di , mi' and hi for a 

RBA with format 11, respectively. In other words, a circuit has two different 

explanations. Therefore, the operation time and implementation cost for a parallel 

multiplier based on 5:3 counter are the same as equations (5.9.4) and (5.9.5) 

respectively. 

136 



Chapter 5: Carry Free Adders and Parallel Multipliers 

Table 5.9.2. A truth table for both 5:3 counter and RBA with format 11. 

mi-l 1 
Xi 

2 
Xi yJ 2 

Yi 
5:3 RBA di mi hi 

0 0 0 0 0 0 -2 0 0 0 

0 0 0 0 I 1 -1 1 0 0 

0 0 0 1 0 1 -1 1 0 0 

0 0 0 1 1 2 0 0 1 0 

0 0 1 0 0 1 -1 1 0 0 

0 0 1 0 1 2 0 0 1 0 

0 0 1 1 0 2 0 0 1 0 

0 0 1 1 1 3 1 1 1 0 

0 1 0 0 0 1 -1 1 0 0 

0 1 0 0 1 2 0 0 0 1 

0 1 0 1 0 2 0 0 0 1 

0 1 0 1 1 3 1 1 1 0 

0 1 1 0 0 2 0 0 0 1 

0 1 1 0 1 3 1 1 1 0 

0 1 1 1 0 3 1 1 1 0 

0 1 1 1 1 4 2 0 1 1 

1 0 0 0 0 1 -1 1 0 0 

1 0 0 0 1 2 0 0 0 1 

1 0 0 1 0 2 0 0 0 1 

1 0 0 1 1 3 1 1 1 0 

1 0 1 0 0 2 0 0 0 1 

1 0 1 0 1 3 1 1 1 0 

1 0 1 1 0 3 1 1 1 0 

1 0 1 1 1 4 2 0 1 1 

1 1 0 0 0 2 0 0 0 1 

1 1 0 0 1 3 1 1 0 1 

1 1 0 1 0 3 1 1 0 1 

1 1 0 1 1 4 2 0 1 1 

1 1 1 0 0 3 1 1 0 1 

1 1 1 0 1 4 2 0 1 1 

1 1 1 1 0 4 2 0 1 1 

1 1 1 1 1 5 3 1 1 1 

137 



Chapter 5: Carry Free Adders and Parallel Multipliers 

From the above analysis, it can be seen that comparison between the two schemes 

(one based on 5:3 counter and the other based on RBA) can, in practice, be reduced to 

comparison of their CF As, which relies heavily on their basic cells, since PPG, CL, 

and SL are the same for both. Additionally, the implementation cost for CCL is very 

low, compared with CF A. In Table 5.9.3, some best basic cells realized in CMOS are 

listed. 

Table 5.9.3. Comparison of some best basic cells. 

Reference [Kun.87] [Pha.94] [Mak.93] [Nag.90] [Got.92] [Gua.94B] 

Type format 2 format 2 format 11 5:3 5:3 5:3 

Transistors 42 40* 48 54 52 34** 

Delay 4.5 5 4 3.5 5 3 

Levels pog2 nl pog2 nl ilog2 n l-l pog2 n l-l i log2 n l-l pog2 n l-l 

* There are two types ofRBA required, their average value is given; 

**There are two types ofRBA required, their average value is given (including buffers, see later). 

In order to achieve high speed circuits, it is assumed that a single XOR gate is realized 

by six transistors in pass transistor form (see Chapter 3); a two input gate is 

considered to have 1 gate delay without regarding its type; a three input gate except 

X(N)OR gate and a four input gate except X(N)OR gate are considered to have 1.5 

gate delay and 2 gate delay, respectively. The realization ofX(N)OR gate is different 

from the other types of gates due to its poor extendibility. 

The levels of CF A required are given in the bottom row, n is the number of partial 

products, and the ceiling r Xl of a number is the smallest integer that is larger than or 

equal to x. It can be seen that format 2 requires one level adder more than the others, 

corresponding to type 2 RBA. 

From Table 5.9.3 and equations (5.9.1), (5.9.2), (5.9.4), and (5.9.5), it can be seen that 

the design of [Kuninobu 87] can eliminate the CCL, but the implementation cost of 

the first level (type 2 RBA) can't offset the gain. Even though type 2 RBA is simple, 

the number of type 2 is large due to the CF A in binary tree form. This is particularly 

true for large operands. The design of [phatak 94] has the same problem although it is 

considered by the authors to reduce part of the global wires. It should be noted that the 

CF A under consideration is in binary form, that is, reducing one level adder not only 

reduces the number of adders, but also substantially reduces its global wires. 

The designs in the fourth column to the last column from left can be evaluated by 

equations (5.9.4) and (5.9.5), it is obvious that the design of [Guan 94B] is the best, in 

138 



Chapter 5: Carry Free Adders and Parallel Multipliers 

terms of speed and cost. In the following two sections, our previous design[Guan 94B] 

will be further generalized. 

5.10 A Variant of Baugh and Wooley Algorithm 

In our previous design[Guan 94B], a variant of the Baugh and Wooley algorithm is 

used to generate the PP matrix. This algorithm for n x n multiplier has been studied by 

some researchers[Guan 94B]. This algorithm is superior to the original Baugh and 

Wooley algorithm because it doesn't yield additional rows for the PP matrix, but this 

algorithm is only limited to the situation in which the length of multiplicand is equal 

to that of multiplier. Here, the algorithm is developed to be suitable for the more 

general situation in which two operands have different lengths. The resultant PP 

matrix is still without additional rows. 

Two operands A and B in 2's complement number can be expressed as 

m-2 n-2 

A = -am_I2 m- I + I ai2i and B = -bn_I2n- I + I bj 2 j (5.10.1) 
i=O j=O 

For convenience, it is assumed that m~ n. In fact, this condition is not necessary, 

because multiplication is commutative, i.e., P = A x B = B x A. Therefore, the shorter of 

two operands is always considered to be the multiplier. 

the product P of A and B is 

m-2 n-2 

P= Ax B= (-am-I2m-I + I aii) x (-bn_I2
n- I + I bj 2j

) 

i=O j=O 

m-2 n-2 n-2 m-2 

b 2m+n-2 "" b 2 i+j 2m-I" b 2 j 2n- I" b i = am-I n-I + ~ ~ ai j - ~ am-I j - ~ ai n-I (5.10.2) 
i=O j=O j=O i=O 

139 



Chapter 5: Carry Free Adders and Parallel Multipliers 

Equation (5.10.2) includes two negative terms. It is desirable to have all terms 

positive, because this will permit straightforward addition of all summands in each 

column of the PP matrix. That is, the negation of the negative summands is added 

while still maintaining a mathematically correct equation for the product p. 

An example is first used to show the following substitution: 

o 1 0 1 1 = 1 x ( 010 II ) = ( 10100 ) + 1 = 10101 

This means that a non-positive integer composed only of 0 and f bits can be 

transferred to its 2's complement representation by changing f to 0 and 0 to 1 and 

adding 1 to Ish. This operation can be expressed as 

(5.10.3) 

where Xi = {O, I} , and k is the length of the number. 

It should be noted that the non-positive number under consideration IS a non­

redundant number, in binary redundant number system, Xi = {I,O,l}. 

In binary logic, one signal line usually corresponds to one bit. For example, in 

positive logic, high voltage indicates 1 and low voltage indicates 0, which means that 

f can only be implied in signal lines. In other words, differentiating f from 1 doesn't 

depend on voltage value, but on signals. That is, for am-l and bn- 1 , high voltage is f 

and low voltage is 0; for all the other bits, high voltage is 1 and low voltage is o. 

According to the above analysis, the operation I-lxii, in binary logic, can be achieved 

by NAND operation. Therefore, the first negative term in equation (5.10.2) can be 

rewritten as follows 

n-2 n-2 

_2 m- 1 2:>m-l bj 2 j =2 m
-

1 (2n +2 n
-

1 +1+ I(1-lam- 1bj 1)2
j

) 

j=o j=o 

n-2 
(5.10.4) 

=2 m-1 (2n +2 n- 1 +1+ I-a-m--l-'-b-j 2 j ) 

j=O 

140 



Chapter 5: Carry Free Adders and Parallel Multipliers 

It is worth mentioning that there are two constant terms 2n and 2n
-

1 in equation 

(5.10.4), this is because according to 2's complement, the sign bit should be extended 

to msb. The msb for product P is bit m+n-l. 

Similarly, the second negative term is 

m-2 m-2 
_2n- 1 "a.b 2i = 2n- I(2m + 2m- 1 + 1 + "~i) L..J I n-l L..J I n-l (5.10.5) 

~ ~ 

When the two negative terms in equation (5.10.2) are substituted by equations (5.10.4) 

and (5.10.5), equation (5.10.2) can be rewritten as 

m-2n-2 

P=a m-I b n-I 2 m+n-2 + LLa; b j 2 ;+j 
;;0 j;O 

n-2 m-2 
+2m-1 (2n +2 n- 1 +l+Lam-Ib j 2 j )+2 n-1 (2m +2m-1 +l+L-a-;b-:--n-_-1 2; 

j;O ;;0 

m-2n-2 n-2 m-2 

=a m-I b n-I 
2 m+n-2 

+LLa;b j 
2 ;+j +2 m-I Lam-I b j 2 j +2 n-I La; b n_1 

;;OJ;O j;O ;;0 

+2 m+n +2 m+n-I +2 Ill-I +2 n-I 

m-2n-2 n-2 1ll-2 

=a m-1 b n-I 
2 m+n-2 

+ LLa;b j 
2;+j +2m-1 Lam-I b j 2 j +2 n-I La; b n_1 

;;0 j;O j;O ;;0 

+2 m+n-I +2 m-I +2 n-I 

2 ; 

2 ; 

(5.10.6) 

Note that 2's complement number can be considered to be a special case of residue 

number, namely,p= IP12m+n . Therefore, the constant term 2m+n in equation (5.10.6) can 

be eliminated. 

The PP matrix of equation (5.10.6) is shown in Fig. 5.10.1 

141 



Chapter 5: Carry Free Adders and Parallel Multipliers 

m+n-l m+n-2 m m-l n n-l n-2 n-3 2 

am-I an an-I an-2 an-3 a2 al 

bn-I bn-2 bn-3 hz q 

am-lbo a2bo albo 

am-Iq aoq 

am-1hz aohz 

am-Ibn-2 aObn-2 

am-Ibn-I am-2bn-1 am-3bn-1 albn-I aObn-1 

1 

Pm+n-I Pm+n-2 Pm+n-3 Pm Pm-I Pn Pn-I Pn-2 Pn-3 P2 PI 

Fig. 5.10.1. PP matrix of equation (5.10.6). 

If the two operands are equal, i.e. m = n, then equation (5.1 0.6) can be reduced to the 

form in equation (5.10.7) 

n-2 n-2 n-2 n-2 
_ b 22n- 2 "" b 2i+ j 2n-l" --b-2j 2n-l" -b-2i 

P - an-l n-l + ~ ~ ai j + ~ an-l j + ~ ai n-l 
i=O j=O j=O i=O 

(5.10.7) 

The PP matrix generated by equation (5.10.7) is shown in Fig. 5.10.2 

142 

0 

ao 

bo 

aobo 

Po 



Chapter 5: Carry Free Adders and Parallel Multipliers 

2n-1 2n-2 n n-l 2 0 

an-I a2 al aO 

bn- I ~ q ho 

an-Iho a2ho alho aoho 

an-lq aoq 

an-l~ aO~ 

an- lbn- 2 

an-lbn- l an-2bn-1 an-3bn-1 

P2n-1 P2n-2 P2n-3 Pn Pn-l P2 PI Po 

Fig. 5.10.2. PP matrix for equation (5.10.7). 

It can be readily seen that the two constant terms 22n- 1 and 2n can be placed in row 

n-l and row 0 respectively, and no additional row is generated. 

For m=t: n, an added complication is encountered. From Fig. 5.10.1, it can be seen that 

the constant terms 2n
-

1 and 2m-I cannot be directly assimilated by the other rows. The 

2n- 1 term can be easily handled by rewriting 2n- 1 = 2n-2 + 2 x 2n- 3 which can be placed 

in row n- 2 and row n - 3 . However, 2m-I cannot be dealt with in the same way. 

In order to eliminate the additional row, 2m-I and am-lho are recoded as follows: 

Assume two temporary variables Xl and Xo, an equation can be written as 

(5.10.8) 

Table 5.10.1 lists all possible values for equation (5.10.8) 

Table 5.10.1. All possible values for equation (5.10.8). 

2m-I --
am-lho Xl Xo 

1 0 0 1 

1 1 1 0 

143 



Chapter 5: Carry Free Adders and Parallel Multipliers 

From Table 5.10.1, it can be seen that Xl = am-lbo and Xo = am-IbO' The additional row 

in Fig. 5.10.1 has been eliminated and the PP matrix for m'l: n can be expressed in 

Fig. 5.10.3 

m+n-l m+n-2 m m-l n n-l n-2 n-3 2 

am-I an an_l an_2 an-3 a2 al 
bn_1 bn_2 bn_3 hz q 

am-lba am-lba a2ba alba 
am-Iq aoq 

am-1hz aohz 

am-Ibn-2 aObn_2 
am-Ibn_1 am-2bn-1 am-3bn-1 albn-I aObn_1 1 

Pm+n-I Pm+n-2 Pm+n-3 Pm Pm-I Pn Pn-I Pn-2 Pn-3 P2 Pi 

Fig. 5.10.3. PP matrix for a general form with m'l: n. 

Implementing this algorithm is simple, it only requires an array of AND and NAND 

gates. Clearly, it has the same implementation complexity as the traditional Baugh and 

Wooley algorithm, and it generates fewer rows for a matrix ofPPs. 

5.11 Parallel Multiplier based on 5:3 Counter 

Our previous design is a 8 x 8 parallel multiplier based on the 5:3 counter. The 

schematics and simulations are shown in Appendix A. In this design, the variant of the 

Baugh and Wooley algorithm is employed to generate the PP matrix, then the 5:3 

counter, as the main building block, is used to construct the CF A. Finally, the CPA is 

realized using a simple carry skip adder based on the CMOS carry chain. The circuit is 

simulated and considered better than many previous designs[Guan 94B]. 

There is one problem in the previous design, that is, the two outputs of the basic cell 

(Fig. 5.7.3), i.e. Coutl and cout2 , are not buffered. For a parallel multiplier with larger 

operands, the performance will degrade. The reason for this is that a signal can only 

pass two transmission gates at each level adder. For example, a signal from input b or 

144 

0 

ao 

ba 

aobo 

Po 



Chapter 5: Carry Free Adders and Parallel Multipliers 

d via a transmission gate is applied to C in of a neighbor cell, this signal passes 

another transmission gate and is applied to input b or d of the next level adder. If this 

signal continues to pass the same path as the preceding level, then, two transmission 

gates will be added to a long path, this is shown in Fig. 5.11.1 

1 1 
1-1 level I level 1+1 level 

1 1 
1 111 111 1 
T T T T T T 

Fig. 5.11.1. A long path of transmission gates. 

A multiplier with small operands, say a 8 x 8 multiplier, doesn't need buffers between 

two level adders, since only two level adders are required for the CF A, which leads to 

at most four transmission gates in a long path. For a multiplier with large operands, it 

is recommended that every two level adders are buffered, that is, the longest path is 

limited to have at most four transmission gates. 

In practice, only Cout2 needs to be buffered, since there is no long path in the one 

level adder. It is possible to add buffers between every two level adders directly. 

Although this approach is simple, an additional delay by adding buffers will be added 

for the CF A. In order to mininize the additional delay by adding buffers, INV, as a 

buffer, can be employed. For this purpose, another 5:3 counter is designed, which is 

shown in Fig. 5.11.2 

145 



a 
b 

Chapter 5: Carry Free Adders and Parallel Multipliers 

Fig. 5.11.2. Type II 5:3 counter. 

s 

This 5:3 counter in Fig. 5.11.2 is termed a type II 5:3 counter. At the same time, the 

previous version (in Fig. 5.7.3) is termed a type I 5:3 counter. Fig. 5.11.3 

demonstrates the connections between the two types of cells. 

i level 

i+1 level 

Fig. 5.11.3. Connection between type I and type II of 5:3 counter in CF A. 

The idea behind the type II cell circuit is that, when inputs c and d of the type I cell 

are complemented, this doesn't change an XOR operation due to c EB d = c EB d. The 

only effect on the type I cell is that a signal for the carry generation is inverted. This is 

146 



Chapter 5: Carry Free Adders and Parallel Multipliers 

why an INV is added between input d and a transmission gate, then it generates type II 

cell, see Fig. 5.11.2. 

It can be seen that the two types of 5:3 counters are very similar, therefore, it can 

hardly affect the complexity of design. In addition, the INV as a buffer does not 

introduce an extra delay, because the delay of CouI2 with an INV is still smaller than 

that of the sum output S. 

5.12 Summary 

In this chapter, parallel multipliers and their implementations are investigated. The 

study of the CF A is emphasized in this project since the CF A is usually implemented 

by employing n:m counters that are more concerned with the issue of logic 

minimization. 

It can be found that for parallel multiplier design, in most situations, using RM logic 

or Boolean logic doesn't affect the architectural (or structural) design but only the 

design of basic building blocks, especially for m:n counters. 

In this project, many different counters (including RBAs) for implementing the CF A 

are studied in both the RM domain and the Boolean domain, it is found that, in most 

cases, Boolean logic can yield simpler circuits than RM logic in terms of the number 

of transistors. The main reason for this may be that, as stated in Chapter 3, Boolean 

logic is more suitable for circuit (transistor) level design. But, it is also found that, 

sometimes, RM logic can solve some problems more easily than Boolean logic, the 

design of the 5:3 counter illustrates a good example for this. 

All circuit modules discussed in this chapter are based on practical designs. The two 

most commonly used schemes (RBA and 5:3 counter) for the 4:2 compressor (both of 

them recently attracted many researchers' interests) are explored. It can be seen that 

these two schemes are very similar in structure. A unified structure for these two 

schemes is investigated. From this investigation, an important fact is obtained. That is, 

the CF A based on 5:3 counter and the CF A based on RBA have a similar structure, 

and the 5:3 counter is in fact a special form of RBA. As a result, a basic building 

block plays a critical role in the designs that are based on these two schemes. A survey 

and comparison show that the proposed circuit is better than all the existing known 

designs. 

Two generalized algorithms for the converter from a BSD number to a binary number 

are presented. The difference between presented algorithms and the existing 

algorithms is that, the presented algorithms are format-independent and they are 

suitable for any formats, but nearly all the previous algorithms are format-dependent. 

147 



Chapter 5: Carry Free Adders and Parallel Multipliers 

In this project, it is also found that a carry (borrow) propagation problem for the CPA 

and for the converter (from a BSD number to a binary number) is the same, therefore, 

nearly all speed-up schemes for the CPA can be employed by the converter. 

Finally, our previous design[Guan 94B] is further improved for the case with large 

operands. At the same time, a variant of the Baugh and Wooley algorithm is also 

generalized for the case in which two operands have different lengths. 

148 



Chapter 6 

Conclusion 

This aims of project are to investigate arithmetic circuits, the effect of utilising RM 

techniques, and to develop highly efficient arithmetic circuits. In this chapter, the 

main findings and contributions of this project are summarized, and then, areas 

suitable for further research are suggested. 

6.1 Summary of Results 

In this project, logic circuit design based on RM logic is studied, and compared with 

that based on Boolean logic. The approach adopted in this project differs from 

previous research in two ways. Firstly, the number of transistors is employed to 

measure the minimum implementation for a given logic function. This leads to a more 

accurate evaluation for a logic function to be realized in CMOS circuitry. In most of 

the previous work, the number of products (or literals) is used to measure the 

minimized result. Secondly, all arithmetic functions are generated using the structured 

design approach, in this way, the circuits are easily generalized and made more 

suitable for practical applications. This made it possible for the actual effect of using 

RM logic on practical arithmetic circuits to be investigated. In nearly all previous 

work, benchmark arithmetic functions are used, these results can be hardly applied to 

a practical application, because it is difficult for them to be generalized and also it is 

difficult for them to be realized efficiently, especially for the circuits that have larger 

operands. 

149 



Chapter 6: Conclusion 

In this work, it is found that Boolean techniques are still more mature than RM 

techniques for a general logic design in MOS circuitry. The critical reason for this is 

that, AND and OR, the two basic operations in Boolean logic, can be simply 

explained by serial operation and parallel operation, the two basic principles in 

circuits, respectively. This makes a logic function in the Boolean domain easily 

mapped to a MOS circuit at the circuit (transistor) level, such circuit may be further 

simplified if switching network theory is employed in the design, and also, this circuit 

may be optimized at the layout level. In contrast, a logic function in the RM domain 

can only be mapped to a circuit at the gate level, and this result is hardly optimized 

further in lower levels, transistor level and layout level. This is because an XOR 

operation can not be explained by using a simple serial or parallel operation. This is 

why in nearly all circuit technologies, an XOR gate is always more complex than an 

AND gate or OR gate. 

Although Boolean logic is more mature than RM logic, there still exist many logic 

functions whose circuits are not easily minimized by using Boolean logic, and it is 

found that these functions are easily minimized and implemented better in the RM 

domain. Especially, when the issue of testing a circuit is not considered at the gate 

level, most RM functions are actually realized more economically. 100 randomly 

generated four variable functions were tested, and the result shows that 33 of 100 

functions realized in the RM domain are more economical than that in the Boolean 

domain. This demonstrates that Boolean logic is not dominant in logic design. That is, 

RM logic is also a useful tool for logic design, it can easily resolve many problems 

that Boolean can't. RM logic has another advantage of easily changing the electrical 

polarity in logic design. 

Because in RM logic, the testability is considered to be one of the most important 

advantages by many researchers, it is briefly reviewed and discussed in this thesis. 

According to the existing methods about testing RM circuits [Reddy 72, Bhattacharya 

85, Damarla 89, Sarabi 93], only two level RM functions with fixed polarity are 

realized and the resulting circuits are easy to test. This means that in fact, RM 

functions may be strictly defined as Exclusive sum of products in fixed polarity form 

when the testability is considered, and they are realized by using only three kinds of 

gates, INV, AND, and XOR. In the thesis, it is shown that if using more economical 

NAND gates to replace AND gates, the result does not change the property of easily 

testing the circuit. 

In this project, the existing RM circuit testing methods are believed to be not very 

suitable for arithmetic circuit test. In arithmetic circuit test, the cell fault 

model [parthasarathy 81, Wu 90] is accepted more widely than the gate fault model 

that is used in RM logic circuit test. The main reason for this is the difficulty for the 

150 



Chapter 6: Conclusion 

gate fault model to be used for testing a large circuit. In addition, if an arithmetic 

circuit is realized in Exclusive sum of products with fixed polarity form, its speed may 

be too slow to satisfy a general application, and also, this circuit can hardly be 

generalized. Therefore, a loose definition for RM logic (functions) is used in this 

thesis. That is, Exclusive sum of products with mixed polarity form and the mixed 

representation are still called RM functions in this work. 

Various arithmetic circuits are studied in this work. In the thesis, only adders and 

multipliers are discussed, the reason for this is that, the adders and multipliers are 

basic circuits, and most of complex arithmetic operations can be ultimately reduced to 

addition and multiplication. Using Boolean logic or RM logic, in general, doesn't 

influence the architecture (structure) in arithmetic design. 

The carry lookahead scheme, as a typical example, is explored in both the Boolean 

domain and the RM domain. The result shows that Boolean logic is better than RM 

logic for a recursive function to be implemented. This is because the circuit based on 

Boolean logic can share transistors and the circuit based on RM logic can only share 

gates. 

A CMOS carry chain adder is presented. This adder is simple and fast, and was found 

to be better than many existing designs[Guan 93]. The structure of the proposed adder 

can be modified to be suitable for RNS adders. Because RNS adders with smaller 

operands are often used, in this situation, the carry chain circuit proposed is preferable 

to many other speed-up circuits. An algorithm for the on-line adder and its 

implementation are also proposed. Although all circuits proposed are not derived from 

RM logic (neither from Boolean logic), it is found that a FAin the proposed design 

can be explained well by using RM 10gic[Guan 95], which leads to generating a 

highly efficient 5:3 counter. It can be seen that the logic representations for the 

proposed 5:3 counter may not be very compact, but the resulting circuit is simpler and 

faster than all the existing circuits known. The reason for this is that the 5:3 counter is 

a multi-output function, therefore, the resulting circuit depends not only on a 

representation for each output, but also on the common factors shared by all outputs. 

This example demonstrates a potential advantage ofRM logic. 

The study of parallel multipliers is emphasized, because it is more closely related to 

logic level design than other arithmetic circuits. It is found that various parallel 

multipliers, in general, can be decomposed into three functional parts, PPG, CF A and 

CP A, and each part can be studied separately. Of these three parts, CF A is believed to 

have the most potential for improvement by using RM logic, particularly for various 

n:m counters that are used to realize CF A. In fact, the author's experience shows that, 

few circuits, which are simply designed by using a logic design means (Boolean logic 

or RM logic), are superior to the existing circuits[Guan 95]. 

151 



Chapter 6: Conclusion 

4:2 compressor is concluded to be very suitable for the CF A implementation. There 

exist two ofthe most commonly used schemes to realize 4:2 compressor, one based on 

RBA and the other based on 5:3 counter. It is found that RBA and 5:3 counter have a 

unified structure, and also the structure of a parallel multiplier based on RBAs is 

similar to that based on 5:3 counter. Therefore, a basic building cell (RBA or 5:3 

counter) plays a critical role in a parallel multiplier. A survey of parallel multipliers 

shows that the proposed 5:3 counter is better than all the previous circuits in terms of 

the number of transistors and the speed. Further, two algorithms for the conversion 

from a BSD number to a binary number are proposed. These two algorithms do not 

rely on any special format, which is different from the existing algorithms. A variant 

of the Baugh and Wooley algorithm, which has appeared in many other researchers' 

work, is generalized. One of our previous designs, a parallel multiplier[Guan 94B] is 

further improved to be suitable for larger operands. 

Finally, it should be mentioned that even though Boolean techniques are more mature 

in lower level design, transistor level or layout level, than RM techniques, they still 

cannot describe the behavior of some structures in a satisfactory way. These structures 

include dynamic logic, pass transistor networks, etc.[Bryant 84], which are often used 

not only in arithmetic circuits, but also in other logic circuits. Logic minimization is 

just one way to improve logic circuits. According to the existing methods and the 

results of this project, it seems too early to say RM logic is better than Boolean in 

arithmetic circuit design, or vice versa. For optimum design, a hybrid approach 

utilising the advantages of both paradigms may be appropriate. For this to be practical, 

ECAD tools and techniques must be upgraded to make use of recent advances in logic 

synthesis and optimization techniques. 

6.2 Future Work 

-In practical applications, the XOR gate with multi-inputs is a critical component for 

RM logic to be realized, therefore, the improvement of this circuit directly affects 

applications of RM logic. This is also involved with designing a regular XOR plane 

and its efficient layout for XPLA implementation. In practice, it is a bottleneck 

problem for RM logic applications. 

-Systematic and efficient algorithms for combining both Boolean logic and RM logic 

to minimize logic functions are desirable, because the results are believed to be better 

than that based only on Boolean logic or only on RM logic. 

152 



Chapter 6: Conclusion 

-From the design of the proposed 5:3 counter, it is conjectured that it is still possible 

for RM logic to yield highly efficient circuits of n:m counters with large input 

variables. The main advantage of the counters with large input variables is that, when 

these counters are used to construct a CF A, it requires less global connections in 

layout, therefore, the resulting circuit may be improved. 

-The existing test methods for RM logic are only limited to the circuits based on two 

level representation and fixed polarity. In general, these circuits with good testability 

are still too costly and slow to be accepted for many practical applications. The 

circuits based on multi-level representation and mixed polarity are simpler and faster, 

test methods for these circuits are desirable. 

-Although 4:2 compressor scheme for CFA has been investigated by many 

researchers, it is hard to fmd an efficient testing approach for it in the literature. 

Therefore, testing CF A based on 4:2 compressor should be explored. 

153 



Appendix A 

:-: 

'----l{ I 
L 

'"---It I rf-oHl-++I---l: 

:.: 
I r I 

~ I I I C & • & .... " .' .. 

I 

~ , , , & , • , . . . . . . . " 

~ 

. . (1). The schematic for a 8x8 parallel multiplier based on 5:3 counter. 

154 

.. 

'I 
I 
I 

• 



Appendix A 

Cin 

1.----------1. Coul2 

(2). The circuit of 5:3 counter. 

155 



I-' 
lJl 
CJ\ 

.-aefoulfhspice simulatioll run title card. Ix in seconds) 

0- fc;r~il', , : , : , : , , , , : : , I : : : ' : ' : : : : : : : : : I 
0- f}O'I': , , , , , I ' , : ' : : : I , : , , : , , I : ' : ' , : : I 
0- fb lO':', , I ' : : I , : , I : : ' I : , : I : : : I , , , I : : : I 
O-fOi 

0- fd 'f 

O-~'~ 

O-fcorl~:' CD ' I Ii, CD ' , II : CD ' I II , CD ' I I 
0- fC0l[' i~ "I": ";": : : 0IIIlIlIlJ ',:"' , , , ~" ' I 

(3). The simulation of the circuit of 5:3 counter 
(the simulator is Hspice in Cadence suite). 

~ 
"'0 g 
~ 
S<' 
> 



Appendix A 

* default hspice simulation run title card. (x in seconds] 

0- Is0 in volts 

:~f=='= : ~: =: ==:=: ==r-: \ ~: :-r-: --,.-: ..,....---,., :---r-: --.--: ..,.---,-: : ---r-: --,-----,,: ~ 
0- Is1 In volts . . . -

:~~ : ~, =: : =: =:= :: =: =: :=: ===i""": \ ~: :---r-: --,.-: ..,....---,.: '---r-: --r--: .,....---,-: : ---r-: --r----tl' ~ 
0- Is2 In volts -

:~~:~:=::=:=::=:=:=::=:~:\~::---r-:~:~::---r-:--r--:"""---'-::~:~:~ 
0- Is3 In volts -

:f=='==f : ::::l::=: =: : =: =: =: : =: =:= :: =: ::::.;---"'} :-r-: --,.-: ..,.--,.: :---r-: --.--: ..,...---,-: : ---r-: ....,.--,,: ~ 
0- Is4 In volts 

::F~:~:=::=:=:=::=:=:=::=:~l~:~:~::~:~:"""'---"::---r-:~:~ 
0- IsS In volts 

:'~~:~:=::=:=:=::=:=:=::=:~l~'~'~"~'~:~::---r-'~'~ 
0- Is6 In volts 

:.f=='==~ : ::::l::=: =: : =: =: =: : =: =: =: : =: ==r: \ ,-,-, --,--, ...,...--,., '--r-: --r-: ~, '---,--: ....,.--,,: ~ 
0- Is7 In volts 

:~~:~::=:=:=::=:=:=::=:~J-r-:--'--:""--":'--r-:--r-:..,...---,-::---,--:--,----,,:~ 
0- Is8 I n volts 

::~~:~:=::=:=:=::=:=:=::=:~:\~"~'~"~'~'..,....---,."---r-'~'~ 
0- Is9 In volts 

:'~~. ~,=,========,~l:~'~:'~'~'~' '~'~'~:~ 
0- /s 10 1 n volts ' . ! , , . -

:~. ,:: :: :=S:' , , , , , , , , ~ 
0- Is 11 In volts 

5F~ ~==========~~~~'~' '~'~'~'~'~'" 

0_, , " , , ~ j 

(4). The waveform for the worst delay of the multiplier, it is less than 17ns 
(the test pattern is 0000000lxllllllll). 

157 



References 

[Ait-Boudaoud 91] D. Ait-Boudaoud, M.K. Ibrahim and B.R Hayes-Gill,"Novel cell 
architecture for bit level systolic arrays multiplication" lEE Proc. E., Vol. 138, No.1, 
Jan. 1991, pp. 21-26. 

[Almaini 91] A.E.A. Almaini, P. Thomson and D. Hanson,"Tabular Techniques for 
Reed-Muller Logic", Int. J. Electronics, Vol. 70, No.1, 1991, pp. 23-34. 

[Almaini 94] A.E.A. Almaini, Electronic Logic Systems, 3rd Edition, Prentice Hall, 
1994. 

[Avizienis 61]A. Avizienis,"Signed-Digit Number Representations for Fast Parallel 
Arithmetic", IRE Trans. Electronic Computers, Vol. EC-10, 1961, pp. 389-400. 

[Balakrishnan 92] W. Balakrishnan and N. Burgess,"Very-high-speed VLSI 2s­
complement multiplier using signed binary digits", lEE Proc. E, Vol. 139, No.1, Jan. 
1992, pp. 29-34. 

[Baugh 73] C.R Baugh and B.A. Wooley,"A Two's Complement Parallel Array 
Multiplication Algorithm", IEEE Trans. Computers, Vol. C-22, No. 12, Dec. 1973, 
pp. 1045-1047. 

[Besslich 83] Ph.W. Besslich,"Efficient Computer Method for EXOR Logic Design", 
lEE Proc. Pt. E, Vol. 130, No.6, Nov. 1983, pp. 203-206. 

[Bhatia 91] S. Bhatia and A. Albicki,"Testing of Iterative Logic Arrays", IEEE Proc. 

33rd Midwest Symp. on Circuits and Systems, 1991, pp. 243-246. 

[Bhattacharya 85] B.B. Bhattacharya, B. Gupta, S. Sarkar and A.K. 
Choudhury,''Testable design of RMC networks with universal tests for detecting 
stuck-at and bridging faults", lEE Proc. Pt. E, Vol. 132, No.3, May 1985, pp. 155-
162. 

[Booth 51] A.D. Booth,"A Signed Multiplication Technique", Quarterly J. Mech. & 
AppL Math., VoL 4, Pt. 2, 1951, pp. 236-240. 

[Brent 82] RP. Brent and H.T. Kung,"A Regular Layout for Parallel Adders", IEEE 
Trans. Computers, Vol. C-31, No.3, March, 1982, pp. 260-264. 

[Bryant 84] RE. Bryant,"A Switch-Level Model and Simulator for MOS Digital 
Systems", IEEE Trans. Computers, Vol. c-33, No.2, Feb. 1984, pp. 160-177. 

[Carlson 93] B.S. Carlson and C.Y.R. Chen,"Performance Enhancement of CMOS 
VLSI Circuits by Transistor Reordering", 30th ACMlIEEE Design Automation Conj., 
1993, pp. 391-366. 

158 



[Cavanagh 84] J.J.F. Cavanagh, Digital Computer Arithmetic Design and 
Implementation, McGraw-Hill Book Company, 1984. 

[Chan 90] P.K. Chan and M.D.F. Schlag,"Analysis and Design of CMOS Manchester 
Adders with Variable Carry-Skip", IEEE Trans. Computers, Vol. 39, No.8, Aug. 
1990, pp. 983-992. 

[Chan 92] P.K. Chan, M.D.F. Schlag, C.D. Thomborson and V.G. Oklobdzija,"Delay 
Optimization of Carry-Skip Adders and Block Carry-Lookahead Adders Using 
Multidimensional Dynamic Programming", IEEE Trans. Computers, Vol. 41, No.8, 
Aug. 1992, pp. 920-930. 

[Chatterjee 87] A. Chatterjee and J.A. Abraham,"Test Generation for Arithmetic Units 
by Graph Labelling", IEEE Int. Symp. Fault-Tolerant Comput., Pittsburgh, PA, July 
1987, pp. 284-289. 

[Chen 87] 1.S.J. Chen and D.Y. Chen,"A Design Rule Independent Cell Compiler", 
Proc. 24th ACMlIEEE Design Automation Con!, 1987, pp. 466-471. 

[Cheng 87] W.T. Cheng and J.H. Patel,"A Minimum Test Set for Multiple Fault 
Detection in Ripple Carry Adders", IEEE Trans. Computers, Vol. C-36, No.7, July 
1987, pp. 891-895. 

[Chow 78] C.Y. Chow and IE. Robertson,"Logic Design of a Redundant Binary 
Adder", IEEE Proc. 4th Symp. Comput. Arithmetic, Oct. 1978, pp. 109-115. 

[Csanky 93] L. Csanky, M.A. Perkowski and I. Schafer,"Canonical Restricted Mixed­
Polarity Exclusive-OR Sums of Products and the Efficient Algorithm for their 
Minimization", lEE Proc.-E, Vol. 140, No.1, Jan. 1993, pp. 69-77. 

[Dadda 65] L. Dadda,"Some Schemes for Parallel Multipliers", ALTA Frequenza, 
May 1965, pp. 349-356. 

[Dagenais 91] M. Dagenais,"Efficient Algorithmic Decomposition of Transistor 
Groups into Series, Bridge, and Parallel Combinations", IEEE Trans. Circuits and 
Systems, Vol. 38, No.6, June 1991, pp. 569-581. 

[Damarla 89] T. Damarla and M. Karpovsky,"Detection of stuck-at and bridging 
faults in Reed-Muller canonnical(RMC) networks", lEE Proc. Pt. E, Vol. 136, No.5, 
Sept. 1989, pp. 430-433. 

[Davio 78] M. Davio, J.-P. Daschamps and A. Thayse, Discrete and Switching 
Functions, McGraw-Hill International, 1978. 

[Detjens 87] E. Detjens, G. Gannot, R. Rudell, A.S. Vincentelli and A. 
Wang,"Technology Mapping in MIS", IEEE Proc. Int. Con! on Computer Aided 
Design. 1987, pp. 116-119. 

159 



[Detjens 90] E. Detjens,"FPGA Devices Require FPGA-Specific Synthesis Tools", 
Computer Design, Nov. 1, 1990, pp. 124. 

[Doran] R.W. Doran,"Variants of an Improved Carry Look-Ahead Adder", IEEE 
Trans. Computers, Vol. 37, No.9, Sept. 1988, pp. 1110-1113. 

[Dubrova 95] E.V. Dubrova, D.M. Miller and lC. Muzio,"Upper bound on number of 
products in AND-OR-XOR expansion of logic functions", Electronics Letters, Vol. 
31, No.7, 30th March 1995, pp. 541-542. 

[Dugdale 92] M. Dugdale, "VLSI Implementation of Residue Adders based on Binary 
Adders", IEEE Trans. Circuits and Systems-II: Analog and Digital signal processing, 
Vol. 39, No.5, May 1992, pp. 325-329. 

[Ercegovac 80] M.D. Ercegovac and A.L. Gmarov,"On the Performance of On-line 
Arithmetic", IEEE Proc. Int. Con! on Parallel Processing, Aug. 1980, pp. 55-62. 

[Ercegovac 87] M.D. Ercegovac and T. Land,"On-the-fly Conversion of Redundant 
into Conventional Representations", IEEE Trans. Computers, Vol. C-36, No.7, July 
1987, pp.895-897. 

[Ercegovac 90] M.D. Ercegovac and T. Land,"Fast Multiplication without Carry­
Propagate Additions", IEEE Trans. Computers, Vol. 39, No. 11, Nov. 1990, pp. 1385-
1390. 

[Geiger 90] R.L. Geiger, P.E. Allen and N.R. Strader, VLSI Design Techniques for 
Analog and Digital Circuits, McGraw-Hill Publishing Company, 1990. 

[Gnanasekaran 85] R. Gnanasekaran 85,"A Fast Serial-Parallel Binary Multiplier", 
IEEE Trans. Computers, Vol. c-34, No.8, Aug. 1985, pp. 741-744. 

[Goto 92] G. Goto, T. Sato, M. Nakajima and T. Sukemura,"A 54x54-b Regularly 
Structure Tree Multiplier", IEEE J Solid-State Circuits, Vol. 27, No.9, Sept. 1992, 
pp. 1229-1236. 

[Green 86] D.H. Green, Modern Logic Design, Addison-Wesley, 1986. 

[Green 90] D.H. Green,"Reed-Muller canonical forms with mixed polarity and their 
manipulations", lEE Proc. Pt. E, Vol. 137, No.1, Jan. 1990, pp. 103-113. 

[Green 91A] D.H. Green,"Families of Reed-Muller Canonical Forms", Int. J. 
Electronics, Vol. 70, No.2, 1991, pp. 259-280. 

[Green 91B] D. H. Green,"Reed-Muller Algebraic Techniques", Digital Systems 
Reference Book, edited by B. Holdsworth and G.R. Martin, Butterworth-Heinemann 
Ltd, Oxford, 1991,3.3/2-3.3/15. 

160 



[Green 93] D.H. Green, and G.A. Khuwaja,"Tabular simplification method for 
switching functions expressed in Reed-Muller algebraic form", Int. J. Electronics, 
Vol. 75, No.2, 1993, pp. 297-314. 

[Green 94] D.H. Green,"Dual Forms of Reed-Muller Expansions", lEE Proc. Com put. 
Digit. Tech., Vol. 141, No.3, May 1994, pp. 184-192. 

[Guan 93] Z. Guan, A.E.A. Almaini and P. Thomson,"A simple and high speed 
CMOS carry chain adder architecture", Int. J. Electronics, Vol. 75, No.4, 1993, pp. 
742-752. 

[Guan 94A] Z. Guan,"Logic Realization Using Mixed Representations based on Reed­
Muller forms", lEE Colloquium on Synthesis and Optimisation of Logic Systems, 
London, 14, March, 1994, pp. 2/1-2/4. 

[Guan 94B] Z. Guan, P. Thomson and A.E.A. Almaini,"A Parallel CMOS 2's 
Complement Multiplier Based on 5:3 Counter", Proc. IEEE Int. Con! Com put. 
Design, Boston, USA, 10-12, Oct. 1994, PP. 298-301. 

[Guan 95] Z. Guan and A.E.A. Almaini,"One Bit Adder Design Based on Reed­
Muller Expansions", Int. J. Electronics, to be published. 

[Guyot 87] A. Guyot, B. Hochet and J.M. Muller,"A Way to Build Efficient Carry­
Skip Adders", IEEE Trans. Computers, Vol. C-36, No. 10, Oct. 1987, pp. 1144-1152. 

[Harata 87] Y. Harata, Y. Nakamura, H. Nagase, M. Takigawa and N. Nakagi," A 
High-Speed Multiplier Using a Redundant Binary Adder Tree", IEEE J. of Solid­
States Circuits, Vol. SC-22, No.1, Feb. 1987, pp. 28-34. 

[Harking 90] B. Harking,"Efficient algorithm for canonical Reed-Muller expansions 
of Boolean functions", lEE Proc. E., No.5, Sept. 1990, pp. 366-370. 

[Helliwell 88] M. Helliwell and M. Perkowski,"A Fast Algorithm to Minimize Multi­
Output Mixed-Polarity Generalized Reed-Muller Forms", 25th ACMlIEEE Design 
Automation Conference, 1988, pp. 427-432. 

[Huang 94] X. Huang, W. Liu and B.W.Y. Wei,"A High-Performance CMOS 
Redundant Binary Multiplication-and-Accumulation(MAC) Unit", IEEE Trans. 
Circuit and Systems-I: Fundamental Theory and Applications, Vol. 41, No.1, Jan. 
1994, pp. 33-39. 

[Hurst 92] S.L. Hurst, Custom VLSI Microelectronics, Prentice Hall, UK, 1992 

[Hwang 79] K. Hwang, Computer Arithmetic Principles, Architecture and Design, 
Wiley, New York, 1979. 

[Joseph 84] J.F.C. Joseph, Digital Computer Arithmetic Design and Implementation, 
McGraw-Hill, USA, 1984. 

161 



[Kantabutra 93] V. Kantabutra,"Designing Optimum One-Level Carry-Skip Adders", 
IEEE Trans. Computers, Vol. 42, No.6, June 1993, pp. 759-764. 

[Kilburn 60] T. Kilburn, D.B.G. Edwards and D. Aspinall,"A Parallel Arithmetic Unit 
Using a Satuated-Transistor Fats-Carry Circuit", Proc. lEE Pt. B, Vol. 107, Nov. 
1960, pp. 573-584. 

[Kohavi 78] Z. Kohavi, Switching and Finite Automata Theory, Second Edition, 
McGraw-Hill Book Company, 1978. 

[Koren 93] I. Koren, Computer Arithmetic Algorithms, Prentice-Hall, Englewood 
Cliffs, New Jersey, 1993. 

[Kornerup 94] P. Kornerup,"Digit-Set Conversion Generalizations and Applications", 
IEEE Trans. Computers, Vol. 43, No.5, May, 1994, pp. 622-629. 

[Kuninobu 87] M. Kuninobu T. Nishiyama, H. Edamatsu, T. Taniguchi and N. 

Takagi,"Design of High Speed MOS Multiplier and Divider Using Redundant Binary 

Representation", Proc. IEEE 8th Symp. Com put. Arithmetic, pp.80-86. 

[Lala 85] P.K. Lala, Fault Tolerant & Fault Testable Hardware Design, Prentice-Hall 
International, Inc., 1985. 

[Lee 93] Y.-T. Lee, I.-C. Park and C.-M. Kyung,"Design of Compact Static CMOS 
Carry Look-Ahead Adder using Recursive Output Property", Electronics Letters, Vol. 
29, No.9, 29th Apr. 1993, pp. 794-796. 

[Lester 93] N.L.K. Lester and J.M. Saul,"Technology Mapping of Mixed Polarity 
Reed-Muller Representations", IEEE Proc. of the European Con! on Design 
Automation, Feb. 1993, pp.305-309. 

[Lin 93] T. Lin and A. Tran,"Minimization of multiple-output exclusive-OR switching 
functions", Int. J. Electronics, Vol. 75, No.4, 1993, pp. 665-674. 

[Ling 81] H. Ling,"High-Speed Binary Adder", IBM R.&D., Vol. 25, No.3, May 
1981, pp. 156-166. 

[Lui 92] P .K. Lui and J.C. Muzio,"Boolean Matrix Transforms for the Minimization 
of Modulo-2 Canonical Expansions", IEEE Trans. Computers, Vol. 41, No.3, March 
1992, pp. 342-347. 

[MacSorley 61] O.L. MacSorley,"High-Speed Arithmetic In Binary Computers", 
Proc. IRE, Vol. 99, Jan. 1961, pp. 67-91. 

162 



[Makino 93] H. Makino, Y. Nakase and H. Shinohara,"A 8.8-ns 54x54-bit Multiplier 
Using New Redundant Binary Architecture", Proc. IEEE Int. Con! Com put. Design, 
pp. 202-205. 

[Maziasz 87] R.L. Maziasz and J.P. Hayes,"Layout Optimization of CMOS Functional 
Cells", Proc. 24th ACMlIEEE Design Automation Conj., 1987, pp. 544-551. 

[Mead 80] C.A. Mead and L.A. Conway, Introduction to VLSI Systems, Additon 
Wesley, 1980. 

[McAuley 92] A.J. McAuley,"Dynamic Asynchronous Logic for High-Speed CMOS 
Systems", IEEE J. of Solid-State Circuits, Vol. 27, No.3, March 1992, pp. 382388. 

[McKenzie 93] L. McKenzie, A.E.A. Almaini, IF. Miller and P. 
Thomson,"Optimization of Reed-Muller logic functions", Int. J. Electronics, Vol. 75, 
No.3, 1993, pp. 451-466. 

[Mehta 91] M. Mehta, V. Parmar and E. Swartzlander,"High-Speed Multiplier Design 
Using Multi-Input Counter and Compressor Circuits", Proc. 10th Symp. Compt. 
Arithmetic, pp. 43-50. 

[Mekhallalati 92] M.C. Mekhallalati and M.K Ibrahim,"New Parallel Multiplier 
Design", Electronics Letters, Vol. 28, No. 17, Aug. 1992, pp. 1650-1651. 

[Moh 95] S.M. Moh and S.H. Yoon,"Serial-parallel multiplier for two's complement 
numbers", Electronics Letters, Vol. 31, No.9, 27th April 1995, pp. 703-704. 

[Muller 54]D.E. Muller, "Application of Boolean Algebra to Switching Circuit Design 
and to Error Detection", IRE Trans. Electronic Computers, Sept. 1954, pp. 6-12. 

[Nagamatsu 90] M. Nagamatsu, S. Tanaka, J. Mori, K Hirano, T. Noguchi and K 
Hatanaka,"A 15-ns 32x32-b CMOS Multiplier with an Improved Parallel Structure", 
IEEE J. o/Solid-State Circuits, Vol. 25, No.2, April 1990, pp. 494-497. 

[Parhi 90] KK Parhi and C.Y. Wang,"Digit-Serial DSP Architectures", Proc. IEEE 
Con! Application Specific Array Processors, 1990, pp. 341-351. 

[Parthasarathy 81] R. Parthasarathy and S.M. Reddy,"A Testable Design of Iterative 
Logic Arrays", IEEE Trans. Computers, Vol. c-30, No. 11, Nov. 1981, pp 833-841. 

[Perkowski 89] M. Perkowski, M. Helliwell and P. WU,"Minimization of Multiple­
Valued Input Multi-Output Mixed-Radix Exclusive Sums of Products for 
Incompletely Specified Boolean Functions", IEEE Proc. 19th Int. Symp. on Multiple­
Valued Logic, 1989, pp. 256-263. 

[Perkowski 90] M. Perkowski and M.C. Jeske,"An Exact Algorithm to Minimize 
Mixed-Radix Exclusive Sums of Products for Incompletely Specified Boolean 
Functions", Proc. IEEE Int. Con! Comput. Design, 1990, pp.1652-1655. 

163 



[Phatak 94] D.S. Phatak and I. Koren,"Hybrid Sighed-Digit Number Systems: A 
Unified Framework for Redundant Number Representations With Bounded Carry 
Propagation Chains", IEEE Trans. Computers, Vol. 43, No.8, Aug. 1994, pp. 880-
891. 

[pitty 88] E.B. Pitty,"A Critique of the GATEMAP Logic Synthesis System", Proc. 
Int. Workshop on Logic and Architecture Synthesis for Silicon Compilers, Grenoble, 
France, May, 1988,pp.65-84. 

[Pucknell 88] D.A. Pucknell, and K. Eshraghian, Basic VLSI Design, Englewood 
Cliffs, NJ: Prentice Hall, 1988. 

[Rajashekhara]. T.N. Rajashekhara, and o. Kal,"Fast multiplier design using 
redundant signed-digit numbers", Int. J Electronics, Vol. 69, No.3, 1990, pp. 359-
368. 

[Razavi 92] H.M. Razavi and J. Battelini,"Design of a residue arithmetic multiplier", 
lEE Proc. G, Vol. 139, No.5, Oct. 1992,581-585. 

[Reddy 72] S.M. Reddy,"Easily Testable Realization for Logic Functions", IEEE 
Trans. Computers, Vol. c-21, No. 11, Nov. 1972, pp. 1183-1188. 

[Reed 54]I.S. Reed,"A Class of Multiple-Error-Correcting Codes and the Decoding 
Scheme", IRE Trans. Information Theory, Vol. PGIT-4, 1954, pp. 38-49. 

[Salmon 89] J.V. Salmon, E.B. Pitty and M.S. Abrahams,"Syntactic Translation and 
Logic Synthesis in Gatemap", lEE Proc. Pt. E, Vol. 136, No.4, July 1989, pp. 321-
328. 

[Sam 90] H. Sam and A. Gupta,"A Generalized Multibit Recoding of Two's 
Complement Binary Numbers and Its Proof with Application in Multiplier 
Implementations", IEEE Trans. Computers, Vol. 39, No.8, Aug. 1990, pp. 1006-
1015. 

[Sarabi 92] A. Sarabi and M.A. Perkowski,"Fast Exact and Quasi-Minimal 
Minimization of Highly Testable Fixed-Polarity ANDIXOR Canonical Networks", 
29th ACMlIEEE Design Automation ConI, 1992, pp. 30-35. 

[Sarabi 93] A. Sarabi and M.K. Perkowski,"Design for Testabilities of ANDIXOR 
Networks", Proc. IFIP WG. 10.5 Workshop on Applications of the Reed-Muller 
Expansion in Circuit Design, Hamburg, Germany, Sept. 16-17, 1993, pp. 147-153. 

[Sasao 90] T. Sasao and P. Besslich,"On the complexity of MOD-2 Sum PLA's", 
IEEE Trans. Computers, Vol. 32, No.2, Feb. 1990, pp. 262-266. 

[Sasao 93A] T. Sasao,"Logic Synthesis with EXOR Gates", Logic Synthesis and 
Optimization", Editor: T. Sasao, Kluwer Academic, 1993, pp. 259-284. 

164 



[Sasao 93B] T. Sasao,"AND-EXOR Expressions and their Optimization", Logic 
Synthesis and Optimization, Editor: T. Sasao, Kluwer Academic, 1993, pp. 287-312. 

[Saul 90] J.M. Saul,"An Improved Algorithm for the Minimization of Mixed Polarity 
Reed-Muller Representations", Proc. IEEE Int. Con! Comput. Design, 1990, pp. 372-
375. 

[Saul 91] J. Saul,"An Algorithm for the Multi-level Minimization of Reed-Muller 
Representations", Proc. IEEE Int. Con! Com put. DeSign, 1991, pp. 634-637. 

[Saul 92] J. Saul,"Logic Synthesis for Arithmetic Circuits Using the Reed-Muller 
Representation", EuroASIC'92, 1992, pp. 109-113. 

[Saul 93] J. Saul, B. Eschermann and J. Froessl,"Two-Level Logic Circuits using 
EXOR sums of Products", lEE Proc.-E, Vol. 140, No.6, Nov. 1993, pp. 348-356. 

[Scott 85] N.R. Scott, Computer Number Systems and Arithmetic, Prentice-Hall, Inc., 
1985. 
[Sklansky 60] J. Sklansky,"Conditional-Sum Addition Logic", TRE Trans. Electronic 
Computers, June 1960, pp.226-231. 

[Srinivas 91] H.R. Srinivas and KK Parhi,"High-Speed VLSI Arithmetic Processor 
Architectures Using Hybrid Number Representation", Proc. IEEE Int. Con! Comput. 
Design, 1991, pp. 564-571. 

[Srinivas 92] H.R. Srinivas and KK Parhi,"A Fast VLSI Adder Architecture", IEEE 
J Solid-State Circuits, Vol. 27, No.5, May 1992, pp. 761-767. 

[Steinbach 93] B. Steinbach and G. Kempe,"Minimization of AND-ExOR 
Expressions", Proc. IFIP WG 10.5 Workshop on Applications of the Reed-Muller 
Expansion in Logic Design, Hamburg, Germany, Sept. 16-17, 1993, pp. 20-26. 

[Stenzel 77] W.J. Stenzel, W.J. Kubitz and G.H. Garcia,"A Compact High-Speed 
Parallel Multiplication Scheme", IEEE Trans. Computers, Vol. c-26, No. 10, Oct. 
1977, pp. 948-957. 

[Swartzlander 73] E. Swartzlander,"Parallel Counters", IEEE Trans. Computers, Vol. 
C-22, No. 11,Nov. 1973,pp. 1021-1024. 

[Szabo 67] N.S. Szabo and R.I. Tanaka, Residue Arithmetic and its Applications to 
Computer Technology, McGraw-Hill Book Company, 1967. 

[Takagi 85] N. Takagi, H. Yasuura and S. Yajima,"High-Speed VLSI Multiplication 
Algorithm with a Redundant Binary Addition Tree", IEEE Trans. Computers, Vol. c-
34, No.9, Sept. 1985, pp. 789-796. 

165 



[Takagi 92] N. Takagi,"A Radix-4 Modular Multiplication Hardware Algorithm for 
Modular Exponentiation", IEEE Trans. Computers, Vol. 41, No.8, Aug. 1992, pp. 
949-956. 

[Tran 87] A. Tran,"Graphical Method for the Conversion of Minterms to Reed-Muller 
Coefficients and Minimisation of Exclusive-OR Switching Functions", lEE Proc. Pt. 
E, Vol. 134, No.2, Mar. 1987, pp. 93-99. 

[Tran 89] A Tran,"Tri-state Map for the Minimisation of Exclusive-OR Switching 
Functions", lEE Proc. Pt. E, Vol. 136, No.1, Jan. 1989, pp. 16-21. 

[Tran 93A] A. Tran and E. Lee,"Generalisation of Tri-State Map and a Composition 
Method for Minimisation of Reed-Muller Polynomials in Mixed Polarity", lEE Proc.­
E, Vol. 140, No.1, Jan. 1993, pp. 59-64. 

[Tran 93B] A Tran and J. Wang,"Decomposition method for minimization of Reed­
Muller Polynomials in Mixed Polarity", lEE Proc. E., Vol. 140, No.1, Jan. 1993, pp. 
65-68. 

[Uehara 81] T. Uehara and W.M. Vancleemput,"Optimal Layout of CMOS Functional 
Arrays", IEEE Trans. Computers, Vol. c-30, No.5, May 1981, pp. 305-312. 

[Urquhart 84] R.B. Urquhart and D. Wood,"Systolic matrix and vector multiplication 
methods for signal processing", lEE Proc. Pt. F, Vol. 131, No.6, Oct. 1984, pp. 623-
631. 

[Vassiliadis 89]. S. Vassiliadis, E.M. Schwarz and D.J. Hanrahan,"A General Proof 
for Overlapped Multiple-Bit Scanning Multiplications", IEEE Trans. Computers, Vol. 
38,No.2,Feb. 1989,pp. 172-183. 

[Wallace 64] C.S. Wallace,"A Suggestion for a Fast Multiplier", IEEE Trans. 
Electronic Computers, Feb. 1964, pp. 14-17. 

[Weste 93] N.H.E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, A 
Systems Perspective, Second Edition, Addison-Wesley Publishing Company, 1993. 

[Wu 82] X. Wu, X. Chen and S.L. Hurst,"Mapping of Reed-Muller Coefficients and 
the Minimization of Exclusive OR Switching Functions", lEE Proc. Pt. E, Vol. 129, 
No. I,Jan. 1982,pp. 15-20. 

[Wu 85] M. Wu, W. Shu and S. Chan,"A Unified Theory for MOS Circuit Design­
Switching Network Logic", Int. J Electronics, Vol. 58, No.1, 1985, pp. 1-33. 

[Wu 87] C.E. Wu, A.S. Wojcik and L.M. Ni,"A Rule-Based Circuit Representation 
for Automated CMOS Design and Verification", Proc. 24th ACMlIEEE Design 
Automation Conj, 1987 pp.786-792. 

166 



[Wu 90] C.W. Wu and P.R. Cappello,"Easily Testable Iterative Logic Arrays", IEEE 
Trans. Computers, Vol. 39, No.5, May 1990, pp. 640-652. 

[Yano 90] K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shimohigashi and A. 
Shimizu,"A 3.8-ns CMOS 16x16-b Multiplier Using Complementary Pass-Transistor 
Logic", IEEE J. Solid-State Circuits, Vol. 25, No.2, Apr. 1990, pp. 388-395. 

[Yen 92] S.M. Yen, C.S. Laih, C.H. Chen and J.Y. Lee,"An Efficient Redundant­
Binary Number to Binary Number Converter", IEEE J. Solid-State Circuits, Vol. 27, 
No. 1,Jan. 1992,pp. 109-112. 

[Zhu 93] J. Zhu and M. Abd-EI-Barr,"On the optimization of MOS circuits", IEEE 
Trans on Circuits and Systems-I:Fundamental Theory and Applications, Vol. 40, No. 
6, June 1993, pp. 412-422. 

167 


	295373_0001
	295373_0001a
	295373_0002
	295373_0003
	295373_0004
	295373_0005
	295373_0006
	295373_0007
	295373_0008
	295373_0009
	295373_0010
	295373_0011
	295373_0012
	295373_0013
	295373_0014
	295373_0015
	295373_0016
	295373_0017
	295373_0018
	295373_0019
	295373_0020
	295373_0021
	295373_0022
	295373_0023
	295373_0024
	295373_0025
	295373_0026
	295373_0027
	295373_0028
	295373_0029
	295373_0030
	295373_0031
	295373_0032
	295373_0033
	295373_0034
	295373_0035
	295373_0036
	295373_0037
	295373_0038
	295373_0039
	295373_0040
	295373_0041
	295373_0042
	295373_0043
	295373_0044
	295373_0045
	295373_0046
	295373_0047
	295373_0048
	295373_0049
	295373_0050
	295373_0051
	295373_0052
	295373_0053
	295373_0054
	295373_0055
	295373_0056
	295373_0057
	295373_0058
	295373_0059
	295373_0060
	295373_0061
	295373_0062
	295373_0063
	295373_0064
	295373_0065
	295373_0066
	295373_0067
	295373_0068
	295373_0069
	295373_0070
	295373_0071
	295373_0072
	295373_0073
	295373_0074
	295373_0075
	295373_0076
	295373_0077
	295373_0078
	295373_0079
	295373_0080
	295373_0081
	295373_0082
	295373_0083
	295373_0084
	295373_0085
	295373_0086
	295373_0087
	295373_0088
	295373_0089
	295373_0090
	295373_0091
	295373_0092
	295373_0093
	295373_0094
	295373_0095
	295373_0096
	295373_0097
	295373_0098
	295373_0099
	295373_0100
	295373_0101
	295373_0102
	295373_0103
	295373_0104
	295373_0105
	295373_0106
	295373_0107
	295373_0108
	295373_0109
	295373_0110
	295373_0111
	295373_0112
	295373_0113
	295373_0114
	295373_0115
	295373_0116
	295373_0117
	295373_0118
	295373_0119
	295373_0120
	295373_0121
	295373_0122
	295373_0123
	295373_0124
	295373_0125
	295373_0126
	295373_0127
	295373_0128
	295373_0129
	295373_0130
	295373_0131
	295373_0132
	295373_0133
	295373_0134
	295373_0135
	295373_0136
	295373_0137
	295373_0138
	295373_0139
	295373_0140
	295373_0141
	295373_0142
	295373_0143
	295373_0144
	295373_0145
	295373_0146
	295373_0147
	295373_0148
	295373_0149
	295373_0150
	295373_0151
	295373_0152
	295373_0153
	295373_0154
	295373_0155
	295373_0156
	295373_0157
	295373_0158
	295373_0159
	295373_0160
	295373_0161
	295373_0162
	295373_0162a
	295373_0165
	295373_0166
	295373_0167
	295373_0168
	295373_0169
	295373_0170
	295373_0171
	295373_0172
	295373_0173
	295373_0174
	295373_0175
	295373_0176
	295373_0177

