
Using a Persistent System to
Construct a Customised Interface to

an Ecological Database

Peter J Barclay Colin M Fraser

Jessie B Kennedy

Department of Computer Studies, Napier University

Edinburgh, Scotland EH14 1DJ

Abstract

New applications of information technology have increasingly sophisti-
cated user interface requirements. Such interfaces are sometimes highly
application speci�c and therefore require to be customised to the given
application area. Technology is required to support the construction
of such highly non-generic interfaces. We describe how by using the
persistent programming language Napier88 and the associated window-
ing system WIN it has been possible to construct by modest e�ort an
interface tailored to the requirements of an ecological database.

1 Introduction

The application of information technology to new areas makes increasing de-
mands on user interfaces. In constructing data-intensive applications, there is a
need for techniques to access data through visually meaningful representations,
rather than the query languages of traditional databases.

User Interface Management Systems (UIMS) [HaHi89] provide strong sup-
port for the construction of highly generic interfaces; in [Coop90] Cooper de-
scribes how to build generic interfaces on top of a variety of data models in a
persistent system.

However, as well as supplying a high degree of genericity, it is also nec-
essary to �nd technologies better to support speci�city, such as applications
where particular graphical representations must be used. Here we describe
how the persistent programming language Napier88 and the associated win-
dowing systemWIN have been used rapidly to develop an interface, EcoSystem,
which provides highly application speci�c querying facilities over an ecological
database. Only recently has database technology been applied to ecological
data [Kenn85]; as yet, there has been little attempt to build interfaces such as
the one described here.

1



2 Ecological Data

In this section an overview is presented of the ecological database to which the
graphical interface is a front-end.

2.1 The Data

The data used was collected in a survey undertaken in 1986 and 1987 by Paisley
College of Technology, in conjunction with the Nature Conservancy Council.
Here we give a brief overview of the structure of a subset of the data; more
details may be found in [BiCM88].

In this examination we consider only the data relating to land classi�cation.
A sample of 1 km � 1 km quadrats was selected, and each divided into 2500
50 m � 50 m squares (called pixels).

These were surveyed for a variety of biotic features, such as woodland
and vegetation types present, and abiotic features such as physiography and
boundary structures. This information was collected on coding sheets, using a
di�erent coding scheme for each quadrat surveyed. Subsequently, the data was
reduced to a standardised representation scheme and subjected to TWINSPAN
(Two Way INdicator SPecies ANalysis) [Hill79], to determine various cate-
gories for the di�erent features of interest. This procedure is described fully in
[BiCM88].

The data was modelled in terms of the object-oriented model described in
[BaKe91]; full details of the application model is beyond the scope of this paper,
but is described in detail in [BaKe92]. A brief summary follows (see �gure 1).

A quadrat is a square aggregation of pixels. Each quadrat has an xRef
and yRef, representing its Ordnance Survey grid co-ordinates, and a landType.
Each pixel has a patchType for each of the categories of features included in
the survey, together with an xIndex and yIndex showing its position within the
quadrat. LandType and PatchType are the domains of various discrete values,
representing the di�erent types of land classi�cation established by the survey
(eg, Trichophorum-Eriophorum Bog, Saltmarsh, etc). Zones and patches are
homogeneous aggregations of quadrats and pixels respectively.

Our aim in modelling the data is not to redo the classi�catory analysis
already performed upon it, but rather to be able to represent the results of this
initial work in an intuitive manner, allowing graphical display of the data, and
ad hoc querying on it. Any conclusions derived from the data must be supported
by the rigorous statistical techniques employed by ecologists [Gauc82], [Piel84];
we hope to o�er a facility to browse the data in order to perform explorative
\searching for patterns."

2.2 The Database

The term database is used loosely here to describe Isis (Islay Survey Informa-
tion System) [Barc92], an application in Napier88 which manages the ecological
data under the appropriate model. The data is represented as a collection of
persistent Napier88 structures. Privileged utility programs may access these
structures directly; access for all other applications is through an object ori-
ented message interface, which forces a view of the data consistent with the
application model. Isis contains no notions of any graphical representation



pixelsquadrats quadrat

yRef

landType

patchTypeP

patchTypeB

patchTypeW

patchTypeAV

Patch

Pixel

Zone

Quadrat

w

p

yIndex

xIndex

pixels

xRef

LandType

Number

Number
Number

Number

av

b

Figure 1: Application Model

of the data. An intermediate system termed a query engine translates from
the internal query representation used in EcoSystem to that used in the data
management application, decoupling the two applications (�gure 2).

3 Napier88 and WIN

In this section the language Napier88 and the windowing system WIN are
briey reviewed.

3.1 Napier88

Napier88 [MBCD89], [DCBM89] is a high-level block-structured language with
orthogonal persistence. Napier88's type system is based loosely on one pro-
posed by Cardelli and Wegner [CaWe85], and provides an in�nite union type,
a type for extensible bindings, variants, recursively de�ned types, parametric
polymorphism, existential types [MiPl88] and �rst-class procedures.

The operation of the language's persistence mechanism is transparent to
the language-user; any object created by the execution of a program may be
speci�ed as persistent, in which case the object will continue to exist after
the termination of the program. The persistent object may then be reused
in a subsequent execution of the same program, or by some other program.
Napier88's persistence is type-safe, so that any program execution which uses
a persistent object may use it only as an object of the type with which it was
created.



OOM InterfaceUtilities

Interface
User

Graphical Query
Engine

Isis

Ecological Data

Application
Programs

Figure 2: System Architecture

Napier88 supports two graphics types, image (a raster type), and pic (a
point-and-arc type). These types are fully integrated into the language; they
may be passed as parameters, returned from functions, and they may persist.
The graphics types facilitate graphical programming, but are rather low-level
to serve as primitives for interface construction.

3.2 WIN

WIN (Windows In Napier) [CDKM89], [CuDK90] is a windowing system writ-
ten entirely in Napier88; it is based on the experience of earlier user interface
tools implemented in PS-algol [CoMA88].

Each window has associated procedures to set its title, display images in
its pane, resize it, etc. Further, each window has an application which runs
within it; this is a procedure which takes a (keyboard or mouse) event as its
parameter, and implements the functionality of the window.

Windows are displayed, opened and closed, and moved by a window man-
ager. WIN has extended the traditional window manager paradigm by making
windows persistent, so that they may be reused by di�erent applications; fur-
ther, windows are �rst-class objects which may be passed between di�erent
window managers. A window manager may run inside another window, per-
mitting an arbitrary hierarchical nesting of windows.

Event-distribution among windows is controlled by a noti�er hierarchy,
which is described in detail in [CuDK90]; this mechanism is largely transparent
to WIN users. (However, the user can take control over event distribution if
desired; for example, EcoSystem disables the left mouse button by placing a
trap for any left mouse events at the top of the event distribution hierarchy).

WIN also provides a range of specialised windows, such as light-buttons,
sliders, menus and scrolling menus. The application associated with these spe-
cialised windows implement the functionality of the particular interface tool.

WIN is constructed on top of the integral graphics primitives of Napier88,



building up to the level of components su�cient for the construction of graphical
interfaces.

4 A Customised Interface to Ecological Data

This section describes the graphical interface EcoSystem; a more detailed de-
scription, together with an overview of the methodology used to map the in-
terface design onto its implementation, may be found in [Fras91].

4.1 The Design of the Interface

In this section the design of the interface is reviewed; its implementation is
discussed later.

There are several abstract models of the human computer interaction; some
are surveyed in [Cout89]. Here, however, the problem is to facilitate construc-
tion of an apposite, speci�c interface by persons who are not interface special-
ists.

The design of the interface reects the task analysis. Discussion with the
intended users of the interface identi�ed the kinds of tasks which were to be
carried out1; these were broken down into appropriate constituent subtasks
where appropriate. A graphical representation for each task was chosen, and a
mock-up of the interface component for this task constructed for user-feedback.
Individual task windows such as the query editor or session window (query
executor) were designed in this way.

The interface displays were built up from components such as those sup-
plied by WIN. Hence, task analysis proceeded top-down by functional decom-
position, and interface-design bottom-up from available components. Where
subtasks were su�ciently structured, they were supported by appropriate in-
terface subdisplays; in this way, the design process continued recursively.

Light buttons in each display call up task windows appropriate to each task
which may be performed there; the backdrop map associates each task with its
geographic locality (�gure 3).

4.2 The Design of the Software

Since no guidelines were available on how to map an interface design onto
WIN, �nding an approach to this mapping constituted a fair amount of the
development e�ort. The approach used is described in some detail in [Fras91],
and could form the rudiments of a graphical user interface design methodology
for use with WIN.

The structure of the software reects naturally the structure of the interface
which it implements. Environments (Napier88 collections of name-object bind-
ings) were created to store interface objects and procedures separately. Further
environments were created for tasks supported by the interface, and where nec-
essary, hierarchically nested environments for subtasks. The implementation of
one particular task was therefore generally hidden within one environment.

1These tasks are covered in a succeeding section on the functionality of the interface.



Figure 3: Screen Layout



Figure 4: Inter-Module Communication

The objects necessary to produce the display for a given task were con-
structed �rst. These objects comprise of the task window, together with its
window manager and noti�er, menus, light buttons, etc, which are created
from the generator procedures supplied by WIN; and other items for graphi-
cal display such as text and images. These items were then assembled in the
correct arrangement to form the display, and stored in the task's environment.

The procedures necessary to represent the activity of the task were then
coded, compiled, and bound to the menu panes and light buttons which evoke
their functionality, in the task window where these activities are to be per-
formed. The functionality of a procedure may, of course, be to display a subtask
window, thereby making further subactivities available. Where a task involves
interacting with the underlying database Isis, the activity-procedures call the
data-access procedures supplied by the application interface of Isis.

A top-level module controls the initialisation and �nalisation of the system
as a whole on each execution, and monitors the keyboard and mouse.

Objects which exhibit a su�cient degree of reusability (such as calibration
information) were placed in a global pool in the store, so that they could be
bound into various di�erent modules (�gure 4). All binding between system
components has been arranged to be dynamic, to support incremental evolution
of the system better.

The overall structure of the system is shown in �gure 5, which shows the
visibilities among system components.

4.3 The Functionality of the Interface

In this section we review the functionality of the graphical interface. Basically,
two classes of function are supported by EcoSystem; these might be categorised
as querying functions, and supporting functions. The supporting functions are



Figure 5: Module Visibilities

described �rst, since generally they are simpler.

4.3.1 Supporting Functions

The �rst class of supporting functions concern the map of the survey site and its
geometry. Two functions which need be used only when the system is installed
are load map and calibrate. The load map function converts a raster image
of the survey site into a Napier88 image and makes this image persistent so
that it may be used in subsequent program executions. The calibrate function
calculates the scale and o�set of the resulting image, so that the position of
any point may be calculated with respect to the Ordnance Survey grid.

The second, related set of supporting functions are of more general utility.
The function grid allows a representation of the ordnance survey grid to be
toggled on and o� on the backdrop map. The function co-ord will furnish
the grid coordinates of any point on the map selected by the mouse, and the
function distance will furnish the (actual) separation in kilometers of any two
points which are selected on the map (�gure 6).

The help system is the remaining supporting function. Help is provided
in two ways. Firstly, prompts and messages are displayed appropriate to the
choices available to the user at any time, guiding her use of the system. Sec-
ondly, more detailed reference information on each task is available in a scrol-
lable text window which may be invoked at any time (�gure 7).



Figure 6: Geographic Supporting Functions



Figure 7: Help Function



4.3.2 Querying Functions

The construction and execution of queries are separated. There are three rea-
sons for this separation. Firstly, the construction and execution of queries were
identi�ed by task analysis as two separate activities. It was considered that
the user may wish to construct a query or set of queries to examine some par-
ticular hypothesis, and that during this task, identifying the queries necessary
would be an atomic task rather than examining the result of each individual
query as it was constructed. Secondly, the queries are persistent queries, so
that once a query has been formulated, it may be run as often as required, and
speci�cally on di�erent executions of EcoSystem. The actual interrogation of
the database, however, takes place at query execution time, so the result of the
query will always reect any alterations in the underlying data. It is envisaged
that further tasks may be required between query executions. The third, and
perhaps most important, reason for this separation is so that a query or set of
queries that have been run over one survey 1 km � 1 km quadrat may then be
run over any other quadrats desired.

(Having said that construction and execution of queries are two separate
functions, it is to be understood that at any time the user may switch between
these two modes).

4.4 Query Formulation

The initial stages in constructing a query are shown in �gure 8. Here, the query
editor displays a library of icons, which may be used to represent the query
result; the desired icon is selected with the mouse. The query editor window
shows the various categories for which data is available; this is e�ectively a
dictionary showing the metadata of the underlying database. The required
category is selected with the mouse.

In �gure 9 the query window shows the query as formulated so far. The
associated icon is shown in the top left pane of the window, the features sought
in the main pane, with logical connectors between. The query editor window
shows for which features data is available within the category already selected.
Features may be incorporated into the query under construction by selecting
them with the mouse.

Thus the query editor e�ectively allows the user to browse the underlying
database, establishing for what features data is available, and to construct
queries which show the geographical distribution of (Boolean functions of) these
features. The queries in existence, and their de�nitions, may be viewed at any
time as shown in �gure 10.

4.5 Query Execution

The function called session allows queries to be executed over the desired
1 km � 1 km quadrat. There are two query positions, in each of which a query
may be selected to run, or be removed. Once run, the result of the query may
be shown on or cleared from the display. The display shows the 50 m � 50 m
pixels into which each quadrat is divided by the survey methodology; in these
pixels the icon associated with the query may be displayed. A cross-hatch icon



Figure 8: Query Construction



Figure 9: Query Construction



is used where a pixel is positive for both queries simultaneously. By way of
example, �gure 11 shows where streams pass through semi-natural woodlands.

5 Evaluation of the Interface

Isis supplies an interface to ecological data, supporting an object oriented
model; this interface may be used by (batch) application programs. EcoSystem
accesses the data through the same interface, providing a user with the ability
to query the data graphically under this model.

The object oriented model treats sampled areas as objects, with their ob-
served features as properties. Thus queries can reference properties of areas
discovered in di�erent stages of the survey, or indeed by di�erent surveys. This
\multi-dimensional" view of the data was not available before the implemen-
tation of EcoSystem. The ability to have derived views of the data is also
supported.

The kinds of queries allowed, and the method of display of results, emerged
from discussions with the system's intended users. Clearly, changes in these
requirements will necessitate alterations to EcoSystem itself. However, the
facility with which the system was constructed lends encouragement that such
changes could be met by modest e�ort. The system has provided a rapidly-
constructed answer to highly speci�c user requirements. We are con�dent that
the system will be able to evolve easily to meet changes in these requirements,
although con�rmation of this can only be provided by experience through the
lifetime of the system.

6 Evaluation of WIN and Napier88

WIN supplies su�cient primitive components to support a project such as
EcoSystem. There was no need to code any of the building blocks from which
the interface was constructed. The user need have no knowledge of how these
components work to design a system which uses them, and the details of the
event distribution mechanism are also largely transparent to the user. Thus
the user can concentrate on designing the functionality of the system, rather
than being distracted by implementation details2.

In terms of the taxonomy presented in [Talb91], WIN is a toolkit | the
lowest in a hierarchy of �ve levels of support for user-interface construction.
Nonetheless, owing to the seamless integration of WIN with the application
language, Napier88, a high level of support is o�ered.

The ability to build libraries such as WIN depends heavily on Napier88's
expressive type system, which simpli�es the description of objects required,
and allows the user to construct her own types as required by a particular
application. First-class procedures allows the construction of objects which
represent activities.

The availability of both �rst class procedures and �rst class graphical ob-
jects, which may be dynamically bound to each other, made possible the ap-
proach where tasks and displays were designed top-down and bottom-up re-
spectively, separately but in mutual co-ordination.

2However, an experienced user can modify WIN at a low level if desired.



Figure 10: Query Browsing



Figure 11: Query Execution



The provision of orthogonal persistence considerably lightens the system-
developer's load, since she need expend no e�ort in storing and retrieving sys-
tem components (including images), nor in preserving the system's state. This
results in a considerable reduction of code size.

EcoSystem is implemented by around 7000 lines of Napier88. However, the
degree of modularity is high. The number of separate modules (compilation
units) is 42, so that each one has on average only 170 lines of code. All but
one of these units create the various objects de�ned by the system design, and
place them in the persistent store; (apart from debugging), each module need be
executed only once. The remaining module is the top-level executable program;
running this module �res up the entire system, and controls its shutdown.

This demonstrates that persistence encourages a highly exible and incre-
mental style of software development; a system may be constructed by small
chunks. This considerably simpli�es not only construction, but also tuning and
evolution of the system.

The main problems met in the construction of the system were in the lack of
further tools which would have been useful; for example, neither an image-editor
nor a browser for the persistent store were available during the development of
EcoSystem (although a browser has been developed | see [KiDe90]).

7 Conclusion

Application speci�c graphical interfaces can considerably facilitate the access
of data in a way meaningful to its users. Although such interfaces are novel
for an ecological database, it has been possible to construct such a system by
modest e�ort.

A main contributor to the ease with which the system was developed is the
seamless integration of the database, the interface toolkit, and the application
interface. The database is written in Napier88, and long-term data storage is
managed by the persistence mechanism of the language. The interface toolkit
is built on Napier88's integral graphics primitives. The application interface,
written in Napier88, utilises both the stored data and the interface components
as required, simply and without discrimination. This experience suggests that
Napier88 provides an e�cient technology for the construction of application
speci�c graphical interfaces.

8 Further Work

It remains to extend EcoSystem to deal with the whole body of survey data,
rather than a subset; and to extend it to support more complex, computation-
based querying as described in [BaKe92].

9 Acknowledgements

We wish to thank the following people: Prof. David Curtis of Paisley College
of Technology for his collaboration in this work, and for making available to
us some of his data; Graham Kirby of St Andrews University for his unfailing
advice and assistance in using WIN; Richard Cooper and Paul Philbrow of



Glasgow University, for the bene�t of their experience in persistent program-
ming; and Prof. Malcolm Atkinson of Glasgow University, for his guidance.

References

[BaKe91] Barclay PJ, Kennedy JB. Regaining the conceptual level in object
oriented data modelling. In: proc BNCOD-9, Wolverhampton.
Butterworths, Jun 1991

[BaKe92] Barclay PJ, Kennedy JB. Modelling ecological data. In: proc
6th international working conference on scienti�c and statistical
database management, Ascona, Switzerland, Jun 1992

[Barc92] Barclay PJ. Object oriented modelling of complex data with auto-
matic generation of a persistent representation. PhD thesis, Napier
University, Edinburgh, 1992 (forthcoming)

[BiCM88] Bignal EM, Curtis DJ, Matthews JL. Islay: land types, bird habi-
tats, and nature conservation. Technical report, Paisley College of
Technology, 1988

[CaWe85] Cardelli L, Wegner P. On understanding types, data abstraction,
and polymorphism. Computing Surveys Dec 1985; 17(4)

[CDKM89] Cutts QI, Dearle A, Kirby GNC, Marlin CD. WIN: a persistent
window management system. Technical report, University of St
Andrews, 1989

[CoMA88] Cooper RL, MacFarlane DK, Ahmed S. User interface tools in
PS-algol. Technical report, University of Glasgow, Mar 1988

[Coop90] Cooper RL. Con�gurable data modelling systems. In: proc 9th In-
ternational Conference on the Entity-Relationship Approach, Lau-
sanne, Switzerland, Oct 1990, pp 35 { 52

[Cout89] Coutaz J. Architecture models for interactive software. In: Cook
S (ed) ECOOP89: proc 3rd European Conference on Object Ori-
ented Programming. Cambridge University Press, 1989, pp 383 {
399

[CuDK90] Cutts Q, Dearle A, Kirby G. WIN programmers' manual. Technical
report, University of St Andrews, 1990

[DCBM89] Dearle A, Connor R, Brown F, Morrison R. Napier88 - a database
programming language? In: proc DBPL 2, Gleneden Beach, Ore-
gon, Jun 1989

[Fras91] Fraser CM. Persistent systems for graphical interface construction.
Technical report, Napier University, Edinburgh, May 1991



[Gauc82] Gauch HG. Multivariate analysis in community ecology. Cam-
bridge University Press, 1982

[HaHi89] Harton HR, Hix D. Human-computer interface development: con-
cepts and systems. ACM Computing Surveys Mar 1989; 21(1):5 {
92

[Hill79] Hill MO. TWINSPAN - a FORTRAN program for arranging mul-
tivariate data in an ordered two-way table by classi�cation of the
individuals and attributes. Technical report, Section of Ecology
and Systematics, Cornell University, New York, Jul 1979

[Kenn85] Kennedy JB. A study of ecological database management and asso-
ciated data analysis. Master's thesis, Paisley College of Technology,
1985

[KiDe90] Kirby G, Dearle A. An adaptive graphical browser for Napier88.
Technical report, University of St Andrews, 1990

[MBCD89] Morrison R, Brown F, Connor R, Dearle A. The Napier88 reference
manual. Technical report, Universities of Glasgow and St Andrews,
Jul 1989

[MiPl88] Mitchell JC, Plotkin GD. Abstract types have existential type.
ACM TOPLAS Jul 1988; 10(3):470 { 502

[Piel84] Pielou EC. The interpretation of ecological data: a primer on
classi�cation and ordination. John Wiley and Sons, 1984

[Talb91] Talbot S. Software design aspects in HCI. Technical report, BA
SEMA, Glasgow, 1991


