
A Survey of Architectures for
Memory Resident Databases

Gordon Russell Paul Cockshott

May 13, 1993

Department of Computer Science
University Of Strathclyde

26 Richmond Street
Glasgow
G1 1XH
Scotland

Abstract

Persistent object oriented architectures have been researched for many years, deriving initially
from the Manchester University Atlas machine. In reality however, few actual implementations of
persistent architectures exist. In the first half of this paper an examination of four well known designs
is examined, namely the SYSTEM/38, MONADS, MUTABOR, and the Rekursiv. Each machine’s
object management model is explained, along with an analysis of the design decisions made. Fol-
lowing this, a discussion concerning the ideal persistent architecture is presented, suggesting design
decisions which should be considered in any future persistent architecture.

1 Historical background

The idea of architectural support for persistent programming derives ultimately from the work of Tom
Kilburn and others [1] on the Manchester University Atlas computer. They introduced the idea of what
was termed a single level store: a notion that is now more familiar to us as virtual memory.

During the 1950s machines used a variety of different store technologies: Williams Tubes, mercury
delay lines, magnetic cores and moving magnetic devices. Although these media differed considerably
in their response times, they were all used in the same conceptual fashion, as the primary store of the
machine.

For instance, an earlier machine by Kilburn at Manchester [2] had combined, the then very new,
transistors with a magnetic drum for its main instruction store. As a consequence of using drums its
instruction cycle was slow at some 30 milliseconds, but this was partially offset by the cheapness of
drum store in comparison to its competitors. The single level store of Atlas was introduced as a means
of making a drum store perform at almost the same speed as the more expensive cores. The drum
continued to act as the main store, but pages of it were automatically transferred on use to one of a
small number of page frames implemented as magnetic cores.

At this early period of computer development, computers were still seen primarily as number
processing machines rather than as repositories for long term data. Although, by 1960, all the main
memory technologies were based on magnetic effects and thus non-volatile, this aspect was not seen
as being of any great significance. The drums that provided the main store of the Atlas were not used
to hold long term information. Data to be processed was kept off-line on tapes.

The emphasis changed with the development of disk stores, which were from the start seen as long
term stores. In consequence, when people first tried to develop interactive, virtual memory operating

2 [Russell and Cockshott] Architectures for Persistence

systems such as Multics [3] and Emas [4], they attempted to integrate disks and short term memory into
a single level store. Ideally one would have liked to incorporate all of the disks as part of the permanent
address space of the machine. In that case a disk file would just be a particular range of addresses.

Two problems prevented a simple implementation of this approach:

� The size of the disks exceeded the address space provided by the underlying machine architecture.

� If a fixed range of addresses were allocated to a file, it was impossible to allow the file to grow.

The EMAS system, for example was initially implemented on ICL machines whose basic architecture
was a copy of the IBM 360 series [5]. This restricted its address space to 24 bits or 16 megabytes,
far too little for a disk farm. The answer adopted was to allow files to be temporarily mapped into the
address space of a process, a method that has recently been included in implementations of Unix [6].

The answer to the problem of mapping dynamically growing files, could in principle be solved by
segmentation as was advocated by Iliffe [7], and used in Multics and the later versions of EMAS that
were implemented on the 2900 series [8] machines. A file could now be made equivalent to a segment
and allowed to grow up to the maximum size of a segment, but this just created new problems. The
segments were smaller than large files, and there were fewer segments available than there were files.

This early experience with operating systems showed that graceful integration of non-volatile store
into machine architectures required:

� A segmented architecture

� A large number of segments

� A large segment size

These have been the goals of the designers of more recent persistent store computing machines. We shall
investigate how far they have succeeded in our description of four persistent systems: IBM SYSTEM/38,
MONADS, MUTABOR and Rekursiv.

1.1 SYSTEM/38, AS/400

The IBM SYSTEM/38 [9] [10], known in its more recent models as the AS/400 was introduced at the
end of the 1970s. At this point, IBM were becoming aware of the limitations in the virtual memory
architecture supported by their existing mainframes. Their principle fault was to provide too small an
address space; an architectural mistake more difficult than any other to remedy. The IBM engineers
took the bold step of more than doubling the address width, from 24 bits on the 360 series to 64 bits on
the SYSTEM/38.

Following the developers of Atlas, the SYSTEM/38 team called their memory model single-level
store, but with the advance in storage capacity that had occurred in the in the intervening decade and a
half, the emphasis was different. The purpose of the single level store was now to integrate a potentially
vast disk database into the virtual address space of the computer. The difference between this and the
conventional view of virtual memory is clearly brought out in figure 1.

All store, not just main memory is controlled by the virtual memory manager. No input/output to
auxiliary disk store is ever performed by user programs. Indeed, there is no concept of a disk file to
which I/O could be directed. Instead, the store is grouped into logical objects which persist. Objects
persist until explicitly deleted by the user or until the next IPL in the case of certain operating system
specific objects. Object management and virtual memory are supported in microcode.

1.1.1 Object Addressing

Objects are addressed using 16 byte identifiers termed pointers. A pointer consists of an 8 byte object
address plus additional information about the status of the object, authorization properties and the
object’s type.

Architectures for Persistence [Russell and Cockshott] 3

Conventional Virtual Memory

Main
Memory

Main
Memory

Virtual Addressing

Non-Virtual Addressing

Virtual Addressing

Disks DisksDisks

DisksDisksDisks

Disks

Single Level Store

User View

Figure 1: Two Views of Virtual Memory

The store of the machine is tagged, with tag bits being used to determine if a 16 byte aligned
sequence is a pointer. If it is, the hardware imposes restrictions on what can be done with it to prevent
the corruption or overwriting of pointer information. The layout of a pointer is shown in figure 2.

1 OffsetSGE SGN Type Info

Tag
Object Pointer

Figure 2: A SYSTEM/38 Pointer

The address part of the pointer consists of 3 fields:

� Offset: 24-bit byte offset within a segment group

� SGN: 24-bit segment group number

� SGE: 16-bit segment group extender.

Objects are each assigned a segment group, allowing 16 million objects to be active at any one time,
each of which can be up to 16 megabytes in size.

The segment group extender is an error checking mechanism associated with the re-use of object
numbers. A maximum of 224 objects is not enough to avoid the need for segment groups to be reused.
When an object is explicitly deleted (the machine does not use garbage collection), the segment group
associated with it may be reused. When, however, this takes place, the new object address will be given
a different segment group extender. The extender is also written into the header of the segment group.
On the dereference of a pointer, a comparison is made between the extender field of the pointer and that
in the segment group header. Any difference, indicating that the pointer referred to an earlier object
that had occupied the same portion of the virtual address space, triggers a fault.

The hardware currently uses 48 bits of the virtual address to obtain a physical address. For this
purpose, the 48-bit address is considered as a 39-bit page address and a 9-bit offset into a 512 byte page.
The small page size is interesting; it indicates that the space overheads, associated with transferring a
small object into memory, would be less serious than on a system with larger pages.

4 [Russell and Cockshott] Architectures for Persistence

1.1.2 Address Translation

When the number of pages in the address space is very large, 239 in the case of the AS/400, conventional
hierarchical page tables become impractical. Consider what would happen if one tried to map the address
space hierarchically� � �

A single 512-byte page would hold 64 or 26 page-descriptors of 64 bits each. We would thus need
some 233 pages to fully map the address space. Of course one need not map it fully, one only needs
mapping pages for pages currently resident, but an object address space is likely to sparsely used.
Each object occupies a segment group taking up 16 megabytes of address space. This alone requires
3 levels of mapping tables, so the smallest resident object would tie down 3 page frames in mapping
information.. In addition to the space constraints, there are speed considerations. some 6 or 7 levels of
indirection would be involved in converting a logical to a physical address.

To avoid these problems the notion of the inverted page table was developed independently for
the SYSTEM/38 and for MONADS [11] [12]. The technology was later adopted on the IBM 801
experimental RISC processor [13] and the RS/6000 series [14]. An inverted page table contains records
for each physical page of RAM indexed on the virtual pages that they contain. An indication of how it
works is provided in figure 3.

Hash Generator

Page Directory Index

Next IndexPage Address

End Of ChainMaching Page Address

Offset

Object Pointer

OffsetPage Address

Main Store Address

Frame Identifier

Hash Table Index

Page Directory

Figure 3: The Inverted Page Table

1.2 MONADS

The MONADS project was first established in 1976 to investigate techniques to improve on the de-
sign and development phase of large software systems. From that point it has developed into an
object oriented environment, utilizing a segmented virtual paged memory hierarchy. This environment
has taken a number of different forms over the years, including Hewlett Packard 2100A minicom-
puters (MONADS-I and MONADS-II), a custom micro-programmable processor (MONADS-PC),
and a SPARC based system (MONADS-MM), of which there are two current implementations; the
MONADS-PC (Personal Computer) [15] and the MONADS-MM (Massive Memory) [16]. These two
machines can be programmed in a number of high level languages, including a PASCAL dialect and,
to a limited extent, LEIBNIZ [17].

There are three major design philosophies which underline the MONADS environment:

Architectures for Persistence [Russell and Cockshott] 5

1. Module Structure. This was desirable since many of the programming languages considered for
use on the MONADS system were scope based. The exportation of local variables from modules
is therefore strictly forbidden, forcing access to such information through procedural-based
mechanisms.

2. Process Structure. The whole approach to operating system composition follows the ‘in-process’
model [18] for service requests1. Although Keedy [19] argues that such a mechanism has many
inherent advantages in a dynamic system, the domain switching and domain protection required
to handle this type of design satisfactory generally requires significant hardware support.

3. Uniform Virtual Memory. It is desirable, from a programmers viewpoint, to provide either
exactly one way to perform a number of logically similar tasks, or to provide a number of ways
where each mechanism can be done equally well for each of the tasks. In a non-uniform system,
the processes involved in locking an object and locking a file are not identical, even though
they are logically similar. Uniform virtual memory does not exhibit the divisions found within
non-uniform solutions. Such uniformity lies at the heart of the quest towards persistent object
oriented systems.

In evaluating the MONADS design strategy, careful consideration of the object management system
should be performed, including the effects of its block-type information hiding philosophy.

1.2.1 MONADS Memory Management

The fundamental user-level2 memory addressing mechanism used in MONADS is the virtual memory
address. This address is similar in design for both the machine variants, with the PC utilizing 60 bits
and the MM 128. The layout of the virtual address can be seen in figure 4.

Offset Node Volume AS

Monads-PC

Monads-MM

Figure 4: Virtual Address for MONADS

From figure 4, it can be seen that the virtual address is split into four component parts, i.e. the node,
volume, AS and offset.

� The virtual memory node number indicates the machine’s network address on which the desired
physical memory slot is located. This is 32 bits long for the MONADS-MM machine. This
may not be a sufficiently large enough range of values, especially considering that some network
addressing systems now make use of 48 bit address fields (remember that many network routers
rely on a hierarchical physical location description being stored within the network address, thus
the resulting address description is sparse).

� Disks within MONADS can be identified by one or more volume numbers. If more than one
volume number refers to a single disk, then each number represents a partition within that disk.
This field is 32 bits long for the MONADS-MM machine. However, this field with the node

1Procedure-oriented or ‘in-process’ techniques invoke operating system instances via procedure based access, as opposed to
‘out-of-process’, which communicates with operating system tasks through communication channels.

2Although clearly the fundamental memory addressing mechanism for the underlying machine is the physical address.

6 [Russell and Cockshott] Architectures for Persistence

number is represented by only 6 bits in the MONADS-PC system. This is clearly insufficient for
any realistic networked system.

� Persistent memory is split up into a number of separate ‘chunks’, with each of these chunks
given a unique identifier. These chunks are known as address spaces, identified by address space
numbers. Each of these spaces are divided up into a number of fixed sized pages. Note that these
address space numbers are never reused, even after the memory chunk has been deleted.

� In order to access data elements within each address space, an offset can be provided such that
address plus offset identifies a unique memory location.

With the virtual address partitioned in such a rigid manner, the virtual addresses become fragmented
(especially since virtual addresses are not reused under MONADS). However, since the range of virtual
addresses are deliberately made much greater than the range of physical memory addresses (and that
even at the maximum rate of usage the virtual addresses will not be used up during the lifetime of the
system), this does not pose a serious problem.

Note that the virtual addresses are not directly used by executing tasks. Instead, objects (or segments
as they are known in MONADS) are accessed through object identifiers. These identifiers refer to object
capabilities (similar to IBM SYSTEM/38 capabilities) [20], and form the basis for object protection under
MONADS.

1.2.2 MONADS Segment Capabilities

All segments used in MONADS are referenced via capabilities. Each segment is split into a number
of parts (as in figure 5). The first part of a segment is known as the segment control section. This
contains the actual size of the segment and details describing its contents. The actual data part of the
segment is called the information section. It is here that information can be stored and retrieved, based
on the segment control data. The final part of a segment is referred to as the segment capability section.
Within this area references to other segments can be placed so as to permit arbitrarily complex graph
structures to be represented on the system.

Number of Segment Capabilities

Length of Information Section

Type and Access Information

Length of Segment in Bytes

Segment Capability Section

Information Section

Control Section

Figure 5: Segment Layout in MONADS

This type of fixed segment layout contains limitations which increases the implementation com-
plexity of object oriented languages. This problem can most clearly be observed with respect to type
inheritance. In typical object oriented languages, inheritance is supported by combining a current
segment type with a new segment (which contains the supertype information). The combining process
is often achieved by tagging the new segment at the end of the older one. This is not possible in
MONADS, where it is impossible to have an arbitrary combination of data and capabilities. Inheritance

Architectures for Persistence [Russell and Cockshott] 7

may be implemented by using some kind of indirection from a ‘higher level’ segment, but this clearly
involves the expense of performing the initial indirection.

To refer to information contained within any segment, all that is required is the address of the
segment (all other information concerning the segment being self contained). For efficiency, registers,
known as capability registers, are used when referring to segments. Reference to an element within a
segment via such a register is depicted in figure 6.

Address Space

eg Data Segment

eg Program Constants

Start Offset Length Capabilities

Offset

Address Space

Capability Register

Object Index

Figure 6: Object Mapping in MONADS

By accessing a segment, and loading a capability from that segment, all accessibly data structures
can be traversed. Loading of the capabilities must clearly be protected from malicious users, thus
a special machine instruction is provided for this function. Indeed, another instruction performs the
modification of the segment capabilities. The root of all addressing is found within a special segment
(one per process), called the base table. An additional machine instruction is included to allow
access to the contents of this table. Note that such instructions obviously interfere with instruction set
orthogonality and thus add to compiler complexity.

Segment capabilities are constructed such that all segment addresses are expected to reside within
the current address space [21]. This has the effect of saving memory space (and saves on the effort
required during garbage collection), at the expense of limiting the scope of data structures. It is therefore
advisable to group related objects (e.g. segments) together within a single address space. Segments
outside of the current address space can however be referenced by using indirect capabilities, which
themselves point to full virtual addresses.

1.2.3 Module Management

There are two distinct types of objects recognized by MONADS; segments and modules. Modules
present a procedural interface to other external modules. Using modules, it is possible to implement
such constructs as traditional ‘files’, where the module manager can present an interface which mimics
traditional file access. In fact, since MONADS describes itself as persistent, no files actually exist.
However, MONADS deviates from more traditional persistence in that capabilities referring to a segment
may not be passed to other modules and freely retained.

The reason for non-persisting capabilities external to the owner module lies with a fundamental
limitation with the MONADS environment. In the attempt to remove the need for a central mapping

8 [Russell and Cockshott] Architectures for Persistence

table [21], compounded by the desire to allow segment slices to be passed between modules (in a
controlled way), the problem of virtual memory limitations becomes a factor.

With the removal of the central mapping table, virtual memory can not be easily reused. This is
especially true if capability revocation is attempted (as is possible with when capabilities are copied by
modules external to the segment owner). To counteract this problem, capabilities are only permitted to
be stored on the calling stack of external modules (thus are automatically deleted on a return from that
module). Thus revocation of segment capabilities does not occur, and virtual memory can be safely
reused.

Due to the grouping of segments within modules, the individual segments are no longer considered
to be separate objects with a type associated to each, but instead as a collection of similar objects which
are accessed via the procedural interface of the module. This style of data modelling is typical of
architectures which use a set of capability registers to hold the roots of a relatively small number of
large entities.

1.2.4 MONADS Paging

Each of the allocated memory address spaces must be wholly stored within a single volume (although
a volume will typically carry more than one address space). For efficient paging, a disk page table
is needed for each address space, and this is held in a protected region of the address space which it
describes. A single root page exists for each volume, and points to the volume directory, which in turn
refers to each of the address space paging tables.

Every MONADS node contains an Address Translation Unit (ATU), which maps the virtual ad-
dresses onto physical memory locations. The ATU is implemented as an inverted page table (as in the
case of the AS/400), constructed from hardware, such that its size is proportional to the size of the
physical memory map. If the page required does not exist in physical memory, a page fault is then
generated. At this point two separate routes can be followed: either the faulted page is within the
current node (in which case the page can be loaded off disk), or the page is stored within some other
node (resulting the local node asking the networked node for the page).

On a locally resolvable address fault, the disk address of the desired page can be read from its
primary page table. This table is indexed with bits 12-27 of the virtual address offset value, and thus
contains 216 entries of 16 bit disk addresses. It may be that this primary page table does not exist either,
and therefore also generates an address fault. This results in the secondary page table for that address
space being accessed, which contains 32 disk address entries (in the MONADS-PC system). Thus each
entry corresponds to a single page of the primary page table (�216 � 2��4K bytes � 32). The required
section of the primary page table can now be loaded from disk. It is also possible that the secondary
page table for the address space is not present either. The disk address of this page can be found by
accessing the root page table, which is always found at address space zero of each volume. Part of this
address space paging structure can be seen in figure 7.

The layout (at least with respect to the MONADS-PC version) of this disk address tree is such that,
for address spaces smaller than 256 memory pages (with each page containing 4K bytes), the entire
tree can be found within the first page of the address space. Indeed, for address spaces smaller than
about 3.6K bytes the entire address space can be found within a single page (thus resolving the page
fault in a single disk access) [22].

1.3 MUTABOR

From research conducted into the Profemo project at Gesellschaft für Mathematik und Datenverar-
beitung mbH3 (GMD), examining the design of reliable distributed architectures, came the design of
MUTABOR (Mapping Unit for The Access By Object References). This forms an object-oriented

3The German National Research Centre for Data Processing

Architectures for Persistence [Russell and Cockshott] 9

System Dependent Housekeeping Information

Page 0

Page N

Page M

Available Address Space

Available Address Space

Page 0

Page N

Page M

Disk Block

Disk Block

Disk Block

Disk Block

Disk Block

Disk Block

Disk Block

Disk Block

Disk Block

Secondary Page Table

Short Primary Page Table

Primary Page Table Unit

Primary Page Table Unit

Figure 7: Layout of a MONADS Address Segment

architecture providing supporting for a secure and reliable computing base, via a layered, general-
ized transaction concept operating system. Dedicated hardware support is used for both object and
transaction management [23].

MUTABOR consists of a microprogrammable coprocessor (which currently connects to the MC68020
coprocessor interface [24][pages 343,381-386], thus extends the MC68020 instruction set to include
MUTABOR related functions) and an address translation cache (ATC). This ATC holds physical ad-
dresses of recently accessed objects, along with other information which is used in additional logic to
authenticate access rights and size constraints.

In contrast to MONADS, MUTABOR implements a more fine-grained approach to object instances.
Take for example a database holding student information (e.g. student name, address, exam marks, etc.)
for two hundred students. Within MONADS, the entire two hundred entries would be stored inside a
single module, supporting module interfaces such as get student record or assign exam result to student.
In comparison, MUTABOR would implement each student record as a separate object, and each object
would have associated type information evaluated at invocation time. It is assumed that the mean
object size in MUTABOR is about 300 bytes [25], which compares favourably with other fine-grained
approaches (such as 300 for iMAX [26] and 326 for Hydra [27]).

1.3.1 Object Store

The MUTABOR system implements object persistence within a long term repository known as the
passive space. There also exists a second area, called the active space, which constitutes a virtual

10 [Russell and Cockshott] Architectures for Persistence

address space (mapped by the ATC) within which computations are performed4. If a persistent object
which does not exist within the active space is referenced, then it is transferred from the passive space
by some internal manager. Thus the active store simply functions as a virtual cache for the passive
store. Since the transfer mechanism is automatic and transparent, the single level object store paradigm
is maintained.

Additionally, within a fine-grained system, many transient objects (such as temporary local vari-
ables) are created and then quickly abandoned. Experiments from StarOS and Hydra show that this
class of object forms about 95% of all objects instantiations [28][page 107]. It would be a severe
system bottleneck if each of these objects required a PID (e.g. UID or very long Unique and persistent
IDentifiers as they are known within MUTABOR). To reduce this overhead, each PID located within the
active space is identified by an object short name (OSN). These OSNs are 24 bits long (in comparison
to the 48 bit PIDs), thus allowing sixteen million objects to reside simultaneously within the active
space. Note that since the OSNs are smaller than 32 bits, they can be fetched and stored within a single
memory cycle.

The MUTABOR system does not directly interpret the object UIDs. If an object is not present
within the active space, then the object filter manager is informed. It is the manager’s duty to perform
passive UID to active OSN transfer. A second manager, the global object manager, is used to resolve
object requests which require object transfers between MUTABOR based nodes.

1.3.2 Memory Layout

In MUTABOR, every process is given an unique 16 bit process id number. This number is used to
select a context specification for each system context (thus providing every process with a different
view of the object store). Each context specification consists of four entries:

� The current context. This contains the capabilities for the current context, including temporary
variables.

� Current root object, which points to the user defined object on which the current context (called
a TSO or type specific operation) is operating on.

� The current object type, which allows access to all other TSOs for the current root object.

� The parameter object which gives access to the invocation parameter. This allows data and
capabilities to be passed, thus simulating either call by value or by name.

A code invocation consists of the following form:

INVOKE (target root object,TSO-index,parameter)

with the target root object specified by a capability index (i.e. the process local name for an object)
within the current context, the current root object, the current type object, or the current parameter
object. This requires that a new context specification be created for the process (including the context’s
own capability list), and the seven-stage mechanism involved in creating the context can be found
within [25].

In accessing an object via its capability index, entry zero of the context specification is indexed with
the high order bits of the index, which selects a particular capability list. This list in turn is indexed by
the remaining low order bits, which selects the capability for the object in question. Thus, each process
has its own name for every capability, and this is known as the local process object name [29]. This
mapping mechanism can be seen in figure 8 [25]. The capability produced in the figure is now used to
access the required object.

4Note that passive and active are terms which are heavily overused, and as such tend not to be comparable across different
systems.

Architectures for Persistence [Russell and Cockshott] 11

object offsetcapability indexProcess ID

and Data
More Capabilities

Capabilities C-LIST 0

Capabilities C-LIST 1

Capabilities C-LIST 2

Capabilities C-LIST 3

Capability

C-LIST 2

C-LIST 1

C-LIST 3

Process Identifier Local Process Object Name Object Offset

Context Spec

Figure 8: MUTABOR Context to Capability Path

The object OSN can be extracted from the selected capability: The high twenty bits of the OSN goes
through a two level table to identify the page within which the object resides. Given the average object
size of 300 bytes, the designers limited the mapping process to 16 objects per 4K page. Thus the last four
bits of the OSN is used to select the required object header within each page. Additionally, this header
contains information to check type and access rights dynamically at access time, thus allowing such
facilities as object locking and shared access. This translation path is depicted in figure 9. Naturally,
this method of object reference alleviates the need for a central mapping table (but creates a large data
management task).

Object Short Name

object offsetcapability index

Local Process Object Name Object Offset

Capability

Type Rights

Page Descriptor 0

Page Descriptor 1023

Page Descriptor j

Page Descriptor 2

Page Descriptor 1

Header 15

Header 0

Header 1

ObjectNon Data

Data

Selected Object Page

Page Descriptor 0

Page Descriptor 1023

Page Descriptor 2

Page Descriptor 1

Page Descriptor k

Root Paging Table

Figure 9: MUTABOR Capability to Address Path

Also from figure 9, the selected object is actually split into two parts: the data part and the non-data
(or capability) part. Within the capability part lies the UID for that object, a link to the TSOs for that
object, some system-required red tape, and any relevant capabilities required in representing complex
data structures.

12 [Russell and Cockshott] Architectures for Persistence

The object segregation is intended to protect objects from inadvertent or malicious accesses. Such
segregation can be seen in a number of other architectures, such as MONADS, and is often known as
fenced-segmentation. For MUTABOR, the capability part of an object can only be accessed by negative
address offsets, which requires special coprocessor instructions to be used. Clearly, since MUTABOR
and MONADS share a similar object layout scheme, the MUTABOR also exhibits the same limitations
as MONADS with respect to type inheritance.

The need to maintain and traverse multilevel tables is an intrinsic overhead found in all similar types
of object management implementations. It is for this reason that the ATC was introduced, containing
the 4096 most recent address translations. The ATC is subdivided into 16 sections by 256 entries, with
the 16 last most recently executed processes allocated one section each. This gives an estimated hit-rate
of greater than 95%.

1.4 Rekursiv

The Rekursiv is a chip-set for the construction of object oriented processors designed by Linn, a
Glasgow phonograph company, and produced by LSI Logic. A reasonably full description is given by
Harland [30].

The complete chip-set allows the construction of micro-coded processors with object oriented
virtual memory, the intention being for language developers to write special purpose micro-programs
to support particular languages. The micro-instructions feature a high level of parallelism, controlling
the simultaneous operation of three processing chips:

1. LOGIK the sequencer unit.

2. NUMERIK the arithmetic unit.

3. OBJECT the memory manager.

An overview of the system is shown in figure 10.
Associated with these processing units are seven distinct banks of special purpose RAM.

1. The CSMAP: a look-up table that maps opcodes to the addresses of the micro-routines that
implement them.

2. The Control Store, which holds the horizontal micro-instructions.

3. The Control Stack, which holds linkage information both for micro-routines and high-level
language routines.

4. The Evaluation Stack: a classic push-down store for the implementation of postfix instruction-sets
and for the store of procedure-local variables.

5. The NAM or macro-instruction store.

6. The Page Tables, which map objects to physical addresses.

7. The Heap or Object Store into which currently active objects are loaded.

All but the last are implemented in high speed static memory. The motivation for providing all these
distinct memories is speed. The ability to perform several memory accesses per clock cycle allows
micro-code to be fast and compact. The complexity is somewhat less than it seems, since many
microcoded architectures provide the equivalents of a CSMAP, Control Store, Control Stack and Page
Tables (TLBs5), but hide them from view. Considering only what the assembly programmer sees,
however, the Rekursiv still has an unusually complex store structure. Whereas on a von Neumann

5Translation Look-aside Buffer

Architectures for Persistence [Russell and Cockshott] 13

LOGIK

Sequencer

CSOR Control Store CSMAP

HADES

NUMERIK

Arithmetic Unit

Object Store

OBJEKT

Memory Management Unit

Control Stack Evaluation Stack
NAM

VTB

VRBVABVSBVNB

Pager Tables

NAMARG

Figure 10: Overview of the Rekursiv

architecture, the evaluation stack, the heap and the macro-instructions would all share a common
memory, the Rekursiv treats them as distinct. This has the advantage of allowing simultaneous pushing
of a heap operand with instruction fetching, but it is questionable whether the complexities that this
introduces for the operating system are worthwhile.

1.4.1 Memory Management

The Rekursiv is a 40-bit word machine, and its object identifiers are also 40 bits wide. Objects are
sub-divided into two classes; compact and extended. Compact objects are those objects which are small
enough to fit entirely within a single 40 bit word, and thus the entire object can be held within an object
identifier. Extended objects tend to be larger than compact objects, and are stored at the particular
memory to which the extended object identifier refers.

The format of these two object identifiers is shown in figure 11. Although their physical layout is
distinct, the hardware contrives to give all objects the same abstract form. All objects appear as the
sequence of fields shown in figure 12. They all appear as a vector of 40 bit words, the first three of
which describe the object, with subsequent words holding the concrete representation. Figure 12 also
shows five of the Rekursiv’s CPU registers, and these correspond to:

� VAR: This corresponds to the Value Address Register, and contains the address of the first
memory-bound element of the object.

� VRR: The Value Representation Buffer holds the word pointed to by VAR (i.e. the first element of

14 [Russell and Cockshott] Architectures for Persistence

1

1 0

1 Type Value

38 Bit Object ID

Compact Form

Extended Form

Figure 11: Two forms of Rekursiv Object Identifiers

the object).

� VTR: The type identifier of an object is held within this register (the Value Type Register).

� VSR: The Value Size Register holds the size in words of the object pointed to by VAR.

� VNR: This register (the Value Number Register) holds all 40 bits of the object identifier.

VNR

VSR

VTR

VRR

VAR

VNR

VSR

VTR

VRR

VAR

1 0 38 Bit Object ID

Object Size

Object Verification

1 1 Type Value

Compact Form

Extended Form

= 0

= 0

Entry (to object size)

Entry 2

Object Type

Entry 1

Held In Pager Table

Held In Memory

Figure 12: Rekursiv Object Register Fields

When an object is dereferenced, hardware in the memory management system loads this set of
registers with the first four fields of the object fVNR, VRR, VTR, VSRg and its address fVARg. In
the case of compact objects both its size and address is always zero. The object’s type is extracted
from bits 33 to 37 of the object identifier, and VRR is taken from bits 0 to 31. In the case of extended
objects, much of the required information is extracted from the page tables (figure 13) by the following
algorithm:

1. The lower 16 bits of the object id are used to index the page table.

Architectures for Persistence [Russell and Cockshott] 15

2. The page tables return five fields which are loaded into the registers fVNR, VRR, VTR, VSR,
VARg.

3. The VNR register is compared with the object id and an object fault interrupt generated if they
differ. This occurs whenever the hashing function selects a pager entry which corresponds to a
different object. If an interrupt is generated, the current entry in the pager table is unloaded, and
the correct entry is loaded in its place.

4. In parallel with step 3, the base address of the object, in the VAR register is added to an index
register and sent to the dynamic ram.

5. In parallel with step 4, the index register is compared with the size register (VSR) and a fault
signalled if addressing is out of bounds.

6. Two cycles later the DRAM bank that holds the heap delivers the addressed word of the object.

The steps 1� � �5 can be completed in one clock cycle.

VARVRRVTRVSRVNR

Paged Object‘s
Identifier

NEWB

MODB

TAGB

VNB VSB VTB VRB VAB

Figure 13: Rekursiv Pager Table Layout

This design is unusual in that it stores the type and first value field of an object in the page tables.
Since these are implemented in high speed static RAM, it enables type information and the most
frequently used value field to be available before the DRAM cycle has finished. Since the processor is
designed to execute Smalltalk like languages which dispatch methods depending upon the object type,
this could lead to considerable speed gains.

One consequence of the method used to index the page tables, is that no two objects with the same
lower 16 bits of their OID can co-reside.

1.4.2 Object Allocation

Special auxiliary hardware is provided in the memory management unit to handle the allocation of
objects. A pair of hardware registers hold the top free address on the heap and the last object number
allocated. Data-paths are provided to update the page tables and appropriately increment these registers
in a single operation when creating a new object.

If this results in heap overflow, a garbage collection fault is signalled and a micro-coded garbage
collection routine entered. Tag bits in the page tables are used for the mark phase of the garbage

16 [Russell and Cockshott] Architectures for Persistence

collection. After marking, the heap is then compacted. Since all objects are addressed indirectly
through the page tables, only these have to be altered during compaction.

1.4.3 Network Addressing

An object identifier contains 38 bits available for object addressing once the tag bits have been taken
into account. The preferred use of these, according to Linn, is for six bits to be used to identify on which
machine on a local net the object resides. The remaining 32 bits are a re-usable object number. When
object numbers are exhausted, a global garbage collection is performed and objects are reallocated
object numbers lying in a dense subset of the 32-bit range.

This poses problems. The reuse of object numbers is feasible on a single machine, but on a network
it becomes impracticable. Suppose that machine A contains an object referred to by an object on
machine B. If the object on machine A is deleted and its object number reused, then accesses from
machine B will return the wrong object.

The Rekursiv provides a large object address space compared to the SYSTEM/38, 238 objects for an
isolated machine, 232 objects for a machine on a network as against the 224 objects for the IBM machine.
This means that the problem of object number reuse is less severe. But against this must be weighed
the sorts of languages that are run on the two machines. Languages that support garbage collection,
such as those supported on Rekursiv are much more profligate in their use of object numbers. It is the
opinion of the authors that the 40-bit object numbers of the Rekursiv would prove a restriction were the
machine to go into general use.

1.5 Summary

Over the previous pages descriptions some of the main object oriented systems have been presented,
and a number of points have been raised concerning the suitability of each in supporting the ideal object
oriented architecture. The creators of these systems held a number of differing beliefs from the others,
and therefore it is of no great surprise to find that features considered essential within one design were
ignored within another.

In order to summarize there systems, eight points were considered (in no particular order):

� The Network Size which was reachable by the system in question was classified into LAN (Local
Area Networks), WAN (Wide Area Networks), and N/A (i.e. no networking).

� Whether or not the system was a Tagged Architecture (i.e.supported self-identifying data struc-
tures).

� Paged Memory availability is often considered to be essential in supporting access to very large
object sizes.

� The Virtual Memory Size is also important, as it gives an estimate as to how long the system can
last without reusing object identifiers.

� Segmented Memory, i.e. the support of variable sized, hardware assisted memory segmentation,
is frequently used in providing object protection and management mechanisms.

� The availability of general purpose Garbage Collection external to the compiled language is
attractive in making object oriented architectures more secure than systems using other designs.

� The Commercial Scale of an implementation is of interest, as it shows the amount of industrial
interest and support currently vested with the particular system (as well as its availability).

� All Available Languages for each system have also been shown, and this helps to show the
flexibility of each architecture examined.

A table showing the four systems covered (including two entries for the two MONADS designs) against
the points raised above can be found in Table 1.

Architectures for Persistence [Russell and Cockshott] 17

Table 1: Summary of Object Oriented Architectures

Machine Architectures
MONADS-PC MONADS-MM MUTABOR REKURSIV SYSTEM/38

Network Size LAN WAN N/A LAN N/A
Tagged Architecture No No No Yes Yes
Paged Memory Yes Yes Yes No Yes
VM Size (bytes)a 260 2128 272 238 248

Segmented Memory Yes Yes Yes Yes Yes
Garbage Collectionb No No ?c Yes No
Commercial Scale Experimental Experimental Experimental Small Scale Large Scale
Available Languages Pascal Pascal Library Access C RPG

LEIBNIZ LEIBNIZ Lingo
PS-Algol

Prolog
Smalltalk

aCalculated from its PID size and maximum offset for consistency to MONADS. The quoted value for MUTABOR is 2 32.
bIn the future automatic garbage collection on MONADS may be implemented at the architectural level.
cUnknown, but garbage collection is predicted to be part of the language structure and therefore not automatic.

18 [Russell and Cockshott] Architectures for Persistence

1.6 Conclusions

Although the oldest of the persistent architectures, the SYSTEM/38 shows features that subsequent
efforts to produce persistent systems would do well to learn from: a large address space, well thought
out support for operating systems and an efficient paging mechanism. It has been a considerable
commercial success with tens of thousands of sites running the machines. Since it comes packaged
with its own operating system and relational database which provide a high-level user interface, most
users remain unaware of the novelty of its underlying architecture.

The more modern MONADS-PC and MM architectures represent an interesting branch from the
traditional view of persistent object oriented systems, by using a block structure approach to the design.
This does support the current block-like languages of today, but may limit the development of future
(and perhaps even current) object oriented languages. Its module grouping structure, while simplifying
many elements of program construction, reduces the overall flexibility of the system.

Additionally, extra complexity is added to the system by way of module interfacing and process
control, and this complexity is made only too clear to the programmer [31]. However, the object
mapping mechanisms used in MONADS represents many of the features which have been demonstrated
by current research as highly desirable.

MUTABOR, the research project from GMD, demonstrates the effectiveness of large translation
buffers within object oriented systems. Its fine-grained approach to object management is also attractive,
in comparison to the more coarse-grained SYSTEM/38 and MONADS designs. In addition, the project
also highlights the need for short object identifiers for active space objects, which is desirable in any
limited data bus system (especially in systems build around non-custom parts, where the overhead
of long object identifiers can be severe). On the negative side, MUTABOR is clearly a complicated
architecture (perhaps needlessly so). The amount of table traversal required to locate an object which
is not present within the object buffer can be high, and therefore the probability of memory faulting
during the traversal is also high. Such a design may not be desirable for real-time architectures.

Finally, the Rekursiv was examined. Its design was such that many of the common object manage-
ment functions were implemented in microcode, and although this had the effect of improving certain
system functions, many other parts of the design were adversely affected by the processor complexity
(partially created by the three-chip implementation). The limited virtual memory space was also a
problem, especially when used on a network. The poor performance of the design, the difficulties
in porting languages so as to best use the writable microcode store, and the networking and virtual
memory limitations all assisted in preventing the Rekursiv from becoming desirable to the public.

2 An Ideal Persistent Object Machine

Considering the past experience in building persistent object machines, what are the lessons to be
learned and what are the conclusions that ought to be drawn for future machines of this class?

First look at the requirements that might be place on a machine.

� It should support the abstraction of an infinite object store.

� It should support the abstraction of objects being of infinite size.

� It should support the single-level store abstraction to obtain independence of media and geo-
graphical location.

� The implementation mechanisms should be kept simple.

� It should be designed to make the secure implementation of operating systems possible. In
particular the synthesis of object identifiers should be prevented.

� It should make the minimum of assumptions about the target languages that it will support.

Architectures for Persistence [Russell and Cockshott] 19

2.1 Logical addressing mechanism

When dealing with computers, infinities are abstractions. In practice there are only finite physical
stores, but from an architectural point of view an infinite store means two things. Firstly that the virtual
address space should be so much larger than what is physically realizable, that the virtual address
never appears as limit. Secondly, the size of the memory that appears infinite is linearly related to
processor performance. Bell and Newell [32][page 46] quote Amdahl, who, during the design of the
SYSTEM/360, estimated the ratio at about 1 megabyte of RAM per MIP. In dealing with the provision
of physical RAM, this is still a reasonable lower limit. When considering the virtual address space of a
persistent machine, a similar linear relationship will hold, but one would expect the constant factor to
be much higher. In practice one can set an upper limit by requiring that a machine creating objects at
its maximum rate should not exhaust its address space in its expected service life.

A machine creating objects at a rate of 100,000 a second for ten years would create about 1012

or 240 objects. If one allows some factor for safety, allowing 248 objects per machine is a reasonable
minimum. If one were to allow objects to be identified by a combination of a unique network address
such as an ethernet address and an object number one reaches a minimum address space of 296 objects.
This is the same as the MONADS massive memory machine. Other architectures fall some way short
of this.

The maximum size of individual objects should also approach infinity, but in this case the criteria
for infinity is related to the precision of arithmetic on the machine. An object should be able to contain
the largest addressable array, which in turn, is related to the largest integer supported on the machine.
Since the sizes of integers often vary across a range of machines, this implies that in an architectural
specification it would be wise to keep the object ID and address within an object as distinct entities
rather than collating them in a single larger entity: the global byte address. By maintaining their
orthogonality, the possibility exists of a single persistent architecture spanning machines of differing
arithmetic precisions.

2.2 Security

Contemporary persistent machines provide security by providing a restricted set of instructions to
manipulate object identifiers. A drawback of this is that it imposes particular layouts on objects, which
may contradict the requirements of programming languages. This is less severe on tagged machines
like the SYSTEM/38 than on machines like MONADS which demand the total segregation of pointers;
but it still exists. Ideally one would want object IDs to be secure, but to have no restrictions on where
they were placed in data-structures like variant records.

If an object ID can be placed at any byte address and if any part of it can be freely modified, which
is what the semantics of programming languages with union types imply, then security can only be
cryptographic. This can be ensured by:

� Making the object address space sparse

� Making it expensive to predict valid object IDs given any known valid ID.

Sufficient sparseness of address-space implies that the chances of discovering valid IDs by random
probing can be reduced to negligible levels. The impossibility of systematically deducing unknown but
valid IDs from known valid ones can be ensured by combining with the systematically defined portion
of the object ID a random bit-string derived from some thermal noise source. This approach has been
advocated by Wallace [33] and Cockshott [34]. Since the only portion of the ID that must be systematic
is the network address a possible format for an object identifier might be:

� 48-bit ether address of owner,

� 80-bit random number.

20 [Russell and Cockshott] Architectures for Persistence

2.3 Address translation

A general principle in computing is to use caches wherever practicable. Nowhere is this more relevant
than in translating addresses. A persistent store machine has available three levels of address translation
caching:

1. Inverted tables in the form of inverted page tables have already been employed on MONADS
and SYSTEM/38. In slightly modified form, similar software maintained tables are used in many
software only persistent object systems.

2. Translation Look-aside Buffers have traditionally been used in virtual memory systems to avoid
looking up the page tables on each memory access. Although this use involves modest address
lengths, the technology scales well. Silicon area used grows linearly with address length and
response time logarithmically with address length. It is quite feasible to design on-chip TLBs
that will handle 128 bit object addresses.

3. Segment register caching as used in the Intel 386 [35] and IBM RS/6000 architectures. In these
machines the segment registers are composed of a user-visible selector or key field and a hidden
set of address mapping fields. When the programmer loads the key field, system tables are
consulted to load the hidden fields with base-address, limit and type of the object. With the
address information in registers, subsequent accesses to it are fast. It is the job of a compiler to
minimize the number of segment register loads.

These mechanisms form a cascade, with the first loading the second which in turn loads the third.
Their effect is to translate object addresses into what Intel call a linear address space. This space is only
accessible to operating system level code. The linear address space can either be directly interpreted
as physical RAM addresses, or, can be directed to a paging mechanism. In the first case, analogous
to the Rekursiv, persistence would be established by the transfer of entire objects between volatile and
non-volatile store. In the second case, transfers would occur at the page level. With a paged linear
address space, the linear address length should be chosen to be sufficient to address all of the secondary
store on the machine. With current technology that implies a linear address space of the order of 240

bytes.
An advantage of separating the paging mechanism from the object addressing mechanism is that it

becomes possible to support a range of machines at different performance levels, each of which might
have a different size of linear address space. Such changes, occurring below the level of the object
store, would be invisible to user software allowing the binary portability of code between machines at
different performance levels.

3 Conclusion

Naturally, there is a significant difference between what is currently implemented and what has been
highlighted as being attractive. This stems from differences of opinions as to what features of an object
oriented system are attractive and in what order of merit they should be placed, and also as to what
features can actual be implemented efficiently.

Within the four systems examined, only three points were consistently identified as desirable:

� The use of segmentation techniques to create variable-sized memory blocks within the main
store.

� Protection of these segments from accidental and malicious modification and access.

� Providing the system with a sufficiently large address space such that, in the lifetime of the
system, the addresses need never be reused.

Architectures for Persistence [Russell and Cockshott] 21

Of these four, the MONADS-MM system comes the closest to the model highlighted above and within
current literature. Note that even this implementation of the ideal is constrained by other factors; the
actual development fund for this system was seriously limited, requiring much of the development work
do be done on a voluntary basis. Perhaps future research into implementation techniques can help to
minimize the deviations of next-generation object oriented architectures from the ideal system model.

References

[1] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Summer, “One-level storage system,” IRE
Transactions, vol. 2, pp. 223–235, Apr. 1962.

[2] T. Kilburn, D. B. G. Edwards, and G. E. Thomas, “A transistor digital computer with a magnetic
drum store,” Proceedings of the IEE, vol. 103B, no. sup 1-3, pp. 390–406, 1956.

[3] E. I. Organick, The MULTICS System: An Examination of its Structure. MIT Press, 1972.

[4] H. Whitfield and A. S. Wight, “EMAS - the edinburgh multi-access system,” Computer Journal,
vol. 16, no. 4, 1973.

[5] G. A. Blaauw and F. P. Brooks, “The structure of the SYSTEM/360,” IBM Systems Journal, vol. 3,
no. 2, pp. 119–135, 1964.

[6] SUN Microsystems, SunOS System Services Overview, Mar. 1990.

[7] J. K. Iliffe, Basic Machine Principles. London: MacDonald, 1968.

[8] J. L. Keedy, “An outline of the ICL 2900 series system architecture,” Australian Computer Journal,
vol. 9, pp. 53–62, July 1977.

[9] G. Soltis, “Design of a small business data processing system,” IEEE Computer, pp. 77–93, Sept.
1977.

[10] M. E. Houdek, F. G. Soltis, and R. L. Hoffman, “IBM SYSTEM/38 support for capability-based ad-
dressing,” in The Eighth Symposium on Computer Architecture, pp. 341–48, May 1981. Published
in SIGARCH Newsletter, Vol 9, No 3.

[11] D. Abramson, “Hardware management of a large virtual memory,” in Proceedings of the 4th
Australian Computer Science Conference, (Brisbane), pp. 1–13, 1981.

[12] D. B. G. Edwards, A. E. Knowles, and J. V. Woods, “The MU6-G. a newdesign to achieve
mainframe performance from a mini sized computer,” in Proceedings of the 7th Annual Symposium
on Computer Architecture, pp. 161–167, 1980.

[13] A. Chang and M. F. Mergen, “801 storage architecture and programming,” ACM Transactions on
Computer Systems, vol. 6, Feb. 1988.

[14] A. Malhotra and S. J. Munroe, “Support for persistent objects: Two architectures,” in Proceedings
of the Hawaii International Conference on System Sciences, IEEE Press, 1992.

[15] J. Rosenberg and D. Abramson, “MONADS-PC - a capability-based workstation to support
software engineering,” in Proceedings of the Eighteenth Annual Hawaii International Conference
on System Sciences, pp. 222–231, 1985.

[16] D. Koch and J. Rosenberg, “A secure RISC-based architecture supporting data persistence,” in
Computer Architecture to Support Security and Persistence of Information, pp. (10–1)–(10–14),
University of Bremen, May 1990.

22 [Russell and Cockshott] Architectures for Persistence

[17] J. L. Keedy and J. Rosenberg, “Uniform support for collections of objects in a persistent environ-
ment,” in Proceedings of the Twenty Second Annual Hawaii International Conference on System
Sciences (B. D. Shriver, ed.), vol. 2, pp. 26–35, IEEE Computer Society, 1989.

[18] H. C. Lauer and R. M. Needham, “On the duality of operating system structures,” ACM Operating
Systems Review, vol. 13, no. 2, pp. 3–19, 1979.

[19] J. L. Keedy, “A comparison of two process structuring models,” tech. rep., Monash University,
1980. MONADS Report Number 4.

[20] R. S. Fabry, “Capability-based addressing,” Communications of the ACM, vol. 17, pp. 403–412,
July 1974.

[21] J. L. Keedy, “An implementation of capabilities without a central mapping table,” in Proceedings
of the Seventeenth Annual Hawaii International Conference on System Sciences, pp. 180–185,
1984.

[22] J. Rosenberg, J. L. Keedy, and D. Abramson, “Addressing mechanisms for large virtualmemories,”
tech. rep., St Andrews University, 1990. CS/90/2. To appear in the Computer Journal, Aug. 1992.

[23] J. Kaiser, “MUTABOR, a coprocessor supporting memory management in an object-oriented
architecture,” IEEE Micro, vol. 8, Oct. 1988.

[24] Y.-C. Liu, The M68000 Microprocessor Family. Prentice-Hall International, 1991.

[25] J. Kaiser and K. Czaja, “An architecture to support persistence in object-oriented systems.”
Available from the authors at kaiser@gmdzi.gmd.de or czaja@gmdzi.gbx.de, 1990.

[26] F. J. Pollack, K. C. Kahn, and R. M. Wilkinson, “The iMAX-432 object filing system,” in
Proceedings of the Eighth Symposium on Operating System Principals, vol. 15, pp. 137–147,
SIGOPS, Dec. 1981.

[27] W. A. Wulf, R. Levin, and S. P. Harbison, HYDRA/C.mmp: An Experimental System. McGraw-
Hill, 1981.

[28] G. T. Almes, Garbage Collection in an Object-Oriented System. PhD thesis, Carnegie-Mellon
University, June 1980.

[29] J. Kaiser, “An object-oriented architecture to support system reliabilityand security,” in Computer
Architecture to Support Security and Persistence of Information, pp. (9–1)–(9–15), University of
Bremen, May 1990.

[30] D. M. Harland, REKURSIV, Object Oriented Computer Architecture. Ellis Horwood Limited,
1988.

[31] J. Rosenberg, “Pascal/M - a pascal extention supporting orthogonal persistence,” Tech. Rep. 89/1,
Department of Electrical Engineering and Computer Science, the University of Newcastle, 1989.

[32] D. P. Seiwiorek, C. G. Bell, and A. Newell, Computer Structures: Principles and Examples.
McGraw-Hill International, 1982.

[33] C. S. Wallace and R. D. Pose, “Charging in a secure environment,” in Security and Persistence,
Springer Verlag, 1990.

[34] W. P. Cockshott, “Design of POMP - a persistent object management system,” in Persistent Object
Systems, Springer Verlag, 1990.

[35] Intel, 386TMSX Microprocessor Programmer‘s Reference Manual, 1989. Published by McGraw-
Hill.

