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Abstract

Ecological surveys generate large quantities of data; database technology has not yet reached its full

potential in this area. Here we investigate approaches to modelling ecological data, considering the require-

ments for a successful model. An object oriented conceptual model is presented, and applied to the results

of an actual survey. A data management system based on this object oriented approach is brie
y described.
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0 Introduction

Many kinds of information gathering, such as ecological surveys, result in the collection of large volumes of

data. Statistical techniques are used to manipulate this data and perform analyses upon it [Gau82], [Pie84];

meanwhile, the relevance of these collections of numbers to the real world phenomena which they describe may

be somewhat obscured. This article investigates whether object oriented data modelling techniques may provide

means of representing such data in which the data's meaning is preserved in a more intuitive way. It is not

suggested that such an approach would replace established techniques, but rather that it might form a useful

supplement to them.

The closest type of data to that considered here is that used by geographic information systems (GISs) (see

[Abd91] for a review of state-of-the-art in GISs). These systems typically treat spatially-referenced data which

also has aspatial properties. Articles such as [WHM90] use semantic data models to de�ne such basic building

blocks as points, lines and polygons.

The chief di�erence with ecological data is that it is less geometrical in nature, and the structure of the data

re
ects the survey methodology used to collect it. In [RGHH91], it is proposed that GIS data should be con-

sidered from 3 complementary aspects called the geometric, overlay and feature views. Using this terminology,

the surveyed pixels discussed in section 5.1 comprise the geometric view, and the overlay and feature views are

simply constrained collections and aggregations of these pixels respectively. The spatial-referencing in this data

is implicit.

Di�culties inherent in handling ecological survey data are explored in [Ken85]. Here, we �rst review such

data in general in an abstract way, and consider what features must be present in a successful model; we might

view this section as a requirements speci�cation for the model. We then go on to develop a general model,

which is expressed in an object oriented framework. Finally, we apply this approach to modelling some data

from a real survey, and brie
y describe a system implementing this application model.

1 Survey Data

A survey collects information about the real world. We might picture the existence of a survey site, in which we

are interested but about which we have no information. During the survey, we go out and collect information;
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the more extensive the survey, the more information we will gather, though we will never know everything there

is to know about the site.

We may wish to combine the results of a survey with other surveys over the same area to increase our

understanding; we may wish to organise other follow-up surveys based on considerations of the initial results.

Since �eld work is time consuming, we wish to get the best possible use from the data we have gathered.

1.1 Survey Methodology

Many di�erent methods of collecting survey data exist. Usually only some subsection of the site of interest

can be investigated, with the hope that the results gathered will be of general applicability to the entire site.

Observations may be for the presence or absence of a given feature, or may involve quantifying or categorising

some feature. Hence discretisation (an essential part of formal approaches to modelling GIS data such as in

[Wor92]) is automatically performed before the data is modelled.

In general, each survey will comprise of a set of observations. These observations pertain both to an actual

area of ground, and to some feature of interest. We might observe that a sampling area contains 23 spiders, or

that it is fenny. Our method of handling the data must allow us to represent areas of the Earth's surface, and

facts about them which are of interest to us.

In this article we concentrate on the collection, modelling and presentation of survey data in general, paying

little attention to what the features of this data are, since in di�erent surveys these might vary widely.

1.2 Observations

In a survey, observations are conducted to amass information about the survey site. We mean these observations

to be the validation of statements we make about the site. If for example we observe fen in an area A, then
we refer to the fen as a feature of interest in A, to the statement `fen was observed at A' as the observation

predicate, and the statement `A is fenny' as the feature predicate.

1.2.1 Limiting Assumptions

It is, of course, possible that an observation might be in error, which might be an issue in conducting real

life surveys. However, let us assume for a simple life that all our observations are accurate, so that given an

observation, we may without error a�rm the corresponding observation predicate. Let us further assume that

we may safely a�rm the feature predicate corresponding to a given observation predicate over the same area.

This is the truth of observation assumption (1).

It is also assumed that any observations are not invalidated by the passage of time; this is a less tenable

assumption, since we may well be interested in the time evolution of the survey site. Thus two di�ering

observations on the same sample area would indicate that some change had occurred. Our above assertion

should really have been that at a certain time on a certain date, fen was observed on area A. To save the

repetitive speci�cation of time, however, we shall assume that our information is static. This, together with the

above assumptions, means that the same observation should always yield the same result over the same sample

area.

1.3 Two Desiderata

Given that we are collecting information through observations to enable us to make statements about areas of

the Earth's surface, we desire that the way we represent the information should allow two important capabilities:

� Since we cannot claim that the observations are complete or exhaustive, we should be able to incorpo-

rate subsequent observations into the earlier data; here we are thinking not of time evolution, but of

progressively re�ning our knowledge by follow-up observations. (Update from observation).

� We will (often!) want information about an area other than the one directly sampled | for example,

in searching for correlations between di�erent features, or in assessing the environmental impact of a

proposed development. Hence we must be able to make some kinds of statements about unsampled areas,

based on the information available on sampled ones. (Extrapolation from observation).



2 A Simple Model

Let us construct a simple model to meet the above requirements. Let the set of all areas on the Earth's surface

be called Area, and let P be a set of predicates, such that all the statements we wish to make about a given

area can be expressed in the form P (A), where P 2 P and A 2 Area. For the moment, we may view an area

as a connected set of points, using set intersection to represent the overlap of two areas, set union their total

coverage, etc. We will always assume that the areas formed in these `areas expressions' turn out to be areas in

the sense of being connected.

Use of expressions like P (A) can be viewed as a simple extension of predicate calculus, meaning `the statement
P is true over the area A'. In this framework our correctness of observation assumption may be expressed as

(1). Here P is the feature predicate, and obsv(P;A) means that P was observed to be true of A; that is, it is
the observation predicate.

8P : P ; a : Area � obsv(P;A)) P (A) (1)

Let us de�ne two classes or predicate, P9 and P8, such that predicates in P9 are true by the existence of (at

least one example of) a feature, and those in P8 by the universality of a feature. An example from P9 might

be that the sample area contains at least one specimen of a rare species; an example from P8 that the sample

area is (entirely) fenny.

(Features of the class P9 are important in conservation work, where the motivation for protecting a cer-

tain site may be the presence of a small number of rare specimens, or even a single instance; however, such

marginalities are often poorly handled by statistical data management techniques).

We shall explore how these update and extrapolation desiderata can be provided over these two classes of

predicate. Later more general classes of predicate will be considered, and a more rigorous treatment of the idea

of `trueness over an area' given.

2.1 A Calculus of Areas and Predicates

Let us extend our intuitive concept of trueness over an area by considering the following inference rules; for

P 2 P8, A 2 Area, and B 2 Area,

P (A) ^ B � A) P (B) (2I)

P (A) ^ P (B)) P (A [B) (2II)

P (A)) P (AnB) (2III)

All of these may stand on appeals to intuition. (I) says that if something is universally true of some area,

it is also true of any subarea; (II) says that a statement true of all of two areas is also true of all of the area

formed by grouping together these two areas, if this is possible (ie, the �rst two areas are adjacent or overlap,

so they group to form a single connected area). (III) says that a statement true of all of an area is true of the

area with any part removed.

Note that we may consider P (;), where ; is is the empty area, to be a null assertion, since it contains no

reference to a �nite area over which the predicate is true. For this reason we may assert (3); this is an extension

of the `excluded middle' law of classical logic.

P (A) ^ :P (A)) A = ; (3)

Now let us consider similar inference rules where P 2 P9, A 2 Area, and B 2 Area.

P (A) ^ A � B ) P (B) (4I)

P (A)) P (A [ B) (4II)

(I) states that something to be found in an area A is also to be found in area B if area B contains area

A. (II) states that something to be found in A is also to be found in any area of which A is a part. We may

view (4II) as a corollary of (4I) since it is easily derivable from it.



2.2 Update from Observation

We require that the model allow update of our knowledge of the world in the light of subsequent observation.

Moreover, we wish to derive as much information as possible from subsequent observations | that is, we wish

to make the strongest statements possible which the combined observations will validate.

For example, if P 2 P8 , and we make two observations, obsv(P;A) and obsv(P;B). By assumption (1) we

may assert P (A) after the �rst observation, and P (B) after the second. However, using (2II) we now assert

P (A [ B). This is the strongest statement we can make, since P says something is true of all of an area, and

A [ B is the biggest area for which we can validate this statement.

Now, if P 2 P9, and we make the same two observations, we can again assert P (A [ B), by (4II).

However, if A and B overlap, we may assert P (A \ B) in the �rst case but not in the second. (Note that

P (A \ B) 2 P (A [ B), and note the di�erent forms of (2I) and (4I)). That is to say, if something is true of all

of two areas, then it is true of their overlap if it exists; but if we can �nd an example of something in area A,
and also �nd one in area B, we can not necessarily �nd one in their overlap if it exists.

2.3 Extrapolation from Observation

We have considered how an observation validates a statement about the sample area in which it was made;

however, we wish to be able to make statements about areas which are not sample areas, and to be able to

assess the degree of con�dence with which these statements may be made.

Let us assume that we have made an observation on area A, validating predicate P . How does P apply to

a new area B, which may stand in arbitrary geometrical relation to A?

First let us consider the case where P 2 P9; here we may assert:

P (A)) �P (B) �j A \ B j = j A j (5)

Here �P (B) is the probability that P is true of B; we have assumed that the specimen to which P refers is

as likely to be in any part of A as any other. The modulus signs are used to mean the surface area (measure)

of a given area. This expression applies irrespective of the geometrical relationship of A to B. If A and B are

disjoint, we have no information on B. If A is included in B, we know that P is true of B. Otherwise, we have
a minimum probability that it might be true.

Now let us consider the case where P 2 P8; here, we may assert:

P (A)) �P (B) �j A \ B j = j B j (6)

Here �P (B) means the fraction of B to which we know P applies, by virtue of its inclusion in A. Without any

knowledge of the distribution of this feature, we cannot assess the likelihood of its presence in the remainder of

B. Again, the expression applies irrespective of the geometrical relationship of A to B; in both cases, we have

assumed an `even distribution' of the feature property.

3 Atomisation

We have shown how a calculus of areas might be used to attain the desiderata of section 1.3. We have considered

only two classes of predicate; although this approach has been extended to more general examples (for example,

involving quanti�cation) the results become increasingly complicated. More importantly, we note that the rules

by which we might make updates and perform extrapolations are not independent of the semantics of the feature

predicates which we are considering.

Hence atomisation is introduced as a procedure for meeting our desiderata in the context of more general

classes of predicate; this approach subsumes the calculus of areas and, further, allows conceptual modelling to

be performed in an object oriented framework (see section 4.1). Let us de�ne an atom to be an indivisible

�nite area of surface, the smallest area over which we shall make an observation or statement. It should be the

smallest area referred to in the survey, or any survey with which we are likely to wish to combine our results.

Let Atom be the set of all atoms over our survey area, and Area be the set of all areas formable from them.

An area is then a set of any atoms which are connected (7). By connected, we mean that there is a path from

any atom in the area to any other which does not pass outside the area. (Testing this for a given area would

require a graph traversal).



Area = fA : PAtom j a 2 A ^ b 2 A) connected(a; b)g (7)

where PAtom is the power set of Atom.

Such an approach seems justi�ed since in general the methods of surveys are �nitary. Since atoms are of

�nite size, we may use the cardinality of an area to refer to the number of atoms which it contains.

We require that a statement is either true or false of an atom; it is never partially true. This allows P (a) to
be interpreted as in classical predicate logic, where a 2 Atom. Our earlier statements of the form P (A), where
A is an Area, may now be interpreted as follows.

P (A) � 8a : A � P (a); for P 2 P8 (8I)

P (A) � 9a : A � P (a); for P 2 P9 (8II)

In other words, in (I) the distributed conjunction of the predicate is true over all atoms in the area, and in

(II) the distributed disjunction is true. This gives us a more formal statement of our concept of `trueness over

an area'. Further, we may now deduce the laws of section 2.1 using only classical predicate logic and (8I) and

(8II) | see the appendix for an example.

4 Object Oriented Survey Data

In this section, an object oriented model of survey data is developed.

4.1 Object Oriented Conceptual Modelling

Conceptual modelling [BMS84] is a tool for the high-level description of data. Object oriented modelling

[BGHS91] is intended to provide strong semantic capture, using the underlying metaphor of a physical system

[MMP91]. It provides means to model composite objects, and further to capture behaviour or calculation within

the model; this latter feature is seen as one of the distinguishing features of an object oriented approach [Kin89].

Work such as [WHM90] has used the structural properties of object oriented models to represent spatial data;

here we will use also the behavioral aspects, to represent the derivation of properties.

For brevity, basic concepts of object oriented modelling are not reviewed here; such a review may be found

in [BK91], together with a presentation of the model used in this article. Here we introduce relevant features

as they occur in examples.

4.2 Equality of Areas

Before approaching the model, let us detour brie
y to look at the concept of equality over areas. Two forms of

equality are of interest when discussing areas, which must be distinguished as discussed in [BK91]. Two objects

of class Area may be the same object, or they may be the same area. For example, if there were a development

site in the survey site, this might be represented by an object of class DevelopmentSite. If the developers buy a

little more land abutting the site, but are refused planning permission for one corner of the original site, so that

the shape of the DevelopmentSite alters, then we call this the same object as before, although not the same

Area since it is not the same set of Atoms (shallow equality); this is the default equality method inherited from

class Object.

Now let us imagine that we query the database for the habitat of a certain type of vegetation; the reply

will be the set of atoms where it is located. If these are adjacent, we may regard it as a temporary area object

created in reply to the query. If this area represents the same piece of ground (is the same set of atoms) as

some existing feature, for example a bog, then the habitat and the bog are the same area, but not the same

object (deep equality). For example, an increase in the size of the bog does not necessarily mean an increase in

the size of the area where the vegetation is located.

To express this we consider that in addition to the object equality inherited from class Object, Area and its

subclasses have a method areaEqual which will show whether two objects in fact comprise of the same terrain.

4.3 SampleAreas, InterestAreas and their Properties

In a survey, the observations made are vital. Any model which prevents the storage of these actual observations

will be undesirable, since they are the basic and incontestable results of the survey. Derived data might always



need to be rederived, since we may change our minds about which features we are interested in; this is possible

only if the original observations are still available. Therefore any model should preserve the data actually

observed, while simultaneously allowing us to see it in di�erent ways as we might wish.

In our discussion of survey data we have mentioned areas on which observations have been made, areas

over which we wish to make statements, and we have introduced the notion of an atom as a mechanism for

connecting the two. We capture this in the following model (see �gure 1). (To reduce clutter, natural language

comments between braces replace some elements in the accompanying schemata). The diagram shows that an

area is composed of one or more atoms, and that Area has two subclasses, SampleArea and InterestArea. A

SampleArea is an area on which observations have been made, whereas an InterestArea is an area about which

we wish to make statements. Of course, any given area of interest may have been sampled; so here we restrict

InterestArea to mean an area about which we wish to be able to make statements. This may or may not be

areaEqual to some SampleArea. The properties of these subclasses of Area represent the features of their

real-world counterparts in which we are interested.

The notation used is as described in [BK91]. Fat arrows are used to show the generalisation structure of the

model, and thin arrows to show the aggregation structure [SS77]. The arrow atoms shows that an area consists

of a number of atoms. The constraint bar labelled CC (connectivity constraint) means that the constituent

atoms must form a connected aggregation as described in section 3. The fat arrows show that SampleArea and

InterestArea are both subclasses of Area; hence objects of either of these two classes also consist of connected

sets of atoms. Further, these classes inherit both methods for equality testing from their common superclass.

Depending on the survey methodology used, any particular application model may involve various di�erent

kinds (subclasses) of SampleArea. Similarly, depending on how the data is being used, various subclasses of

InterestArea may also exist in any given application.

4.4 Atomisation Revisited | Decomposition and Recomposition

The properties of a SampleArea represent the features which we observe, those of an InterestArea represent

statements which we may make; we may use atomisation as a bridge between the two.

We may decompose the value of a feature of a SampleArea to a value for each of the constituent atoms,

and then recompose these into a value for any InterestArea including these atoms (see �gure 2). The rule for

decomposition and recomposition will depend on the feature predicate concerned.

This approach subsumes the calculus of areas, since the latter may be interpreted in terms of the atomisation

represented by (8I) and (8II), where simple decomposition and recomposition rules apply.

It will still be possible to meet the two desiderata in more general cases, provided that appropriate decompo-

sition and recomposition rules can be found, since updating by observation simply means that more atoms must

be operated on by the decomposition rule, and recomposition is itself a process of extrapolating from observa-

tion. Since the value of a property of an object may be found by evaluating a method body, the decomposition

and recomposition may be done (at least notionally) at query time. The composition rules are represented by

the speci�cation of the property in the schema for InterestArea, utilising the capture of computation provided

by object oriented models.

4.5 Correlated Features

To represent statements we may wish to make about arbitrary areas, we introduce a new feature as a property

of the InterestArea. This is derived from the actual feature of the SampleArea, and is called the correlated

feature. The correlated feature has a value for any arbitrary areas of interest; where the InterestArea is the

same area as some SampleArea, the value of the correlated feature is reducible to that of the (observed) feature

from which it is derived. This is the correlation constraint between the feature and its correlated feature. We

have already tacitly adopted this approach while trying to extrapolate from observation in section 2.3, where

we introduced probabilities and proportions.

Several di�erent correlated features might be based on the same actual feature; also, the same subclass of

InterestArea might have as properties correlated features based on a variety of classes of SampleAreas.

4.6 Example

Let us consider the following example. Imagine that a survey methodology were to look for fenny patches on a

survey site, and to chart them. We would then have a class FennyPatch, a subclass of SampleArea.



atoms

InterestArea

CCAtom

Object

Area

SampleArea

class Area

properties

atoms: setOf Atom ;;

operation

equalArea: Area other -> Bool is

self.atoms.setEqual(other.atoms) ;;

constraint

CC: {atoms connected} ;;

class SampleArea

ISA Area

properties

{feature properties}

----- ;;

----- ;;

----- ;;

class InterestArea

ISA Area

{correlated feature properties}

----- ;;

----- ;;

----- ;;

Figure 1: Ecological Data Model



Figure 2: Atomisation

Now, let us imagine that we wish to make statements about how fenny various arbitrary parts of the site

might be. Therefore, we can give the class InterestArea a property minPercentageFen, showing what proportion

of an area we know to be covered in fen. We represent this as a minimum, since we consider that the survey

site may be incompletely surveyed, so that we might lack knowledge of some of the fen existing within our

InterestArea. minPercentageFen is the correlated feature to the property fenny implicitly possessed by objects

of class FennyPatch. The methods are expressed in an extension of NOODL [Bar92], which is derived from the

notation used in [BK91]. The speci�cation of the property minPercentageFen is

(accumulate(FennyPatch, self.intersect)).cardinality / (self.cardinality)

So this method means: divide the number of atoms in the intersection of the InterestArea with all known fenny

patches by the number of atoms in the InterestArea. This gives the minimum proportion of the InterestAreas

known to be fenny (see �gure 3). If we had exhaustively surveyed the site for fenny patches, this would be the

exact proportion which was fenny.

Now, consider the case where the InterestArea is areaEqual to a fenny patch; that is, the InterestArea covers

the same terrain as an object in the class FennyPatch. In this case, the intersection of the InterestArea with

all known fenny patches areaEquals the InterestArea itself, so the method simpli�es to self.cardinality

divided by self.cardinality which will be 1 as we expect. Thus we are able to recover the information from

our original observation. The same argument will hold if the area of interest is a subarea of any fenny patch.

This is the correlation constraint for this feature. The schemata for these classes are shown in �gure 4; the de-

and re-composition rules are implicit in the method which de�nes the correlated feature.

One advantage of this approach is its 
exibility. We can choose which properties an InterestArea should have,

based on the available observations on SampleAreas. Instead of the property minPercentageFen, we could give

the InterestAreas a Boolean-valued property fenny. The associated method would then check whether the

SampleArea was areaEqual to some object of class FennyPatch. Alternatively, we could weaken the de�nition

slightly and check whether it overlapped 90% or more with an object of class FennyPatch. We could alter the

tolerance, indeed the whole approach, till we found what is most useful in a given case. Of course, InterestArea

could have all of these di�erent correlated features simultaneously, provided the properties by which they are

represented had di�erent names.
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Figure 3: Example

class FennyPatch

ISA Area

constraint

isFenny: {all atoms fenny} ;;

class InterestArea

ISA Area

minPercentageFen: Proportion is

(accumulate(FennyPatch, self.intersect)).cardinality / self.cardinality ;;

Figure 4: Example Schema

At the cost of increasing complexity and decreasing certainty, we could base the properties of an InterestArea

on quanti�ed observations of SampleAreas, calculating the probability that each atom of the SampleArea con-

tributes to the desired property of the InterestArea.

4.7 Atomic SampleAreas

A simpli�cation which might be enabled by the methodology of many surveys is to work only with atomic

SampleAreas; that is, SampleAreas which consist of a single atom only. In this case, the decomposition step

may be omitted, since the predicate true of the SampleArea is also true of its constituent atom. Survey

methodologies are such that this simpli�cation is often possible.

To recast the above example with this simpli�cation, we might imagine that the survey methodology was

to record whether atomic sample areas (perhaps small quadrats) were fenny; each atom might have a Boolean

valued property fenny, or a discrete valued property groundType,with `fenny' being one of its possible values.

The method for the property minPercentageFen would then be replaced by:

(self.atoms where (self.fenny)).cardinality / self.cardinality

or

(self.atoms where (self.groundType = `fenny')).cardinality / self.cardinality

since we can attribute the observation-property to the atoms themselves. That is, we divide the number of

fenny atoms in the SampleArea by the total number of atoms in the SampleArea.

The simpli�cation obtained here is fairly limited since the decomposition procedure for the original example

was simple: an atom in a fenny patch is a fenny atom. However, it is easy to �nd cases where the decomposition

procedure is considerably more complicated, especially where observations involve quanti�cation, and/or Sam-

pleAreas overlap. In these cases decomposition may require involved probability calculations and assumptions

about how a feature is distributed in order to allocate a value to each of the atoms in the SampleAreas.



The consequence of the use of atomic SampleAreas is that we may make only discrete valued observations of

SampleAreas, since the corresponding proposition must be simply either true or false of the atom (see section 3);

this would re
ect a methodology where we must decide to allocate the quadrat to one of a number of prede�ned

categories.

4.8 Review of the Model

We have represented areas of the Earth's surface as objects, and features of interest by properties of these

objects. We have made use of the `stored query' view of a property in order to give meaning to these properties

for any of the in�nite number of di�erent area objects with which we might wish to work.

The model presented captures the essential requirements identi�ed in section 1.3. We capture the need

to make statements about areas other than those directly observed by the introduction of the two classes

SampleArea and InterestArea. All observations are made on objects of class SampleArea, all statements about

objects of class InterestArea. The correlation constraint guarantees the original observations are recoverable

when the InterestArea is areaEqual to a SampleArea.

The requirement of updatability is also met since the features of InterestAreas are expressed in terms of a

method upon the observed properties of SampleAreas. Hence implicitly, an alteration to the observed data is

re
ected in the features of any InterestAreas. (In a stored database, this might mean either that the values of

these properties are evaluated dynamically, or that they are precomputed, but recomputed on update of the

relevant observations).

Further, the object oriented approach has proved useful, not only for capturing the composite structure of

data objects, but also for allowing the necessary derivations to be expressed within the data model.

5 Paisley Data

The approach discussed above is being used to model ecological survey data collected in a survey undertaken

by Paisley College of Technology, in conjunction with the Nature Conservancy Council. Here we give a brief

overview of the structure of a subset of the data; more details may be found in [BCM88].

The survey was carried out in 1986 and 1987, and has a fourfold purpose:

� To establish the distribution and numbers on Islay of birds listed in EC directive 85/411/EEC Annex 1.

� To produce a land type classi�cation of the island.

� To investigate the relationship between land use and birds to assess the potential impact of changes.

� To provide recommendations to incorporate into the development of a conservation strategy to maintain

and enhance the wild-life interest of the island.

In this examination we consider only the data relating to land classi�cation, although it is planned to extend

this later to the bird data.

A sample of 1km � 1km quadrats was selected, and each divided into 2500 50m � 50m squares (called pixels

in the report). These were surveyed for a variety of biotic features, such as woodland and vegetation types

present, and abiotic features such as physiography and boundary features. This information was collected on

coding sheets, using a di�erent coding scheme for each square surveyed. Subsequently, the data was reduced

to a standardised representation scheme and subjected to TWINSPAN (Two Way INdicator SPecies ANalysis)

[Hil79], to determine various categories for the di�erent features of interest. This procedure is described fully

in [BCM88].

5.1 Brief Overview of the Data

Our aim in modelling the data is not to redo the classi�catory analysis already performed upon it, but rather

to be able to represent the results of this initial work in an intuitive manner, allowing graphical display of the

data, and ad hoc querying on it. Any conclusions derived from the data must be supported by the rigorous

statistical techniques employed by ecologists; we hope to o�er a facility to browse the data in order to perform

explorative `searching for patterns.'



Analysis revealed the pixels surveyed fell into eight boundary categories (B), nine physiographic categories

(P), four woodland categories (W), and twenty-six agriculture and vegetation categories (AV). Sets of contiguous

pixels of the same type form patches, which are naturally occurring areas homogeneous in some feature.

Further, the 1 km � 1 km squares were categorised into eight landtypes according to the frequencies of various

patch types occurring in each. Unsampled squares were also categorised on the basis of map information. The

entire island can thus be divided into zones which are large areas characterised by considerable homogeneity of

landtype.

5.2 Description in Terms of Model

The decision to use the 50m � 50m pixels as sampling areas was intended to support a standard survey method-

ology [BS73] allowing follow-up surveys and comparison with other surveys over the same site. Additionally,

it means that we have the advantage of atomic sample areas as discussed in 4.7. We can treat the pixels,

squares, patches and zones as objects, and their landtype characteristics as properties. The structure of the

model derived is shown in �gure 5, together with some of the associated schemata (constraint bars and labels

are omitted for clarity). Pixels and Quadrats are our basic forms of SampleArea, and Patches, Zones and Mixels

(see section 5.4) the appropriate subclasses of InterestArea. Since Pixels are the only kind of atoms, we use the

class Pixel as a synonym for Atom in this application.

5.3 Querying

A graphical user interface has been constructed for use with the ecological database (see �gure 9). A likely class

of queries would be representational in nature - for example, display all pixels of whose typeAV is b and whose

typeW is d. The query would involve locating all pixels which matched the selection criterion, after which they

would be passed as a set of objects of class Pixel to the graphical user interface for display in an appropriate

manner. If these pixels were of some interest, we might wish dynamically to create a new subclass of Pixel,

SpecialPixel, as de�ned in �gure 6, so that they might persist for use in future querying sessions.

A second class of query might be to indicate some area on the screen by highlighting it with the mouse,

and then examine its features treating it as an InterestArea. Clearly this would involve dynamic evaluation

of its correlated features. Should the area be of interest, it might be added to the class UserDe�ned for later

reference.

5.4 Mixels

An interesting example of using InterestAreas which are not SampleAreas is the creation of mixels. A mixel

( = `mixed pixel') is a square set of pixels, whose characteristics are derived from those of the constituent pixels.

The creation of mixels allows us to increase the coarseness of granularity with which data is treated. This might

for example be useful when searching for correlation between the locations of a species and certain patch types;

if the species is observed near the limits of its preferred habitat, we might overlook the correlation if working

at too �ne a level of granularity. Of course, the rules by which the characteristics of the mixel are derived from

those of the pixels are not necessarily clear, so that some experimentation might be necessary to �nd meaningful

ways of constructing mixels.

For the sake of an example, we shall use a very simple approach to deriving our mixels. Let us consider a

class Mixel4, the members of which are mixels consisting of four adjacent pixels arranged in a 2 � 2 square.

If all four of the constituent pixels are of the same type, we shall declare the mixel to be of this type also;

otherwise we assign it to a new type, mixed. Thus for each of the data sets, the number of mixel types is one

more than the number of pixel types. (More complicated construction rules would, of course, introduce more

types for various possible pixel combinations).

We can now introduce a new class Mixel4, a subclass of InterestArea, whose schemata is as shown in �gure

7. For browsing a database, we might wish to be able temporarily to create objects of class Mixel4, using

this and other de�nitions, and perhaps then permanently to store the objects created according to some of the

de�nitions if they appear to form a useful basis for further work.

6 Implementation

A system called Isis (Islay Survey Information System) has been built to implement the application model

described here; it is written in the persistent programming language Napier88 [DCBM89], [MBCD89], which
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domain Index is Number where self >= 1

and self <= 50

domain PatchTypeAV = ( {various discrete values} )

domain PatchTypeW = ( {various discrete values} )

domain PatchTypeB = ( {various discrete values} )

domain PatchTypeP = ( {various discrete values} )

domain LandType = ( {various discrete values} )

class Pixel

ISA Atom { is same as Atom in this application }

quadrat: Quadrat

\ pixels ;;

xIndex: Index ;;

yIndex: Index ;;

patchTypeAV: PatchTypeAV ;;

patchTypeW: PatchTypeW ;;

patchTypeB: PatchTypeB ;;

patchTypeP: PatchTypeP ;;

class Quadrat

ISA Area

xRef: Number ;;

yRef: Number ;;

landType : LandType ;;

pixels : setOf Pixel

\ quadrat ;;

constraint

igc: {implicit geometry of pixels} ;;

Figure 5: Application Model



class SpecialPixel

ISA Pixel

constraint

sc: self.typeAV = b and self.typeW = d ;;

Figure 6: Special Pixel Schema

domain MixedMixelType is ( mixed )

domain MixelTypeAV is TypeAV or MixedMixelType

domain MixelTypeW is TypeW or MixedMixelType

domain MixelTypeB is TypeB or MixedMixelType

domain MixelTypeP is TypeP or MixedMixelType

class Mixel4

ISA InterestArea

properties

tl: Pixel ;;

tr: Pixel ;;

bl: Pixel ;;

br: Pixel ;;

mixelTypeAV: MixelTypeAV is

if tl.typeAV = tr.typeAV and

tr.typeAV = bl.typeAV and

bl.typeAV = br.typeAV then

tl.typeAV

else

mixed ;;

{similar for W, P, B}

constraint

mgc: {pixels in correct geometrical arrangement} ;;

Figure 7: Mixel Schema
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Figure 8: System Architecture

transparently manages the long-term storage of the data. The architecture of the system is shown in �gure 8.

Isis itself consists of persistent data, some utility applications which may access it directly, and an interface

supporting the object oriented application model through which all other applications must access the data.

The graphical user interface shown in �gure 9 [BFK92], [Fra91] accesses the database through an intermediate

query engine which translates the pictorial representation of a query into terms of the object oriented model.

The graphical presentation of the data is thus separated totally from its representation in the database.

7 Summary

The requirements for a model for ecological data have been discussed. Atomisation has been introduced as

a technique allowing these requirements to be met. By incorporating this atomisation in property-de�nition

methods, an object oriented conceptual model for this type of data has been developed. An application model

for a particular survey has been built on this approach, and this application model implemented in a data

management system.

8 Further Work

The approach to modelling ecological data requires extension to incorporate time variation. It is planned to

model more data, including some bird data, which should add some new interesting structure to the model.

We plan also to investigate the capabilities of various existing object oriented database systems for representing

this data, as well as developing our own persistent database and the graphical user interface further.
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Appendix

Here a semi-formal proof of result (6) is presented, as an example of how the concept of atomisation allows the

derivation of the inference rules used in the calculus of areas. Hence, this calculus is reduced to conventional

predicate logic.

Let us note �rst, that assuming all atoms are of the same size,

j A j= #A j a j (lemma 1)

We shall also use the well-known result

P ) Q � :P _Q (lemma 2)

Then for P 2 P8,

i) P (A) premiss

ii) 8a : A � P (a) by (8I)

iii) a 2 A) P (a) for any atom a by 8-elim

iv) :(a 2 A) _ P (a) by lemma 2

v) :(a 2 A) _ :(a 2 B) _ P (a) for any area B by _-intro

vi) :(a 2 A ^ a 2 B) _ P (a) by DeMorgan

vii) a 2 A ^ a 2 B ) P (a) by lemma 2

viii) a 2 (A \B)) P (a) by \-defn

ix) 8a : (A \ B) � P (a) by 8-intro

x) P (A \ B) by (8I)

Since (A \ B) � B, the number of true atoms in B is at least #(A \ B). Hence �P (B), the proportion of

true atoms in B, is given by:

xi) �P (B) � #(A \B) / #B by �-defn
xii) �P (B) �j A \ B j = j B j by lemma 1

QED


