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Abstract. Over the past few decades, Machine Learning (ML)-based
intrusion detection systems (IDS) have become increasingly popular and
continue to show remarkable performance in detecting attacks. How-
ever, the lack of transparency in their decision-making process and the
scarcity of attack data for training purposes pose a major challenge for
the development of ML-based IDS systems for Internet of Things (IoT).
Therefore, employing anomaly detection methods and interpreting pre-
dicted results in terms of feature contribution or performing feature-
based impact analysis can increase stakeholders confidence. To this end,
this paper presents a novel framework for IoT security monitoring, com-
bining deep autoencoder models with Explainable Artificial Intelligence
(XAI), to verify the credibility and certainty of attack detection by ML-
based IDSs. Our proposed approach reduces the number of black boxes
in the ML decision-making process in IoT security monitoring by ex-
plaining why a prediction is made, providing quantifiable data on which
features influence the prediction and to what extent, which are gener-
ated from SHaply Adaptive values exPlanations (SHAP) linking optimal
credit allocation to local explanations. This was tested using the USB-
IDS benchmark dataset and a detection accuracy of 84% (benign) and
100% (attack) was achieved. Our experimental results show that inte-
grating XAI with the autoencoder model obviates the need of malicious
data for training purposes, but can provide attack certainty for detected
anomalies, proving the validity of the proposed methodology.

Keywords: IoT Security - Anomaly Detection - Explainable Al

1 Introduction

Since IoT devices are connected through the Internet, there is a high possibility
that they are vulnerable to cyberattacks such as impersonate, interception and
penetration by unauthorized users and viruses [24]. So these devices require a
proper security mechanism. Since traditional signature-based intrusion detection
systems (IDS) are no longer effective at detecting attacks, as modern attacks are
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sophisticated and complex, most IoT security research is currently based on
Artificial Intelligence. Since ML systems are iterative and dynamic, advanced
solutions based on ML are better suited to detect and mitigate the impact of
cyberattacks and potential threats to IoT data and infrastructures [13].

Most of the ML-based solutions proposed in the literature are supervised
learning methods that require labeled training data on attack and benign activi-
ties with certainty in ground truth. However, labeled attack data is expensive to
obtain, and legal, ethical, and privacy concerns may not allow realistic data to be
shared across research communities. Therefore, the use of anomaly-based detec-
tion methods is encouraged in the security field, as these models can be trained
using benign data only. The main drawback of the anomaly-based method is
that it often triggers false positives since it flags all unusual patterns as poten-
tial attacks even when they are not [9]. Understanding the reasons for instance
prediction can reduce these false alarms and be the first step for domain ex-
perts to make decisions to prevent future attacks. Moreover, most ML-based
mechanisms in security applications solve the attack detection problem and only
give results whether it is an attack (anomaly) or not, and often work as a black
box for the end user without providing much details on their decision-making
process [20]. As a result, in operational environments, interpreting IDS outputs
from the operator’s point of view and transferring them into actionable reports
is a challenge. Therefore, explaining the reasons behind a model’s decisions has
become an integral part of IDS solutions as ML becomes much more widely used
in the operation of critical systems, to the point that governments are beginning
to include it in legislation [11]. The ML community has recently concentrated
on developing XAI methods that are easier for users to understand [12]. XAI
uses natural language explanations and visualizations to show how the machine
learning model arrived at its decisions.

To overcome the aforementioned limitations in IoT security monitoring, this
paper presents a novel framework, combining deep autoencoder models with
XAI to identify the most influential features of anomalous behavior that vio-
lates predefined cybersecurity policies. Explainable models help to understand
and diagnose the decisions made by the model, thereby increasing confidence in
the data-driven IoT network security model. A domain expert can easily interpret
the decisions offered by explainable models since it simplifying the knowledge
discovery process. The main contributions of this research therefore are as fol-
lows. The model will detect anomalies in the IoT network and the model will
demonstrate the certainty of the detected anomaly rather than providing a false
attack. Additionally, the model will demonstrate the most influential features
with a weight for each anomalous behavior. This model decision-making process
(model explainability) can be mapped to domain expert knowledge for greater
attack certainty. Thus, consequently, the model meets all the fundamental needs
of modern IoT networks, providing accurate, reliable and transparent anomaly
detection.

The rest of the paper is organized as follows: Section 2 presents an overview
of background and related work. Section 3 describes the proposed Explainable AT
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and Deep Autoencoders based methodology. Section 4 describes the experimental
results carried out using the USB-IDS benchmark data set and finally Section 5
concludes the paper.

2 Background and Related work

This research focuses on the development of a security framework for IoT se-
curity monitoring, combining deep autoencoders with XAI. Therefore, the work
associated with each area is discussed separately in this section.

2.1 Explainable AI (XAI)

An Explainable AT (XAI) system aims to make its behavior more understandable
to humans by providing explanations. There are several XAl concepts that can be
used to help develop more efficient and human-understandable AT systems [3].
The XAI system should be able to describe its capabilities and concepts, as
well as what it has done, what it is currently doing, and what will happen
next. It must also be able to reveal the key information on which it acts on [3].
Several ML-based IDSs have been proposed over the past decades to protect
cyber networks from malicious threat actors with exceptional performance [23].
However, these complex models are often known as black box models and difficult
to understand for end users. In the context of security, a single incorrect IDS
prediction can expose systems and networks to major cyber risks. Therefore,
XAI should be integrated with traditional IDS to enhance its credibility and
reliability. Mahbooba et al. presented on explaining each predicted outcome by
extracting rules from the decision tree trained and tested on the dataset. Only
the expected results and the overall model response were explained using these
extracted rules [19]. Similarly, Sinclair et al. and Ojugo et al. presented two
separate papers to improve model performance [26,21]. In this work, rules were
derived using decision trees and genetic algorithms (GA). Instead of having an
optimal rule, authors argued that IDSs should be created using a set of rules
generated by machine learning. This concept was further expanded by Dais et
al. by making decision-making processes more transparent [8]. However, none of
these works focus on improving the IDS using the explanations of XAI tools.

2.2 Unsupervised Model Explanations

Clustering is a popular technique for solving unsupervised learning problems.
The issue of cluster interpretability has had a poor track record of success [5].
A widely used explanation is to represent a cluster of points by their centroid
or by a group of distant points in the collection [22]. When the clusters are
compact or isotropic it works fine, but it fails in all other cases. Due to complex
patterns in data distributions, it is unrealistic to expect isotropic data in the
cyber domain. Another popular technique is to use principal component anal-
ysis (PCA) projections or T-distributed Stochastic Neighbourhood Embedding
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(t-SNE) to visualise clusters in a two-dimensional network [18]. But, the connec-
tion between the clusters and the original variables is obscured by the reduction
in the dimensionality of the features. Van der Maaten et al. suggest Interpretable
Clustering via Optimal Trees (ICOT), in which the clusters are represented by
the leaves, and decision tree (unsupervised) built using feature values [4]. Liu
et al. and Lundberg et al. presented two different papers on clustering method
based on decision trees [15,17]. Both papers present a method that builds ex-
plainable clusters instead of explaining clusters generated by algorithms. Due to
the aforementioned limitations, clustering would not be a suitable unsupervised
method for our problem.

2.3 Explaining Anomalies

In the field of cybersecurity, unsupervised learning techniques such as anomaly
detection are gaining popularity because a large number of labeled attack ex-
amples are needed for supervised learning, and new types of attacks will con-
tinue to emerge [25]. Almost as important as the model’s predictive accuracy
is the capacity to explain an anomaly detection methodology in critical sectors,
such as infrastructure security [1]. Therefore, an effective anomaly explanation
will greatly increase the usefulness of anomaly detection methods in real-world
applications. Explaining outliers can significantly reduce the need of manual in-
spection of false alarms by security analysts. Goodal et al. presented a system
for detecting and interpreting streaming anomalies in computer network traffic
and logs, visualization of the contexts of the anomaly serves as the basis for
the explanation [10]. Liu et al. presented a new Contextual Outlier Interpre-
tation (COIN) method to explain existing outlier anomalies spotted by detec-
tors [16]. Collaris created two dashboards using a combination of state-of-the-art
explanatory techniques. These two dashboards allow the domain expert to un-
derstand the prediction. Explanations are based on currently used explanation
techniques, including partial dependency diagrams, instance-level feature impor-
tance method, and local rule mining (a variant of LIME). Other research presents
an SVM-based malware detection and explanation approach to explaining out-
put made by recognizing the features that most strongly influence detection and
verifying if the extracted features that influence a detection match common vul-
nerable characteristics [2]. Valerio La Gatta et al. presented the local explanation
method CASTLE (Cluster-Aided Space Transformation for Local explanations),
which provides decision rules proposing how the model prediction can be gener-
alized to unseen instances and provides local information about the importance
of the feature [14]. However, none of the above studies explained the IoT network
anomalies detected by autoencoders, therefore, our work is unique and different
from the above studies.

3 Methodology

To the best of our knowledge, most explainable approaches are developed for
supervised learning methods (classification algorithms). But unlike existing ap-
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proaches to explain a prediction, our goal is to develop an approach to explain
an anomaly detected by an autoencoder model in the context of IoT security
monitoring. To this end, we use the reconstruction error (see equation 1) of an
autoencoder model to define IoT network anomalies (Anomaly Score). Anoma-
lies are instances with a high reconstruction error values. In other words, a high
difference (error) between the input and output (reconstructed) value is known
as an anomaly. A threshold for the reconstruction error is estimated using a be-
nign training dataset. If an anomaly exists in the incoming data, the explanatory
model should be able to explain why this instance could not be well predicted
(reconstructed) by the autoencoder model. As a result, the error is linked to an
explanation and the proposed method calculates the SHAP values of the output
features and compares them to the true (anomalous) values of the input.

n

L(A,A) =) (ai —a})? (1)

i=1

Equation 1 denotes the computation of reconstruction error in our work.
Given input row A with a set of features a;, and its output A’ with reconstructed
feature values a}, and using an autoencoder model f, the reconstruction error of
row is sum of the reconstruction errors of each feature. Then the features in error
list need to be reordered in a descending order such that |a; —a}| > |a, —a’,], to
find top R features which includes a set of selected features for which the total
corresponding errors indicate a modifiable percentage of L(A, A’). The model
uses SHAP! values to describe which features were responsible for each of the
high reconstruction errors in top R features.

In the explanation process, we first detect the anomalous instance using the
model. Then we take the features with the highest reconstruction error and
save them in the top R feature list. To get the SHAP values of each feature
(i.e. a;) in the list, Kernel SHAP is used. Then the result is displayed in a
two-dimensional array, in which each of the rows represents the SHAP values
for features in the top R features. The model divides SHAP values into two
categories in the next step. One of the categories corresponds to contributing
values that push the predicted value away from the input value and the other
category is offsetting values that push the predicted value towards the true value.
The division process is as follows. If the value of the input feature is greater than
the output value, negative SHAP values are contributing features and positive
values are offset features. If the output feature value is greater than the input
value, positive SHAP values are contributing features and negative shape values
are offset features. These steps return two list those are SHAP contributing and
SHAP offsetting.

Finally, it selects the features with high SHAP values of the features in the
top R features. From each row of contributing and offsetting SHAPs, we extract
the highest values. Our goal is to explain the result with the most influencing

! https://www.kaggle.com/code/dansbecker/shap-values
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features to the user to understand the reason for the anomaly. Figure 1 illustrates
the proposed approach.

A1,A2,A3...An

Input instances

Autoencoder model
[F]
A'LA2,A3..A

Output instances
Use the autoencoder model to predict
only the value of that feature
If total MSE>
Thresold
Calculate SHAP values only for
predicting this features
No
) Present most important features for
Normal instance each high error feature

Fig. 1. Process of explanation of each anomaly detected by an autoencoder

Explain anomaly
Obtain features with high error
[a-a]

For each feature with’
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Split SHAP values of all high
error features to contributing
and offsetting anomaly

Select all the instances with
contributing values

4 Experimental Evaluation

4.1 Dataset

The USBIDS dataset [6] was used in our experimental evaluation because it
provides clear feature descriptions compared to other alternative datasets. It
consist of 17 csv files of labelled network flow data. A combination of denial of
service (DoS) attack and defensive module consists of 16 files in addition to a
benign (unaffected by an attack) network traffic data file. CIC FlowMeter? has
used to derive network flows in the dataset. The naming convention of the 16
non-normative CSV files helps to identify the collection scenario. For example,
TCPFlood-NoDefense.csv provides flows obtained by executing TCPFlood with
no defense in place.

4.2 Experimental Setting

We trained the model using benign data only and two sets of attack data together
with benign data were used to evaluate the model. A fully connected autoencoder
model with RELU activation was used. To lighten the model, only 2 hidden
layers are used in the network. The hidden layers contain 10 and 32 neurons
respectively. Using benign data, the maximum Mean squared error(MSE) value
set as the anomaly threshold. The proposed algorithm was implemented using

2 https://github.com/ahlashkari/CICFlowMeter
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Python 3.8 with TensorFlow and the Keras library. 40 epochs and a learning
rate of 0.01 were used with the Adam optimizer. The experiments were run on
a ZenBook 2.30 GHz Intel Core i7 with 16 GB of RAM.

Table 1. Results on Hulk Attack of USBIDS dataset with a comparison (Recall) to
the current state of the art [7]

Detection Method  |Attack Hulk No De-|{Attack Hulk Evasive |Attack Hulk reqtime-
fence out

DT [7] 0.97 0.06 0.97

RF [7] 0.98 0.00 0.98

DNN [7] 0.67 0.05 0.66

Proposed Method 0.98 1.0 1.0

4.3 Results and Discussion

We experimented with different models to find the best performing model with
the lightest architecture. Among them, the above model performed the best and
the results are shown in Table 1 with a comparison to the current state of the
art. In recent years, many tools and libraries are released to open black box
models. However, there are no standard performance metrics to compare the
performance of such algorithms. No single explainability method is better than
the others. Thus, to evaluate the proposed model, we mapped XAI outcomes of
our model to domain expertise. To this end, we consulted three cybersecurity
experts and presented the feature set of the dataset together with attack types
and asked them to rank the importance/influence of each feature in detecting
the attack. For example, according to the domain experts, Forward packets per
second (Fwd Packets/s), Backward packets per second (Bwd Packets/s), Flow
packets per second (Flow Packets/s), Backward Packet Length Max (Bwd Packet
Length Max), Packet Length Max are the most influential features in detecting
a DoS attack, which comply with the out of the proposed approach. Further to
model evaluation, such a list can be used in our approach to compare the XAI
output with that list to further verify the certainty of the detected anomaly as
an attack.

After deploying our model, we get anomalous instances as output. These
anomalous instances are explained by the explainable model with an influence
weight as shown in figure 3. According to this explanation, forward packets per
second (Fwd packets/s) is the most influential feature (contribute) with a weight
value of 0.0882. After that, Backward Packets per second, Flow Packets per
second, Backward Packet Length Max have an effect with their respective values
0.0845, 0.0749, 0.016. Forward Packet Length Standard (Fwd Packet Length Std)
is the offsetting feature for this anomalous instance. This offsetting features do
not affect to the attack certainty as they are not contributing to the mean
squared error.
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We found forwarding packets per second (FWD packets/s) as one of the
most influencing features by using our explainable model (anomaly instance
548271) and expertise knowledge. Then we compared the feature value of forward
packets per second (FWD packets/s) respectively benign and attack classes.
Packets per second feature has a value ranging between 0 and 3000 for a benign
class, but in the attack state, this feature value increases up to 8000 per second.
Backward packet per second also showing similar result, backward packets per
second feature values vary from 0 to 3500 benign states and up to 8000 packets
per second in the attack state.

Benign Attack

4L HNE N LI N1 & $HHEER ¢

0 500 1000 1500 2000 2500 3000 0 2000 4000 6000 8000
Fwd Packets/s Fwd Packets/s

Fig. 2. Packets Per Second feature values of benign and Attack classes

Considering these facts, we can confirm that most of the influenced features
explained by our model are correct. Finally, considering these results, we can con-
firm that our explainable model is more efficient in finding the attack certainty
of the anomaly that is detected by the existing anomaly detection method.

5 Conclusion

ML-based IDSs are attracting a lot of attention from security researchers, but
have limited use in the operational environment due to their black box nature.
It is unclear what things contribute to their decisions, and most anomaly de-
tection detects the anomalies, but there is no certainty about the attack. To
address these issues, we have proposed a framework in which instance-wise ex-
planations, local and global explanations, and relationships between features
and system outcomes help in obtaining key decision-making features, which will
eventually lead to estimate the attack certainity. By analysing the model ex-
planations, the cybersecurity expert will also be able to make the final decision
regarding the anomaly. In addition, the explanations allow the end user to better
understand the decision and influencing features with weighting. In the future,
we plan to extend this work to map XAI outputs to local security policies in the
IoT network to detect which policy is being violated by the reported anomaly.
In operational environments, this will certainly be useful for interpreting IDS
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Fig. 3. Feature influenced of the selected anomalous anomalous instance (548271)

outputs from the operator’s point of view and transferring them into actionable
reports. Additionally, this framework will be deployed in a real IoT network
environment to investigate its capabilities in production environments.
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