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Abstract 

Particle Swarm Optimization (PSO) system based on the distributed architecture over multiple sub-swarms 

is very efficient for static multi-objective optimization but has not been considered for solving dynamic multi-

objective problems (DMOPs). Tracking the most effective solutions over time and ensuring good exploitation 

and exploration are the main challenges of solving DMOP. This study proposes a Dynamic Pareto bi-level 

Multi-Objective Particle Swarm Optimization (DPb-MOPSO) algorithm including two parallel optimization 

levels. At the first level, all solutions are managed in a single search space. When a dynamic change is 

successfully detected in the objective values, the Pareto ranking operator is used to enable multiple sub-

swarm’ subdivisions and processing which drives the second level of enhanced exploitation. A dynamic 

handling strategy based on random detectors is used to track the changes in the objective function due to 

time-varying parameters. A response strategy consisting in reevaluating all unimproved solutions and 

replacing them with newly generated ones is also implemented.  The DPb-MOPSO system is tested on 

DMOPs with different types of time-varying Pareto Optimal Set (POS) and Pareto Optimal Front (POF).  

Inverted generational distance (IGD), mean inverted generational distance (MIGD), hypervolume difference 

(HVD), Robust IGD (RIGD) and Robust General Distance (RGD) metrics are used to assess the DPb-

MOPSO performance. Quantitative results are analyzed using Friedman's analysis of variance, and the 

Wilcoxon sum ranks test, while the stability is analyzed using Lyapunov's theorem. The DPb-MOPSO is 

more robust than several dynamic multi-objective evolutionary algorithms in solving 21 complex problems 

over a range of changes in both the POS and POF. On IGD and HVD, DPb-MOPSO can solve 8/13 and 8/13 

of the 13 UDF and ZJZ functions with moderate changes. DPb-MOPSO can resolve 7/8 FDA and DMOP 

benchmarks with severe changes to the MIGD, and 6/8 with moderate changes. DPb-MOPSO assumes 7/8, 

6/8, and 5/8 for solving FDA, and dMOP functions on IGD and 6/8, 5/8, and 5/8 on HVD metrics considering 

severe, moderate, and slight environmental changes respectively. Also, it is the winner for solving 8 DMOPs 

based on RIGD, and RGD metrics. 
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1. Introduction 

Dynamic Multi-Objective Problems (DMOPs) have two or three conflicting functions characterized by time-

varying objectives, parameters, and/or constraints. Farina et al.[1] have categorized DMOPs into four types. The 

main difference has been investigated in the time-varying Pareto Optimal Set (POS) and Pareto Optimal Front 

(POF). For type I, the POS changes, and the POF remains unchanged. Then, for type II both POS and POF change 

over time. However, the POF changes and the POS remains constant for DMOPs in type III. Despite all changes 

in the system, both POS and POF are unchanged for DMOPs in type IV. Multi-Objective Evolutionary Algorithms 

(MOEAs) and bio-inspired intelligent techniques like the Genetic Algorithm (GA) [2], and the Particle Swarm 

Optimization (PSO) method [3]– [5] have been investigated to manage the evolutionary stagnation issues for static 

single/multi-objective optimization. Also, a set of MOEAs has been established as suitable for dynamic multi-

objective optimization [6]– [8], and able to find the best compromise of solutions on POS and POF without 

managing environmental changes.  

Different Dynamic Multi-Objective Evolutionary Algorithms (DMOEAs) have been developed to overcome the 

loss of convergence and diversity issues when solving time-varying problems. Some mechanisms are considered 

for diversity detection by monitoring a few random individuals to re-evaluate the objectives or constraints 

violations values [9]. The change detection is usually done frequently by monitoring the evolution of fitness 

functions using one fixed solution [10], the best-obtained position [11], or the average of all evaluated solutions 

[12]. The convergence detection methods using one or small set of detectors have the limit to wrongly detecting 

the converged/ or the non-converged individuals. Also, the efficiency of the detection mechanisms decreases when 

the size of the affected environmental change decreases, while the need for an important number of detectors.  

Furthermore, change detection includes additional techniques to react effectively to the change, and the most 

known are the reinitialization of a certain percentage of the population and the hypermutation which are explicitly 

used to ensure good convergence and diversity in dynamic search space [13], [14]. Nonetheless, the Multi-

Objective Particle Swarm Optimization (MOPSO) approach with distributed architecture is considered for static 

optimization [15] and has not yet been processed to manage the time-varying POS and POF when solving DMOPs. 

Besides, many transfer learning-based methods are proposed for DMOPs, which are time-consuming, and increase 

the diminishing of solutions diversity [16]. 

 In general, the sequential search procedures proposed in the standard MOPSO approach [17] have followed a 

centralized architecture, where the particles are iteratively updated according to a random global best position 

(leader) and their historical personal best position. As a consequence, if the personal best and the global best are 

confused or close to each other’s, the MOPSO algorithm may stagnate in local optima and lose diversity over time 

[18]. In the literature, the most existing DMOEAs designed for DMOPs are developed based on the Evolutionary 

Algorithm (EA) [19], [20], [21], [22] or Genetic Algorithm (GA) [9].  Furthermore, the use of Multi-Objective 

Particle Swarm Optimization (MOPSO) over a distributed architecture, consisting of multiple sub-swarms [15], 

has not yet been investigated to solve DMOPs. Also, it should be noted, that the standard PSO method [3] is not 

very efficient for solving DMOPs with time-varying POS and POF [18] because of its limited capacities in 

addressing the dual issue of the outdated memory and the loss of diversity over time.  

The state of the art involves comparable DMOEAs to the novel DPb-MOPSO system based essentially on five 

metrics [14]: Inverted Generational Distance (IGD), Mean Inverted Generational Distance (MIGD), Hypervolume 

Difference (HVD), Robust IGD (RIGD), and Robust General Distance (RGD) [24], which are chosen referred to 



the compared state-of-the-art methods in papers [16], [19], and [24]. Different DMOEAs, are compared with the 

DPb-MOPSO algorithm including: Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D) 

[25], Dynamic Competitive-Cooperative Evolutionary Algorithm (dCOEA) [26], Population Prediction Strategy 

(PPS) [27], Dynamic Non-dominated Sorting Genetic Algorithm II (DNSGA-II) [9] and Steady-State Generational 

Evolutionary Algorithm (SGEA) [19]. Also, PSO-based methods are considered namely: Dual multi-objective 

particle swarm optimization (dMOPSO) [28], distributed Multi-Objective Particles Swarms Optimization, based 

on the dynamic subdivision of the population using Pareto fronts (pbMOPSO) [15] and Multi-Objective Particles 

Swarms Optimization (MOPSO) [17], and Dynamic-MOPSO [18]. The transfer learning-based methods aim to 

modify the main system of PPS [27], and MOEA/D-KF [20] with the baseline MOEA/D algorithm [25]. However, 

a set of TL methods are detailed in [16] and compared with the DPb-MOPSO namely; MMTL-MOEA/D, RI-

MOEA/D, PPS-MOEA/D, KF-MOEA/D, SVR-MOEA/D [21] and Tr-MOEA/D [22]. Also, the proposed DPb-

MOPSO algorithm is compared with five prediction-based methods [24] that adapt average, weighted, and 

adaptively ensemble prediction techniques among five standard multi-objective evolutionary algorithms: SPEA2 

[29], MOPSO [17], NSGA-III [30], MOEA/D [25], and MOEA/D-DE [31].  

In this paper, we propose a new Dynamic Pareto bi-level Multi-Objective Particle Swarm Optimization (DPb-

MOPSO) algorithm. The contribution of this study is detailed as follows: 

✓ The DPb-MOPSO algorithm is proposed to handle Dynamic Multi-Objective Optimization Problems 

(DMOPs) with different types of time-varying POS and POF. 

✓ The novel DPb-MOPSO algorithm integrates a distributed architecture over multiple sub-swarms including 

a dynamic handling strategy to manage different types of change. The distributed architecture allows higher 

diversity during the search process.   

✓ The main difference between the new proposed DPb-MOPSO algorithm and the standard MOPSO 

algorithm has been investigated in the advantages of using a distributed MOPSO architecture for solving 

dynamic multi-objective problems and monitoring dynamic change. 

The remaining of this paper is organized as follows. Section 2 introduces the overview of dynamic multi-

objective optimization methods. Section 3 details the proposed DPb-MOPSO algorithm. Section 4 introduces the 

preliminary of the experimental study. The analysis and discussion of the results are shown in Section 5. The 

Lyapunov theorem for stability analysis is detailed in Section 6. Finally, Section 7 summarizes the paper and 

suggests some prospects for future works. 

2. Dynamic Multi-Objective Optimization Methods 

Dynamic multi-objective optimization problem 𝑓𝑡 is a MOP with 𝑀 time-varying objective function, variables, 

and/or constraints [32]. An algorithm 𝐺 is needed to solve DMOPs in a given period [𝑡𝑏𝑒𝑔𝑎𝑛 , 𝑡𝑒𝑛𝑑]. The 

mathematical definition of DMOP is expressed in Equation (1).   

                                                     Minimize 𝐹(𝑋, 𝑡) = (𝑓1(𝑋, 𝑡), 𝑓2(𝑋, 𝑡), … , 𝑓𝑀(𝑋, 𝑡))                                                      (1) 

Subject to: 𝑔𝑖(𝑋, 𝑡) ≤ 0 and ℎ𝑗(𝑋, t) =0 

 ∀ 𝑖 = 1, … , 𝑛𝑔(𝑡) and  𝑗 = 1, … , 𝑛ℎ(𝑡) 

𝑋 ∈ [𝑋𝑚𝑖𝑛 , 𝑋𝑚𝑎𝑥], 𝑡 ∈ [𝑡𝑏𝑒𝑔𝑖𝑛, 𝑡𝑒𝑛𝑑] 

𝑋 ∈ Ω𝑋 , 𝑡 ∈ Ω𝑡 

where M is the number of conflicting objective functions, 𝑛𝑔(𝑡) and 𝑛ℎ(𝑡) are the number of inequality and 



quality constraints at time t respectively. 𝑋 is a set of bounded decision variables with 𝑛-dimensional search space 

generated between minimum boundary (𝑋𝑚𝑖𝑛) ,and maximum boundary (𝑋𝑚𝑎𝑥). 𝐹(𝑋, 𝑡) is the objective vector 

that optimize the solution 𝑋 at time t. Ω𝑋 ⊆ ℝ𝑛 is the decision space, and Ω𝑡 ∈ ℝ  is the time space bounded 

between a starting time 𝑡𝑏𝑒𝑔𝑖𝑛 and end time 𝑡𝑒𝑛𝑑 . The objective vector is denoted by 𝐹(𝑋, 𝑡): Ω𝑋 × Ω𝑡

 
→  ℝ𝑀𝑡 

presenting the resulting values for each solution 𝑋 at time 𝑡. 

Table 1 presents five categories of DMOEAs have been proposed for solving DMOPs. The first category is the 

standard MOEAs designed for static multi-objective optimization and considered for DMOPs without any 

additional change detection mechanism. Among them are the Strength Pareto Evolutionary Algorithm 2 (SPEA2) 

[29], Non-dominated Sorting Genetic Algorithm II (NSGA-II) [2], MOEA/D [25], and dCOEA [26].  

Table 1. Dynamic Multi-Objective Optimization Methods  

          Existing Approaches for DMOPs Tested Benchmarks 

 

 

Transfer Learning-

based Methods 

MMTL-MOEA/D, Jiang et al., (2020) [16]  

FDA1-5 [1], dMOP1-3 [26] RI-MOEA/D, Jiang et al., (2020) [16] 

PPS-MOEA/D, Jiang et al., (2020) [16] 

KF-MOEA/D, Jiang et al., (2020) [16] 

SVR-MOEA/D, Cao et al., (2020) [21] FDA1-5 [1], dMOP1-3 [26] and the 

DF test suite [33] 

Tr-MOEA/D, Jiang et al., (2018) [22] dMOP1-3 [26], FDA1-5, DIMP2, 

DMOP2, HE2,7,9 [1] 

 

Diversity-based 

Approaches 

Dynamic-MOPSO, Aboud et al., (2017) [18] FDA1 [1] and DIMP2, dMOP3 [26] 

DC-NSGA-II, Azzouz et al., (2015) [34] DCTPs test problems [34] 

DNSGA-II-A and DNSGA-II-B, Deb et al., (2007) [9] Modified FDA2 and hydro-thermal 

scheduling problem[9] 

 

Memory-based 

Approaches 

A-Dy-NSGA-II, Azzouz et al., (2017) [35] FDA1, FDA2 [1], DMZDT test 

functions and WYL 

SGEA, Jiang et al., (2016) [19] 5 FDA [1], 6 dMOP [26], 6 ZJZ [27], 

and 7 UDF [36]. 

dCOEA, Gohet al., (2009) [26] FDA1 [1] and 3 dMOP [26] 

Prediction-based 

Approaches 

Prediction-based methods (average, weighted, and adaptively 

methods) among MOEAs, Guo et al., (2019) [24] 

FDA1-5 [1], dMOP1-2 [26], and 

UDF [36] functions 

MOEA/D-KF, Muruganantham et al., (2016) [20] FDA1-5 [1], dMOP1-2 [26], and F5-

10 [27] 

PPS, Zhou et al., (2014) [27] FDA1, FDA4 [1] and dMOP1, 

dMOP2 [26], F5-F8 [27] 

Parallel Approaches DMOEA, Liu et al., (2007) [8] FDA1, modified FDA2, FDA3, FDA4 

and FDA5 [1] 

PSFGA, Camara et al., (2007) [37] FDA1 and FDA2 [1] 

Static MOEAs adapted 

for DMOPs 

SPEA2, Kim et al. (2004) [29] 
DSW1, DSW2, DTF, FDA DMOPs 

[1] 
MSOPS, Hughes (2003) [38] 

NSGA-II, Deb et al., (2002) [2] 

 

Furthermore, a set of Transfer Learning-based (TL) methods were proposed to construct a predictive model 

that can learn from previous experience to predict future changes. Generally, TL methods have been proposed 

based on the baseline MOEA/D system [25]. The modified MOEA/D algorithm with random initialization (RI-

MOEA/D) [16] generates 10% of the new population after the environmental change.  The Tr-MOEA/D algorithm 

[22] integrates transfer learning and population-based evolutionary algorithms (EAs) to solve the DMOPs. Tr-

MOEA/D algorithm determines the best potential space to select the optimal values of numerous hyper-parameters 

after each change. Memory-driven Manifold Transfer Learning algorithm (MMTL-MOEA/D) [16] aims to predict 

the initial population based on the elite of the previous solutions. The Kalman Filter (KF) prediction model based 

on MOEA/D (KF-MOEA/D) [20] uses a prior estimation to predict the posterior experience. An alternative 

Support Vector Regression MOEA/D (SVR-MOEA/D) [21] has also been proposed to predict the new population 



over time. 

The PPS system [27] is an auto-regressive model that aims to predict the center point and the manifold based 

on previous experience. However, a new variant is denoted PPS-MOEA/D [17], where the original algorithm is 

modified using the MOEA/D system [25]. Different diversity-based approaches maintain population diversity 

through a re-initialization or a hyper-mutation behavior after each transition or throughout the execution time. 

DNSGA-II-A and DNSGA-II-B [9] select a random solution, and assess its re-evaluation to monitor any 

environmental change. The Dynamic Constrained NSGA-II (DC-NSGA-II) [39] proposed an adaptive penalty 

function to deal with time-varying constraints. To maintain diversity over time, the Dynamic-MOPSO system [18] 

controls the evolution of the objective function and reinitializes non-suitable solutions. A memory-based method 

is proposed in the dynamic Competitive-Cooperative Co-Evolutionary Algorithm (dCOEA) [26]. The Adaptive 

Dynamic NSGA-II (A-Dy-NSGA-II) [28] is proposed with an additional memory mechanism to implicitly or 

explicitly store outdated individuals for potential use. Steady-State Generational Evolutionary Algorithm (SGEA) 

[19] aims to reuse outdated solutions with good distribution to relocate solutions closer to the new POF. Different 

parallel methods are proposed based on evolutionary [8] and genetic  [37] algorithms including multiple sub-

populations for solving DMOPs. However, a set of performance metrics [14] have been considered for accuracy, 

diversity, and robustness measurements. Ultimately, convergence and diversity are measured using IGD, MIGD, 

and HVD quality indicators. In addition, Guo et al. [24] have proposed three prediction-based methods using 

average, weighted, and adaptively ensemble prediction mechanisms among five classical multi-objective 

evolutionary algorithms: SPEA2 [29],  MOPSO [17], NSGA-III [30], MOEA/D [25], and MOEA/D-DE [31], and 

compared using RIGD and RGD metrics for solving a set of DMOPs. 

Many DMOEAs got limited results to assume good convergence and diversity in the dynamic search space. To 

sum up, the diversity-based approaches [9], [18], [34] have shown their ability for solving dynamic problems with 

continuous and small time-varying parameters and show their limits in problems with severe environmental 

changes. Furthermore, many DMOPs have presented some periodical or recurrent changes making storing 

historical experience of solutions useful to preserve diversity. Memory-based approaches [19], [35], [26] use a 

redundant representation of an evolutionary algorithm using extra-memory components to help detect future 

changes. The memory-based approaches are very effective to solve DMOPs with periodically time-varying 

properties. However, such mechanisms slow down the convergence and strengthen diversity in DMOEAs. The 

main disadvantage of memory-based algorithms is the ineffectiveness of redundant solutions stored in the archive. 

On the other hand, prediction-based methods [20], [24], [27] tend to predict changes based on limited patterns. 

Such systems can detect the global best solution quickly but they fail when the changes are stochastic which 

increases their relative training error rates. The parallel approaches [8], [37] present an optimization process over 

multiple sub-swarms that may handle the problem on separate search space and are recommended for multi-modal 

problems while being computationally expensive. A key challenge for these methods is finding the appropriate 

number of sub-swarms and their sizes. Finally, the transfer learning-based methods [16], [21], [22] have the 

advantage to re-use previous computational experience to improve the efficiency of the new generated populations 

after each change detection by adding transfer learning mechanisms which is a time-consuming process. 

Furthermore, the No Free Lunch (NFL) theorem [40] proposed by Wolpert and Macready in 1997 logically proves 

that no optimization algorithm can solve all problems. This means that the algorithm is useful for a set of problems, 

but not efficient for other types. More details about the proposed DPb-MOPSO are presented in section 3. 



To assess the quality of metaheuristics for DMOPs proposals are compared over DMOPs testbeds which are 

in general presented in Table 2 and organized as follows: [1], [26], [27], [36].  

- five continuous FDA functions [1] with dynamic shift on POF and POS, 

- three dMOP problems [26], 

- five ZJZ (F5 to F10) [27] with the non-linear correlation between decision variables, 

- nine Unconstrained Dynamic Functions (UDFs) [36]. 

Table 2. Characteristics and Parameter Settings of DMOPs 
DMOPs Number 

objectives 

Variable’s 

dimension 

Type POS Change 

Nature 

POF Change Nature 

Shift Curvature 

 

FDA 

problems, 

Farina et 

al. [1] 

FDA1 2 20 I  

sinusoidal 
change + 

vertical shift 

no change no change + convex 

FDA2 2 15 II vertical + density of 

solutions changes 

cyclic change: convex to 

concave 

FDA3 2 30 II vertical + spread of 

solutions change 

cyclic change: convex 

FDA4 3 12 I no change + spread of 

solutions change 

no change + nonconvex 

FDA5 3 12 II radius variations + 

dynamic spread 

change + nonconvex 

dMOP 

problems, 

Goh et al. 

[26] 

dMOP1 2 10 III no change vertical change: convex to 

concave 

dMOP2 2 10 II sinusoidal 

change + 

vertical shift 

vertical change: convex to 

concave 

dMOP3 2 10 I sinusoidal 

change + 

vertical shift 

no change  no change + convex 

 

ZJZ 

problems, 

Zhou et 

al. [27] 

F5 2 20 II  
 

trigonometric + 

vertical shift 

 
 

vertical 

 
 

change: convex to 

concave 

F6 2 20 II 

F7 2 20 II 

F8 3 20 II 

F9 2 20 II 

F10 2 20 II 

 
 

 

UDF 

problems, 

Biswas et 

al. [36] 

UDF1 2 10 I trigonometric+ 
vertical shift 

diagonal no change + linear + 
continuous 

UDF2 2 10 I polynomial+ 

vertical shift 

vertical no change + linear + 

continuous 

UDF3 2 10 III trigonometric + 
no variation 

diagonal linear + discontinuous 

UDF4 2 10 II trigonometric + 

horizontal shift 

angular shift convex to concave + 

continuous 

UDF5 2 10 II polynomial + 
vertical shift 

angular shift change: convex to 
concave + continuous 

UDF6 2 10 III trigonometric + 

no variation 

diagonal + angular linear + discontinuous 

UDF7 3 10 III trigonometric + 
no variation 

shifting of the center radius concave + 3D 

3. The Proposed Dynamic Pareto bi-level Multi-Objective Particle Swarm Optimization Algorithm 

Considering the sate-of-the-art and the level of obtained results three key problems rises which motivated the 

dynamic bi-level MOPSO proposal. The main motivation for this contribution is:  

✓ The lack of dynamism handling strategy in some existing approaches [15], [17], [28] leads to premature 

convergence and the loss of diversity in dynamic search space. Even, the existing mechanisms [16], 

[19],[24] are not able to detect and respond efficiently to all types of the dynamic change.  

✓ The outdated memory is the main issue for different multi-objective evolutionary algorithms [15], [17], 

[28] for solving DMOPs when the set of non-dominated solutions cannot be conserved due to the dynamic 

change of both decisions variables and objective values. 

✓ The most existing dynamic MOEAs are developed based on the Genetic Algorithm [9], [30] or the 

Evolutionary Algorithm [21], [22], [25], [26], [27], [29], [31]. Few methods have been developed based 



on the MOPSO approach [18] to overcome the dual issue of the outdated memory and the loss of diversity 

over time.   

To overcome these issues the proposed contribution main features are the following: 

✓ The new DPb-MOPSO algorithm includes a search space control allowing to manage multiple sub-swarms 

in a specific different potential solutions space. The distributed sub-swarms conduct independent searches 

with separate pools of best solutions. 

✓ The proposed DPb-MOPSO includes a dynamic handling strategy which allows managing the evolution of 

the search toward optimality.  

✓ The two dynamic optimization levels allow to recover from any engagement within a local optimum.  

✓ The new DPb-MOPSO algorithm adopts a distributed architecture with two parallel optimization levels. 

For the upper level (𝐿1), the swarm acts in a single search space, pushing all particles to the best-

compromise solutions. Nevertheless, if a dynamic change is successfully detected by monitoring the 

objective values at the first level. The second level provides an exploitation enhancement over a dynamic 

multiple sub-swarm’s subdivision based on the Pareto ranking operator.  

✓ The DPb-MOPSO proposes a dynamic handling strategy to detect and effectively react to the change of 

POS and POF. For the detection strategy, a set of random solutions 𝑃𝑂𝑆(𝑡) has been used as detectors and 

compared with the previous solutions set 𝑃𝑂𝑆(𝑡 − 1). The response strategy consists in reevaluating all 

solutions with negative improvement and replaced them with new random solutions. Solutions with positive 

progress are transferred to build a new population to speed up the optimization process after each change. 

Then, all non-dominated solutions in the leader’s archive are re-evaluated to avoid outdated memory issues 

The general flowchart of the proposed Dynamic Pareto bi-level Multi-Objective Particle Swarm Optimization 

(DPb-MOPSO) algorithm is shown in Figure 1. DPb-MOPSO has two optimization levels are detailed in 

Algorithms 2 and 3 respectively, and denoted by the upper level (𝐿1), and the lower level (𝐿2). The two levels have 

included a dynamism handling strategy presented in subsection 3.3 to detect and react to changes. The DPb-

MOPSO algorithm consists of the following iterative steps: 

3.1. DPb-MOPSO: Upper Level (𝐋𝟏) 

The details of the optimization process at the first level 𝐿1 are shown in Figure 2. 

- Step 1 in 𝐋𝟏: The upper level (𝐿1) starts with random initialization of the position (X) of 𝑁 particles 𝑝𝑖  in swarm 

𝑆 (see Algorithm 1). Each particle is a candidate solution 𝑋𝑖
∗ in 𝑑-dimensional search space.  

- Step 2 in 𝐋𝟏: For each iteration, all particles are evaluated to calculate their fitness function 𝐹.  

- Step 3 in 𝐋𝟏: Then, all non-dominated solutions of 𝐿1 are stored in the leader’s archive 𝐴 based on the crowding 

distance mechanism [41]. All non-dominated solutions are sorted in ascending order of objective values, and the 

crowning distance is calculated at each iteration using the largest cuboid to estimate the density of solutions 

surrounding a particular solution 𝑋𝑖
∗ for each objective value.  The boundary solutions with the highest and lowest 

objective values are selected. The particle with the lowest crowding distance is selected as a global best solution 

(𝑔𝑏𝑒𝑠𝑡). The personal best solution (𝑝𝑏𝑒𝑠𝑡) is determined by historical personal best experience. 

- Step 4 in 𝐋𝟏: At discrete time (𝑡), the position (𝑋𝑡) and velocity (𝑉𝑡) for each particle are updated using Equations 

(2) and (3).  

 

 



                                                      𝑋𝑡+1 = 𝑋𝑡 + 𝑉𝑡+1                                                    (2) 

             𝑉𝑡+1 = 𝑤𝑉𝑡 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑡) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑡)             (3) 

where w is the inertia weight, 𝑐1 and 𝑐2 are random acceleration coefficients. 𝑟1 and 𝑟2 are two random parameters 

designed to affect the cognitive and social components of each particle. 𝑝𝑏𝑒𝑠𝑡(𝑡)  and 𝑔𝑏𝑒𝑠𝑡(𝑡) are the best 

personnel position and the global leader, respectively. The new velocity 𝑉𝑡+1, is updated based on the best self-

experience 𝑝𝑏𝑒𝑠𝑡(𝑡) as a local component and the global experience of all neighbors 𝑔𝑏𝑒𝑠𝑡(𝑡) as a global 

component.  

Algorithm 1: Swarm Initialization 

Input: 𝑷  (swarm of N particles), 𝑵 (size of the population) 

Output:  Set of non-dominated solutions in the leader’s archive 𝑨 

1. Initialize t=0; 

2. for i = 1 to N do 

3.      Randomly initialize the vector of position 𝑿𝒊 and zero velocity 𝑽𝒊; 

4.      Evaluate fitness function for the particle 𝒑𝐢; 

5.      Initialize the personal best solution pbest ← 𝒑𝐢; 

6. end for 

7. Store the non-dominated solutions in the leader’s archive 𝑨 

 

- Step 5 in 𝐋𝟏: If the fitness function is changed, the lower level (L2) is started in a parallel execution with 𝐿1 (see 

Algorithm 3) and more details are presented in the subsection 3.2. The dynamic change is detected by controlling 

the evolution and deterioration of the fitness functions of particles. The DMOP has a cyclic time-varying 

parameter T presented in Equation (4), and changes independently at each periodic frequency 𝜏𝑡. After some 

periodic time, equal to the frequency 𝜏𝑡 the dynamic change is checked by comparing the current population 

𝑃𝑂𝑆(𝑡) with the previous one 𝑃𝑂𝑆(𝑡 − 1), more details are presented in the subsection 3.3.   

                                                                       𝑇 =
1

𝑛𝑡
⌊

𝜏

𝜏𝑡
⌋                                                                (4)  

where; 𝑛𝑡, and  𝜏 are the severity of the change and the iteration counter respectively, ∀ 𝑡 ∈  𝑇𝑚𝑎𝑥 . Most existing 

studies [16], [19] fix the frequency 𝜏𝑡 at 5, 10 and 20 respectively indicating severe, moderate, and slight changes 

in the environment. 

- Step 6 in 𝐋𝟏: In each optimization step, all non-dominated solutions 𝑋𝑖
∗ in 𝐿1 are stored in the leader’s archive 

𝐴, presenting the best-approximated solutions to the true POF. Furthermore, the leader’s archive 𝐴 is a shared 

component between two levels, and used to select the best global leader (gbest). So, the leader’s archive 𝐴 is a 

finite component, if it is full all non-dominated solutions are sorted in descending crowding distance value, and 

one random particle from the bottom portion is replaced by another non-dominated solution.  

- Step 7 in 𝐋𝟏: The optimization process in 𝐿1 is performed until a maximum number of iterations 𝑇𝑚𝑎𝑥  is reached.  

 

 

 

 

 

 



 

   Algorithm 2: DPb-MOPSO upper level (𝑳𝟏) 

Input: 𝑷  (swarm of N particles), 𝑵 (size of the population), 𝑻𝒎𝒂𝒙 (max-iterations) 

Output:  Set of non-dominated solutions in the leader’s archive 𝑨 

1. Swarm initialization (see Algorithm 1) 

2. while 𝐭 ≤ 𝐓𝐦𝐚𝐱  do 

3.   if the fitness function has changed then 

4.      start the level 𝑳𝟐 as in the Algorithm 3; 

5.   end if 

6.   for 𝐢 =  𝟏 to 𝐍 do 

7.     Select the leader 𝐠𝐛𝐞𝐬𝐭 using the epsilon dominance comparator among two random particles in A; 

8.     Evaluate the fitness function 𝐅 of each 𝒑𝐢; 

9.     Current population ← record the previous solutions set 𝐏𝐎𝐒(𝐭 − 𝟏); 

10.     Determine 𝐩𝐛𝐞𝐬𝐭 and gbest; 

11.     Update the positions 𝐗𝐢 and the velocity 𝐕𝐢 using equations 2 and 3; 

    // Apply the dynamism handling strategy. 

12.      for each interval of time = 𝝉𝒕 do 

       //Select detectors 

13.          Current population ← 10% of 𝐏𝐎𝐒(𝐭) as random detectors; 

14.           Previous population ← 10% of their projection in previous 𝑷𝑶𝑺(𝒕 − 𝟏); 

15.           for 𝐢 = 𝟎 to |𝐏𝐎𝐒(𝐭)| do 

              //Change detection strategy. 

16.              Compare objective values of 𝐏𝐎𝐒(𝐭) vs. 𝐏𝐎𝐒(𝐭 − 𝟏) using strong epsilon-dominance operator; 

17.              if  (𝟏 + 𝛆) × 𝐅𝐢(𝐭) ≥  𝐅𝐢(𝐭 − 𝟏) then 

18.                  Negative change ← true; 

19.                  Select 𝐏𝐎𝐒(𝐭) with negative changes; 

20.                  Select 𝐏𝐎𝐒(𝐭) with positive changes; 

                 //Response strategy. 

21.                  Re-initialize all solutions with negative changes in 𝐏𝐎𝐒(𝐭); 

22.                  Construct population 𝑃𝑂𝑆(𝑡 + 1) using positive 𝑃𝑂𝑆(𝑡); 

23.                  Update the leaders archive 𝑨; 

24.              end if 

25.           end for; 

26.   end for 

27.   Update the leader’s archive 𝑨; 

28.   t ← t+1; 

29. end while; 

30. Return the best non-dominated solutions from the archive 𝑨; 

 

3.2. DPb-MOPSO: Lower Level (𝐋𝟐) 

- Step 1 in 𝐋𝟐:  When fitness function values changed during the optimization process of 𝐿1 (see Algorithm 2), 

the second level was performed on a distributed architecture using multiple sub-swarms based on the Pareto 

ranking operator. The parallel execution of the second lower level (𝐿2) begins with the first level (𝐿1)  on the 



basis of the first population 𝑃′. 

- Step 2 in 𝐋𝟐:  The Pareto ranking operator [2] is applied to dynamically split the extracted population P′ into 𝐾 

fronts denoted by F0, … , Fk−1. The Pareto front analysis strategy is used to fix K while it was detailed in 

Algorithm 4. All non-dominated solutions are considered as the first front (F0), and then the next front is obtained 

by discarding all non-dominated solutions of the first front, and determining the second front (F1) of non-

dominated solutions using the rest of the population. This process is repeated until each solution belongs to a 

front. In the DPb-MOPSO algorithm, the number of sub-swarms 𝐾 =
𝑃′ 

|F0|
 is fixed through the analysis of the 

Pareto non-dominated solutions in F0 . K=2 is the minimal sub-warming behavior in which the algorithm uses 

two independent sub-populations to process. 

- Step 3 in 𝐋𝟐: The Pareto ranking operator based on non-dominance aims to generate 𝐾 independent sub-swarms 

with different sizes defined toward a set of non-dominated solutions by subdividing the size of the original 

populations over 𝐾. To assume an equal size for all sub-swarms, the process of parameters configuration for 

each sub-swarm is a primordial step to ensure an equal size between all sub-populations. To set the parameters 

of 𝐾 sub-swarms (size and injected solutions), a set of additional individuals are randomly selected from the 

solution set 𝑃𝑂𝑆(𝑡) performed on 𝐿1 and injected into each front. The proposed DPb-MOPSO algorithm 

considers at least 2 fronts (𝐾 > 1) to be generated. 

- Step 4 in 𝐋𝟐: Moreover, all 𝐾 sub-swarms are optimized in parallel until the maximum number of iterations 

(Tmax) as presented in Algorithm 3, performing the same process in Figure 2 including the dynamism handling 

strategy detailed in subsection 3.3.  

- Step 5 in 𝐋𝟐: All non-dominated solutions of 𝐿2 from the parallel 𝐾 instance of the DPb-MOPSO algorithm are 

stored in the archive 𝐴. At the end of the two optimization levels the best non-dominated solutions in archive 𝐴 

are generated as the output of the proposal.      

 

Algorithm 3: DPb-MOPSO lower level (𝐋𝟐) 

Require: 𝑭𝒊 = {𝑭𝒊=𝟎, … , 𝑭𝒊=𝒌−𝟏 } (set of k fonts ),𝐓𝐦𝐚𝐱 (maximum iterations); 

Output: 𝐀 (leader’s archive); 

1. Obtain k sub swarms using the Algorithm 4 

2. //Execute K parallel instances of the proposed DPb-MOPSO algorithm  

3. while 𝐭 ≤ 𝐓𝐦𝐚𝐱  do 

4.       for 𝐢 = 𝟎 to 𝐊 − 𝟏 do 

5.                 Create 𝑭𝒊 instance of the DPb-MOPSO algorithm (details are in Figure 2); 

6.       end for 

7.       do in parallel       

8.                Run parallel 𝑲 instances of DPb-MOPSO  (
𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝑷′ 

|𝐅𝟎|
); 

9.                Store the non-dominated solutions on the archive 𝑨; 

10.       end  

11. end while 

12. Return the best non-dominated solutions in the archive 𝐀; 

 

 

 

 



Algorithm 4: Obtain K Sub-swarms  

Require:𝐏′ (population of 𝑳𝟏) 

Output: 𝑭𝒊 = {𝑭𝒊=𝟎, … , 𝑭𝒊=𝒌−𝟏 } (set of k fronts) 

1. Select the intermediate population 𝐏′of 𝐋𝟏; 

2. Initialise a set of non-dominated solutions   𝑺𝒑 ← ∅; 

3. Initialise a set of dominated solutions of the next front 𝑸 ← ∅; 

4. Initialise dominated solutions counter   𝒏𝒑 = 𝟎; 

5. Initialise the front counter   𝑲 = 𝟏; 

6. for 𝒑 = 𝟏 to |𝐏′| do             //construct k sub-swarms using the non-dominance rank  

7.      for 𝒒 = 𝒑 + 𝟏 to |𝐏′| do 

8.             if 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒑 dominate 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒒 then     

9.                   𝑺𝒑 ← 𝑺𝒑 ∪ 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒒; //store non dominated solutions q into 𝑺𝒑 

10.                   𝒏𝒑 = 𝟎; 

11.             else if   𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒒 dominate 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒑 then 

12.                   𝒏𝒑 = 𝒏𝒑 + 𝟏; 

13.             end if 

14.       end for 

15.       if  𝒏𝒑 = 𝟎 then 

16.              𝑭𝟎 =  𝑭𝟎 ∪ {𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒑}; //Determine the first front  𝑭𝟎 

17.       end if 

18. end for 

19. //Apply the pareto ranking operator to subdivide 𝐏′  into 𝑲 =
|𝐏′|

|𝑭𝟎|
 fronts ranked from 𝟏 to 𝒌 

20. Determine the number of generated k sub-swarms   𝑲 =  
|𝐏′|

|𝑭𝟎|
 (k is an integer) 

21. Determine the size of 𝑲 sub-swarm  |𝐅𝑲| =  
|𝐏′|

𝑲
  ; 

22. while   𝑭𝑲  ≠ ∅    do 

23. 𝒏𝒒 = |𝑺𝒑|; 

24.     for 𝒑 = 𝟏 to |𝑭𝑲| do 

25.         for 𝒒 = 𝟏 to |𝑺𝒑| do 

26. //Determine the non-dominated solutions 𝒒 from rest of the population 𝑺𝒑 

27.             𝒏𝒒 = 𝒏𝒒 − 𝟏; 

28.             if 𝒏𝒒 = 𝟎 then  

29.                   𝑲 = 𝑲 + 𝟏; 

30.                   𝑸 = 𝑸 ∪  {𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒒}; 

31.            end if 

32.         end for 

33.     end for  

34.     𝑲 = 𝑲 + 𝟏; 

35. // Set the non-dominated solutions in the next front k, 

36. // Adjust the size of sub-swarm equal to the size of the population 𝐏′ divided by the size of the first front 𝑭𝟎 

37.      for 𝒊 = 𝟏 to 𝒊 < 𝑲 do 

38.           𝑭𝒊= Q 

39.           if    |𝐅𝒊| < 
|𝐏′|

𝑲
  then 

40.                  //Inject random solutions from the intermediate population 𝐏′ 

41.                    Set the number of the injected solutions  𝑰𝒑 =  
|𝑷′|

𝑲
  −  |𝑭𝒊| 

42.                   𝑰𝒑 ← 𝑰𝒑 ∪ {𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒑}; 

43.                   𝑭𝒊 =  𝑸 ∪ 𝑰𝒑 ; 

44.         end if 

45.     end for  

46. end while       

47. Return the set of 𝑲 fronts  𝑭𝒊 = {𝑭𝒊=𝟎, … , 𝑭𝒊=𝑲−𝟏 }  (sub-swarms); 

3.3. DPb-MOPSO: Dynamic Changes Handling Strategy 

Dynamic changes detection aims essentially to help a better search process and to prospect any interesting 

solutions. The two steps of dynamism handling of the proposed algorithm are detailed in lines 12 to 25 in the 

pseudo-code of Algorithm 2, and detailed as follows:  

- Step 1: Environment change detection strategy 

 The environmental changes are checked periodically at each frequency 𝜏𝑡 equal to 5, 10, and 20 showing 



severe, moderate, and slight changes respectively. All historical values of the previous population 𝑃𝑂𝑆(𝑡 − 1) and 

the current 𝑃𝑂𝑆(𝑡) are recorded at each iteration. By selecting 10% of the previous 𝑃𝑂𝑆(𝑡 − 1) as random 

detectors, the comparison process starts after evaluating of the fitness function to obtain the new optimized 

population. Then, select 10% of the current mapping solutions in 𝑃𝑂𝑆(𝑡) to control their evolution over time. The 

strong dominance operator of the Epsilon-Dominance method [42] is used to compare the time-varying behavior 

of each particle between 𝑡 and 𝑡 − 1. A solution 𝑆1
  is 𝜖-dominate a second  solution 𝑆2

  for some 𝜖 > 0 and denoted 

by 𝑆1
 >𝜖 𝑆2

 , if and only if for all 𝐹𝑖 objectives ∀, 𝑖 = 1, … , 𝑀, 𝐹(𝑆1
∗

 
) = {𝐹1, … , 𝐹𝑀}, and 𝐹(𝑆2

   ) = {𝐹1, … , 𝐹𝑀} 

such that (1 + 𝜖) 𝐹𝑖(𝑆1
 

 
) ≥ 𝐹𝑖(𝑆2

 
 
). For all 𝑀 objectives, if 𝑆𝑡 is strictly better than 𝑆𝑡−1, (𝑆𝑡 ≻ 𝑆𝑡−1) , then the 

solution 𝑆𝑡 strongly dominates the solution 𝑆𝑡−1. 

- Step 2: Response change strategy 

If the change is successfully identified, all solutions 𝑃𝑂𝑆(𝑡) with negative changes are reinitialized. To assume 

that only solutions with positive effects have good diversity and convergence, all detectors with positive changes 

𝑃𝑂𝑆(𝑡) are transferred to build a new population at 𝑡 + 1. In addition, the leader's archive (𝐴) is updated to 

overcome the deterioration of research capabilities. 

 

 

Fig. 1. The Distributed Flowchart of the Proposed Dynamic Pareto bi-level Multi-Objective Particle Swarm 

Optimization (DPb-MOPSO) Algorithm. 



 

Fig. 2. The Detailed Steps of DPb-MOPSO in the Upper and Lower Levels. 

 

3.4. Computational Complexity of DPb-MOPSO Algorithm 

The computational complexity of the proposed DPb-MOPSO algorithm was measured based on the asymptotic 

growth of the algorithm behaviors in terms of the time complexity. As detailed in Algorithm 1, the DPb-MOPSO 

algorithm starts with random initialization of both properties: positions 𝑋𝑖 with d-dimensional search space, and 

velocities (𝑉𝑖) for a swarm of N particles. The proposed algorithm aims to optimize a swarm of 𝑁  particles, each 

particle is a candidate solution, and the objective function 𝐹 is performed until a maximum number of iterations 

(𝑇𝑚𝑎𝑥) is reached.   

- The initialization procedure in Algorithm 1 requires 𝑂(𝑁 ∗ 𝑑) times, where 𝑁 is the size of the population, and 

𝑑 is the dimension of search space.  At the first iteration, all non-dominated solutions are stored in the leader’s 

archive (𝐴).  The process to compare each solution and determining the set of non-dominated solutions takes 

𝑂(𝑀 ∗ 𝑁), where M is the number of objectives.  

- Moreover, the main loop for the first upper level (L1) in the Algorithm 2 is executed until the maximum number 

of iterations (𝑇𝑚𝑎𝑥)  is reached, and each iteration takes 𝑂 (𝑁 ∗ 𝑑). At each iteration, all steps in Algorithm 2 

(lines 2 to 28) are executed. The running time of the DPb-MOPSO algorithm for each level consists of 𝑁 

iterative loops performing logarithmic statements during 𝑇𝑚𝑎𝑥  iterations and takes a complexity time 𝑐𝑡1: 

- 𝑐𝑡1= 𝑂(𝑁 ∗ 𝑑 𝑙𝑜𝑔(𝑇)) times. 

where; 

• 𝑁 is the size of the population, 

• 𝑑 is the dimension of the search space, 



• 𝑇 is the running time. 

- However, if the dynamic change is usefully detected in the objective function, the main loop for the second 

lower level (L2) in the Algorithm 3 is started in parallel execution to the first upper level until the maximum 

iteration (𝑇𝑚𝑎𝑥) based on K fronts. In the worst case, the process to find N dominated solutions for K front 

takes a complexity time 𝑐𝑡2: 

- 𝑐𝑡2= 𝑂(𝑀 ∗ 𝑁2) 

where;  

• M is the number of objectives 

- The update of particle positions is being preceded by determining the global best solution (𝑔𝑏𝑒𝑠𝑡) , and the 

personal best position (𝑝𝑏𝑒𝑠𝑡) from the leader’s archive (𝐴) with a complexity of 𝑂(𝑁). 

- Furthermore, the fitness function is re-evaluated within a complexity of 𝑂(𝑁).  

- At each time 𝑡, the leaders archive (𝐴) is updated using the dominance operator, then all dominated solutions 

are removed and replaced with a set of non-dominated solutions and takes 𝑂(𝑁).  

- Assuming that all particles are pre-sorted, the determination of each loop takes 𝑂(𝑁 ∗ 𝑑)  times.  

To sum up, the overall complexity of the proposed DPb-MOPSO algorithm is equal to: 𝑐𝑡1 + 𝑐𝑡2 =  𝑂(𝑁 ∗

𝑑 𝑙𝑜𝑔(𝑇)) + 𝑂(𝑀 ∗ 𝑁2). 

4. Experimental Study 

This section describes the Orthogonal Experimental Design (OED) of the proposed DPb-MOPSO Algorithm. It 

also describes the parameters settings for all comparable DMOEAs, the testbeds and the quality indicators used 

for the experimental study. 

4.1. Orthogonal Experimental Design for DPb-MOPSO Algorithm  

In this subsection, the parameters design of the proposed DPb-MOPSO algorithm is systematically analysed 

using the Taguchi’s method [43] as implemented in [44]. The Taguchi’s method was proposed by Genichi Taguchi 

in 2004 as a robust engineering method to study the parameter design optimization and tolerance design. In this 

experiment, a reasonable combinations of parameters design are considered using the orthogonal arrays (OAs) of 

the Taguchi’s method aiming to minimize the number of runs (or combinations) needed for the experiment. The 

OAs are denoted by 𝐿𝑎(𝑏𝑐), where 𝑎 is the number of experimental runs, 𝑏 is the number of levels of each factor, 

𝑐 is the number of columns in the array, and 𝐿 denotes Latin square design.  In this research, the proposed DPb-

MOPSO algorithm consists of 11 key parameters (also known as control factors). In contrast, an array of three 

level factors is used, where all the parameters are varied with three levels and fixed in accordance with some 

published papers [16] and [19], and set as follows: 

- The swarm size (𝑁), 𝑁 ∈  {100, 150, 200}. 

- The maximum number of iterations (𝑇𝑚𝑎𝑥), 𝑇𝑚𝑎𝑥  ∈ {200, 350, 650}. 

- The archive size (𝐴), 𝐴 ∈  {100, 150, 200}. 

- The sub-swarm size (𝐾), 𝐾 ∈  {10, 20, 30}. 

- The number of fonts (f), 𝐹 ∈  {5, 10, 15}. 

- Two cognitive parameters 𝑟1 and 𝑟2, r1 and r2 ∈  {0.1, 0.5, 0.9}. 

- Two acceleration coefficients 𝑐1 and 𝑐2 , c1 and c2 ∈  {1.5, 1.8, 2.0}. 



- The inertia weight (𝑤), w ∈  {0.1, 0.5, 0.9}. 

- The rate of detectors ∈  {10, 50, 100}. 

A full-factorial analysis needs 311 =  177 147 experimental runs. The application of the Taguchi orthogonal 

arrays has identified an array of 𝐿27(311) with only 27 best runs for different combination of parameters design. 

Tables 1 - 21 in Supplementary Material show the experimental results based on the orthogonal array of the 

Taguchi method and factor assignment aiming to analyse the sensitivities of user-defined parameters. The mean 

values for the three quality indicators HVD, IGD and MIGD are displayed over 30 runs of the proposed DPb-

MOPSO algorithm for 21 benchmarks (5 FDA, 3 dMOP, 7 UDF and 6 F (ZJZ) testbeds). As results, Tables 3 and 

4 reported the best design of experiment over acceptable user-defined parameter settings for the proposed DPb-

MOPSO algorithm based on 11 control factors with three levels.  

 

Table 3. Design of Experimental using Taguchi Method for HVD Metric with Severe, Moderate and Slight 

Dynamic Changes for 21 DMOPs. 

Type of 

changes 
DMOPs 

Swarm 

size 

Max-

iterations 

Archive 

size 

Sub-

swarm 

size 

Number 

of fonts 
r1 r2 C1 C2 w 

Rate of 

Detectors  

Severe 
changes 

FDA1 200 200 200 20 15 0,5 0,1 2 1,8 0,1 100 

FDA2 200 200 200 20 10 0,1 0,9 1,8 1,5 0,9 50 

FDA3 200 200 200 20 15 0,5 0,1 2 1,8 0,1 100 

FDA4 200 200 200 20 5 0,9 0,5 1,5 2 0,5 10 

FDA5 100 200 100 10 15 0,9 0,9 2 2 0,9 100 

dMOP1 150 200 150 30 15 0,1 0,5 2 1,5 0,5 100 

dMOP2 200 200 200 20 5 0,9 0,5 1,5 2 0,5 10 

dMOP3 200 200 200 20 15 0,5 0,1 2 1,8 0,1 100 

Moderate 
change 

FDA1 200 350 100 30 15 0,5 0,1 1,5 2 0,5 50 

FDA2 100 350 150 20 10 0,5 0,5 2 2 0,9 10 

FDA3 200 350 100 30 15 0,5 0,1 1,5 2 0,5 50 

FDA4 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

FDA5 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

dMOP1 100 350 150 20 15 0,9 0,9 1,5 1,5 0,1 50 

dMOP2 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

dMOP3 100 350 150 20 5 0,1 0,1 1,8 1,8 0,5 100 

UDF1 150 350 200 10 5 0,5 0,9 1,8 2 0,1 100 

UDF2 100 350 150 20 15 0,9 0,9 1,5 1,5 0,1 50 

UDF3 200 350 100 30 15 0,5 0,1 1,5 2 0,5 50 

UDF4 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

UDF5 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

UDF6 150 350 200 10 10 0,9 0,1 2 1,5 0,5 10 

UDF7 150 350 200 10 10 0,9 0,1 2 1,5 0,5 10 

F5 200 350 100 30 15 0,5 0,1 1,5 2 0,5 50 

F6 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

F7 200 350 100 30 15 0,5 0,1 1,5 2 0,5 50 

F8 150 350 200 10 5 0,5 0,9 1,8 2 0,1 100 

F9 200 350 100 30 15 0,5 0,1 1,5 2 0,5 50 

F10 200 350 100 30 15 0,5 0,1 1,5 2 0,5 50 

Slight 
changes 

FDA1 150 650 100 20 15 0,1 0,5 1,8 2 0,1 10 

FDA2 100 650 200 30 15 0,9 0,9 1,8 1,8 0,5 10 

FDA3 100 650 200 30 10 0,5 0,5 1,5 1,5 0,1 100 

FDA4 150 650 100 20 5 0,5 0,9 2 1,5 0,5 50 

FDA5 150 650 100 20 5 0,5 0,9 2 1,5 0,5 50 

dMOP1 200 650 150 10 15 0,5 0,1 1,8 1,5 0,9 10 

dMOP2 150 650 100 20 5 0,5 0,9 2 1,5 0,5 50 

dMOP3 200 650 150 10 5 0,9 0,5 2 1,8 0,1 50 

 

 

 

 

 

 

 

 



 

Table 4. Design of Experimental using Taguchi Method for IGD/MIGD Metric with Severe, Moderate and Slight 

Dynamic Changes for 21 DMOPs. 

Type of 

changes 
DMOPs 

Swarm 

size 

Max-

iterations 

Archive 

size 

Sub-

swarm 

size 

Number 

of fonts 
r1 r2 C1 C2 w 

Rate of 

Detectors  

Severe 

changes 

FDA1 150 200 150 30 15 0,1 0,5 2 1,5 0,5 100 

FDA2 150 200 150 30 15 0,1 0,5 2 1,5 0,5 100 

FDA3 200 200 200 20 15 0,5 0,1 2 1,8 0,1 100 

FDA4 200 200 200 20 5 0,9 0,5 1,5 2 0,5 10 

FDA5 200 200 200 20 15 0,5 0,1 2 1,8 0,1 100 

dMOP1 150 200 150 30 15 0,1 0,5 2 1,5 0,5 100 

dMOP2 200 200 200 20 5 0,9 0,5 1,5 2 0,5 10 

dMOP3 200 200 200 20 15 0,5 0,1 2 1,8 0,1 100 

Moderate 

change 

FDA1 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

FDA2 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

FDA3 200 350 100 30 15 0,5 0,1 1,5 2 0,5 50 

FDA4 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

FDA5 150 350 200 10 10 0,9 0,1 2 1,5 0,5 10 

dMOP1 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

dMOP2 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

dMOP3 200 350 100 30 15 0,5 0,1 1,5 2 0,5 50 

UDF1 150 350 200 10 5 0,5 0,9 1,8 2 0,1 100 

UDF2 100 350 150 20 15 0,9 0,9 1,5 1,5 0,1 50 

UDF3 200 350 100 30 15 0,5 0,1 1,5 2 0,5 50 

UDF4 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

UDF5 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

UDF6 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

UDF7 200 350 100 30 5 0,9 0,5 1,8 1,5 0,9 100 

F5 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

F6 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

F7 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

F8 150 350 200 10 10 0,9 0,1 2 1,5 0,5 10 

F9 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

F10 200 350 100 30 10 0,1 0,9 2 1,8 0,1 10 

Slight 

changes 

FDA1 150 650 100 20 15 0,1 0,5 1,8 2 0,1 10 

FDA2 150 650 100 20 15 0,1 0,5 1,8 2 0,1 10 

FDA3 100 650 200 30 10 0,5 0,5 1,5 1,5 0,1 100 

FDA4 200 650 150 10 5 0,9 0,5 2 1,8 0,1 50 

FDA5 200 650 150 10 5 0,9 0,5 2 1,8 0,1 50 

dMOP1 200 650 150 10 5 0,9 0,5 2 1,8 0,1 50 

dMOP2 150 650 100 20 15 0,1 0,5 1,8 2 0,1 10 

dMOP3 100 650 200 30 10 0,5 0,5 1,5 1,5 0,1 100 

4.2. Experimental Settings for All Comparable DMOEAs  

To begin with, this section presents the empirical study referred to the contributions [16] and [19]. The proposed 

DPb-MOPSO approach is compared with different DMOEAs, including transfer learning-based methods in [16], 

DMOEAs in [19], MOPSO-based approaches [18], [15], [17], [28]. All algorithms are executed during 30 

independent runs. Each run is executed during the maximum number of iterations 𝑇𝑚𝑎𝑥 = 3 × 𝑛𝑡 × 𝜏𝑡 + 50, 

where; 𝜏𝑡 is the frequency of change fixed to 5, 10 and 20 respectively, and 𝑛𝑡 is the severity of the change fixed 

to 10. Then, a set of MOEAs have been compared in [45], and enhanced as a prediction-based algorithms [24] for 

solving different DMOPs are compared to the proposed DPb-MOPSO algorithm. The parameters settings of all 

comparable DMOEAs have been fixed as suggested by the authors in the original contributions in [16], [19], and 

[24]. All parameters’ settings are summarized in Table 5. The Java implementation of the proposed DPb-MOPSO 

algorithm is done using the jMETAL framework [46] on a personal computer with 8 Go of Ram, 1 To, and i7 intel 

processor. 

 

 

 



Table 5. Parameters Settings of the Comparable DMOEAs. 
DMOEAs Parameters Settings 

MOPSO,   

dMOPSO,  

pbMOPSO,  

Dynamic-MOPSO,  

DPb-MOPSO 

- Perturbation index= 1.0 

- Mutation probability= 1.0/number of variables 

- r1 and r2= rand (0.0, 1.0) 

- c1 and c2= rand (1.5, 2.5) 

- w= rand (0.1, 0.4) 

- Swarm size=100 

- Archive size=100 

- Max-iterations= 3 × 𝑛𝑡 × 𝜏𝑡 + 50 

- Independent runs =30 

dCOEA,  

PPS,  

MOEAD,  

SGEA,  

DNSGA-II,  

TL-methods 

- Crossover probability=1.0 

- Mutation distribution= 20 

- Crossover distribution= 20 

- Swarm size=100 

- Archive size=100 

- Max-iterations= 3 × 𝑛𝑡 × 𝜏𝑡 + 50 

- Independent runs =30 

MOEA/D,  

MOEA/D-DE,  

SPEA2,  

MOPSO,  

NSGAIII 

- Crossover probability =1 

- Mutation probability= 1.0/number of variables 

- Neighborhood size = 20 

- Archive size = 100 

- Independent runs =20 

4.3. Dynamic Multi Objective Problems 

This study concerns 21 benchmarks including:  five FDA [1], three dMOP [26], six F(ZJZ) [27], and seven UDF 

functions [36]. Table 2 lists all DMOPs parameter settings and the dynamic nature of POS and POF. 

4.4.  Quality Indicators 

Firstly, IGD, MIGD and HVD are the three quality indicators that have been considered for convergence and 

diversity measurements, and the smallest value is the best. The three metrics are selected and referred to state-of-

the-art comparisons. Jiang et al. [19] has considered IGD and HVD quality indicators to compare four DMOEAs 

(DNSGA-II, dCOEA, PPS, MOEA/D) with their proposed SGEA system. However, six transfer-learning methods 

[16] were compared using the MIGD indicator. The mathematical definition of all metrics is detailed as follows: 

- The Inverted General Distance (IGD) is calculated using Equation (5) to measure the minimum Euclidean 

distance 𝑑 between ith points in the generate Pareto Optimal Front (𝑃𝑂𝐹)  and the true 𝑃𝑂𝐹∗. 

                                                        **

*

( , )

( , ) =


i POF

d i POF

IGD POF POF
POF

                                           (5) 

- The Mean Inverted General Distance (MIGD) is the average of IGD values computed using Equation 

(6). 

                                       * *1
( , ) ( , )


= t t t tt T

MIGD POF POF IGD POF POF
T

                                       (6) 

- The Hypervolume Difference (HVD) indicator is designed to measure the difference between the 

hypervolume (HV) of the obtained 𝑃𝑂𝐹∗ to the true 𝑃𝑂𝐹∗ and presented in Equation (7). 

                                                                      *( ) ( )= −t tHVD HV POF HV POF                                             (7) 

Second, Guo et al. [24] considered the Robust General Distance (RGD), and the Robust Inverted General 

Distance (RIGD) indicators to determine the performance of prediction-based approaches for solving a set of 

DMOPs. 



- The Robust General Distance (RGD) metric aims to determine the convergence of the obtained Pareto 

front toward the true POF based on the maximum survival time 𝐿𝑖 and the robust i-th Pareto optimal 

solution. The mathematical presentation is presented in Equation (8). 

                                                    𝑅𝐺𝐷 =
1

𝐿
∑ max 𝐺𝐷(𝑞)𝑞=𝑘𝑖,…,𝑘𝑖+𝐿𝑘𝑖

 𝐿
𝑖=1,                                                    (8) 

- The Robust Inverted General Distance (RIGD) indicator is the mean value of the presented in Equation 

(9), and aims to calculate both convergence and distribution of the robust POS.  

                                                 𝑅𝐼𝐺𝐷 =
1

𝐿
∑ max 𝐼𝐺𝐷(𝑞)𝑞=𝑘𝑖,…,𝑘𝑖+𝐿𝑘𝑖

 𝐿
𝑖=1,                                                    (9) 

where;  

- 𝐿𝑖 is the survive time of the robust i-th Pareto optimal set (POS), 

- 𝑞 is the robust Pareto optimal set (POS). 

5. Experimental Study:  Results and Statistical Analysis 

This section aims to analyse the quantitative results over IGD, MIGD, HVD, RIGD, and RGD quality indicators. 

The mean and standard deviation values are reported in the appendices section (see Tables 1-7). The 

relevant values are highlighted in bold and grey.  The inferential statistical concept of Friedman’s two-way 

Analysis of Variance (ANOVA) method, and the Wilcoxon sum ranks test are used to determine the level of 

significance between all tested DMOEAs. 

5.1. Results Analysis through Mean and Standard Deviation  

The impact of changing frequency on DMOPs was demonstrated on DMOEAs by considering different 

configurations based on the constant value of the severity of change (nt) and the frequency (τt) variation. These 

configurations are implemented for severe, moderate, and slight environmental changes in accordance with the 

comparable systems in [16], [19], and [24]. 

5.1.1. Results on UDF and F(ZJZ) Problems 

Experimental results in Table 1, 2 (see appendices) have shown that DPb-MOPSO outperforms DNSGA-II, 

dCOEA, PPS,  MOEA/D, SGEA, MOPSO, dMOPSO, and pbMOPSO methods for solving the majority of UDF 

and F(ZJZ) functions using both IGD and HVD metrics.  The 13 functions are categorized into three categories: 

type I (UDF1, UDF2), type II (F5-F10, UDF4, UDF5), and type III (UDF3, UDF6, UDF7). In order to show 

statistically reliable conclusions, the boxplots of the one-way ANOVA test have been considered in Figure 3. As 

compared to Dynamic-MOPSO, DPb-MOPSO is a competitive system with the best convergence on IGD and the 

best distribution on HVD. The best results were 8/13 (UDF1, UDF2, UDF4, UDF5, UDF6, F5, F6, F8) on IGD, 

and 8/13 (UDF1, UDF2, UDF3, UDF4, UDF5, UDF6, F6, F8) on HVD. In contrast, Dynamic-MOPSO has 3/13 

(F7, F9, F10) on IGD and 5/13 (F5, F7, F9, F10, UDF7) on HVD. It is notable that when solving UDF7 on IGD, 

DPb-MOPSO differs slightly from pbMOPSO algorithm. However, it only has poor convergence compared to 

dMOPSO on the IGD measurement for solving UDF3 functions. 

5.1.2. Results on FDA and dMOP Problems 

In the case of 8 FDA and dMOP functions, all quantitative results of MIGD, IGD and HVD indicators are 

reported in Tables 3, 4, and 5 respectively (see the appendix section) with severe, moderate and slight changes. In 

order to facilitate the analysis of the results, the boxplots of the one-way ANOVA test are considered in Figures 



4, 5, and 6. In this part of the study, 8 FDA and dMOP benchmarks were tested. Most FDA and dMOP functions 

belong to type I (FDA1, FDA4, dMOP3) or types II (FDA2, FDA3, FDA5, dMOP2), and only dMOP1 belongs to 

type III. The one-way ANOVA results in Figure 4 determine the importance of DPb-MOPSO compared with 

MMTL-MOEAD, KF-MOEAD, PPS-MOEAD, SVR-MOEAD, Tr-MOEAD, RI-MOEAD, MOPSO, dMOPSO, 

pbMOPSO and Dynamic-MOPSO to solve 8 DMOPs through MIGD metric. Figures 5 and 6 show the boxplots 

of the one-way ANOVA test of the IGD and the HVD quality indicators. Compared with MMTL-MOEA/D , 

KF-MOEA/D, PPS-MOEA/D, SVR-MOEA/D, Tr-MOEA/D, RI-MOEA/D, MOPSO, dMOPSO, and 

pbMOPSO, the DPb-MOPSO algorithm is the most effective to solve 7/8 (FDA1, FDA3, FDA4, FDA5, dMOP1, 

dMOP2, dMOP3), 6/8 (FDA3, FDA4, FDA5, dMOP1, dMOP2, dMOP3), and 8/8 (5 FDA, and 3 dMOP functions) 

using the MIGD indicator for severe, moderate and slight environmental changes respectively. Dynamic-MOPSO 

approach has only good results when solving 2/8 (FDA1, FDA2), 1/8 (FDA2) on the MIGD metric with moderate, 

and severe environmental changes respectively.  

Using IGD metric, DPb-MOPSO aims to solve 7/8 (FDA2, FDA3, FDA4, FDA5, dMOP1, dMOP2, dMOP3), 

and MOPSO has 1/8 (FDA1) for severe changes.  For moderate changes, 6/8 (FDA1, FDA3, FDA4, FDA5, 

dMOP1, dMOP2) functions are resolved using DPb-MOPSO, 1/8 (FDA1) uses DNSGA-II, 1/8 (dMOP3) uses 

dCOEA. For slight changes, 5/8 (FDA3, FDA4, FDA5, dMOP1, dMOP2) benchmarks are resolved using DPb-

MOPSO, 2/8 (FDA1, FDA2) use MOPSO, and 1/8 (dMOP3) use dCOEA. Compared with MOPSO which aims 

to solve 1/8 (FDA1), SGEA 1/8 (FDA2), and dCOEA 1/8 (dMOP3) with moderate and slight change, the DPb-

MOPSO system can solve 6/8 (FDA3, FDA4, FDA5, dMOP1, dMOP2, dMOP3), 5/8 (FDA3, FDA4, FDA5, 

dMOP1, dMOP2), and 5/8 (FDA3, FDA4, FDA5, dMOP1, dMOP2) functions for the severe, moderate and slight 

environmental changes using HVD metric. Based on the reported quantitative results in both Table 6, 7 (see 

appendices), it is remarkable that the proposed DPb-MOPSO algorithm performs all prediction-based approaches, 

namely; MOEA/D, MOEA/D-DE, SPEA2, MOPSO, and NSGAIII with three different prediction techniques 

(Ave, Adopt, and Weight) over RIGD and RGD for solving 5 FDA, and 3 dMOP benchmarks. Also, the boxplot 

in both Figures 7, and 8 details the superiority of the novel DPb-MOPSO algorithm.  

5.2. Discussion through the non-parametric statistical methods 

The use of the mean and standard deviation values of IGD, MIGD, HVD, RIGD, and RGD indicators are 

insufficient to determine the performance of swarm intelligence algorithms and highlight their significance level. 

For this reason, Friedman’s two-way ANOVA ranking test and its post-hoc procedure [47] are used to analyze the 

results of different environmental changes on IGD, MIGD, HVD, RIGD, and RGD. Friedman’s two-way ANOVA 

test is a non-parametric alternative to repeated-measures ANOVA. The test does not assume a normal distribution 

to compare multiple treatments and determine the level of significance between algorithms.  First, define the null 

hypothesis 𝐻0: 𝜇1 = 𝜇𝑖 (there is no difference between the means), and the alternative hypothesis 𝐻1: 𝜇1 ≠ 𝜇𝑖 

(there is a difference). If the P-value ≤  𝛼 indicates the statistical significance level, then reject the null hypothesis, 

otherwise 𝐻1 is accepted, where Alpha (𝛼) is equal to 0.05. Friedman’s two-way ANOVA ranking is calculated 

by assigning a ranking value (𝑟𝑖) to each algorithm 𝑖 while; 1 is the highest result for k, and k is the worst result. 

For a tie case, the average of the rankings is assigned. The decision rule is defined as the critical value (CV) 

determined according to the chi-square (𝜒2) table1.  The CV value is fixed according to the degree of freedom (df) 

 
1 http://uregina.ca/~gingrich/appchi.pdf. 



equal to k − 1, where k is the number of comparison algorithms and 𝛼 = 0.05. If the calculated 𝜒2 is greater than 

CV, the null hypothesis will be rejected. In addition, if the computed P-value is less than 0.05, it assumes that there 

is a significant difference between the test algorithms. 

5.2.1 Friedman rankings test 

According to the following Tables 6 and 7, it can be concluded that DPb-MOPSO is the winner using IGD for 

solving FDA, and dMOP functions with severe, moderate, and slight environmental changes. However, when 

using the IGD, HVD, and MIGD quality indicators, it ranks higher in addressing the moderate environmental 

changes of 21 DMOPs (FDA, dMOP, UDF, and ZJZ (F)). Whereas, assuming that the overall statistical difference 

between all tested algorithms is significant, all calculated 𝜒2 are greater than CV.   

At the 0.05 level of significance, all means are not equal. Almost, most p-values less than 0.05 represent the 

assumption of rejecting the null hypothesis and assuming that some means are not exactly equal and there are 

significant differences. Friedman’s ranking test detected a significant difference between multiple comparisons. 

However, it is difficult to determine which group pairs are significantly different. Therefore, Friedman 1 × N 

ANOVA multiple comparisons were considered for the results discussion, aiming to compare DPb-MOPSO as a 

control method with other DMOEAs.  

In addition, Table 8 presents the Friedman’s ANOVA mean ranks of the proposed DPb-MOPSO algorithm 

compared with different prediction-based approaches. It is remarkable that the novel DPb-MOPSO obtain the best 

mean ranks for solving 5 FDA and 3 dMOP functions over both RIGD, and RGD quality indicators with a p-values 

less than 0.05 significance level.  

Table 6. Friedman’s ANOVA Mean Ranks on IGD and HVD for FDA, dMOP, F (ZJZ) and UDF. 

Mean Ranks on IGD and HVD 

Dynamic changes Severe 

(τt=5, nt=10) 

Moderate 

(τt=10, nt=10) 

Slight 

(τt=20,nt=10) 

DMOPs FDA, dMOP FDA, dMOP, F(ZJZ), UDF FDA, dMOP 

QI IGD HVD IGD HVD IGD HVD 

DNSGA-II 8.94 7.25 7.33 6.45 8.38 6.25 

dCOEA 6.56 5.63 8.02 6.57 7.00 6.50 

PPS 8.00 7.25 7.24 6.17 8.13 6.25 

MOEA/D 8.38 7.75 7.79 6.83 7.38 7.00 

SGEA 6.13 4.50 6.14 4.55 5.25 4.50 

MOPSO 3.75 6.00 5.45 7.43 3.31 6.06 

dMOPSO 5.50 6.50 6.36 7.55 5.19 6.81 

pbMOPSO 2.88 4.38 3.24 4.57 5.25 5.25 

Dynamic-MOPSO 3.25 3.88 1.76 2.88 3.25 4.25 

DPb-MOPSO  1.63 1.88 1.67 2.00 1.88 2.13 

Chi-Square 𝛘𝟐 50.55 26.62 121.59 75.98 38.55 17.84 

P-value (𝜶 = 𝟎. 𝟎𝟓) 8.47E-8 2E-3 6.29E-22 1.01E-12 14E-5 37E-2 

Statistically Significant Yes Yes Yes Yes Yes yes 

Critical value 16.92 

df 9 

 

 

 

 



Table 7. Friedman’s ANOVA Mean Ranks on MIGD for FDA, dMOP. 

Mean Ranks on MIGD 

DMOPs FDA, dMOP 

Dynamic changes Severe 

(τt=5, nt=10) 

Moderate 

(τt=10, nt=10) 

Slight 

(τt=20, nt=10) 

MMTL-MOEA/D  5.88 5.75 5.75 

KF-MOEA/D  9.25 8.63 8.13 

PPS-MOEA/D  8.13 7.50 8.38 

SVR-MOEA/D  8.63 8.13 8.38 

Tr-MOEA/D  9.13 8.88 9.13 

RI-MOEA/D  9.13 9.25 8.63 

MOPSO  3.94 4.50 4.44 

dMOPSO  4.94 6.38 5.31 

pbMOPSO  4.00 3.88 4.88 

Dynamic-MOPSO 1.75 1.63 1.88 

DPb-MOPSO  1.25 1.50 1.13 

Chi-Square 𝛘𝟐 66.60 57.34 56.38 

P-value (𝜶 = 𝟎. 𝟎𝟓) 2.0E-10 1.15E-8 1.74E-8 

Statistically Significant Yes Yes Yes 

Critical value  18.31 

df 10 

Table 8. Friedman’s ANOVA Mean Ranks on RIGD, and RGD for FDA, dMOP Functions 

 

5.2.2 Friedman post-hoc Procedure 1 × N ANOVA Test 

The Freidman post-hoc procedure was performed to compare group means, where DPb-MOPSO was the 

control method. The Freidman post-hoc procedure process results in a p-value (PV) at the 0.05 significance level 

that determines the degree of rejection of the null hypothesis. The obtained p-values on MIGD, IGD and HVD are 

reported in Table 9.  Note that the sign (+) means that DPb-MOPSO is the best algorithm, and (≅) the same 

significant level is determined. Let’s consider the MIGD indicator, compared with KF-MOEA/D, Tr-MOEA/D, 

RI-MOEA/D, SVR-MOEA/D, PPS-MOEA/D and MMTL-MOEA/D, the importance of the DPb-MOPSO system 

can be observed for all environmental changes with P-values are less than 0.05. Also, DPb-MOPSO has the same 

significance as dMOPSO for solving different DMOPs with moderate and slight change, and MOPSO, pbMOPSO 

with slight dynamic change. However, it has the same level of significance compared with Dynamic-MOPSO for 

all types of environmental change, and MOPSO, pbMOPSO, and Dynamic-MOPSO for both severe and moderate 

changes. In addition, the null hypothesis is only retained for dMOPSO system on moderate changes, and compared 

with DPb-MOPSO, it has the same significance only for severe changes. The PV values over IGD present the 

Mean Ranks RIGD and RGD 

DMOPs FDA, dMOP Functions 

Prediction methods Ave Adapt Weight 

QIs RIGD RGD RIGD RGD RIGD RGD 

MOEA/D 3.13 3.50 2.38 2.63 2.38 2.63 

MOEA/D-DE 4.88 5.00 3.88 4.88 4.75 4.63 

SPEA2  3.19 3.00 3.94 3.75 3.44 4.00 

MOPSO 3.56 3.38 4.19 3.75 4.19 3.75 

NSGA-III 5.23 5.13 5.63 5.00 5.25 5.00 

DPb-MOPSO  1.00 1.00 1.00 1.00 1.00 1.00 

Chi-Square 𝛘𝟐 26.25 26.25 29.44 25.97 28.94 24.96 

P-value (𝜶 = 𝟎. 𝟎𝟓) 80E-5 79E-5 19E-5 90E-5 24E-6 142E-5 

Statistically Significant Yes  Yes  Yes  Yes  Yes  Yes  

Critical value  11.070 

df 5 



significant difference of DPb-MOPSO compared to DNSGA-II, MOEA/D, PPS, dCOEA, SGEA and dMOPSO 

for all the types of changes. In addition, it can be inferred that there is no difference in p-value greater than 0.05, 

for severe and slight changes between DPb-MOPSO compared with MOPSO, pbMOPSO and Dynamic-MOPSO. 

Furthermore, the computed P-values on HVD metric are greater than 0.05, resulting to retain the null hypothesis 

of no difference between mean values for the Dynamic-MOPSO for solving DMOPs with all types of dynamic 

change. However, the DPb-MOPSO system performs six DMOEAs (DNSGA-II, MOEA/D, PPS, dCOEA, 

dMOPSO, MOPSO) in solving DMOPs with different dynamic change except for the SGEA with severe and slight 

change, and pbMOPSO for the severe change which achieve the same importance as the proposal. 

Table 9. P-values obtained by the post hoc method over the results of Friedman procedure with α = 0.05 on MIGD, 

IGD and HVD for severe, moderate and slight dynamic change. 

 

QI 

 

DPb-MOPSO vs. 

(𝝉𝒕, 𝒏𝒕) 

(5, 10) (10, 10) (20, 10) 

 

 

 

 

 

MIGD 

KF-MOEA/D ≤0.001+ ≤0.001+ 0.001+ 

Tr-MOEA/D ≤0.001+ ≤0.001+ ≤0.001+ 

RI-MOEA/D ≤0.001+ ≤0.001+ ≤0.001+ 

SVR-MOEA/D ≤0.001+ ≤0.001+ 0.001 + 

PPS-MOEA/D 0.001 + ≤0.001+ 0.001 + 

 MMTL-MOEA/D 0.005 + 0.010 + 0.005 + 

dMOPSO 0.026 ≅ 0.003 + 0.012 + 

MOPSO 0.105 ≅ 0.070 ≅ 0.046 + 

pbMOPSO 0.097 ≅ 0.152 ≅ 0.024 + 

Dynamic-MOPSO 0.763≅ 0.940 ≅ 0.651 ≅ 

 

 

 

 

IGD 

DNSGA-II  ≤0.001 + ≤0.001 + ≤0.001 + 

MOEA/D  ≤0.001 + ≤0.001 + ≤0.001 + 

PPS  ≤0.001 + ≤0.001 + ≤0.001 + 

dCOEA  0.001 + ≤0.001 + 0.001 + 

SGEA  0.003 + ≤0.001 + 0.026 + 

dMOPSO  0.010 + ≤0.001 + 0.029 + 

MOPSO  0.160 ≅ ≤0.001 + 0.342 ≅ 

pbMOPSO  0.409 ≅ 0.093 ≅ 0.026 + 

Dynamic-MOPSO 0.283 ≅ 0.919 ≅ 0.364 ≅ 

 

 

 

HVD 

DNSGA-II  ≤0.001 + ≤0.001 + 0.006+ 

MOEA/D  ≤0.001 + ≤0.001 + 0.001+ 

PPS  ≤0.001 + ≤0.001 + 0.006+ 

dCOEA  0.013 + ≤0.001 + 0.004+ 

SGEA  0.083 ≅ 0.006 + 0.117≅ 

dMOPSO  0.002 + ≤0.001 + 0.002+ 

MOPSO  0.006 + ≤0.001 + 0.009+ 

pbMOPSO  0.099 ≅ 0.006 + 0.039+ 

Dynamic-MOPSO 0.186 ≅ 0.346 ≅ 0.160≅ 

+: DPb-MOPSO is the best algorithm, ≅: DPb-MOPSO has the same significant level compared to other DMOEAs (significance 

level is 0.05). 

 

In conclusion, and in regards to the state-of-the-art methods, the proposed DPb-MOPSO has shown its 

importance compared with other MOPSO-based methods. In addition, compared with the new DPb-MOPSO, the 

MOPSO-based system is the most competitive. But they failed to resolve multiple DMOPs (UDF3, UFD7, 

dMOP3, FDA1, FDA2), thus demonstrating the utility and importance of using dynamic processing strategies for 

two-stage optimization to detect and effectively react to changes. However, the DPb-MOPSO algorithm is failed 

in some test problems with time-varying spread, dynamic density of the solution, shifting of the center point and 

a discontinuous POF. The DPb-MOPSO may require an additional mechanism to detect the dynamic density of 

the POS and effectively respond to it and assume good distribution using the HVD measurement. 

 



5.2.3 The Wilcoxon Sum Rank Test 

   In this sub-section, comparative result analysis is conducted for the experimental study of DMOPs using the 

non-parametric statistical test. The Wilcoxon sign rank test [48], [49] is used to determine the best method among 

all compared approaches. The performance of the proposed DPb-MOPSO algorithm is compared with different 

DMOEAs when used for solving different types of DMOPs using HVD, IGD, MIGD, RIGD, and RGD metrics, 

and all results are reported in Tables 10-13 respectively. This test is conducted based on an experimental statistical 

analysis over 21 DMOPs (5 FDA, 3 dMOP, 7 UDF, and 6 F(ZJZ)), with an average value for 30 independent runs 

for IGD, HVD and MIGD quality indicators, and 20 independent runs for RIGD and RGD metrics for each 

approach. The Wilcoxon ranks, is used to calculate the results variants of the proposed DPb-MOPSO compared 

with 18 DMOEAs. The results of Tables 10-13 showed that the novel DPb-MOPSO is the best with a p-value 

greater than 0.05 significant level for the majority of the tested DMOPs. However, the difference between means 

values of the proposed algorithm are not statistically significant compared with DNSGA-II, MOEA/D, PPS, dCOEA, 

and SGEA for severe, and slight dynamic change for solving FDA, and dMOP functions over the HVD metric, and the 

Dynamic-MOPSO with slight change over HVD, IGD metrics. 

Table 10. Results of the Wilcoxon Sum Rank Test over HVD metric for Severe, Moderate and Slight Dynamic Change. 

Type of dynamic change DMOPs DPb-MOPSO vs. R- R+ p-value Best method 

Severe change 

(𝝉𝒕 = 𝟓, 𝒏𝒕=10) 

8 benchmarks 

(FDA, dMOP) 

DNSGA-II 29 7 0.123485 ≅ 

MOEA/D 30 6 0.092892 ≅ 

PPS 29 7 0.123485 ≅ 

dCOEA 29 7 0.123485 ≅ 

SGEA 29 7 0.123485 ≅ 

dMOPSO 34 2 0.025062 DPb-MOPSO 

MOPSO 35 1 0.017290 DPb-MOPSO 

pbMOPSO 36 0 0.011719 DPb-MOPSO 

Dynamic-MOPSO 36 0 0.011719 DPb-MOPSO 

Moderate change 

(𝝉𝒕 = 𝟏𝟎, 𝒏𝒕=10) 

21 benchmarks 

(FDA, dMOP, UDF, F) 

DNSGA-II 198 33 0.004137 DPb-MOPSO 

MOEA/D 198 33 0.004137 DPb-MOPSO 

PPS 195 36 0.005723 DPb-MOPSO 

dCOEA 202 29 0.002642 DPb-MOPSO 

SGEA 192 39 0.007838 DPb-MOPSO 

dMOPSO 229 2 0.000080 DPb-MOPSO 

MOPSO 229 2 0.000080 DPb-MOPSO 

pbMOPSO 222 9 0.000214 DPb-MOPSO 

Dynamic-MOPSO 126 105 0.715145 ≅ 

Slight change 

(𝝉𝒕 = 𝟐𝟎, 𝒏𝒕=10) 

8 benchmarks 

(FDA, dMOP) 

DNSGA-II 28 8 0.161429 ≅ 
MOEA/D 28 8 0.161429 ≅ 
PPS 28 8 0.161429 ≅ 
dCOEA 25 11 0.326989 ≅ 
SGEA 28 8 0.161429 ≅ 
dMOPSO 35 1 0.017290 DPb-MOPSO 
MOPSO 35 1 0.017290 DPb-MOPSO 
pbMOPSO 36 0 0.011719 DPb-MOPSO 
Dynamic-MOPSO 29 7 0.123485 ≅ 

≅ indicate that the DPb-MOPSO algorithm has the same significant level compared to other DMOEAs (significance level is 0.05). 

 

 

 

 

 

 

 

 

 

 

 



Table 11. Results of the Wilcoxon Sum Rank Test for DPb-MOPSO versus DMOEAs over IGD metric for Severe, 

Moderate and Slight Dynamic Change 

Type of dynamic change DMOPs DPb-MOPSO vs. R- R+ p-value Best method 

Severe change 

(𝝉𝒕 = 𝟓, 𝒏𝒕=10) 

8 benchmarks 

(FDA, dMOP) 

DNSGA-II 36 0 0.011719 DPb-MOPSO 

MOEA/D 36 0 0.011719 DPb-MOPSO 

PPS 36 0 0.011719 DPb-MOPSO 

dCOEA 36 0 0.011719 DPb-MOPSO 

SGEA 36 0 0.011719 DPb-MOPSO 

dMOPSO 35 1 0.017290 DPb-MOPSO 

MOPSO 32 4 0.049950 DPb-MOPSO 

pbMOPSO 32 4 0.049950 DPb-MOPSO 

Dynamic-MOPSO 32 4 0.049950 DPb-MOPSO 

Moderate change 

(𝝉𝒕 = 𝟏𝟎, 𝒏𝒕=10) 

21 benchmarks 

(FDA, dMOP, UDF, F) 

DNSGA-II 231 0 0.000060 DPb-MOPSO 

MOEA/D 231 0 0.000060 DPb-MOPSO 

PPS 231 0 0.000060 DPb-MOPSO 

dCOEA 231 0 0.000060 DPb-MOPSO 

SGEA 231 0 0.000060 DPb-MOPSO 

dMOPSO 228 3 0.000092 DPb-MOPSO 

DNSGA-II 228 3 0.000092 DPb-MOPSO 

MOEA/D 220 11 0.000281 DPb-MOPSO 

Dynamic-MOPSO 116 115 0.986134 ≅ 

Slight change 

(𝝉𝒕 = 𝟐𝟎, 𝒏𝒕=10) 

8 benchmarks 

(FDA, dMOP) 

DNSGA-II 36 0 0.011719 DPb-MOPSO 
MOEA/D 35 1 0.017290 DPb-MOPSO 
PPS 36 0 0.011719 DPb-MOPSO 
dCOEA 31 5 0.068704 ≅ 
SGEA 36 0 0.011719 DPb-MOPSO 
dMOPSO 35 1 0.017290 DPb-MOPSO 
MOPSO 32 4 0.049950 DPb-MOPSO 
pbMOPSO 36 0 0.011719 DPb-MOPSO 
Dynamic-MOPSO 29 7 0.123485 ≅ 

 
Table 12. Results of the Wilcoxon Sum Rank Test for DPb-MOPSO versus DMOEAs over MIGD metric for Severe, 

Moderate and Slight Dynamic Change 

Type of dynamic change DMOPs DPb-MOPSO vs. R- R+ p-value Best method 

Severe change 

(𝝉𝒕 = 𝟓, 𝒏𝒕=10) 

8 benchmarks 

(FDA, dMOP) 

MMTL-MOEA/D 36 0 0.011719 DPb-MOPSO 

KF-MOEA/D 36 0 0.011719 DPb-MOPSO 

PPS-MOEA/D 36 0 0.011719 DPb-MOPSO 

SVR-MOEA/D 36 0 0.011719 DPb-MOPSO 

Tr-MOEA/D 36 0 0.011719 DPb-MOPSO 

RI-MOEA/D 36 0 0.011719 DPb-MOPSO 

MOPSO 36 0 0.011719 DPb-MOPSO 

dMOPSO 36 0 0.011719 DPb-MOPSO 

pbMOPSO 36 0 0.011719 DPb-MOPSO 

Dynamic-MOPSO 31 5 0.068704 ≅ 

Moderate change 

(𝝉𝒕 = 𝟏𝟎, 𝒏𝒕=10) 

8 benchmarks 

(FDA, dMOP)) 

MMTL-MOEA/D 36 0 0.011719 DPb-MOPSO 

KF-MOEA/D 36 0 0.011719 DPb-MOPSO 

PPS-MOEA/D 36 0 0.011719 DPb-MOPSO 

SVR-MOEA/D 36 0 0.011719 DPb-MOPSO 

Tr-MOEA/D 36 0 0.011719 DPb-MOPSO 

RI-MOEA/D 36 0 0.011719 DPb-MOPSO 

MOPSO 34 2 0.025062 DPb-MOPSO 

dMOPSO 36 0 0.011719 DPb-MOPSO 

pbMOPSO 36 0 0.011719 DPb-MOPSO 

Dynamic-MOPSO 19 17 0.888638 ≅ 

Slight change 

(𝝉𝒕 = 𝟐𝟎, 𝒏𝒕=10) 

8 benchmarks 

(FDA, dMOP) 

MMTL-MOEA/D 36 0 0.011719 DPb-MOPSO 
KF-MOEA/D 36 0 0.011719 DPb-MOPSO 
PPS-MOEA/D 36 0 0.011719 DPb-MOPSO 
SVR-MOEA/D 36 0 0.011719 DPb-MOPSO 
Tr-MOEA/D 36 0 0.011719 DPb-MOPSO 
RI-MOEA/D 36 0 0.011719 DPb-MOPSO 
MOPSO 36 0 0.011719 DPb-MOPSO 
dMOPSO 36 0 0.011719 DPb-MOPSO 
pbMOPSO 36 0 0.011719 DPb-MOPSO 
Dynamic-MOPSO 34 2 0.025062 DPb-MOPSO 



Table 13. Results of the Wilcoxon Sum Rank Test for DPb-MOPSO versus DMOEAs over RIGD and RGD 

metrics for Moderate Change 

DMOPs QIs DPb-MOPSO vs. R- R+ p-value Best method 

8 benchmarks 

(FDA, dMOP)) 

RIGD 

MOEA/D 300 0 0.000018 DPb-MOPSO 

MOEA/D-DE 300 0 0.000018 DPb-MOPSO 

SPEA2  300 0 0.000018 DPb-MOPSO 

MOPSO 300 0 0.000018 DPb-MOPSO 

NSGAIII 300 0 0.000018 DPb-MOPSO 

RGD 

MOEA/D 300 0 0.000018 DPb-MOPSO 

MOEA/D-DE 300 0 0.000018 DPb-MOPSO 

SPEA2  300 0 0.000018 DPb-MOPSO 

MOPSO 300 0 0.000018 DPb-MOPSO 

NSGAIII 300 0 0.000018 DPb-MOPSO 

 

 

 
(a) 

 
(b) 

Fig. 3. ANOVA Boxplot on (a) IGD and (b) HVD with Moderate Environmental Changes for UDF and F(ZJZ) 

functions. 
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(b) 

 
(c) 

Fig. 4. ANOVA Multiple Comparison on MIGD with (a) Severe, (b) Moderate, and (c) Slight Environmental 

Changes for FDA and dMOP functions. 
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Fig. 5. ANOVA Multiple Comparison on IGD with (a) Severe, (b) Moderate, and (c) Slight Environmental 

Changes for FDA, dMOP, UDF, and F functions 
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Fig. 6. ANOVA Multiple Comparison on HVD with (a) Severe, (b) Moderate, and (c) Slight Environmental 

Changes for FDA, dMOP, UDF, F functions. 
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Fig. 7. ANOVA Multiple Comparison of DPb-MOPSO versus DMOEAs with (a) Ave, (b) Adapt, (c) Weight 

predictions methods on RIGD for FDA, dMOP functions. 
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Fig. 8. ANOVA Multiple Comparison of DPb-MOPSO versus DMOEAs with (a) Ave, (b) Adapt, (c) Weight 

predictions methods on RGD for FDA, dMOP functions. 

 

 



6. Stability Analysis using Lyapunov Theorem 

The stability analysis is an important aspect of analyzing the robustness of dynamic systems. The Lyapunov 

theorem proposed by Alexandr Mikhailovich Lyapunov [50] is a well-known stability analysis mechanism. The 

theorem aims to measure the growth of the initial values over time, and the small differences from one instance to 

another is called the Lyapunov Exponent (LE). In general, an ordinary differential system is written in the form of 

the differential Equation (10). 

                                                                         
𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑡)                                                                            (10) 

where; 𝑥 is the state of the system, and the time derivative of 𝑥 is presented in Equation (11). 

                                                                       
𝑑𝑥

𝑑𝑡
= lim

∆𝑡→0

𝑥(𝑡+∆𝑡)−𝑥(𝑡)

∆𝑡
                                                               (11) 

A solution with initial value 𝑥0 at the initial time 𝑡0 is zero stable, if 𝑥(0, 𝑡) = 0. A solution is asymptotically 

stable, if 𝑥(𝑡, 𝑡0, 𝑥0)  →  0 when 𝑡 →  +∞ and unstable otherwise. 

Different modeling and analysis of complex systems has been published by Hiroki Sayama in [51], when the 

Lyapunov Exponent has been introduced as an analytical metric to measure chaos of the system. The LE can grow 

to very large differences to indicate the speed at which two initially close dynamics diverge or converge, and 

presented in Equation (12).  

                                                                     |𝐹𝑡(𝑥0 + 𝜀) − 𝐹𝑡(𝑥0)| ≈ 𝜀𝑒𝜆𝑡                                                   (12) 

                                                                     𝑒𝜆𝑡 ≈
|𝐹𝑡(𝑥0+𝜀)−𝐹𝑡(𝑥0)|

𝜀
                                                                (13) 

                                                 𝜆 = lim
𝑡→∞,𝜀→0 

1

𝑡
log 

|𝐹𝑡(𝑥0+𝜀)−𝐹𝑡(𝑥0)|

𝜀
= lim

𝑡→∞

1

𝑡
∑ 𝑙𝑜𝑔 |

𝑑𝐹

𝑑𝑥
|𝑥 = 𝑥𝑖|𝑡−1

𝑖=0                   (14) 

where; 

- 𝜀𝑒𝜆𝑡 is the assumption that the distance |𝐹𝑡(𝑥0 + 𝜀) − 𝐹𝑡(𝑥0)| between two points grow exponentially 

over time 𝑡 ∀ 𝑡 → ∞, and presented in Equation (13), 

- 𝜆 is the Lyapunov exponent, and  𝜀 > 0, and presented in Equation (14), 

- if 𝜆 >  0, small distances grow indefinitely over time, 

- if 𝜆 <  0, small distances don’t grow indefinitely. 

- A positive value of LE indicates divergence, while a negative value indicates convergence in phase space. 

 Referring to papers [52] [53], the LE value has been estimated over the calculation of the quantity 〈𝑙𝑛[𝑑(𝑘)]〉, to 

measure the exponential growth of 〈𝑑(𝑘)〉 with increasing k,  where 𝑑(𝑘) is the difference between the two 

sequences after 𝑘 steps is calculated using the following formula: 𝑑(𝑘) = |𝑡𝑖+𝑘 − 𝑡𝑗+𝑘|, and the average 〈⋯ 〉 over 

pairs  points 𝑡𝑖 and 𝑡𝑗 with 𝑑(0) = |𝑡𝑖 − 𝑡𝑗| < 𝑛, 𝑛 is a small number as shown in the following Equations (15) 

and (16).  

                                                                  𝑑(0) = |𝑡𝑖 − 𝑡𝑗| + |𝑡𝑖+1 − 𝑡𝑗+1| < 𝑛                                            (15) 

                                     𝑑(𝑘) = |𝑡𝑖+𝑘 − 𝑡𝑗+𝑘| + |𝑡𝑖+k+1 − 𝑡𝑗+𝑘+1|                                         (16) 

If the system is chaotic, 𝑑(𝑘) will rise exponentially with 𝑘, and the distance between two points 𝑡𝑖 and 𝑡𝑗 is 

denoted by 𝑡𝑖, 𝑡𝑖+1, … , 𝑡𝑖+𝑘  and 𝑡𝑗 , 𝑡𝑗+1, … , 𝑡𝑗+𝑘 grows over time. The convergence and divergence of dynamic 

system is measured using the LE value. Therefore, 𝑙𝑛 𝑑(𝑘) is computed and plotted to estimate the Lyapunov 

Exponent (LE). When the value of LE is very small and close over time, this state indicates that the system is 

stable and reaches the same solution over time. In this study, a set of IGD values of 30 independent runs are 



considered to measure the stability of the DPb-MOPSO algorithm for solving a set of minimization DMOPs with 

moderate change, where 𝑛𝑡 and 𝜏𝑡 are equal to 10. The independent IGD values are calculated using the smallest 

Euclidean distance 𝑑𝑖 between 𝑖𝑡ℎ points in the best obtained 𝑃𝑂𝐹 and the true 𝑃𝑂𝐹∗ over time 𝑡. The Lyapunov 

Theorem is considered to control the behavior of the DPb-MOPSO algorithm in terms of convergence and 

diversity. The stability analysis through Lyapunov Exponent is computed using ln(𝐼𝐺𝐷()).  Figure 9 shows the 

spectrum of the Lyapunov Exponents of F, UDF, FDA, and dMOP functions. Moreover, it can be concluded that 

the Lyapunov exponents for all tested problems are under zero with negative values assuming that the system 

converges over time. The spectrum of the Lyapunov exponent indicates the stability of DPb-MOPSO with negative 

values of LE. All location points determine the fast convergence of DPb-MOPSO to all tested problems. 

 

Fig. 9. Spectrum Lyapunov Exponent of DPb-MOPSO for F(ZJZ), UDF, FDA and dMOP Problems. 



7. Conclusion  

This study presents a novel Dynamic Pareto bi-level Multi-Objective Particle Swarm Optimization (DPb-MOPSO) 

algorithm for solving different types of DMOPs (I, II and III). The proposed DPb-MOPSO has a distributed 

architecture with two optimization levels, including a dynamic handling strategy to detect and react to changes.  

Compared with several DMOEAs, the Friedman's two-way ANOVA test, and the Wilcoxon sum rank test are used 

to analyze the performance the proposed DPb-MOPSO algorithm. Based on statistical analysis (at 0.05 

significance level), DPb-MOPSO proved to be a more robust algorithm because it can ensure a good trade-off 

between convergence and diversity in a time-dependent environment. Further, the spectrum of Lyapunov 

exponents has shown to be an efficient tool for analyzing periodic motions and stability analysis in dynamical 

systems. The superiority of the proposed method is observed when handling DMOPs with two or three objectives 

including different types of changes in POS and POF. Based on IGD and HVD metrics, the DPb-MOPSO 

algorithm can solve 8/13 and 8/13 of the 13 UDF and ZJZ functions with moderate changes. Also, the DPb-

MOPSO can resolve 7/8 FDA and DMOP benchmarks with severe changes to the MIGD, and 6/8 with moderate 

changes. DPb-MOPSO assumes 7/8, 6/8, and 5/8 for solving FDA, and dMOP functions on IGD and 6/8, 5/8, and 

5/8 on HVD metrics considering severe, moderate, and slight environmental changes respectively. Also, it is the 

winner for solving 8 DMOPs based on RIGD, and RGD metrics. In conclusion, this study proves the novelty and 

robustness of DPb-MOPSO in solving different classical dynamic multi-objective problems. For future work, a 

new variant of the proposed DPb-MOPSO approach will be done for solving DMOPs with dynamic spread and 

time-varying density of the solutions as well as for pertinent feature selection in real-world problems. 
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Table 1. Mean and Standard Deviation Values of DMOEAs over IGD for UDF, F Functions with Moderate Environmental Changes (𝜏𝑡= 𝑛𝑡= 10). 

Prob. Val. 

DMOEAs compared by Jiang et al. [19] 
MOPSO-based Methods  

without Dynamism handling strategy 
Dynamic MOPSO-based Methods  

DNSGA-II dCOEA PPS MOEA/D SGEA MOPSO dMOPSO pbMOPSO Dynamic-MOPSO 
DPb-MOPSO  

(Random parameters) 

DPb-MOPSO 

(Best orthogonal design) 

UDF1 
M. 

Std. 

1.07E-1 

2.4E-2- 

2.91E-1 

2.3E-2 

2.67E-1 

2.2E-2 

1.70E-1 

5.1E-2 

1.24E-1 

3.3E-2 

5.52E-3 

8.2E-11 

5.52E-3 

1.0E-10 

9.26E-5 

5.3E-6 

4.97E-5 

4.1E-7 

4.64E-5 

3.1E-6 

6.30e-05 

3.9e-06 

UDF2 
M. 

Std. 

1.12E-1 

1.0E-2 

1.83E-1 

2.0E-2 

2.54E-2 

5.0E-3 

1.16E-1 

9.5E-3 

8.95E-2 

1.3E-2 

5.53E-3 

1.6E-10 

5.53E-3 

0.0E+0 

9.36E-5 

5.9E-6 

4.94E-5 

4.6E-7 

4.67E-5 

3.0E-6 

6.50e-05 

4.4e-06 

UDF3 
M. 

Std. 

6.06E-1 

3.3E-6 

6.51E-1 

7.7E-2 

4.55E+0 

1.1E+0 

6.06E-1 

6.3E-5 

6.06E-1 

7.4E-6 

1.52E-5 

8.1E-8 

1.48E-5 

5.6E-10 

6.17E-5 

3.8E-6 

4.55E-5 

3.7E-7 

4.73E-5 

2.9E-6 

6.16e-05 

3.7e-06 

UDF4 
M. 

Std. 

1.70E-1 

4.7E-2 

2.87E-1 

2.8E-2 

1.85E-1 

8.2E-3 

3.19E-1 

1.3E-1 

1.68E-1 

4.4E-2 

8.18E-5 

2.1E-8 

8.18E-5 

1.8E-10 

6.36E-5 

3.2E-6 

5.21E-5 

1.0E-6 

4.81E-5 

1.8E-6 

6.29e-05 

2.6e-06 

UDF5 
M. 

Std. 

1.18E-1 

1.2E-2 

2.05E-1 

3.5E-2 

2.89E-2 

1.3E-2 

1.61E-1 

1.4E-2 

1.00E-1 

1.1E-2 

8.21E-5 

1.6E-8 

8.21E-5 

2.0E-10 

6.38E-5 

3.1E-6 

5.14E-5 

1.3E-6 

4.68E-5 

2.2E-6 

6.14e-05 

2.8e-06 

UDF6 
M. 

Std. 

4.57E-1 

8.7E-2 

8.04E-1 

1.0E-1 

1.34E+0 

7.1E-2 

5.31E-1 

1.6E-1 

6.68E-1 

2.0E-1 

2.88E+0 

2.3E-6 

2.88E+0 

1.8E-6 

8.63E-4 

4.5E-4 

1.93E-3 

2.5E-4 

4.05E-4 

1.2E-4 

2.86e-03 

3.5e-04 

UDF7 
M. 

Std. 

5.24E-1 

2.2E-2 

8.40E-1 

6.4E-2 

6.68E-1 

4.4E-2 

5.08E-1 

1.4E-1 

5.08E-1 

4.2E-2 

3.73E-1 

2.3E-6 

3.81E-1 

7.7E-3 

1.27E-4 

1.6E-5 

1.93E-3 

3.0E-4 

7.58E-4 

4.8E-5 

6.80e-04 

3.7e-05 

F5 
M. 

Std. 

7.82E-1 

3.9E-2 

8.01E-1 

2.2E-1 

2.69E-1 

4.3E-2 

6.88E-1 

4.1E-2 

4.41E-1 

4.5E-2 

4.80E+0 

8.2E-2 

6.62E+0 

0.0E+0 

9.71E-3 

5.8E-3 

2.75E-3 

8.9E-4 

2.72E-3 

6.5E-4 

4.99e-03 

1.6e-03 

F6 
M. 

Std. 

3.02E-1 

2.1E-2 

6.57E-1 

1.3E-1 

2.60E-1 

6.5E-2 

3.44E-1 

5.6E-2 

2.90E-1 

1.3E-2 

6.73E-1 

3.6E-3 

6.95E-1 

1.8E-3 

5.76E-2 

1.9E-2 

1.53E-3 

1.9E-3 

1.49E-3 

4.1E-4 

1.36e-03 

4.4e-03 

F7 
M. 

Std. 

4.19E-1 

6.9E-3 

1.56E+0 

6.0E-1 

2.63E-1 

7.1E-2 

4.18E-1 

6.0E-2 

4.47E-1 

1.0E-2 

4.00E-1 

1.5E-4 

4.26E-1 

1.3E-8 

2.96E-2 

7.3E-3 

6.41E-3 

2.3E-3 

9.97E-3 

5.9E-3 

7.76e-03 

1.6e-03 

F8 
M. 

Std. 

4.86E-1 

1.3E-2 

4.00E-1 

6.7E-2 

4.56E-1 

3.1E-2 

5.49E-1 

2.3E-2 

2.51E-1 

1.4E-1 

1.15E-3 

8.1E-5 

6.27E-3 

7.2E-4 

3.41E-4 

1.4E-5 

6.84E-4 

2.4E-5 

1.93E-4 

5.1E-6 

1.07e-04 

7.1e-06 

F9 
M. 

Std. 

4.74E-1 

2.1E-2 

8.87E-1 

3.3E-1 

3.59E-1 

4.4E-2 

4.29E-1 

2.4E-2 

3.65E-1 

3.4E-2 

1.46E+0 

1.1E-1 

1.99E+0 

0.0E+0 

9.65E-3 

3.4E-3 

1.86E-3 

7.2E-4 

2.99E-3 

1.3E-3 

6.57e-03 

1.8e-03 

F10 
M. 

Std. 

1.05E+0 

1.5E-1 

5.76E-1 

8.1E-2 

3.79E-1 

8.7E-2 

6.39E-1 

8.6E-2 

3.80E-1 

1.3E-2 

1.29E+0 

1.9E-2 

1.76E+0 

5.2E-8 

7.53E-3 

3.0E-3 

2.35E-3 

5.9E-4 

3.02E-3 

8.4E-4 

5.49e-03 

2.1e-03 

 

 

 



 

Table 2. Mean and Standard Deviation Values of DMOEAs over HVD for UDF, F Functions with Moderate Environmental Changes (𝜏𝑡= 𝑛𝑡= 10). 

Prob. Values 

DMOEAs compared by Jiang et al. [19] 
MOPSO-based Methods  

without Dynamism handling strategy 
Dynamic MOPSO-based Methods 

 

DNSGA-II dCOEA PPS MOEA/D SGEA MOPSO dMOPSO pbMOPSO 
Dynamic-MOPSO DPb-MOPSO  

(Random parameters) 

DPb-MOPSO 

(Best orthogonal design) 

UDF1 
M. 

Std. 

5.14E-1 

3.2E-2 

7.47E-1 

3.8E-2 

7.97E-1 

5.2E-2 

6.12E-1 

9.4E-2 

5.18E-1 

5.0E-2 

2.99E+0 

1.2E-5 

2.99E+0 

1.1E-7 

5.78E-3 

3.0E-4 

5.01E-3 

1.8E-5 

4.65E-3 

1.7E-4 

4.49e-03 

2.6e-04 

UDF2 
M. 

Std. 

5.51E-1 

2.4E-2 

6.13E-1 

2.8E-2 

4.32E-1 

1.9E-2 

5.42E-1 

1.7E-2 

5.10E-1 

2.5E-2 

2.99E+0 

9.5E-6 

2.99E+0 

1.1E-7 

5.80E-3 

3.3E-4 

5.01E-3 

1.9E-5 

4.66E-3 

2.7E-4 

4.55e-03 

2.6e-04 

UDF3 
M. 

Std. 

1.22E+0 

1.9E-3 

1.23E+0 

7.0E-2 

1.73E+0 

3.1E-4 

1.22E+0 

2.4E-3 

1.22E+0 

2.4E-3 

5.05E-3 

1.4E-5 

5.04E-3 

1.1E-7 

4.50E-3 

2.4E-4 

4.92E-3 

7.1E-6 

4.63E-3 

2.4E-4 

4.44e-03 

2.3e-04 

UDF4 
M. 

Std. 

3.47E-1 

8.3E-2 

5.06E-1 

3.7E-2 

3.77E-1 

2.1E-2 

6.41E-1 

1.9E-1 

3.32E-1 

7.1E-2 

2.44E-2 

1.8E-5 

2.39E-2 

1.6E-7 

2.33E-3 

3.2E-4 

6.78E-3 

1.1E-4 

6.97E-4 

2.8E-4 

4.10e-04 

2.4e-04 

UDF5 
M. 

Std. 

2.78E-1 

2.5E-2 

3.98E-1 

3.3E-2 

2.70E-1 

1.5E-2 

3.65E-1 

2.7E-2 

2.72E-1 

1.8E-2 

2.44E-2 

1.7E-5 

2.39E-2 

1.5E-7 

2.24E-3 

2.7E4 

6.74E-3 

1.4E-4 

6.49E-4 

2.8E-4 

6.76e-04 

3.0e-04 

UDF6 
M. 

Std. 

9.34E-1 

1.5E-1 

1.26E+0 

7.2E-2 

1.83E+0 

1.0E-2 

1.21E+0 

1.4E-1 

9.77E-1 

2.0E-1 

3.96E+2 

6.7E-3 

3.99E+2 

3.6E-2 

1.50E-2 

1.8E-2 

1.83E-2 

9.7E-3 

5.86E-3 

1.6E-3 

1.30e-02 

8.1e-03 

UDF7 
M. 

Std. 

2.40E+0 

7.4E-2 

1.91E+0 

1.7E-1 

2.06E+0 

5.4E-2 

2.32E+0 

2.4E-1 

2.06E+0 

1.2E-1 

4.62E+0 

3.0E-2 

1.57E+1 

5.6E-1 

1.93E+0 

1.2E-1 

1.43E-1 

1.2E-1 

1.93E+0 

1.2E+0 

1.34e+00 

1.0e+00 

F5 
M. 

Std. 

1.25E+0 

2.5E-2 

1.10E+0 

1.6E-1 

4.01E-1 

9.9E-2 

1.19E+0 

2.9E-2 

7.16E-1 

8.2E-2 

4.73E+3 

9.7E+29 

5.23E+3 

9.7E+2 

1.31E+0 

1.2E+0 

4.86E-2 

6.4E-2 

2.99E-1 

2.4E-1 

1.79e-01 

2.6e-01 

F6 
M. 

Std. 

4.76E-1 

3.7E-2 

9.22E-1 

1.0E-1 

4.92E-1 

1.5E-1 

5.75E-1 

7.5E-2 

3.60E-1 

2.5E-2 

9.86E+3 

1.4E+30 

1.53E+1 

1.2E+2 

1.19E+1 

1.8E+1 

8.87E-2 

2.5E-1 

5.99E-2 

5.5E-2 

3.45e-01 

1.7e+00 

F7 
M. 

Std. 

6.49E-1 

1.0E-2 

1.22E+0 

1.5E-1 

4.49E-1 

1.4E-1 

6.50E-1 

2.8E-2 

6.05E-1 

1.5E-2 

7.07E+3 

6.0E+3 

1.13E+3 

0.0E+0 

1.05E+1 

1.5E+1 

3.63E-1 

6.0E-1 

5.07E+0 

1.4E+1 

1.64e+00 

2.1e+00 

F8 
M. 

Std. 

1.06E+0 

4.6E-2 

8.85E-1 

1.2E-1 

1.34E+0 

1.0E-1 

1.06E+0 

6.6E-2 

4.57E-1 

3.2E-2 

1.67E+4 

1.7E+4 

1.34E+4 

1.1E+4 

5.85E-3 

2.7E-3 

3.84E-2 

4.4E-3 

4.55E-3 

1.2E-3 

1.02e-02 

4.6e-03 

F9 
M. 

Std. 

8.87E-1 

3.4E-2 

1.07E+0 

1.9E-1 

6.88E-1 

7.7E-2 

8.58E-1 

4.6E-2 

5.76E-1 

7.0E-2 

4.98E+3 

8.4E+29 

2.62E+3 

9.7E-5 

1.45E+0 

1.1E+0 

8.42E-2 

1.0E-1 

2.22E-1 

3.5E-1 

1.36e-01 

1.2e-01 

F10 
M. 

Std. 

1.22E+0 

5.0E-2 

8.58E-1 

8.8E-2 

5.38E-1 

1.2E-1 

1.05E+0 

5.9E-2 

5.77E-1 

2.3E-2 

1.23E+3 

1.2E+3 

1.98E+3 

0.0E+0 

1.33E+0 

1.0E+0 

6.69E-2 

6.0E-2 

2.85E-1 

2.1E-1 

1.35e-01 

1.3e-01 

 

 

 

 



Table 3. Mean and Standard Deviation Values of DMOEAs over MIGD for FDA and dMOP Functions with Severe, Moderate and Slight Environmental Changes. 

Prob. (𝜏𝑡, 𝑛𝑡) Values 

Transfer Learning-based Methods Tested in [16] 
MOPSO-based Methods  

without Dynamism handling strategy 
Dynamic MOPSO-based Methods 

MMTL-MOEA/D KF-MOEA/D PPS-MOEA/D SVR-MOEA/D Tr-MOEA/D RI-MOEA/D MOPSO dMOPSO pbMOPSO 
Dynamic-MOPSO DPb-MOPSO  

(Random parameters) 

DPb-MOPSO 

(Best orthogonal design) 

 

FDA1 

(5,10) 
M. 
Std. 

0.1214 
1.07E-1 

0.4670 
3.38E-1 

0.2485 
1.40E-1 

0.3745 
3.12E-1 

0.3381 
2.14E-1 

0.3166 
3.58E-1 

1.97E-4 
3.6E-6 

5.85E-04 
2.2E-5 

1.13E-2 
4.6E-3 

1.11e-05 
4.1e-06 

1.70e-05 
4.9e-06 

3.70e-06 

1.4e-06 

(10,10) 
M. 

Std. 

0.1199 

7.93E-2 

0.2659 

1.23E-1 

0.2141 

1.22E-1 

0.2332 

1.66E-1 

0.3592 

3.41E-1 

0.2733 

1.83E-1 

1.74E-4 

1.4E-7 

5.52E- 4 

3.8E-6 

5.94E-3 

3.3E-3 

1.47e-06 

1.1e-06 

1.63e-06 

1.1e-06 

1.84e-03 

1.4e-03 

(20,10) 
M. 
Std. 

0.0658 
3.64E-2 

0.1635 
9.12E-2 

0.1018 
1.25E-1 

0.2168 
2.03E-1 

0.1778 
2.47E-1 

0.1959 
2.36E-1 

1.84E-4 
6.1E-6 

5.22E-4 
1.6E-7 

8.80E-3 
6.7E-3 

1.00e-07 
1.2e-09 

7.35e-08 

3.0e-09 
3.31e-07 

1.4e-07 

FDA2 

(5,10) 
M. 

Std. 

0.0740 

3.53E-2 

0.1695 

6.51E-2 

0.1023 

1.09E-1 

0.2062 

1.66E-1 

0.1241 

4.72E-2 

0.2127 

1.49E-1 

8.97E-3 

7.4E-04 

4.35E-2 

2.9E-5 

3.46E-3 

8.7E-4 

2.41e-06 

7.2e-07 

2.88e-06 

1.1e-06 

5.35e-06 

1.1e-06 

(10,10) 
M. 

Std. 

0.0842 

3.34E-2 

0.1906 

7.00E-2 

0.1200 

2.00E-1 

0.1965 

1.31E-1 

0.1243 

4.27E-2 

0.2528 

1.34E-1 

8.30E-3 

6.1E-4 

3.61E-2 

2.2E-6 

3.41E-3 

5.6E-4 

1.70e-06 

5.5e-07 

2.74e-06 

4.4e-07 

2.60e-06 

1.1e-06 

(20,10) 
M. 

Std. 

0.0662 

3.63E-2 

0.1335 

4.02E-2 

0.0719 

9.86E-2 

0.1810 

1.88E-1 

0.0785 

3.37E-2 

0.1678 

1.44E-1 

7.92E-3 

1.9E-4 

3.61E-2 

2.2E-3 

7.27E-3 

2.0E-3 

4.23e-06 

7.7e-07 

3.92e-06 

8.4e-07 

3.23e-06 

7.1e-07 

FDA3 

(5,10) 
M. 
Std. 

0.1428 
1.11E-1 

0.2685 
2.66E-1 

0.3142 
2.14E-1 

0.2250 
1.81E-1 

0.2925 
2.44E-1 

0.3493 
4.27E-1 

2.50E-2 
4.9E-5 

9.52E-2 
7.0E-2 

2.47E-2 
2.2E-2 

9.64e-06 
4.3e-06 

1.35e-05 
5.0e-06 

6.19e-06 

3.4e-06 

(10,10) 
M. 

Std. 

0.0914 

9.77E-2 

0.1429 

7.49E-2 

0.2072 

1.38E-1 

0.1994 

1.93E-1 

0.252 

2.75E-1 

0.2530 

3.05E-1 

3.32E-2 

9.7E-6 

9.50E-2 

6.2E-2 

2.83E-2 

2.8E-2 

8.71e-06 

8.1e-06 

6.05e-06 

2.9e-06 

9.53e-06 

4.5e-06 

(20,10) 
M. 
Std. 

0.0749 
5.08E-2 

0.1349 
1.02E-1 

0.2286 
1.76E-1 

0.1409 
1.94E-1 

0.1442 
8.24E-2 

0.1361 
7.58E-2 

3.28E-2 
2.1E-5 

1.02E-1 
6.9E-2 

1.35E-1 
9.8E-2 

2.66e-05 
1.6e-05 

2.13e-05 
1.0e-05 

1.76e-06 

1.1e-06 

FDA4 

(5,10) 
M. 

Std. 

0.1523 

9.67E-2 

0.1578 

7.21E-2 

0.2114 

1.48E-1 

0.1866 

7.83E-2 

0.2335 

1.21E-1 

0.1702 

4.11E-2 

2.92E-3 

9.6E-5 

5.93E-2 

1.4E-3 

8.48E-4 

4.7E-4 

9.42e-07 

7.3e-08 

3.56e-07 

2.8e-08 

2.65e-07 

2.5e-08 

(10,10) 
M. 

Std. 

0.1594 

5.77E-2 

0.1311 

4.03E-2 

0.1848 

1.75E-1 

0.1709 

5.15E-2 

0.2180 

1.05E-1 

0.1787 

8.33E-2 

1.81E-3 

5.0E-5 

4.18E-2 

3.9E-3 

1.28E-3 

5.3E-4 

6.35e-07 

2.6e-08 

1.57e-07 

4.4e-09 

2.12e-07 

1.6e-08 

(20,10) 
M. 

Std. 

0.1336 

3.89E-2 

0.125 

4.06E-2 

0.1765 

2.02E-1 

0.1234 

2.36E-2 

0.1998 

9.90E-2 

0.1253 

2.66E-2 

1.92E-3 

2.0E-6 

4.19E-2 

2.2E-3 

5.62E-3 

1.8E-3 

4.81e-07 

1.3e-08 

1.07e-07 

3.7e-09 

7.56e-08 

3.5e-08 

FDA5 

(5,10) 
M. 

Std. 

0.2081 

6.47E-2 

0.2683 

8.65E-2 

0.2036 

7.28E-2 

0.2120 

1.05E-1 

0.1737 

4.19E-2 

0.2184 

1.01E-1 

3.88E-2 

3.1E-4 

1.42E-1 

1.3E-2 

6.62E-3 

1.4E-3 

9.91e-06 

1.7e-06 

7.36e-06 

1.4e-06 

1.95e-06 

1.0e-06 

(10,10) 
M. 

Std. 

0.1892 

5.19E-2 

0.2369 

7.79E-2 

0.2305 

1.04E-1 

0.1862 

9.43E-2 

0.1752 

4.89E-2 

0.2140 

1.01E-1 

2.87E-2 

2.1E-5 

9.97E-2 

8.3E-3 

1.50E-2 

9.4E-3 

3.24e-06 

6.8e-07 

2.13e-06 

2.4e-07 

1.45e-06 

2.9e-07 

(20,10) 
M. 

Std. 

0.1642 

6.06E-2 

0.1818 

5.76E-2 

0.1895 

8.11E-2 

0.1729 

9.00E-2 

0.1879 

4.56E-2 

0.1968 

7.64E-2 

5.10E-2 

1.8E-3 

1.64E-1 

9.6E-3 

2.35E-2 

1.0E-2 

1.57e-06 

1.7e-07 

7.34e-07 

8.1e-08 

1.31e-06 

5.6e-07 

dMOP1 

(5,10) 
M. 

Std. 

0.0589 

3.82E-2 

0.1857 

9.13E-2 

0.1269 

2.37E-1 

0.2237 

8.15E-2 

0.2345 

6.53E-2 

0.2421 

1.33E-1 

3.35E-3 

5.1E-7 

3.35E-3 

1.0E-6 

1.76E-4 

1.4E-5 

1.19e-07 

3.3e-09 

1.18e-07 

6.2e-09 

1.31e-07 

6.5e-09 

(10,10) 
M. 

Std. 

0.0543 

5.52E-2 

0.1565 

7.39E-2 

0.0965 

2.18E-1 

0.3266 

1.99E-1 

0.2507 

8.15E-2 

0.2734 

1.46E-1 

2.48E-3 

2.6E-7 

1.59E-2 

1.3E-2 

1.97E-4 

2.2E-5 

9.36e-08 

2.0e-09 

7.16e-08 

2.4e-09 

8.59e-08 

2.9e-09 

(20,10) 
M. 

Std. 

0.0252 

9.00E-3 

0.1145 

5.03E-2 

0.0690 

1.95E-1 

0.1938 

1.25E-1 

0.1204 

9.13E-2 

0.1606 

1.63E-1 

3.47E-3 

1.1E-6 

3.47E-3 

4.0E-7 

1.35E-4 

8.6E-6 

8.41e-08 

1.3e-09 

6.08e-08 

2.0e-09 

5.98e-08 

2.5e-09 

dMOP2 

(5,10) 
M. 

Std. 

0.0494 

1.59E-2 

0.2258 

1.31E-1 

0.1265 

1.34E-1 

0.1302 

8.99E-2 

0.1311 

6.02E-2 

0.1505 

1.58E-1 

1.77E-4 

1.9E-6 

1.72E-2 

1.7E-2 

1.62E-3 

3.5E-3 

1.29e-06 

3.0e-06 

1.14e-06 

2.0e-06 

7.23e-07 

3.8e-07 

(10,10) 
M. 

Std. 

0.0717 

4.20E-2 

0.1646 

8.01E-2 

0.1102 

1.00E-1 

0.1142 

8.98E-2 

0.1157 

6.03E-2 

0.1586 

1.33E-1 

1.53E-4 

1.2E-7 

1.50E-4 

1.9E-8 

3.70E-4 

8.6E-5 

1.04e-06 

5.6e-08 

1.03e-06 

1.3e-07 

2.62e-07 

4.7e-08 

(20,10) 
M. 

Std. 

0.0261 

8.53E-3 

0.120 

8.70E-2 

0.0771 

1.12E-1 

0.0541 

4.82E-2 

0.0795 

4.89E-2 

0.0609 

4.64E-2 

1.50E-4 

2.1E-7 

1.49E-4 

1.6E-7 

2.81E-4 

1.1E-4 

8.66e-07 

7.5e-07 

1.03e-06 

7.6e-07 

2.68e-07 

5.5e-08 

dMOP3 

(5,10) 
M. 

Std. 

0.0593 

3.10E-2 

0.1132 

8.72E-2 

0.1136 

8.84E-2 

0.0987 

7.16E-2 

0.1203 

4.29E-2 

0.0729 

3.87E-2 

7.83E-2 

2.8E-3 

8.85E-2 

3.7E-3 

1.10E-1 

1.6E-2 

2.94e-04 

1.0e-04 

7.13e-05 

2.0e-05 

5.18e-05 

1.7e-05 

(10,10) 
M. 

Std. 

0.0683 

4.26E-2 

0.1431 

5.58E-2 

0.0736 

6.38E-2 

0.0897 

4.56E-2 

0.1057 

5.18E-2 

0.0850 

5.68E-2 

1.59E-1 

8.8E-3 

1.88E-1 

6.9E-3 

9.63E-2 

2.4E-2 

2.55e-04 

1.1e-04 

7.46e-05 

1.7e-05 

7.31e-05 

2.1e-05 

(20,10) 
M. 

Std. 

0.0260 

5.56E-3 

0.0730 

4.91E-2 

0.0563 

6.87E-2 

0.0510 

3.52E-2 

0.0575 

3.22E-2 

0.0401 

2.57E-2 

6.38E-1 

1.8E-3 

9.05E-1 

3.3E-2 

1.58E-1 

3.1E-2 

1.58e-04 

7.1e-05 

1.00e-04 

1.7e-05 

7.55e-05 

2.3e-05 



 Table 4. Mean and Standard Deviation Values of DMOEAs over IGD for FDA and dMOP Functions with Severe, Moderate and Slight Environmental Changes. 

Prob. (𝝉𝒕, 𝒏𝒕) Values 

DMOEAs compared by Jiang et al. [19] 
MOPSO-based Methods  

without Dynamism handling strategy 
Dynamic MOPSO-based Methods 

DNSGA-II dCOEA PPS MOEA/D SGEA MOPSO dMOPSO pbMOPSO 
Dynamic-MOPSO DPb-MOPSO  

(Random parameters) 

DPb-MOPSO 

(Best orthogonal design) 

 

FDA1 

(5, 10) 
M. 

Std. 

6.40E-1 

9.8E-2 

6.36E-2 

1.1E-2 

2.08E-1 

8.4E-2 

3.56E-1 

4.9E-2 

3.41E-2 

8.0E-3 

6.05E-5 

2.0E-6 

1.68E-4 

8.8E-6 

1.13E-2 

4.6E-3 

8.77E-3 

3.6E-3 

1.68E-2 
8.1E-3 

3.33e-03 
1.2e-03 

(10, 10) 
M. 

Std. 

5.82E-2 

3.8E-3 

4.13E-2 

6.5E-3 

4.27E-2 

1.9E-2 

1.21E-1 

1.1E-2 

1.48E-2 

2.0E-3 

5.19E-5 

1.1E-6 

1.45E-4 

5.1E-6 

5.94E-3 

3.3E-3 

1.40E-3 

8.1E-4 

1.72E-3 

9.7E-4 

2.05e-06 

1.5e-06 

(20, 10) 
M. 

Std. 

4.14E-2 

4.2E-3 

2.39E-2 

2.2E-3 

1.62E-2 

7.9E-3 

4.04E-2 

2.2E-3 

7.55E-3 

1.4E-3 

3.90E-5 

4.8E-7 

1.11E-4 

2.4E-6 

8.80E-3 

6.7E-3 

1.79E-4 

1.6E-4 

1.00E-4 

1.1E-4 

2.98e-04 

1.2e-04 

 

FDA2 

(5, 10) 
M. 
Std. 

2.85E-2 
2.4E-3 

7.28E-2 
3.8E-2 

8.13E-2 
3.0E-2 

8.40E-2 
1.3E-2 

1.50E-2 
1.6E-3 

7.00E-3 
1.2E-3 

4.18E-2 
1.7E-3 

3.46E-3 
8.7E-4 

4.01E-3 
1.0E-3 

3.27E-3 

8.6E-4 
4.81e-03 
9.7e-04 

(10, 10) 
M. 

Std. 

1.68E-3 

9.0E-4 

4.73E-2 

3.3E-2 

6.35E-2 

1.0E-2 

3.38E-2 

8.8E-3 

9.11E-3 

6.3E-4 

4.16E-3 

4.7E-4 

2.32E-2 

1.4E-3 

3.41E-3 

5.6E-4 

3.06E-3 

1.1E-3 

2.88E-3 

1.1E-3 

2.34e-03 

9.8e-04 

(20, 10) 
M. 

Std. 

6.51E-3 

5.26E-4 

3.24E-2 

4.60E-2 

6.27E-2 

9.07E-3 

1.64E-2 

4.99E-3 

6.32E-3 

4.07E-4 

1.43E-3 

2.0E-5 

6.46E-3 

3.1E-4 

7.27E-3 

2.0E-3 

1.95E-3 

6.3E-4 

2.54E-3 

8.1E-4 

2.90e-03 

6.4e-04 

 

FDA3 

(5, 10) 
M. 

Std. 

2.63E-1 

6.0E-2 

2.63E-1 

3.5E-2 

4.43E-1 

1.1E-1 

2.47E-1 

2.3E-2 

6.25E-2 

3.8E-2 

4.23E-2 

1.3E-4 

5.19E-2 

3.6E-2 

2.47E-2 

2.2E-2 

9.26E-3 

3.4E-3 

1.52E-2 

5.6E-3 

5.57e-03 

3.1e-03 

(10, 10) 
M. 

Std. 

1.08E-1 

3.3E-2 

1.95E-1 

3.2E-2 

2.19E-1 

1.8E-2 

1.30E-1 

2.5E-2 

4.03E-2 

2.9E-2 

3.97E-2 

3.6E-5 

5.68E-2 

4.4E-2 

2.83E-2 

2.8E-2 

5.54E-3 

2.9E-3 

3.96E-3 

1.7E-3 

8.58e-03 

4.0e-03 

(20, 10) 
M. 

Std. 

9.03E-2 

2.8E-3 

1.26E-1 

3.1E-2 

1.92E-1 

2.4E-2 

5.45E-2 

8.3E-3 

3.52E-2 

2.9E-2 

3.47E-2 

5.2E-6 

4.84E-2 

3.5E-2 

1.35E-1 

9.8E-2 

1.48E-2 

1.0E-2 

8.36E-3 

5.7E-3 

1.59e-03 

9.8e-04 

 

FDA4 

(5, 10) 
M. 

Std. 

1.49E+0 

1.2E-1 

1.62E-1 

6.1E-3 

3.07E-1 

1.9E-2 

1.36E+0 

1.6E-1 

4.60E-1 

6.6E-2 

6.19E-4 

1.8E-5 

1.28E-2 

1.7E-3 

8.48E-4 

4.7E-4 

9.31E-4 

1.3E-4 

3.44E-4 

2.7E-5 

2.38e-04 

2.3e-05 

(10, 10) 
M. 

Std. 

7.63E-1 

4.4E-2 

1.24E-1 

4.5E-3 

2.11E-1 

2.0E-2 

5.77E-1 

5.4E-2 

1.83E-1 

6.6E-3 

6.20E-4 

1.6E-5 

1.25E-2 

1.8E-3 

1.28E-3 

5.3E-4 

5.78E-4 

4.1E-5 

1.43E-4 

8.2E-6 

1.91e-04 

1.4e-05 

(20, 10) 
M. 

Std. 

2.62E-1 

1.6E-2 

1.03E-1 

1.7E-3 

1.79E-1 

3.0E-3 

2.22E-1 

1.3E-2 

1.26E-1 

1.5E-3 

3.82E-4 

1.4E-5 

8.17E-3 

1.2E-3 

5.62E-3 

1.8E-3 

4.34E-4 

1.5E-5 

9.60E-5 

5.7E-6 

6.81e-05 

3.1e-05 

 
FDA5 

(5, 10) 
M. 

Std. 

1.76E+0 

1.0E-1 

4.33E-1 

4.6E-2 

6.55E-1 

3.1E-2 

1.57E+0 

1.3E-1 

5.23E-1 

3.3E-2 

2.50E-2 

1.8E-4 

7.21E-2 

6.0E-3 

6.62E-3 

1.4E-3 

1.05E-2 

1.8E-3 

8.16E-3 

1.2E-3 

1.75e-03 

9.1e-04 

(10, 10) 
M. 
Std. 

1.02E+0 
5.4E-2 

3.62E-1 
4.0E-2 

4.80E-1 
3.5E-2 

8.19E-1 
6.0E-2 

3.62E-1 
8.5E-3 

2.16E-2 
2.0E-4 

6.08E-2 
3.6E-3 

1.50E-2 
9.4E-3 

3.30E-3 
7.1E-4 

1.88E-3 
2.8E-4 

1.31e-03 

2.6e-04 

(20, 10) 
M. 

Std. 

4.88E-1 

1.2E-2 

3.10E-1 

2.7E-2 

3.71E-1 

1.2E-2 

4.07E-1 

1.4E-2 

3.09E-1 

2.2E-3 

1.42E-2 

1.3E-4 

3.89E-2 

3.5E-3 

2.35E-2 

1.0E-2 

1.77E-3 

3.2E-4 

7.48E-4 

6.6E-5 

1.18e-03 

5.1e-04 

 

dMOP1 

(5, 10) 
M. 

Std. 

1.31E-1 

1.1E-2 

6.95E-2 

1.4E-2 

4.15E-1 

7.4E-1 

1.36E-2 

9.0E-3 

1.12E-2 

8.1E-3 

4.06E-3 

2.8E-7 

4.39E-3 

1.8E-3 

1.76E-4 

1.4E-5 

1.04E-4 

3.4E-6 

1.02E-4 

5.0E-6 

1.18e-04 

5.9e-06 

(10, 10) 
M. 

Std. 

8.83E-3 

5.0E-3 

3.93E-2 

6.2E-3 

5.09E-2 

9.3E-2 

9.39E-3 

4.3E-3 

8.24E-3 

5.3E-3 

2.02E-3 

2.2E-7 

2.29E-3 

1.4E-3 

1.97E-4 

2.2E-5 

8.40E-5 

1.7E-6 

6.46E-5 

2.5E-6 

7.73e-05 

2.6e-06 

(20, 10) 
M. 

Std. 

7.39E-3 

3.2E-3 

1.88E-2 

2.3E-3 

4.39E-2 

8.4E-2 

7.17E-3 

2.7E-3 

6.54E-3 

3.0E-3 

2.71E-3 

1.3E-7 

2.71E-3 

1.0E-7 

1.35E-4 

8.6E-6 

7.67E-5 

1.1E-6 

5.51E-5 

1.6E-6 

5.38e-05 

2.3e-06 

 

dMOP2 

(5, 10) 
M. 

Std. 

6.87E-1 

7.5E-2 

1.20E-1 

2.0E-2 

1.56E-1 

1.8E-2 

4.91E-1 

4.1E-2 

3.02E-2 

3.4E-3 

1.59E-3 

6.0E-7 

4.19E-3 

6.6E-3 

1.62E-3 

3.5E-3 

4.11E-3 

5.1E-3 

3.88E-3 

6.0E-3 

6.50e-04 

3.4e-04 

(10, 10) 
M. 

Std. 

1.18E-1 

9.4E-3 

7.32E-2 

8.9E-3 

4.28E-1 

1.7E-2 

1.88E-1 

1.9E-2 

1.21E-2 

5.7E-4 

6.33E-4 

2.0E-6 

2.95E-3 

8.7E-3 

3.70E-4 

8.6E-5 

5.64E-4 

3.8E-5 

6.44E-4 

7.8E-5 

2.36e-04 

4.2e-05 

(20, 10) 
M. 

Std. 

1.57E-1 

6.70E-4 

3.46E-2 

4.32E-3 

2.02E-2 

2.49E-3 

5.63E-2 

3.91E-3 

6.32E-3 

1.74E-4 

1.92E-3 

3.7E-7 

2.70E-3 

4.2E-3 

2.81E-4 

1.1E-4 

2.35E-3 

9.6E-4 

2.36E-3 

8.9E-4 

2.41e-04 

4.9e-05 

 

dMOP3 

(5, 10) 
M. 

Std. 

5.62E-1 

3.9E-2 

4.95E-2 

4.8E-3 

1.76E-1 

8.0E-2 

3.42E-1 

1.9E-2 

1.81E-1 

9.6E-2 

9.13E-1 

2.9E-1 

1.19E+0 

5.2E-2 

1.10E-1 

1.6E-2 

2.18E-1 

7.2E-2 

8.56E-2 

3.3E-2 

4.66e-02 

1.5e-02 

(10, 10) 
M. 

Std. 

2.00E-1 

1.5E-2 

2.95E-2 

2.4E-3 

1.13E-1 

1.2E-2 

1.68E-1 

1.0E-2 

1.32E-1 

1.3E-2 

2.67E-1 

2.0E-2 

2.95E-1 

4.2E-3 

9.63E-2 

2.4E-2 

1.04E-1 

3.0E-2 

7.69E-2 

1.3E-2 

6.58e-02 

1.9e-02 

(20 ,10) 
M. 

Std. 

1.07E-1 

8.50E-3 

1.63E-2 

1.71E-3 

8.99E-2 

6.74E-3 

6.27E-2 

4.37E-3 

8.15E-2 

1.25E-2 

5.04E+0 

2.7E+0 

8.88E+0 

1.9E-1 

1.58E-1 

3.1E-2 

3.47E-1 

4.1E-2 

1.62E-1 

5.1E-2 

6.80e-02 

2.1e-02 

 

 

 



Table 5.  Mean and Standard Deviation Values of DMOEAs over HVD for FDA and dMOP Functions with Severe, Moderate and Slight Changes. 

Prob. (τt, nt) Values 

DMOEAs compared by Jiang et al. [19] 
MOPSO-based Methods  

without Dynamism handling strategy 
Dynamic MOPSO-based Methods 

DNSGA-II dCOEA PPS MOEA/D SGEA MOPSO dMOPSO pbMOPSO 
Dynamic-MOPSO DPb-MOPSO  

(Random parameters) 

DPb-MOPSO 

(Best orthogonal design) 

 

FDA1 

(5, 10) 
M. 

Std. 

8.70E-1 

7.5E-2 

1.25E-1 

2.4E-2 

3.87E-1 

1.0E-1 

7.70E-1 

9.4E-2 

8.14E-2 

2.0E-2 

3.83E-3 

1.6E-4 

4.48E-3 

6.3E-5 

1.14E-1 

5.2E-2 

1.51E-1 

5.2E-2 

1.56E-1 
6.9E-2 

3.48e-02 
3.3e-02 

(10, 10) 
M. 

Std. 

1.36E-1 

1.7E-2 

8.52E-2 

2.0E-2 

2.97E-1 

1.6E-2 

2.88E-1 

2.9E-2 

3.81E-2 

1.4E-2 

4.14E-3 

6.4E-5 

4.56E-3 

4.0E-5 

1.03E-1 

6.0E-2 

6.22E-2 

3.3E-2 

6.65E-2 

3.7E-2 

2.16e-02 

1.5e-02 

(20, 10) 
M. 

Std. 

3.55E-2 

1.3E-2 

5.46E-2 

1.6E-2 

2.84E-1 

1.5E-2 

1.34E-1 

9.2E-3 

2.02E-2 

1.2E-2 

4.30E-3 

3.6E-5 

4.65E-3 

1.7E-5 

8.36E-2 

6.9E-2 

6.67E-3 

7.7E-3 

6.57E-3 

1.3E-2 

5.96e-03 

4.7e-03 

 

FDA2 

(5, 10) 
M. 
Std. 

4.71E-2 
1.4E-2 

1.85E-1 
6.4E-2 

3.21E-1 
6.7E-2 

1.30E-1 
2.5E-2 

2.54E-2 

1.3E-2 

8.99E+0 
8.5E-1 

9.96E+0 
1.4E+0 

6.75E+0 
9.9E+0 

3.04E+0 
2.9E+0 

8.83E+0 
9.7E+0 

2.22e+00 
4.9e-01 

(10, 10) 
M. 

Std. 

2.05E-2 

1.4E-2 

1.24E-1 

4.6E-2 

2.66E-1 

1.4E-2 

6.29E-2 

1.8E-2 

1.67E-2 

1.4E-2 

8.54E+0 

3.2E-1 

9.72E+0 

1.4E+0 

1.60E+1 

6.4E+0 

2.55E+0 

1.6E+0 

1.29E+1 

1.5E+1 

2.28e+00 

5.0e-01 

(20, 10) 
M. 

Std. 

1.33E-2 

1.4E-2 

8.64E-2 

7.0E-2 

2.55E-1 

9.4E-3 

3.24E-2 

1.4E-2 

1.23E-2 

1.4E-2 

8.43E+0 

1.8E-2 

8.19E+0 

1.1E+0 

8.80E+0 

1.3E+1 

1.23E+0 

7.4E-1 

7.70E+0 

8.8E+0 

4.39e+00 

8.2e+00 

 

FDA3 

(5, 10) 
M. 

Std. 

1.54E+0 

1.6E-1 

1.45E+0 

8.5E-2 

1.75E+0 

1.8E-1 

1.66E+0 

7.8E-2 

9.80E-1 

1.0E-1 

4.86E-1 

8.2E-3 

4.27E-1 

2.6E-1 

2.62E-1 

1.6E-1 

1.13E-1 

6.3E-2 

9.59E-2 

6.4E-2 

5.58e-02 

4.7e-02 

(10, 10) 
M. 

Std. 

1.09E+0 

9.9E-2 

1.32E+0 

7.7E-2 

1.16E+0 

4.6E-2 

1.12E+0 

9.3E-2 

9.24E-1 

8.2E-2 

5.62E-1 

6.5E-4 

5.27E-1 

1.9E-1 

3.21E-1 

2.3E-1 

8.48E-2 

5.0E-2 

5.69E-2 

3.2E-2 

9.99e-02 

6.3e-02 

(20, 10) 
M. 

Std. 

1.04E+0 

7.9E-2 

1.15E+0 

6.6E-2 

1.03E+0 

7.4E-2 

9.47E-1 

2.2E-2 

9.11E-1 

8.1E-2 

5.54E-1 

2.1E-4 

4.13E-1 

3.6E-1 

5.74E-1 

2.7E-1 

2.64E-1 

1.8E-1 

1.26E-1 

1.1E-1 

3.53e-02 

2.6e-02 

 

FDA4 

(5, 10) 
M. 

Std. 

2.05E+0 

2.0E-1 

3.80E-1 

2.6E-2 

7.77E-1 

6.8E-2 

3.97E+0 

1.6E+0 

1.03E+0 

1.3E-1 

4.17E-2 

4.6E-3 

6.51E+1 

7.3E+0 

3.23E-2 

4.8E-2 

2.13E-2 

1.1E-2 

3.20E-3 

1.5E-3 

5.47e-03 

3.9e-03 

(10, 10) 
M. 

Std. 

1.58E+0 

6.6E-2 

2.70E-1 

3.5E-2 

4.34E-1 

7.2E-2 

1.24E+0 

1.3E-1 

2.74E-1 

2.4E-2 

4.26E-2 

5.0E-3 

6.92E+1 

8.2E+0 

3.11E-2 

4.3E-2 

2.28E-2 

7.6E-3 

3.00E-3 

8.7E-3 

2.08e-03 

1.2e-03 

(20, 10) 
M. 

Std. 

5.48E-1 

5.7E-2 

1.80E-1 

2.4E-2 

3.34E-1 

8.3E-3 

4.34E-1 

5.0E-2 

1.44E-1 

2.0E-2 

4.41E-2 

4.0E-3 

7.01E+1 

8.5E+0 

1.16E-1 

6.7E-2 

4.57E-2 

1.2E-2 

3.39E-3 

5.9E-3 

2.03e-03 

1.5e-03 

 
FDA5 

(5, 10) 
M. 

Std. 

6.75E+0 

1.9E-1 

2.76E+0 

2.8E-1 

3.88E+0 

3.1E-1 

7.08E+0 

1.0E+0 

2.70E+0 

2.2E-1 

6.38E-1 

6.1E-1 

9.97E-1 

5.5E+0 

2.78E-1 

1.2E-1 

2.72E-1 

8.3E-2 

1.20E-1 

7.8E-2 

7.43e-17 

1.7e-16 

(10, 10) 
M. 
Std. 

5.41E+0 
1.6E-1 

2.37E+0 
2.7E-1 

2.19E+0 
3.9E-1 

4.80E+0 
2.6E-1 

1.88E+0 
9.3E-2 

8.66E-1 
6.7E-1 

5.97E-1 
3.8E+0 

5.18E-1 
4.5E-1 

1.03E-1 
6.9E-2 

1.47E-2 
9.5E-3 

1.38e-02 

9.4e-03 

(20, 10) 
M. 

Std. 

2.64E+0 

1.1E-1 

2.02E+0 

1.8E-1 

1.04E+0 

1.1E-1 

2.15E+0 

1.0E-1 

1.78E+0 

7.1E-2 

1.51E+0 

5.4E-1 

1.47E+0 

5.4E+0 

1.24E+0 

7.2E-1 

3.62E-2 

3.7E-2 

7.10E-3 

6.3E-3 

1.57e-02 

1.0e-02 

 

dMOP1 

(5, 10) 
M. 

Std. 

3.93E-2 

3.81E-2 

1.73E-1 

3.3E-2 

2.86E-1 

3.6E-1 

4.64E-2 

3.6E-2 

3.75E-2 

2.5E-2 

3.29E-1 

9.9E-5 

3.07E-1 

1.2E-1 

3.77E-3 

5.7E-4 

1.21E-3 

4.3E-4 

1.02E-3 

3.7E-4 

5.22e-04 

3.2e-04 

(10, 10) 
M. 

Std. 

2.28E-2 

2.0E-2 

1.12E-1 

2.0E-2 

9.27E-2 

1.3E-1 

2.57E-2 

1.5E-2 

1.90E-2 

1.4E-2 

3.29E-1 

5.9E-5 

3.29E-1 

3.3E-5 

2.03E-3 

1.0E-3 

2.53E-3 

3.4E-4 

3.41E-4 

2.1E-4 

2.81e-04 

1.7e-04 

(20, 10) 
M. 

Std. 

1.71E-2 

1.4E-2 

5.65E-2 

8.1E-3 

6.02E-2 

8.1E-2 

1.59E-2 

7.9E-3 

1.80E-2 

1.3E-2 

3.29E-1 

3.6E-5 

3.29E-1 

1.7E-5 

3.07E-3 

5.6E-4 

3.49E-3 

2.2E-4 

8.94E-4 

1.8E-4 

2.11e-04 

1.6e-04 

 

dMOP2 

(5, 10) 
M. 

Std. 

8.06E-1 

1.1E-1 

3.03E-1 

4.9E-2 

3.95E-1 

3.9E-2 

9.04E-1 

7.3E-2 

8.71E-2 

1.9E-2 

1.08E-1 

8.2E-5 

1.98E-2 

2.2E-1 

1.32E-2 

2.4E-2 

1.33E-1 

8.0E-2 

1.08E-1 

2.5E-2 

3.67e-03 

7.4e-03 

(10, 10) 
M. 

Std. 

2.90E-1 

2.5E-2 

2.07E-1 

2.4E-2 

1.17E-1 

4.3E-2 

4.46E-1 

4.2E-2 

3.59E-2 

1.1E-2 

1.08E-1 

6.1E-5 

8.61E-2 

1.2E-1 

1.80E-3 

1.2E-3 

1.08E-1 

2.9E-2 

1.16E-1 

5.2E-3 

9.00e-04 

6.8e-04 

(20, 10) 
M. 

Std. 

4.50E-2 

1.2E-2 

1.09E-1 

1.5E-2 

5.65E-2 

6.2E-3 

1.98E-1 

1.4E-2 

1.85E-2 

1.1E-2 

1.08E-1 

3.3E-5 

8.57E-2 

1.2E-1 

4.73E-3 

1.8E-3 

7.98E-2 

4.0E-2 

6.65E-2 

4.7E-2 

6.35e-04 

6.2e-04 

 

dMOP3 

(5, 10) 
M. 

Std. 

9.51E-1 

3.4E-2 

1.05E-1 

1.6E-2 

4.22E-1 

1.5E-2 

7.61E-1 

5.3E-2 

4.07E-1 

2.4E-2 

1.13E+1 

1.2E+0 

1.10E+1 

1.3E-1 

1.89E+0 

6.2E-1 

3.57E-1 

4.0E-1 

1.42E-1 

1.4E-1 

5.32e-02 

5.0e-02 

(10, 10) 
M. 

Std. 

4.74E-1 

2.8E-2 

6.57E-2 

1.3E-2 

2.79E-1 

2.7E-2 

4.54E-1 

2.8E-2 

3.18E-1 

2.9E-2 

2.49E+0 

1.1E+0 

2.63E+0 

2.8E-1 

1.04E+0 

5.0E-1 

1.74E+1 

3.0E-1 

1.69E+1 

3.1E+0 

1.62e-01 

1.7e-01 

(20, 10) 
M. 

Std. 

2.76E-1 

2.5E-2 

3.63E-2 

1.3E-2 

2.21E-1 

1.5E-2 

2.87E-1 

2.0E-2 

2.15E-1 

3.0E-2 

1.63E+1 

1.9E+0 

1.73E+1 

1.3E-1 

2.44E+0 

7.2E-1 

1.58E+1 

3.0E+0 

1.55E+1 

3.8E+0 

1.11e-01 

6.5e-02 

  

 



Table 6.  Mean and Standard Deviation Values of DMOEAs over RIGD for FDA and dMOP Functions.  

Prob. Predict methods 
DMOEAs tested by Guo et al. [24] DPb-MOPSO 

(Best orthogonal design) MOEA/D MOEA/D-DE  SPEA2 MOPSO NSGAIII 

 

FDA1 

Ave 1.063E-1±3.40E-3 1.105E-1±4.10E-3 2.956E-2±3.49E-4 3.120E-2±9.94E-4 3.612E-1±7.14E-2 

9.37e-05 ± 6.6e-05 Adapt 2.810E-2±1.13E-4 3.260E-2±1.50E-3 2.964E-2±4.24E-4 3.096E-2±1.02E-3 2.76E-1±9.54E-2 

Weight 2.80E-2±5.80E-5 1.2263±0.0091 2.950E-2±4.13E-4 3.116E-2±1.02E-3 3.488E-1±5.29E-2 

 

FDA2 

Ave 1.519E-1±1.50E-3 1.798E-1±7.60E-3 1.766E-1±4.71E-2 1.590E-1±1.51E-3 4.427E-1±1.026E-1 

1.08e-04 ± 2.6e-05 Adapt 1.690E-1±5.79E-5 1.448E-1±1.90E-5 1.993E-1±1.03E-1 1.585E-1±6.13E-4 3.818E-1±5.85E-2 

Weight 1.690E-1±8.47E-5  1.2263±0.0091  1.695E-1±2.17E-2  2.737E-1±7.56E-4 5.349E-1±7.91E-2 

 

FDA3 

Ave 2.024E-1±6.50E-3 3.027E-1±3.25E-2 1.724±0.0000 1.724±0.0000 2.530E-1±2.61E-2 

3.26e-04 ± 1.4e-04 Adapt 1.457E-1±1.80E-3 3.336E-1±2.52E-2 1.726±4.55E-16 1.726±4.55E-16 3.940E-1±1.19E-1 

Weight 1.457E-1±1.40E-3 3.367E-1±2.92E-2 1.724±4.55E-16 1.724±4.55E-16 8.100E-1±3.20E-1 

 

FDA4 

Ave 2.127E-1±6.20E-3 2.301E-1±1.10E-2 9.342E-2±2.03E-3 1.383E-1±2.14E-2 3.059E-1±1.51E-2 

1.06e-05 ± 7.5e-07 Adapt 7.420E-2±1.30E-3 9.320E-2±4.60E-3 9.552E-2±4.2E-3 1.257E-1±1.29E02 2.051E-1±3.08E-2 

Weight 7.370E-2±1.60E-3 8.61E-2±2.30E-3 1.639E-2±2.52E-3 1.829E-2±2.32E-3 1.982E-1±2.45E-3 

 

FDA5 

Ave 3.023E-1±5.50E-3 1.0409±6.06E-2 1.656E-1±3.46E-3 1.978E-1±1.25E-2 4.936E-1±1.94E-1 

6.15e-05 ± 9.1e-06 Adapt 1.722E-1±3.00E-3 5.817E-1±5.55E-2 1.657E-1±2.53E-3 1.976E-1±1.52E-2 4.922E-1±1.39E-1 

Weight 1.729E-1±3.70E-3 5.618E-1±4.98E-2 1.639E-1±2.47E-3 1.942E-1±9.64E-3 3.804E-1±2.33E-1 

 

dMOP1 

Ave 1.642E-1±9.00E-5 1.700E-1±8.56E-4 6.259E-1±1.18E-1 6.496E-1±1.13E-16 8.095E-1±1.64E-1 

4.33e-06 ± 1.6e-07 Adapt 1.642E-2±5.69E-5 1.706E-1±1.60E-3 4.258E-1±2.84E-1 6.496E-1±1.13E-1 7.081E-1±1.08E-1 

Weight 1.642E-2±8.55E-5 1.702E-1±1.10E-4 5.053E-1±2.61E-1 6.496E-1±1.13E-16 6.447E-1±1.89E-1 

 

dMOP2 

Ave 1.915E-2±1.20E-2 1.911E-1±1.14E-2 5.330E-2±2.79E-4 5.419E-2±8.55E-4 2.800E-1±6.69E-2 

1.22e-05 ± 1.4e-06 Adapt 5.320E-2±6.66E-4 5.62E-2±1.60E-3 5.325E-2±1.75E-4 5.411E-2±1.03E-3 1.084E-1±2.79E-2 

Weight 5.320E-2±8.84E-4 5.55E-2±1.30E-3 5.328E-2±3.05E-4 5.422E-2±9.86E-4 1.388E-1±1.80E-2 

 

dMOP3 

Ave 1.3684±3.50E-2 1.3784±6.59E-2 2.963E-1±5.25E-2 2.549E-1±1.12E-3 4.652E-1±8.86E-2 

4.12e-03 ± 1.4e-03 Adapt 2.530E-1±1.38E-4 2.600E-1±1.30E-2 3.034E-1±7.40E-2 2.550E-1±1.61E-3 5.220E-1±1.21E-1 

Weight 2.530E-1±1.65E-4 2.639E-1±2.10E-2 2.980E-1±8.38E-2 2.555E-1±2.34E-3 7.877E-1±1.65E-1 

  

 

 

 

 

 

 

 



Table 7.  Mean and Standard Deviation Values of DMOEAs over RGD for FDA and dMOP Functions.  

Prob. Predict methods 
DMOEAs tested by Guo et al. [24] DPb-MOPSO 

(Best orthogonal design) MOEA/D MOEA/D-DE  SPEA2 MOPSO NSGAIII 

 

FDA1 

Ave 1.035E-1±3.10E-3 1.968E-1±6.85E-2 2.964E-2±4.27E-04 3.008E-2±5.54E-04 1.794E-1±5.71E-2 

4.11e-04 ± 3.2e-04 Adapt 2.810E-2±5.53E-5 2.072E-1±3.34E-2 2.987E-2±6.31E-04 3.0513±5.55E-04 7.87E-2±1.30E-2 

Weight 2.810E-2±4.54E-5 1.972E-1±5.91E-2 2.963E-2±5.25E-04 3.022±6.16E-04 7.28E-2±1.30E-2 

 

FDA2 

Ave 1.766E-1±1.90E-3 1.768E-1±9.60E-3 2.150E-1±1.04E-2 2.56E8-1±1.11E-2 4.051E-1±1.08E-1 

8.02e-05 ± 3.3e-05 Adapt 1.574E-1±1.41E-4 1.468E-1±1.38E-2 2.092E-1±2.66E-2 2.572E-1±1.09E-2 3.382E-1±7.06E-2 

Weight 1.575E-1±2.37E-4 1.313E-1±2.1E-3 2.166E-1±8.90E-3 2.599E-1±1.23E-2 3.634E-1±5.93E-2 

 

FDA3 

Ave 1.979E-1±6.40E-3 2.001E-1±1.07E-2 9.767E-1±1.39E-16 9.767E-1±1.39E-16 3.067E-1±5.82E-2 

3.93e-04 ± 1.9e-04 Adapt 1.439E-1±1.70E-3 1.685E-1±1.54E-2 9.780E-1±3.41E-16 9.780E-1±3.41E-16 3.203E-1±1.17E-1 

Weight 1.439E-1±1.30E-3 2.067E-1±2.74E-2 9.772E-1±0 9.772E-1±0 3.080E-1±1.58E-1 

 

FDA4 

Ave 4.908E-1±3.90E-3 1.1702±1.15E-1 3.889E-1±6.41E-3 3.041E-1±3.44E-2 5.975E-1±8.9E-3 

1.50e-05 ± 2.2e-06 Adapt 4.063E-1±4.95E-4 1.1306±6.79E-2 3.864E-1±9.60E-3 2.999E-1±1.85E-2 5.175E-1±2.73E-2 

Weight 4.064E-1±4.29E-4 1.1994±6.60E-2 3.857E-1±5.61E-3 3.072E-1±2.64E-2 5.118E-1±2.28E-2 

 

FDA5 

Ave 7.834E-1±35.00E-3 1.7370±1.01E-1 4.316E-1±9.31E-3 3.438E-1±1.62E-2 9.684E-1±1.32E-1 

3.06e-04 ± 1.3e-04 Adapt 7.841E-1±3.60E-3 1.6581±1.35E-1 4.295E-1±6.91E-3 3.555E-1±2.62E-2 9.936E-1±9.17E-1 

Weight 7.841E-1±6.70E-3 1.7339±6.79E-2 4.243E-1±8.30E-3 3.547E-1±1.26E-2 9.853E-1±3.10E-1 

 

dMOP1 

Ave 1.586E-2±1.57E-4 2.085E-1±4.73E-2 1.063E-2±1.81E-2 1.450E-2±6.63E-04 3.811E-1±1.51E-1 

7.97e-06 ± 3.6e-07 Adapt 1.387E-2±1.59E-4 1.763E-1±3.03E-2 3.150E-2±3.01E-2 1.457E-2±5.67E-4 1.243E-1±7.64E-2 

Weight 1.387E-2±1.86E-4 2.121E-1±1.97E-2 2.160E-2±2.75E-2 1.457E-2±5.23E-4 1.676E-1±3.61E-2 

 

dMOP2 

Ave 1.830E-1±1.29E-4 2.116E-1±2.31E-2 5.34E-2±3.16E-4 5.34E-2±3.01E-4 1.866E-1±1.82E-2 

1.70e-05 ± 1.6e-06 Adapt 5.290E-2±5.75E-4 9.820E-2±1.09E-2 5.34E-2±2.18E-4 5.34E-2±2.32E-4 8.980E-2±5.70E-3 

Weight 5.300E-2±7.74E-4 9.79E-2±7.40E-3 5.35E-2±4E-4.03 5.35E-2±2.77E-4 1.357E-1±2.14E-2 

 

dMOP3 

Ave 1.175±2.97E-2 2.5829±5.01E-1 2.528E-1±5.60E-3 2.530E-1±6.01E-3 3.498±2.62E-2 

2.02e-02 ± 1.9e-02 Adapt 2.414E-1±1.13E-4 1.8238±6.25E-1 2.649E-1±3.51E-3 2.528E-1±4.80E-3 5.220±1.216E-1 

Weight 2.414E-1±1.15E-4 1.4660±4.75E-1 2.65E2-1±4.11E-3 2.519E-1±6.12E-3 8.447±3.692E-2 
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