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Abstract: In this paper, we propose an intrusion detection system (IDS) and Blockchain-based delivery
framework, called DeliveryCoin, for drone-delivered services. The DeliveryCoin framework consists
of four phases, including system initialization phase, creating the block, updating the blockchain,
and intrusion detection phase. To achieve privacy-preservation, the DeliveryCoin framework employs
hash functions and short signatures without random oracles and the Strong Diffie–Hellman (SDH)
assumption in bilinear groups. To achieve consensus inside the blockchain-based delivery platform,
we introduce a UAV-aided forwarding mechanism, named pBFTF. We also propose an IDS system
in each macro eNB (5G) for detecting self-driving network attacks as well as false transactions
between self-driving nodes. Furthermore, extensive simulations are conducted, and results confirm
the efficiency of our proposed DeliveryCoin framework in terms of latency of blockchain consensus
and accuracy.
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1. Introduction

Today we are witnessing the beginning of a new era in the automotive industry, that of highly
automated driving. The BMW company [1] defined five levels of autonomous driving: (1) driver
assistance, (2) partly automated driving, (3) highly automated driving, (4) fully automated driving,
and (5) full automation (no driver!). These levels characterize the evolution of autonomous driving.
Many leading companies are currently pioneering and working on self-driving car technology
(e.g., Tesla, Google, Ford, Lyft and Volvo). Without humans behind the wheel, researchers in these
companies try to solve some problems such as snow or bad weather, which could block the view of
lane lines.

Based on the integration of 5G networks into the future smart city concept, the Internet of
Vehicle (IoV) has emerged as a new research field of “vehicle-to-vehicle (V2V) communication” for the
Internet of Things (IoT) [2]. The applications of IoV can be classified into two categories; (1) Safety
and Management and (2) Business Oriented, as discussed by Kaiwartya et al. [3]. The Safety and
Management category includes accident prevention, emergency call, real-time traffic information,
parking helper, etc. The Business Oriented category includes car sharing, connected driving, car
pooling, etc. In our work, we consider 5G enabled IoV for buying and delivering packages using
two types of autonomous vehicles, including unmanned aerial vehicles (UAVs) and self-driving cars,
as presented in Figure 1.
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Figure 1. 5G enabled Internet of Vehicles for buying and delivering packages.

The world’s leading logistics companies (e.g., DHL, UPS, Amazon) have recently launched a new
service, called the UAV-based Delivery System, which aims at modernizing the delivery systems in
the near-future. The UAV-based delivery system can be used for urban first and last mile delivery,
rural delivery, surveillance of logistic infrastructures, and use for intra-logistics [4]. The main problem
in the development of drone-delivered services is not located at the physical support but mainly in
reassuring both security and privacy. Based on locations, identities, and profiles, an adversary can
launch active or passive attacks (e.g., via a false data injection attack) in order to steal the data routing
over flying UAVs, vehicles, and roadside infrastructure. Hence, in order to protect the drone-delivered
services within a smart city environment, the privacy-preserving scheme should preserve the privacy
of sensitive information (e.g., location) from vehicles and other drones [5].

The blockchain technology was born when Satoshi Nakamoto proposed the cryptocurrency
Bitcoin (BTC) [6]. The blockchain technology can be effectively applied in almost all domains of
the Internet of Things [7–12]. Yang et al. [8] proposed a trusted routing scheme, which is based
on Blockchain and reinforcement learning for wireless sensor networks. The study uses four core
technical elements, including distributed ledger, asymmetric encryption, consensus mechanism,
and smart contract. To improve the trustworthiness of the routing information between the routing
nodes, the study uses decentralized, tamper-proof and traceable characteristics of the blockchain
transactions. Pieroni et al. [10] proposed a smart energy grid architecture, named Smarter City, which
is based on blockchain technology. Derhab et al. [11] proposed software-defined wide-area network
architecture, named SD-WAN, for industrial control systems. The SD-WAN architecture is based
on two complementary components, including (1) an intrusion detection system, named RSL-KNN;
and (2) a blockchain-based Integrity checking system, named BICS. The RSL-KNN system uses two
machine learning approaches, namely, random subspace learning approach and K-Nearest Neighbor
classifier, against forged command attacks. The BICS system analyzes the flow rules against the
misrouting attack.

In this paper, we propose an intrusion detection system (IDS) and Blockchain-based delivery
framework, entitled DeliveryCoin, for drone-delivered services. The main contributions of this work
are summarized as follows:
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• We propose a new Blockchain-based delivery framework for facilitating the package delivery
service among self-driving nodes. To achieve privacy-preservation, the proposed scheme employs
hash functions and short signatures without random oracles and the Strong Diffie–Hellman (SDH)
assumption in bilinear groups.

• We introduce a UAV-aided forwarding mechanism, named pBFTF, that UAVs use in order to
achieve consensus inside the blockchain-based delivery platform.

• We propose an IDS system in each macro eNB (5G) for detecting self-driving network attacks as
well as false transactions between self-driving nodes. To the best of our knowledge, this is the first
study that combines blockchain technology with an IDS system into one architecturally secure
framework for an UAV-based delivery system.

• We provide various simulation results in terms of latency of blockchain consensus and accuracy.

The remainder of the paper is organized as follows. In Section 3, we present the threat model.
In Section 4, we describe the proposed DeliveryCoin framework. The performance evaluation of the
proposed DeliveryCoin framework is presented in Section 5. Finally, Section 6 concludes the paper.

2. Related Work

Recent studies have used blockchain technology to establish secure data sharing for vehicular
networks. Cebe et al. [13] proposed an integrated lightweight blockchain framework, named
Block4forensic, for connected vehicles. Based on all related parties such as drivers and car
manufacturers, without requiring a trusted third party, the Block4forensic framework provides a
lightweight privacy-aware blockchain. The Block4forensic framework uses three types of data,
including event data, diagnosis data, and maintenance data. These forensic data types are used
by four different types of nodes, namely, (1) Leader; (2) Validator; (3) Monitor units and (4) Client.
These nodes apply permission blockchain technology and implement shared and fragmented ledgers.
In addition, the Block4forensic framework preserves integrated membership management and privacy
using pseudonym identities from the VPKI model suggested in IEEE 1609.2.

The framework is used by Kang et al. [14] as a fair metric for enhancing Proof-of-Stake (DPoS)
schemes through a two-stage mechanism, including secure miner selection and reliable block
verification. Specifically, this reputation management is proposed for miner selection, leading to
selection of miner candidates with high reputation. This study indicated that the multiweight subjective
logic model is particularly suitable for decreasing collusion between stakeholders. To achieve the
reliability of confirming event occurrences for VANETs, Yang et al. [15] proposed a blockchain-based
traffic event validation framework, named BTEV, which is based on the Proof-of-Event (PoE) consensus
mechanism. In order to help identify the truth of events, the PoE mechanism is combined with fast
event notification as well as trust verification of roadside units. In addition, the block producer in the
PoE mechanism can be verified by other nodes.

Li et al. [16] proposed a network model for smart vehicles based on five entities, including trusted
authority, trace manager, users, RSUs, and a cloud application server. To provide privacy-preserving
in this network model, the study proposed a blockchain-based incentive announcement framework,
named CreditCoin. To generate the signatures and to send announcements anonymously between
smart vehicles, the CreditCoin framework applies an anonymous vehicular announcement aggregation
protocol. The CreditCoin framework can achieve conditional privacy since malicious users’ identities
can be traced in anonymous announcements.

3. Threat Model

In our threat model, the macro eNBs (5G) are trustable and non-compromisable. However,
we consider a global external attacker A against a blockchain-based delivery platform, which can
perform the following six categories of attacks, including brute-force attacks, web attacks, Denial of
Service (DoS) attacks, Distributed Denial of Service (DDoS) attacks, infiltration attacks, and Botnet
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attacks. These attacks are simulated in the CSE-CIC-IDS2018 dataset [17]. As presented in Figure 2,
we consider two networks, including (1) Attack-Network and (2) Victim-Network.The global
external attacker A is located at Attack-Network while blockchain-based delivery platform is located
at Victim-Network.

• Brute-force attacks: A brute force attack is an attempt to crack a password or username through
a trial and error method, with dictionaries being the most basic tools. The use of both a Central
Processing Unit (CPU) and Graphics Processing Unit (GPU) together increases the efficiency of
brute force attacks. We assume that the adversary A lunches two types of brute-force attacks,
including SSH-Bruteforce and FTP-BruteForce. The SSH-Bruteforce and FTP-BruteForce attacks
use Secure Shell (SSH) and File Transfer Protocol (FTP) connections, and start by performing
a series of tests to discover a valid blockchain id and password in order to take control of a
legitimate blockchain node. Please note that there are other types of brute-force attacks, such as
brute-force LDAP, brute-force SMB, brute-force of the password of encrypted ZIP, etc.

• Web attacks: A web attack is an attempt to manipulate web applications into altering Structured
Query Language (SQL) commands and sending malformed requests in order to retrieve sensitive
information. We assume that the adversary A lunches three types of web attacks against the
blockchain-based delivery platform, including SQL Injection, Brute Force-Web, and Brute Force
-XSS. Based on SQL queries (i.e., Select From Where), SQL Injection attacks create, read, update,
alter or delete the block stored in the blockchain’s SQL database. Web attacks can be launched
by a PHP/MySQL web application, named DVWA (http://www.dvwa.co.uk/). A Cross-Site
Scripting (XSS) attack injects malicious scripts into the blockchain’s SQL database as well as the
miner database.

• DoS attacks: A DoS attack attempts to make a network application unable to respond to requests
from its users. We assume that the adversary A lunches four types of DoS attacks, including
DoS attacks-Slowloris, DoS attacks-GoldenEye, DoS attacks-Hulk and DoS attacks-SlowHTTPTest.
These attacks are used to overwhelm the blockchain servers by opening and maintaining many
simultaneous HTTP connections.

• DDoS attacks: A DDoS attack attempts to make a distributed network unable to respond to requests
from its users. We assume three types of DDoS attacks, including DDoS attack-LOIC-HTTP,
DDoS attack-HOIC, and DDoS attack-LOIC-UDP. In order to overload the blockchain-based
delivery platform, these attacks send a large sequence of UDP, TCP or HTTP requests to the
distributed ledger.

• Infiltration attacks: An Infiltration attack is a malicious file (e.g., sent via an email) that attempts to
enter and/or damage a user’s device. We assume that the adversary A sends a malicious software
via an email to blockchain nodes, which can be virus, worm, trojan horse, rootkit, adware,
or spyware. Specifically, the malicious program is launched for the following three objectives:
(1) delete blockchain file storage from the node, (2) degrade the performance of the mining system,
and (3) block access of blockchain programs to the blockchain-based delivery platform.

• Botnet attacks: A botnet attack takes place when a network of devices is infected by a malicious
software, in order to be remotely controlled by an adversary. We assume that the adversary
A uses malicious software (e.g., Mirai IoT Botnet) for identifying and comproming connected
objects and then running targeted DDoS attacks, in order to mine the cryptocurrency used by the
blockchain-based delivery platform.

As discussed in our recent work [7], the blockchain network suffers from a nunber of
vulnerabilities, such as private key leakage, double spending, 51% vulnerability, transaction privacy
leakage, and selfish and reputation-based behaviors. The six categories of attacks considered in our
threat model can exploit these vulnerabilities.

http://www.dvwa.co.uk/
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Figure 2. Threat model architecture.

4. The DeliveryCoin FrameWork

4.1. Network Model

In our network model, we consider five network entities: Package buyer, Package vendor, Package
delivery service, Autonomous vehicle, and Macro eNB (5G), which are described below.

• Package buyer: We assume two types of package buyers, including CustHAN and StoreWAN ,
which are package network entities located in the Home Area Network (HAN) and the Wide
Area Network (WAN), respectively. The customer CustHAN and store center StoreWAN plan
to trade with package vendors by buying products on online shopping or over the Internet.
These package network entities use a fully decentralized network, which does not depend on any
central authority. The electronic payment is online and its unit of account is called DivCoin.

• Package vendor: We assume two types of package vendors, including VenHAN and VenWAN ,
which are package network entities located in the HAN network and the WAN network,
respectively. These package network entities plan to sell products to package buyers.

• Package delivery service (CDS): An entity which offers delivery services of package and documents
based on the blockchain technology and machine learning approach. The blockchain is used as a
database that handles the management of a certified and protected list of transactions between
package vendors and buyers against falsification or modification. In addition, the blockchain [7]
is a distributed digital ledger containing all package transactions in the autonomous Vehicle
network. This distributed ledger is replicated and stored in different nodes, including CustHAN ,
StoreWAN , VenHAN , and VenWAN . A machine learning approach is used by an intrusion detection
system (IDS) for detecting network attacks and false transactions.

• Autonomous vehicle: We assume two types of autonomous vehicles U AV i , including unmanned
aerial vehicles (UAVs) and self-driving cars. In order to provide cost-effective wireless connectivity
for autonomous vehicles, the entities use two basic types of communication links, including
the non-payload communications (CNPC) link and the data link [18]. As presented by
Mozaffari et al. [19], the UAVs can be classified according to altitude (i.e., high altitude platform
and low altitude platform) or type (i.e., fixed-wing and rotary-wing). We assume that users select
the type of the autonomous vehicles according to the distance between package buyers and
package vendors.

• Macro eNB (5G): A terrestrial cellular network entity for supporting ground users as well as serve
aerial users. We assume that this entity support drones in wireless networking applications such
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as the concept of a 3D cellular network proposed by Mozaffari et al. [20], which incorporates
both drone base stations and cellular-connected drone users. In addition, this entity provides
the consensus process in the blockchain network and also detects network attacks and false
transactions using a IDS system.

4.2. Description of DeliveryCoin Framework

The DeliveryCoin framework consists of four phases: system initialization phase, creating the
block, updating the blockchain, and intrusion detection phase.

4.2.1. System Initialization Phase

Given the security parameter k and the bilinear groups (G1,G2, GT , e)where |G1 | = |G2 | = q for
some prime q. A bilinear map is a map e : G1 ×G2 → GT with the following three properties [21]:
(1) e(au , bv) = e(a, b)uv where a ∈ G1, b ∈ G2, and u, v ∈ Z; (2) e(g1, g2) , 1 where g1 is a generator of G1

and g2 is a generator of G2; (3) the group action in G1,G2, and GT can be computed efficiently. Then,
the macro eNB (5G) pick a random generator g2 ∈ G2, set g1 ∈ ϕ(g2), and chooses a collision-resistant
hash function H : {0, 1} → Z∗q . After these, the macro eNB (5G) sets the system public parameters
param = (G1,G2, GT , e, q, g1, g2, H). When an entity node ENx registers to the system where x ∈
{CustHAN , StoreWAN , VenHAN , VenWAN }, the macro eNB (5G) invokes Algorithm 1.

Algorithm 1 Registration Algorithm

Input: an entity node ENx and system public parameters param
Output: skEN x and pkEN x

1: Pick random a, x, y, z ∈ Z∗q ;
2: Computes u← gx2 ∈ G2 and v ← g

y
2 ∈ G2;

3: Computes f ← e(g1, g2) ∈ GT ;
4: Computes the secret key is skEN x = (x, y, z, g1

1
a+z );

5: Computes the public key pkEN x
= (g1, g2, u, v, f );

6: return skEN x and pkEN x

4.2.2. Creating the Block

When a package buyer node PBx (x = CustHAN or StoreWAN ) plan to trade with package vendor
node PVx by buying products, they negotiate the price and quantity. Then, given a secret key skPV i =

(x, y, z, g1
1

a+z ) of the package vendor and a bloc Bi ∈ Z∗q , the package vendor PV i pick a random r ∈ Z∗q
and computes σ ← g

1/(x+bloc+yr)
1 , ρ = (g1

z , g1
1

a+z , PV i

1
z+H (T ) ), which Ti is the time of creation of the

block Bi . The signature of the block Bi is (σ, ρ, r).

4.2.3. Updating the Blockchain

Based on the Practical Byzantine Fault Tolerance (pBFT) algorithm [22], we adopt a UAV-aided
forwarding mechanism, named pBFTF, where UAVs are used to achieve consensus in the
blockchain-based delivery platform. Specifically, the pBFTF mechanism executes the following steps:

• Step 1. The package vendor PV i sends his request to the macro eNB (5G).
• Step 2. After receiving the request at time T ′, the macro eNB (5G) invokes Algorithm 2.
• Step 3. The macro eNB (5G) creates a PRE-PREPARE message to to the other replicas, in order to

propose the scheduling of the request in the blockchain network. This message contains a unique
sequence number and a timestamp.

• Step 4. When a passing-by UAV node U AV i is willing to help forwarding the message PREPARE,
the macro eNB (5G) first investigates the destination location and computes the forwarding degree
FDi , which is the average time to reach the next-hop macro eNB (5G) node. Then, the macro eNB
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(5G) node invokes Algorithm 3 to forward the message PRE-PREPARE-UAV to a proper next-hop
macro eNB (5G) node. After these, the macro eNB (5G) creates a PRE-PREPARE-UAV message
and sends it to U AV i , as shown in Figure 3.

• Step 5. The U AV i node forward the message PRE-PREPARE-UAV to next-hop macro eNB (5G)
eNBr . Then, the eNBr invokes the first steps (i.e., Step 1, Step 2, and Step 3).

• Step 6. The correct nodes ENx where x ∈ {CustHAN , StoreWAN ,VenHAN , VenWAN } respond with a
PREPARE message, which is sent to all replicas. Please note that the macro eNB (5G) does not
send the PREPARE message.

• Step 7. Once the correct nodes ENx received 2 f PREPARE message and the corresponding
PRE-PREPARE, they agree on the order of the package vendor’s request in the blockchain network.
Then, the correct nodes ENx send a message COMMIT.

• Step 8. Once a correct node ENx received 2 f + 1 COMMIT message, it executes the order of block
and responds to the package vendor PV i with a REPLY message.

T0 T1 T2 T3 T4 T5 T6

Package buyer
node

Package vendor
node

Macro eNB O5GI
node

Neighbor node

Neighbor node

Passing-by UAV
node

T7

Next-hop macro eNB
O5GI node

Neighbor node

Neighbor node

T8

AGREEMENT REQUEST PRE-PREPARE

PRE-PREPARE-UAV PREPARE COMMIT

REPLY

Figure 3. The consensus process for blockchain-based delivery platform, which the macro eNB
(5G) node invokes UAV-aided forwarding algorithm to forward the message PRE-PREPARE-UAV
to a proper next-hop macro eNB (5G) node. Let TranseNB , TransNext_eNB , and TransUAV , where
TranseNB > TransUAV and TranseNB = TransNext_eNB , be the transmission ranges of macro eNB
(5G), next-hop macro eNB (5G), and UAV nodes, respectively. A passing-by UAV node U AV i in
TranseNB is willing to help forwarding the message PREPARE to next-hop macro eNB (5G). When the
U AV i node leaves the transmission TranseNB and enters in the transmission TransNext_eNB , the U AV i

node sends the PRE-PREPARE-UAV message to next-hop macro eNB (5G).
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Algorithm 2 Checking the validity of package vendor requests

Input: package buyer node PBx , package vendor node PVx , block Bi , time T ′i of creation of the

block, and system public parameters param
Output: Success or Failure

1: The macro eNB (5G) verify the signature (σ, ρ, r) of the block Bi using the public key (g1, g2, u, v, f ).

If the validity is true then Validity_PBx = valid otherwise the result is Validity_PBx = invalid;
2: The macro eNB (5G) checks if the package buyer node PVx has enough DivCoin to buy. If the

validity is true then Validity_PVx = valid otherwise the result is Validity_PVx = invalid;
3: if T ′i −Ti ≤ 4T then
4: if Validity_PBx = valid then
5: if Validity_PVx = valid then
6: return Success;
7: else
8: The macro eNB (5G) sends a penalty to the PVx node;
9: end if

10: else
11: The macro eNB (5G) sends a penalty to the PBx node;
12: return Failure;
13: end if
14: else
15: return Failure;
16: end if

Algorithm 3 UAV-aided forwarding algorithm

Input: macro eNB (5G) sender eNBs , next-hop macro eNB (5G) eNBr , U AV i , PRE-PREPARE-UAV,

forwarding degree FDi

Output: Success or Discarded
1: When the macro eNB (5G) eNBs try to forward PRE-PREPARE-UAV to the next-hop macro eNB

(5G) eNBr , the eNBs set a holding time to wait eNBr (Th);
2: if no next-hop macro eNB (5G) eNBr is available then
3: return Discarded
4: else
5: The macro eNB (5G) eNBs chooses the U AV i who has less the forwarding degree FDi ;
6: The macro eNB (5G) eNBs sends PRE-PREPARE-UAV to U AV i ;
7: The U AV i forward PRE-PREPARE-UAV to the next-hop macro eNB (5G) eNBr ;
8: return Success;
9: end if

4.2.4. Intrusion Detection Phase

We propose an IDS system in each macro eNB (5G) for detecting network attacks and false
transactions. As presented in Figure 4, the IDS system consists of five stages: (1) dataset stage,
(2) pre-processing stage, (3) normalization stage, (4) training stage and (5) testing stage. The dataset
stage consists of the selection of benchmark dataset which contains different attack scenarios.
The pre-processing stage consists of apportioning the data set into training and test sets as well as
labelling each row as an attack or benign. The normalization stage consists of normalizing the different
features of the data set. The training stage consists of using machine learning classifiers (e.g., Random
Forest, Learning Vector Quantization, Linear Regression, Naive Bayes, K-Nearest Neighbors, Support
Vector Machines, Deep learning, ...etc.) to obtain a model. The test stage consists of processing each
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row of the test data using the model obtained from the training stage in order to classify as Benign or a
specific type of attack.

Dataset

Training
dataset

Test
dataset

Labeling all rows as
Benign or Attack

Labeling all rows as
Benign or one
category Attack

Normalization Normalization

Training using
machine learning

classifiers (e.g., Deep
learning approach)

Normalization

IDS model

Detection of
attacks

Figure 4. Intrusion detection phase in DeliveryCoin framework.

5. Performance Evaluation

To evaluate the performance of DeliveryCoin, we implement the framework and compare
its performance using five performance metrics, including accuracy, training time, test time,
communication overhead, and latency of blockchain consensus. The accuracy, training time and test
time are used for evaluating the performance of the IDS system with different hardware accelerators
and four different classification techniques, including support vector machine (SVM), recurrent neural
network (RNN), convolutional neural network (CNN), and decision tree (DT). The communication
overhead is used for evaluating the performance of communication costs compared to the currently
popular Paillier Cryptosystem [23]. The latency of blockchain consensus is used for evaluating
the performance overhead and compared to the Prime protocol [24] associated with the network
delay between the package buyer and vendor nodes. To study the performance of the IDS system and
blockchain platform, we use the Google Colaboratory and a custom simulator built in Java, respectively.
The detailed parameter settings are summarized in Table 1.

The drone-delivered services uses different protocols, including (1) Information models and
profiles, (2) application layer protocols, (3) transport layer protocols, and (4) media-specific protocols.
Based on these communication protocols, we used and selected the most recent data sets that contain
different attack scenarios against these communication protocols used by the drone-delivered services.
Specifically, we used the CSE-CIC-IDS2018 dataset (https://registry.opendata.aws/cse-cic-ids2018/).
This dataset contains six categories of attacks, including brute-force attacks, web attacks, Denial of
Service (DoS) attacks, Distributed Denial of Service (DDoS) attacks, infiltration attacks, and Botnet
attacks. We consider these attacks against a self-driving network. The CSE-CIC-IDS2018 dataset is
an outcome of a collaborative project between the Communications Security Establishment (CSE)
and the Canadian Institute for Cybersecurity (CIC) (https://www.unb.ca/cic/datasets/ids-2018.
html). The simulations are performed on Google Colaboratory (https://colab.research.google.com)
under python 3 using TensorFlow library and three types of hardware accelerators, including Central
Processing Unit (CPU), Graphics Processing Unit (GPU), and Tensor Processing Unit (TPU). We used

https://registry.opendata.aws/cse-cic-ids2018/
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2018.html
https://colab.research.google.com


Computers 2019, 8, 58 10 of 15

five packages, NumPy, Pandas, Scikit-learn and Keras, and PyMongo. The PyMongo package is used
for processing the CSV files into a NoSQL database.

Table 1. Simulation Settings in DeliveryCoin.

Parameter Setting

Simulation area, duration 100,000 m * 150,000 m, 10 h

UAV nodes

Number {100, 150, 200, 250, 300, 350, 400, 450, 500}

Max speed 72 km/h

Battery life 31 min (3850 mAh)

Max Range 8 km/5 mi

Buffer size 100 MB

Holding time to wait
next-hop macro eNB (5G) 3 min

eNB (5G) nodes

Number 2

Frequency 30 GHz to 300 GHz range

IDS

Dataset CSE-CIC-IDS2018

Machine learning classifiers SVM, RNN, CNN, DT

Hardware accelerators CPU, GPU, TPU

Metrics
True Positive (TP), False Negative (FN),
True Negative (TN), False Positive (FP)

Hyperparameters

Hidden nodes 80

Learning rate 0.01

Number of epoch 100

Batch size 1000

Activation function Sigmoid

Classification function SoftMax

Table 2 presents the list of attack types in CSE-CIC-IDS2018 dataset, which contains
15,450,706 rows devised on 10 files, each row having 80 features. The contents of these files are
described as follows:

• File 1 “Wednesday-14-02-2018”: It contains benign traffic (667,626 rows) and two types of
brute-force attacks, including SSH-Bruteforce (187,589 rows) and FTP-BruteForce (193,360 rows).

• File 2 “Thursday-15-02-2018”: It contains benign traffic (996,077 rows) and two types of DoS
attacks, including DoS attacks-Slowloris (10,990 rows) and DoS attacks-GoldenEye (41,508 rows).

• File 3 “Friday-16-02-2018”: It contains benign traffic (442,020 rows) and two types of DoS attacks,
including DoS attacks-Hulk (466,664 rows) and DoS attacks-SlowHTTPTest (139,890 rows).

• File 4 “Thursday-20-02-2018”: It contains benign traffic (7,372,557 rows) and one type of DDoS
attack, named DDOS attack-LOIC-HTTP (576,191 rows).

• File 5 “Wednesday-21-02-2018”: It contains benign traffic (360,833 rows) and two types of DDoS
attacks, including DDOS attack-HOIC (686,012 rows) and DDOS attack-LOIC-UDP (1730 rows).
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• File 6 “Thursday-22-02-2018”: It contains benign traffic (1,048,213 rows) and three types of web
attacks, including SQL Injection (34 rows), Brute Force -Web (249 rows), and Brute Force -XSS
(79 rows).

• File 7 “Friday-23-02-2018”: It contains benign traffic (1,048,009 rows) and three types of web
attacks, including SQL Injection (53 rows), Brute Force -Web (249 rows), and Brute Force -XSS
(151 rows).

• File 8 “Wednesday-28-02-2018”: It contains benign traffic (544,200 rows) and one type of infiltration
attack, named Infiltration (68,871 rows).

• File 9 “Thursday-01-03-2018”: It contains benign traffic (238,037 rows) and one type of infiltration
attack, named Infiltration (93,063 rows).

• File 10 “Friday-02-03-2018”: It contains benign traffic (762,384 rows) and one type of Botnet attack,
named Bot (286,191 rows).

Table 2. Attack Types in CSE-CIC-IDS2018 dataset.

Category Attack Type Flow Count Training Test

Brute-force SSH-Bruteforce 230 184 46

FTP-BruteForce 611 489 122

Web attack

Brute Force -XSS 187,589 15,007 3752

Brute Force -Web 193,360 15,469 3867

SQL Injection 87 70 17

DoS attack

DoS attacks-Hulk 466,664 37,333 9333

DoS attacks-SlowHTTPTest 139,890 111,912 27,978

DoS attacks-Slowloris 10,990 8792 2198

DoS attacks-GoldenEye 41,508 33,206 8302

DDoS attack

DDOS attack-HOIC 686,012 54,881 13,720

DDOS attack-LOIC-UDP 1730 1384 346

DDOS attack-LOIC-HTTP 576,191 46,095 11,524

Botnet Bot 286,191 22,895 5724

Infilteration Infilteration 161,934 12,955 3239

Benign / 12,697,719 101,582 25,395

Total / 15,450,706 462,254 115,563

To create a training and test subset, we import the 10 files into one JSON document using PyMongo
3.7.2. Then, we apportion the data into training and test sets, with an 80-20 split. Each value xi of the
feature j is normalized based on the following equation:

xi( j) =
xi( j) −min(x( j))

max(x( j)) −min(x( j))

The most important performance indicator “accuracy” is used to represent the proportion of the
total number of correct classifications.

Accuracy =
TP+T N

TP+T N+FP+FN
(1)

Evaluation Results

Figure 5 shows the accuracy of the proposed DeliveryCoin with different hardware accelerators
and four different classification techniques, including support vector machine (SVM), recurrent neural
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network (RNN), convolutional neural network (CNN), and decision tree (DT). By comparing the results
of the classifiers, we can see that overall CNN and RNN classifiers the effectiveness and accuracy of
results are better than SVM and DT classifiers. The CNN classifier achieves the best effectiveness and
accuracy in three types of attacks, including Brute force attack, DDoS attack, Botnet attack, which the
achieved accuracy in these states being 92.19%, 98.55%, and 98.71%, respectively. The RNN classifier
achieves the best effectiveness and accuracy in three types of attacks, including Web attack, DoS
attack, and Infiltration attack, which the achieved accuracy in these states being 96.12%, 96.18%,
and 96.23%, respectively. The results of the performance comparison in terms of training and test
time, for the CSE-CIC-IDS2018 dataset, are shown in Figure 5b. From these results, we can see that the
CNN classifier requires less training time as compared to the RNN classifier. In addition, the deep
learning approaches (i.e., RNN and CNN) with graphics processing unit are recommended for use in
DeliveryCoin framework where good accuracy and short training time are desired.
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Figure 5. Accuracy of the proposed DeliveryCoin with different hardware accelerators and
four different classification techniques, including support vector machine (SVM), recurrent neural
network (RNN), convolutional neural network (CNN), and decision tree (DT).

Figure 6 shows comparisons between the proposed DeliveryCoin and the Paillier
Cryptosystem-based DeliveryCoin in term of communication overhead for varying number of number
of UAVs nUAV and different values for reaching a consensus Rcons in the blockchain-based delivery
network. In contrast to the Paillier Cryptosystem-based DeliveryCoin, we can obviously observe that
the proposed DeliveryCoin is very efficient in terms of communication cost.

Figure 7 shows comparisons between the proposed DeliveryCoin and the Prime-based
DeliveryCoin [24] in term of latency of blockchain consensus for various number of UAVs NUAV =

{100, 150, 200, 250, 300, 350, 400, 450, 500}, probabilities of malicious UAV nodes P = {0%, 30%, 60%},
and velocities of UAV nodes V ={35 Km/h, 70 Km/h}. When P = 0%, the proposed DeliveryCoin has
a lower latency of blockchain consensus than the Prime-based DeliveryCoin. As the probability P
increases, malicious UAV nodes can add more false transactions in order to add more delay. In Figure 7a,
when P = 60%, malicious UAV nodes under the Prime-based DeliveryCoin can add approximately 300
ms more delay than when P = 30%. In Figure 7b, when P = 60%, the malicious UAV nodes under the
proposed DeliveryCoin can add approximately 200 ms more delay than when P = 30%. In addition,
we can see that when the number of UAVs NUAV increases, the latency of blockchain consensus begins
to climb steeply due to fact that the macro eNB (5G) node invokes UAV-aided forwarding algorithm as
well as updates queuing at UAV nodes more frequently.
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Figure 6. Comparisons between the proposed DeliveryCoin and the Paillier Cryptosystem-based
DeliveryCoin [23] in term of communication overhead varies with the number of UAVs nUAV and
reaching a consensus Rcons in the blockchain-based delivery network.
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Figure 7. Comparisons between the proposed DeliveryCoin and the Prime-based DeliveryCoin [24]
in term of latency of blockchain consensus varies with the number of UAVs NUAV =

{100, 150, 200, 250, 300, 350, 400, 450, 500}, probability of malicious UAV nodes P ={0%, 30%, 60%},
and velocity of UAV nodes V ={35 Km/h, 70 Km/h}.

Table 3 demonstrates a comparison of the proposed DeliveryCoin framework with other
blockchain-based systems for vehicular networks. The proposed DeliveryCoin framework uses
a UAV-aided forwarding mechanism, in which UAVs are used to achieve consensus inside the
blockchain-based delivery platform. The proposed DeliveryCoin framework uses an IDS system in each
macro eNB (5G) for detecting self-driving network attacks, with the CSE-CIC-IDS2018 dataset used in
our simulations. In addition, DeliveryCoin is the only suitable method for UAV-based delivery system
as compared to the other blockchain-based systems that were discussed in the related work section.
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Table 3. Performance comparison with other blockchain-based systems for vehicular networks.

Framework Year IDS Dataset Consensus ** Suitable *

Cebe et al. [13] 2018 No No Byzantine agreement protocol No
Li et al. [16] 2018 No No Byzantine agreement protocol No

Kang et al. [14] 2019 No No Delegated Proof-of-Stake No
Yang et al. [15] 2019 No No Proof-of-Event No
Lei et al. [25] 2019 No No Proof of Work No

Wang et al. [26] 2019 No No Proof of Reputation No
Kaur et al. [27] 2019 No No Practical Byzantine Fault Tolerance No
DeliveryCoin / Yes Yes UAV-aided forwarding algorithm Yes

* Suitable for UAV-based delivery system; ** Achieving consensus between devices.

6. Conclusions

In this paper, we propose a new intrusion detection system (IDS) and Blockchain-based delivery
framework, called DeliveryCoin, for drone-delivered services. The proposed DeliveryCoin framework
combines hash functions and short signatures without random oracles and the Strong Diffie–Hellman
(SDH) assumption in bilinear groups to achieve privacy-preservation. In addition, achieving consensus
inside the blockchain-based delivery platform is performed over a UAV-aided forwarding mechanism.
In order to detect self-driving network attacks as well as false transactions between self-driving
nodes, an IDS system is integrated into DeliveryCoin in each macro eNB (5G). Furthermore, extensive
simulations are conducted in order to evaluate the efficiency of DeliveryCoin. In future work, we will
exploit security and efficiency issues of Edge computing in DeliveryCoin for drone-delivered services.
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