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Abstract 

  

In frequency non - selective mobile fading channels the 

energy can arrive at the mobile receiver via a three 

dimensional (3-D) scattering mechanism. That case occurs 

especially in urban environments, in which the tall 

buildings and other obstacles cause an arrival of multipath 

energy in the elevation plane, besides that arriving in the 

azimuth plane. Another issue, which is a matter of 

investigation, is that an important portion of multipath 

energy may not arrive at all in the mobile receiver, due to 

its blocking by the shadowing mechanisms of the channel. 

In this work we propose a model which takes into account 

both 3-D multipath scattering and partial arrival of 

multipath energy due to shadowing. Moreover a line of 

sight (LOS) component exists, which is also influenced by 

the shadowing.  

 

Ι. Introduction 

 

The transmission performance of wireless services is 

strongly influenced by the rapid amplitude and phase 

fluctuations of the received signal. Those fluctuations 

result from the constructive and destructive nature of the 

arriving multipath components at the receiver. Moreover 

an important contribution to the above mentioned 

fluctuations arises from the time varying attenuation of the 

received signal mean value due to shadowing. 

In order to model the slow term variations due to 

shadow fading and incorporate them in the rapid short term 

variations, arising from multipath propagation, two basic 

models have been proposed. Each of them represents a 

different concept for the wireless mobile channel 

modeling. The first one was proposed by Suzuki [1] and 

Hansen and Meno [2], the so called Suzuki process. This 

model is obtained by multiplying a Rayleigh process with 

a lognormal process. The second one was proposed by Loo 

[3]. This model resembles a Rician model, with the 

additional property that the LOS component is no more 

constant, as this happens in Rice probability density 

function (PDF), but it is a random stochastic process 

following a lognormal PDF. Loo’s model arises by 

summing a lognormally distributed random phasor and a 

Rayleigh phasor.  

In international bibliography the term “modified” 

applies to the case where the inphase and quadrature 

Gaussian components generating the Rayleigh part are 

correlated, whereas the term “extended” refers to the case 

where the Rayleigh component has been substituted by a 

Rician one. Thus we obtain modified Suzuki processes, 

extended Suzuki processes and modified Loo models. 

Several modifications and extensions can be found in 

literature for both models, with the most intuitive and 

analytical presentations given in [4 - Ch. 6]. By adopting 

modified models we force the Doppler power spectral 

density (PSD) to obtain an asymmetrical shape, in contrast 

to the classical symmetrical two dimensional (2-d) Doppler 

PSD given by Clarke [5]. Thus, it is a simple technique to 

have a sectored arrival of multipath energy, when a part of 

it is blocked by the channel obstacles, or directional 

antennas are used.  

In this work we propose a modified version of Loo 

model which takes into account both 3-D multipath 

scattering and sectored arrival of multipath energy. To do 

so we employ for each Gaussian component of the 

Rayleigh part, a PSD similar to that proposed by Aulin [6] 

and a cross correlation scheme between the two 

components similar to that proposed by Patzold et all [7]. 

Moreover the LOS component is Doppler shifted due to 

the receiver’s mobility, as considered in [7] too. 

This paper is organized as follows. Section ΙΙ gives the 

analytical model for the mobile channel. More specifically 

the Doppler PSD and the PDF of the amplitude are 

derived. Afterwards the second order statistics, level 

crossing rate (LCR) and average duration of fades 

(ADF’s), are investigated. In Section ΙΙΙ we demonstrate 

the flexibility and usefulness of the model by adapting the 

second order statistics (LCR) to real world channels drawn 

from measurements. Finally Section ΙV concludes this 

paper with a synopsis of the main results and advantages of 

the model. 

 

ΙΙ. The analytical model 

 

A suitable complex stochastic process ( )t  for the 

wireless mobile channel arises by summing a lognormally 

distributed random phasor and a Rayleigh phasor [3] and 

using the notation reported in [7], we obtain 

      ( ) ( )exp[ (2 )] ( )t t j f t t                  (1)



where t  is the time parameter, )(t  is a lognormal 

process denoting the time varying amplitude of the LOS 

component and f  and    are its Doppler frequency and 

phase respectively. The process )(t  is a complex 

Gaussian one, with its amplitude being Rayleigh 

distributed. Those processes are derived by the real, zero 

mean Gaussian processes )(1 t  and )(2 t  as follows 

                      1 1( ) ( ) ( )ht t j t                           (2) 

                    2( ) exp( ( ) )t s t m                         (3)                                                                  

where )(1 th  denotes the Hilbert transform of )(1 t  and 

)(2 t  has unit variance. The parameters s  and m  are 

characteristic quantities of the shadowing environment. 

From the above notation it is clear that the inphase and 

quadrature components of the complex Gaussian process 

)(t  are correlated. Finally the stochastic process ( )r t  

describing the wireless channel is obtained by taking the 

absolute value of the left side in equation (1). By doing 

this, we have 

          2 2

1 2( ) ( ) ( ) ( )r t t t t                    (4) 

where 

           1 1( ) ( ) ( )cos(2 )t t t f t                   (5) 

        2 1( ) ( ) ( )sin(2 )ht t t f t         .         (6) 

The stochastic process )(tr  is an appropriate model to 

describe narrowband wireless mobile fading channels in 

the complex baseband. Additionally by choosing 

appropriate PSD shapes for the multipath mechanism we 

can model 3-d multipath scattering.  

 

A. The Doppler PSD shape 

 

In order to account for the Doppler PSD, taking into 

consideration 3-D scattering, we make use for the process 

)(1 t , the following form proposed in [6] 
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where 
1 1

( )S f   is the PSD of )(1 t  and maxf  the 

maximum Doppler frequency, equals to 0 /uf c , with u  

the mobile receiver’s velocity, c  the speed of light in free 

space and 0f  the carrier frequency. The parameter 0  

determines the mean power of )(1 t  and mb  is the 

maximum elevation angle relative to the azimuth plane in 

which the receiver moves [6], 0 / 2mb   . The above 

equation (7) if normalized such that 1)(
11






dffS  , 

constitutes a PDF for the Doppler frequencies. The 

spectrum in (7) arises by considering an angle of arrival 

PDF of   (.)p , in the elevation plane as [6]: 
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where   is the elevation angle relative to the azimuth 

plane, in which the receiver moves (see figure 1). If 

0mb  the scattering occurs explicitly in the azimuth 

plane and the spectrum in (7) tends to the classical U-

shaped spectrum given in [5].  
 

 
Fig.1. Elevation angle of arrival β of a multipath 

component. 

 

The inverse Fourier transform of (7) determines the 

autocorrelation function 
1 1

( )r    of the process )(1 t , 

with   the difference between two time instants, defined 

in [6] as 

   
1 1

2

0 0 max( ) (2 cos ) ( )
m

m
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b

r J f p d        
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with 0 (.)J  the zeroth-order Bessel function of the first 

kind. The cross correlation function 
1 1

( )
h

r    between the 

processes )(1 t  and )(1 th  is obtained by employing the 

equivalent scheme of (9) which, taking into account that 

1 1
( )S f   is an even function, arises as 

          
max

1 1 1 1

0

( ) 2 ( )cos(2 )

f

r S f f df       .         (10) 

Thus 
1 1

( )
h

r    is obtained by a phase shift of 2/  in 

(10), giving 

         

max

1 1 1 1

0

( ) 2 ( )sin(2 )
h

f

r S f f df       .          (11) 

The Doppler PSD of the process )(2 t  is assumed to 

be a Gaussian function. A symmetrical spectrum around 

zero frequency is appropriate to model the time selectivity 

of the LOS component in a local area, as that probably 

results from the scatterer’s mobility. Thus 
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where c  is related to the 3-dB cut-off frequency cf , 

according to 2ln2ccf  .  

The Doppler PSD for the lognormal process )(t  is 

given in [4] as: 
2( ) exp(2 )S f m s     
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where (.)  is the Dirac delta function. Finally the 

sectored Doppler PSD for the complex stochastic process 

)(t is given in [7] as: 

 
1 1

( ) 2[1 ( )] ( ) ( )S f sign f S f S f f
           (14) 

An example of the PSD function )( fS
  for a 

parameter set chosen as max 91f Hz , 0 1  , 0.3s  , 

0.5m  , max0.3f f  , 8cf Hz and / 6mb   is 

given in figure 2. 

 

 

Fig.2. Doppler PSD function of the process )( fS
 . 

 

Before we proceed it is pertinent to define the following 

parameter set, convenient for the rest of the paper. More 

specifically we have 

                         
1 1 1 10 (0) (0)

h h
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'
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1 1 1 1

'' ''

02 (0) (0)h hr r                         (17) 

where the primes denote derivatives with respect to the 

time difference  . The parameter 0  is the mean power 

of the processes )(1 t  and )(1 th . By using equation (9) 

in (15) and (17), equation (11) in (16), after some algebraic 

manipulations and taking into account a modified version 

of equation (2.835) in [8] we obtain 

                                   
2

0 0                                     (18) 

          
2
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          
2 22

02 max 0 cos 2 5 3mf b       .        (20)                   

Moreover the parameters a  and b  should be defined as 

                        0

2

0102 / b                            (21) 

                  01 02 ( / ) 2a f b      .             (22) 

 

B. PDF of amplitude, LCR and ADF’s 

 

The PDF of the amplitude )(zpr  is similar to that 

given in [3] and [7]. Thus 
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with  0 .I  the modified Bessel function of zeroth order.  

As it can be seen from equation (23) the amplitude PDF is 

independent from the maximum elevation angle mb  in 

which the scattering occurs. It is dependant on the 

parameters s , m  and 0 . For the special case of 0s   

and lnm   the lognormal process becomes ( )t   

and equation (23) becomes the Rician PDF as follows 
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The amplitude PDF is depicted graphically in figure 3 as a 

function of 0 . The remaining parameters are 0.3s   

and 0.5m  . 

 

 

Fig.3. The amplitude PDF as function of 0 . 

 

The expression for the LCR ( )rN z , i.e. the average 

number of crossings per second at which )(tr  crosses a 

specified signal level z  with positive slope is similar to 

that given in [7], but with different characteristic quantities 

0 , 01 , 02 , a  and b  defined in equations [(18)-(22)]. 

Thus 

          

0

( ) ( , ) ( )r rN z N z y p y dy 



  , 0z             (25) 

where ( , )rN z y  is the LCR when the LOS component is 

not lognormally distributed and has constant amplitude 

equals to 0y  and )(yp  is the lognormal PDF for the 

LOS component, both defined as [7] 
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Equations (25) and (26) are holding if 5/max cff  as 

demonstrated in [7], i.e., if the amplitude of the LOS 

component changes relatively slowly in time compared 

with the rate of change of the diffuse component. The last 

assumption is valid in real world channels, where 

1/max cff  usually holds. From equations (25), (26) 

and (27) it is clear that the LCR is proportional to the 

maximum Doppler frequency maxf .                                     

The ADF’s ( )rT z , i.e. the mean value of the time 

intervals at which )(tr  remains below a specified signal 

level z  is given by the well known equation 

                                    
( )

( )
( )

r
r

r

F z
T z

N z
                         (28)                                                                   

where ( )rF z  is the cumulative distribution function of the 

process )(tr , defined as 

                               

0

( ) ( )

z

r rF z p x dx  .                     (29) 

From equations (28) and (29) we see that the ADF’s is 

inverse proportional to maxf . 

If 0mb  the expressions for the PDF, LCR and 

ADF’s are the same with those in [7], considering a Clarke 

spectrum for )(1 t  there ( 0 1k   in [7]). The normalized 

LCR max( ) /rN z f  and normalized ADF’s max( )rT z f  

are depicted graphically as a function  of mb  in figures 4 

and 5 respectively. The remaining parameters for both 

figures are the same as in figure 2.  

It is clear from figure 4 that with increased elevation 

angle of arrival ( mb  increases) the LCR decreases because 

the multipath propagation reduces its influence as 

projected to the receiver’s azimuth plane. Thus fluctuations 

occur less frequently. Moreover from figure 5 with 

increased elevation angle of arrival the ADF’s increases, 

meaning more time the signal remains below small, 

medium and large levels, or equivalently fluctuates less 

frequently.                                                           



 

Fig.4. The normalized LCR as a function of mb . 

 

 

Fig.5. The normalized ADF’s as a function of mb . 

 

ΙΙΙ. Applications to real world channels 

 

In this section we demonstrate the flexibility and 

usefulness of the proposed model by adapting its second 

order statistics (LCR) to data drawn from measurements. 

More specifically we consider the measurements of the 

LCR in [9]. The environments studied there were, the one 

a rural area with almost 35% tree cover (heavy shadowing) 

and the other an open area with almost no shadowing (light 

shadowing). 

 Our task is to find the proper values of the model 

parameters ( s , m , mb , 0 ), such that the absolute value 

of the difference between the analytical and measured 

LCR’s is minimum (ideally zero). In order to do so we 

combine the model parameters to a multi-parametric 

function, seeking its minimum. That function is 
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where (.)mN  is the measured LCR and N the number of 

measured values. The minimization of (30) is carried out 

by applying any method of optimization inherent in 

mathematical software packets. By doing this, we find for 

the two cases (light and heavy shadowing) the parameter set 

given in table I.  

The maximum Doppler frequency maxf  is kept constant 

to 91Hz and is not optimized, as it does not constitute a 

channel parameter, being depended on the mobile unit 

speed and carrier frequency. The same holds for the 

Doppler frequency of the LOS component, as it is a 

rational assumption that in a local area that component will 

have a specific angle of arrival relative to the receiver’s 

motion. Thus we arbitrarily set max5.0 ff  . The 

remaining parameters of the model ( cf  and  ) which do 

not affect the normalized LCR are arbitrarily set as 

Hzfc 8  and 0 . Thus, all parameters of the model 

are determined and the resulting analytical and measured 

normalized LCR’s, max/)( fzNr  and max/)( fzNm  

respectively, are shown in figures 6 and 7 for the two 

cases. 

The light shadowing case reveals a fairly good 

agreement between the proposed model and the 

measurements data. On the contrary the agreement, in the 

heavy shadowing case, is much better. The reason for this 

is that the PSD we employ here [eq. (14)] is suitable to 

model environments with 3-D multipath scattering, due to 

the interaction of electromagnetic waves with tall objects 

an assumption which much better fulfilled in heavy 

shadowing environments than open areas with almost no 

shadowing.  

We should also notice how the parameter mb  

characterizes each environment. In heavy shadowing, 
 604.6383.2/mb , which is a rational result, as 

most likely the diffuse component will arrive at the 

receiver after interacting with tall objects. On the contrary, 

for the light shadowing 0mb , which also seems 

rational, as most probably the scattering will explicitly 

occur in the azimuth receiver’s plane. 

 

 

 



TABLE I 
MODEL PARAMETERS FOR LIGHT AND HEAVY SHADOWING 

SHADOWING s  m  
mb  0  

LIGHT 0 0.032 0 0.307 

HEAVY 0.564 -1.817 Π/2.83 0.228 

 

 
Fig.6. Normalized LCR for the light shadowing 

environment. 

 

 
Fig.7. Normalized LCR for the heavy shadowing 

environment. 

 

ΙV. Conclusions 

 

A new modified Loo model which incorporates 3-d 

scattering was presented. It was shown that with increased 

elevation angle of arrival the received signal fluctuates less 

frequently. A curve fitting of the second order statistics 

(LCR) to real word data, drawn from measurements, 

validated the usefulness and flexibility of the proposed 

model. In the light shadowing environment a fairly good 

agreement between the proposed model and the 

measurements was revealed, whereas in the heavy 

shadowing the agreement was much better. This is justified 

because of the physical basis of our model. Moreover in 

open areas, with no obstruction of the LOS component, is 

expected that the multipath energy spreading will be more 

directional in the azimuth receiver’s plane as compared 

with heavy shadowing cases. This is caused by the 

unsymmetrical positioning of the scattering objects around 

the receiver (ideally concentrated in special azimuth 

angles).  The last directly leads to a less Doppler frequency 

spreading in open areas, compared with that in heavy 

shadowed areas. But that case is not predicted by our 

model which assumes equal Doppler frequency spreading 

in any case. A model with a variant Doppler frequency 

spreading, incorporating 3-D scattering, would be more 

general and would probably provide a better fitting to 

measurements data. The last is an open research issue, 

concerning the research activity of the group. 
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