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ARTICLE INFO ABSTRACT

Article history: Content-based file matching has been widely deployed for decades, largely for the detection of sources of
copyright infringement, extremist materials, and abusive sexual media. Perceptual hashes, such as
Microsoft’s PhotoDNA, are one automated mechanism for facilitating detection, allowing for machines to
approximately match visual features of an image or video in a robust manner. However, there does not
appear to be much public evaluation of such approaches, particularly when it comes to how effective
they are against content-preserving modifications to media files. In this paper we present a million-
image scale evaluation of several perceptual hashing archetypes for popular algorithms (including
Facebook’s PDQ, Apple’s Neuralhash, and the popular pHash library) against seven image variants. The
focal point is the distribution of Hamming distance scores between both unrelated images and image
variants to better understand the problems faced by each approach.
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1. Introduction

High-speed broadband has facilitated a transition from a text-
based Internet to one with a media-heavy landscape, which is
capitalised upon by platforms such as Facebook, YouTube, Insta-
gram, TikTok, and others. Unfortunately, as with any technology,
multimedia can be used for illegal and abusive purposes, necessi-
tating that law enforcement agencies, social media platforms, cloud
providers, and so on, engage in some form of content moderation.
At Web scale the manual evaluation of multimedia becomes
infeasible, resulting in the use of automatic detection technologies.
Content-based detection is implemented for a variety of reasons,
such as for the detection of extremist and violent material
(Microsoft Corporate Blog, 2019), copyright infringing material
(Saadatpanah et al., 2020), and the detection of Child Sexual Abuse
Material (CSAM) (Lee et al., 2020). The CSAM use-case is particu-
larly important, as the Internet Watch Foundation reports a sharp
increase in the detection and distribution of CSAM media - taking
action against 250,000 websites in 2021 alone (The Internet Watch
Foundation, 2021). Content matching technologies have already
been deployed for many cloud-based services, backed by Micro-
soft’s PhotoDNA (Krawetz) and Facebook’s PDQ (Facebook), with
Apple looking to introduce client-side device scanning (Apple,
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2022) to further combat the growing problem.

For large-scale deployment, it is imperative that these detection
technologies are well understood, both in terms of their strengths
and weaknesses, in order to avoid improper configuration/
deployment and incorrect actionable intelligence. The primary
contribution of this work is an analysis of contemporary algorithms
in still-image content-based perceptual hash matching, with
analysis of their robustness in the face of content-preserving at-
tacks, with experiments being conducted at the million-image
scale.

2. Background and related work

Content-based file matching can take a variety of forms, with
the approach archetypes corresponding to: i) Exact matching with
Cryptographic hashes; ii) Approximate similarity binary-level
matching; and iii) Semantic approximate matching of file con-
tents (Breitinger et al., 2013).

In each case, a hash digest is created which serves as a finger-
print/signature for the file, which can then be compared to the
hashes of other files to detect identical or similar file content.
Cryptographic approaches are commonly used in CSAM detection
in digital forensics analysis, however, they are easily defeated by
modifying a single-bit in a file. Approximate matching at the binary
level is suitable for some file types, but is generally a poor choice for
media files as simply changing encoding parameters will result in
completely different binary content (Farid, 2021). We therefore
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choose to focus on the semantic domain, which in this case is
Perceptual Image Matching.

2.1. Perceptual Image Matching

Perceptual hashing (Farid, 2021; Hadmi et al., 2012) approaches,
which are inspired by the domain of Content-Based Image Retrieval
(CBIR) (Rafiee et al., 2010), seek to allow visual similarity and
identity between images to be quantified and measured. These
techniques are ideally resistant to content-preserving modifica-
tions, such as adding noise, or cropping.

A wide array of features have been used as the basis for gener-
ating robust image signatures. Histograms and statistical informa-
tion about the entire image may be used, providing a high-level
representation which is insensitive to small, localised, changes in
the image. This can take the form of colour histograms (Swain and
Ballard, 1991), texture and edge histograms (Manjunath et al.,
2001), or frequency domain statistics (Venkatesan et al., 2000).
Properties of human vision may also be exploited, such as insen-
sitivity to high-frequency changes in an image over a small area - a
property which is exploited by JPEG compression (Wallace, 1992).
Low frequency properties of an image may be used to derive a
perceptual hash (Fridrich, 1999; Fridrich and Goljan, 2000), which
provides robustness to compression artefacts and other content-
preserving modifications. In a similar vein, coarse image repre-
sentations may be used, such as low-resolution versions of the
image, or the average colour value of sub-blocks in the image
(Steinebach, 2011). Alternatively, invariant relationships in the
image may be exploited, such as those found on radial lines pro-
jected out from the centre of the image (Standaert et al., 2005),
which is particularly effective against re-scaled images.

These hashes are then compared using a variety of similarity
metrics (Hamming distance, Euclidean distance, Earthmover dis-
tance, L2 distance, and so on), typically normalised to a value be-
tween zero and unity, with unity representing complete similarity.

It should also be noted that there is a distinction between
hashes which are generated using a shallow, heuristic, approach
and those derived from a deep learning, data-driven, approach
(Dolhansky and Ferrer, 2020). In the former case, hashes are
generated in a deterministic manner (such as from statistical fea-
tures of the image), while the learning approaches will generate
different hashes based on the dataset used to train the corre-
sponding model.

2.2. Evaluating Perceptual Image Matching against attack

Despite the popularity and wide spread use of perceptual
hashing, the robustness of these algorithms is not well understood
for malicious and abusive content detection (Hao et al., 2021), as
adversaries can produce image variants that may hinder detection
and identification.

One of the most popular, and easily available, perceptual hash-
ing algorithms is pHash (DCT transform based) (Zauner, 2010). This
hashing method is available in the Python ImageHash library
(Buchner), and is often evaluated together with the other algo-
rithms in the library: ahash (average block colour); dhash (adjacent
block colour); and whash (DWT-based) (Dolhansky and Ferrer,
2020; Hao et al., 2021; Hamadouche et al., 2021; Drmic et al.,
2017; Jain et al., 2022).

Hamadouche et al. (2021) studied the ImageHash algorithms
together with SVD-Hash (Singular Value Decomposition) against a
variety of image-wide filters, noise, and scaling for a small dataset
of 800 images. While ahash typically produced the smallest dis-
tances between original and modification, pHash and dhash were
the only algorithms to produce normally distributed Hamming
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distances - a property which will be discussed further in Section
3.3. Jain et al. (2022) performed more sophisticated perturbation
attacks against ImageHash algorithms and Facebook’s DCT-based
PDQ on over one million images. The authors noted that by using
black-box attacks, it was possible to manipulate modified image
distances to the extent that the False Positive Rate would become
unacceptably large in all cases. Similar work by Hao et al. (2021) for
ImageHash and Blockhash (average block colour) allowed for large
distances to be achieved for each algorithm using noise, cropping,
rotation and scaling attacks. Dmric et al. (Drmic et al., 2017) eval-
uated the ImageHash library, with 1,480 images, against user-level
modifications, such as resizing, rotation, adding borders, etc.,
together with social media post-processing tests. pHash generated
the best F1 score (weighted combination of precision/recall) when
aggregated across attacks, with social media manipulations dis-
turbing performance less than the more direct manipulations.

McKeown and Russell (McKeown et al., 2019) explored the use
of pHash and Blockhash for matching originals to thumbnail cache
entries in Windows Vista, 7, and 10, noting that neither algorithm
could achieve an acceptable False Positive Rate to False Negative
Rate trade-off for forensics purposes. However, the combination of
both algorithms may be sufficient. The authors also noted partic-
ular weaknesses in the algorithms, such as fractal/patterned images
for pHash and solid colour background/smooth gradients for
Blockhash.

Looking more widely, Zauner (2010) and Breitinger et al. (2013)
compared DCT, Block Mean Based, Radial (e.g. Radon projection)
and Marr-Hildreth (MH) operator hashes. Particular attention was
paid to the strengths and weaknesses of each algorithm for each
attack. JPEG compression did not have much effect on any tested
algorithm, while resizing only particularly affected MH (most al-
gorithms downscale images in pre-processing). Mirroring, rotating,
and cropping all have much larger effects on performance across
attacks, except when algorithms build in specific handling (such as
for rotation in rHash (Steinebach, 2011)).

Machine learning approaches have also been shown to be sus-
ceptible to trivial content-preserving manipulations, with Struppek
et al. (2022a) demonstrating that Apple’s Neuralhash is not robust
to gradient and familiar transformation-based attacks, with hash
collision attacks also being possible. Dohlansky et al. (Dolhansky
and Ferrer, 2020) found similar results for AlexNet, ResNet, and
EfficientNet, although the authors noted that cross-attacks be-
tween shallow and deep approaches do not work well, such that
combining algorithms from each class may lead to additional
robustness.

3. Methodology

While there is a body of existing work in the evaluation of
perceptual hashing, there is generally a focus on aggregating sta-
tistics across multiple attack types, or in generating specific attack
scenarios, rather than understanding the behavioural properties of
the approaches against common user-level attacks. With a similar
approach to Hamadouche et al. (2021), we set out to understand
the Hamming distance distribution of perceptual hashing algo-
rithms in order to better quantify behaviour for not only the
aggregate/average case, but also the best and worst case scenarios.
To achieve this, we make use of the Flickr 1 Million dataset
(MIRFLICKR Download), removing SHA256 hash duplicates, which
allows us to scale experiments to large numbers of natural images.
The original hashes, Hamming scores, and additional statistical
data used in this paper are available online with DOI: 10.5281/
zenodo.7426035.
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Table 1
Perceptual Hashes used in experiments.
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Blockhash

(Commonsmachinery, 2018). Generates 256-bit hashes.

ColourHash

NeuralHash
(Apple)

An implementation of the Block Mean Based approach (Yang et al., 2006). It can be found, written in C, on the Commons Machinery Github

Part of the Python ImageHash Library (Buchner). Images are matched based on colour distributions. Generates 44-bit hashes.
Apple’s CSAM hashing scheme. This is a machine-learned approached, with the neuralhash_128x96_seed1.dat model being extracted from an
iPhone14,5_15.3.1_19D52 IPSW firmware image. Steps taken folllow those on Github (Ygvar, 2022). Generates 96-bit hashes.

PDQ (Facebook) Facebook’s improved version of the pHash (DCT) algorithm, with optimisations for downsampling, and larger hash output size by default (for better
Web-scale accuracy). The Python implementation - available on Facebook’s Threat Exchange Github (Facebook) - was used. Generates 256-bit hashes.

pHash DCT-based, as implemented in the ImageHash Python library (Buchner). Generates 64-bit hashes.
Wavehash A hash based on the Discrete Wavelet Transform (DWT) (as opposed to the DCT based approaches above). Also part of the Python ImageHash library
(Buchner). Generates 64-bit hashes.
Table 2

Image modifications applied to each image in the dataset.

Border (30px)

Add a fixed size 30-pixel black border to the outside of the image, extending it, rather than overwriting any of the existing content.

Compression (Q30) Reduce the JPEG image quality to 30%, scaling down the default JPEG quantization tables. Other modifications pass-through the quantisation tables

(approx 96% quality for this dataset).
Crop (5%)

(0.9height x 0.9width).
Mirror (x-axis)
Scale (1.5x)
Thumbs96

(Windows)

Watermark

height, with a minimum of 40 pixels.

Remove 5% of the image from the top, left, right, and bottom of the image, in effect reducing the overall pixel count to 81% of the original

Flip the image on its x-axis, preserving viewability, but generating significant pixel/binary level changes.

Scale the image up to 150% the size of the original, using the PIL (S. L. AB (PythonWare) Image.resize function.

Generate legitimate Windows 10 96 x 96 pixel thumbnails as per the methodology in McKeown and Russel (McKeown et al., 2019), which generate a
larger Hamming distance in this cited work for pHash and Blockhash than their 256 x 256 thumbnail counterpart.

Add a watermark to the bottom right of the image. The watermark consists of a logo, text and a URL. The watermark was scaled to 10% of the image

3.1. Selection of hashing algorithms

Our perceptual hash selection takes into account a wide range of
feature extraction techniques, but also focuses on popular algo-
rithms. The chosen hash algorithms are listed in Table 1. The list
covers: frequency transforms; colour histograms; block mean
colour; and deep learning-derived approaches. Aside from addi-
tional deep learning approaches, one notable omission of the
shallow approach to hashing in this testing is Microsoft’s PhotoDNA
(Krawetz) as it is a controlled technology and not readily available.
While such evaluations may already be available to those with
access, it would be beneficial for future work to make evaluations
open-source, particularly as it is the de-facto standard for the
perceptual detection of CSAM (Farid, 2018). The details of its
implementation are not widely detailed, however it appears that
PhotoDNA uses an edge-based method (Prokos et al., 2021), such
that it is unclear what particular weaknesses it may share with the
algorithms presented in this paper. Another possible algorithm
class to include in future testing is the Scale Invariant Feature
Transform (SIFT), a feature-point based approach, which is more
commonly used for image forgery detection (Bourouis et al., 2020).
ForBild/rHash (Steinebach, 2011) was also considered, though it
was excluded early on as the sourced implementation generated
many hash collisions due to black backgrounds, or similar colour
compositions.

3.2. Image modifications

A set of six image modifications were chosen as attacks against
the perceptual hashing algorithms. Each modification was imple-
mented using the Python PIL library (S. L. AB (PythonWare). This
means that all images were modified using the same tool, intro-
ducing some limitations in terms of the diversity of the images
produced, but we do not expect this to have a significant effect on
the outcomes.

To reduce the total processing time across all hash and

modification permutations, a random subset of 250,000 images
was selected for the creation of modifications. Table 2 describes the
chosen modifications, which are intended to reflect the low-barrier
to entry, unsophisticated, content-preserving black-box attacks
that a typical user may employ which do not compromise view-
ability (such as for evading copyright detection (Jabade, 2016)),
with the addition of Windows 10 generated thumbnails as a real-
istic downscaling exemplar. Examples of the visually distinct
modifications are provided in Fig. 1.

3.3. Evaluation process and criteria

There are several things to consider when evaluating perceptual
hashing systems. The first is the relative discrimination behaviour
between unrelated images (inter-image). When measuring the
distance between two hashes (usually via normalised Hamming
distance), unrelated images should be essentially tossing a coin for
each bit, resulting in a distance of around 0.5, on average (mean and
median). Additionally, we should expect that very close hashes, and
particularly exact matches, should not occur in large groups, and
the occurrences should be reasonable and expected, that is, highly
similar images.

In order to characterise inter-score behaviour for the original
(unmodified) images, each image in the Flickr 1 Million dataset was
compared to a random selection of 50 other images, for a total of
approximately 50 million comparisons’ to generate statistics from.
To better understand the impact of the various image modifications
on the behaviour of each hash, inter-scores were also analysed for
each of the seven modifications, comparing to 50 random images in
each 250,000 set, resulting in 12.5 million additional samples per
modification for each hashing algorithm. Results for these com-
parisons (via normalised Hamming distances) are reported in
Section 4.1.

The second main characteristic is the performance of a
perceptual hashing algorithm when comparing an image to its

! There are a possible total of 500 billion comparisons (1millienximiliion) for 1
million images, which is unnecessary to acquire the understanding we need here.
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Border

Mirror Watermark

Fig. 1. Visibly distinct modification examples for 50.jpg in the dataset.

variant. This second image could be a pixel perfect copy, a re-
encoded version of the image into a different file format, a
thumbnail, cropped manipulation, etc. Ideally the perceptual
hashing algorithm generates the same, or similar, hash for each of
these images, such that the Hamming distance is zero, or very
small. The distance distributions of inter- and intra-scores for each
algorithm then allow for a wider understanding of potential false
positive and false negative rates for a given threshold distance, as
discussed in prior work (Hao et al., 2021; McKeown et al., 2019).

We explore the intra-score characteristics of the various algo-
rithms and image modifications in Section 4.2. Each modified im-
age in the dataset was hashed and compared to its original version,
generating 250,000 Hamming distance comparisons for each hash
algorithm/modification pair. Results present not only measures of
distribution (range, mean, median, and standard deviation), but
also exact hash match percentages to demonstrate particularly
strong matching performance.

4. Findings
4.1. Inter-score (different images)

The findings for inter-image distributions (i.e., between unre-
lated images) are presented first, with Section 4.1.1 describing each
algorithm’s behaviour for the original Flickr 1 Million image set.
This essentially acts as a baseline for each algorithm’s behaviour
when images are not expected to match. Section 4.1.2 compares
images in each modification class (e.g., cropped to cropped) in or-
der to determine if there is any bias introduced by the modifica-
tions themselves, even if the images are still assumed to be
unrelated. This is followed by Section 4.2 which moves on to
examine the impact that the modifications have when comparing
the same image to versions of itself, providing further insight into
difficulties and biases.

4.1.1. Original to original

Inter-score comparisons between original images in the dataset,
for each hash, are presented in Table 3, with distributions depicted
in Fig. 2.

While almost all of the algorithms do well to centre inter-image
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Table 3

Inter-score normalised Hamming distances between random images in the Flickr 1
Million dataset. Each image was compared to 50 random images. The ideal value is
0.5 distance to make best use of the Hamming space.

hash alg. mean median stdev range

blockhash 0.4923 0.4922 0.0785 0.0078—1.0000
colourhash 0.1601 0.1591 0.0547 0.0000—-0.3636
neuralhash 0.4973 0.5000 0.0600 0.0521-0.7917
pdq 0.5000 0.5000 0.0321 0.0391-0.6953
phash 0.4904 0.5000 0.0649 0.0938—-0.8438
wavehash 0.4854 0.5000 0.1241 0.0000—1.0000

scores around 0.5, which is clearly a design goal (best achieved by
PDQ), Colourhash behaves quite differently. Colourhash has much
lower scores for unrelated images, meaning that unrelated images
may match with a higher probability than is desirable. This is
particularly clear when analysing equivalence classes (distance 0),
where three hashes accounted for over 60,000 images in the
dataset, making it functionally indiscriminate. Wavehash, despite
its reasonable mean/median scores, produced a single class of 5,527
items, and several classes in the hundreds, again making it a poor
discriminator at scale. Of the remaining algorithms, only Blockhash
produced a class size greater than 5, with two hashes corre-
sponding to over 100 images.

In terms of their distributions, the algorithms which use lower
hash sizes by default generate sparse distributions, with some
distance intervals being unused, essentially quantizing the output
across the Hamming space. This is particularly clear for Colourhash,
pHash and Wavehash, where the sparseness creates a large
mismatch with the Normal Probability Density Function (NPDF) in
Fig. 2. NeuralHash has an intermediate hash length, but fits the
NPDF much better, despite a notable gap in the centre of the dis-
tribution. The spikes produced by Blockhash and PDQ, which both
use large hashes, are therefore likely algorithmic, making certain
hash codes and distances more likely to occur by chance.

Of the hashes which conform to 0.5 as the median/mean,
Wavehash has the widest distribution (highest standard deviation),
with tails making it reasonably likely that it generates a zero dis-
tance match by chance at any reasonable scale, as was evidence
from the equivalence class of 5,527 items. PDQ, on the other hand,
has a very tight distribution, likely by design, allowing it to scale
upwards without concern for accidental matches.

4.1.2. Modified to modified

From the equivalence class analysis alone, the Colourhash and
Wavehash algorithms should be discounted as potential solutions.
However, Wavehash remains in the following tables to provide
insight into how a non-DCT based frequency transform is impacted
by the modifications.

Table 4 represents inter-score distances for each algorithm
where the images in each modification class are compared to each
other (e.g. cropped-to-cropped). The perceptual hashes largely
remain stable across the modified image comparisons, though
adding in repeated content in the form of a border has had a larger
than expected impact for some hashes. Blockhash, pHash and
Wavehash all have sizable reductions in mean distance between
unrelated images as a result of the shared border. This means that
they are more likely to match images with borders to each other,
regardless of the content residing within the border. NeuralHash
appears to be the only algorithm which is not particularly affected
by the addition of a border. The watermark has a similar effect,
though it is not nearly as pronounced.
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Fig. 2. Normalised Hamming inter-scores with Normal Probability Density Function (NPDF) (50 million pair-wise samples) for the original Flickr 1 Million dataset. a) Blockhash, b)

Colourhash, C) NeuralHash, d) PDQ, e) pHash, f) Wavehash
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Table 4

Inter-score normalised Hamming distances between random images within each
modification category for the Flickr 1 Million dataset. Each image was compared to
50 random images (e.g. each cropped image was compared to 50 random cropped
images for the same algorithm). The ideal mean/median is a distance of 0.5,
demonstrating that the modification does not bias the algorithm.

hash algorithm modification mean median stdev range

blockhash border 03284 03281 0.0549 0.0391-0.8047
blockhash compression 04922 04922 0.0782 0.0391-0.9805
blockhash crop 0.4941 04922 0.0761 0.0234—-0.9766
blockhash mirror 0.4921 0.4922 0.0784 0.0312-0.9609
blockhash scale 0.4922 04922 0.0783 0.0391-0.9492
blockhash thumbs96 0.4921 04922 0.0787 0.0234—0.9609
blockhash watermark 04789 04766 0.0758 0.0391-0.9531
neuralhash border 0.4969 0.5000 0.0601 0.0000—0.7812
neuralhash compression  0.4974 0.5000 0.0600 0.0729-0.7812
neuralhash crop 0.4976 0.5000 0.0599 0.0833-0.7812
neuralhash mirror 0.4974 0.5000 0.0600 0.0521-0.8021
neuralhash scale 0.4973 0.5000 0.0600 0.0417-0.7812
neuralhash thumbs96 0.4969 0.5000 0.0602 0.0312—-0.7812
neuralhash watermark 0.4969 0.5000 0.0602 0.0521-0.7812
pdq border 04794 04766 0.0363 0.2109-0.6719
pdq compression  0.5000 0.5000 0.0321 0.2500—0.6797
pdq crop 0.5000 0.5000 0.0318 0.2891-0.7109
pdq mirror 0.5000 0.5000 0.0321 0.2969-0.6797
pdq scale 0.5000 0.5000 0.0321 0.2812—-0.7188
pdq thumbs96 0.5000 0.5000 0.0321 0.2812-0.7031
pdq watermark 0.4941 0.4922 0.0333 0.2031-0.7344
phash border 04283 04375 0.0727 0.0625—0.8438
phash compression  0.4904 0.5000 0.0649 0.1562—0.8438
phash crop 0.4907 0.5000 0.0641 0.0625—-0.8125
phash mirror 0.4904 0.5000 0.0649 0.1562—0.8438
phash scale 0.4904 0.5000 0.0649 0.1250—0.8438
phash thumbs96 0.4904 0.5000 0.0650 0.1250—-0.8125
phash watermark 0.4704 0.4688 0.0674 0.0000—0.8125
wavehash border 0.3013 0.2812 0.1167 0.0000—0.9688
wavehash compression  0.4854 0.5000 0.1240 0.0000—1.0000
wavehash crop 0.4869 0.5000 0.1212 0.0000—1.0000
wavehash mirror 0.4854 0.5000 0.1239 0.0000—1.0000
wavehash scale 0.4854 0.5000 0.1240 0.0000—1.0000
wavehash thumbs96 0.4854 0.5000 0.1241 0.0000—1.0000
wavehash watermark 04631 0.4688 0.1174 0.0000—1.0000

4.2. Intra-score (versions of the same image)

Intra-score values, comparing the original image to its modifi-
cations, are depicted in Table 5. These scores give us an opportunity
to explore how well the various techniques can deal with attempts
to circumvent content-based detection.

All algorithms stumble into very high Hamming distances at
some point, represented by the high maximum distance values,
which simply suggests that there is at least one image in the dataset
that troubles each algorithm for almost every modification. These
outliers are often hidden when considering aggregate behaviour,
and they do not always occur, but particularly troublesome ranges
are present for Blockhash-Mirror, PDQ-Border, PDQ-Mirror, and
pHash-Mirror.

Most algorithms coped well with image scaling, likely because
one of the main steps in generating perceptual hashes is to
downscale the image to a manageable size/complexity. Most al-
gorithms have a very high exact match percentage for scaling,’
peaking at 97.9% with Wavehash, meaning that only 2.1% of
upscaled images would not have an exact hash match. Interestingly,
while thumbnail performance is often almost as good, it does not

2 Curiously, the more nuanced downsampling approach taken by PDQ seems to
hinder it in this case.
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produce anywhere near the same percentage of exact hash
matches. All algorithms also coped very well with poor quality
JPEGs.

NeuralHash produces consistently good results, though it has a
very wide distribution (almost normal around 0.3) for mirroring
attacks, when ideally the distribution should be very long tailed
with most distances around zero. On paper, Wavehash also falls
into this category, but the false positive rate is likely too high for
most use cases due to the inter-score distribution. Blockhash,
pHash and PDQ all perform well on average, however, each of them
have cases where the distribution is very wide due to a high
standard deviation (border, crop and mirror for all three, and
watermark for PDQ and pHash). Generally, mirroring an image
seems to cause the most disturbance, with many algorithms
essentially distributing scores as if it was an unrelated image.
Borders appear to be second most impactful due to the introduction
of common content.

5. Conclusion and future work

In this work, we have explored several popular and widely used
perceptual hashing algorithms in order to understand the distri-
butions of their Hamming distances when discriminating between
unrelated images, and versions of the same image. Of the tested
algorithms, all but ColourHash and Wavehash were shown to have
reasonable inter-score distributions, resulting in few false positives
by complete chance. PDQ is particularly strong in this regard. Sur-
prisingly, adding a border or watermark is enough to substantially
throw off the distances between unrelated images for most algo-
rithms, simply due to a small portion of shared content being
introduced.

When comparing the images to various content-preserving
modifications, mirroring the image on the x-axis was found to be
particularly destructive across the board, with the addition of a
border being a distant second. While distances should be clustered
around O in these intra-score cases, distributions for unfavourable
modifications often resulted in relatively wide spreads, sometimes
centred around 0.4 and 0.5. Additionally, most techniques had at
least one poorly handled image for each modification. Overall,
NeuralHash appears to be the least affected by the modifications, in
addition to having a desirable inter-score distribution, suggesting
that deep, learned, approaches may be strong against naive user-
level attack.

The understanding generated above allows for further insights
to be mined in terms of setting appropriate thresholds (given some
level of false positive/false negative trade-off) (McKeown et al.,
2019), but also to allow us to consider black-box mitigations
against common problems in matching. Pre-processing approaches
for mirrored and bordered images would help reduce negative
impacts on scoring. This could be handled in a similar manner to
how ForBild mitigates its algorithmic weakness to rotated images,
by rotating the image such that the darkest corner is always in the
same position (Steinebach, 2011).

The analysis above is also largely content-independent. While
prior work has acknowledged that there are types of image which
cause issues with certain algorithms (McKeown et al., 2019;
Struppek et al., 2022b), these particular weaknesses could be better
documented at the archetype/algorithm level. This is particularly
important for the impact it may have on varying corpora, such as
when comparing animated images, or exported video frames using
still image hashing formats.
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Table 5
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Intra-score normalised Hamming distances between the original image and various modifications of the original for the Flickr 1 Million dataset. The ideal distance value is 0,
which is reflected in the ‘% matches’ column. Bolded items are very good performances, while underlined items are as bad, or worse, than unrelated images.

hash algorithm modification mean median stdev range % exact matches
blockhash border 0.2783 0.2734 0.0851 0.0000—0.7188 0.0000
blockhash compression 0.0095 0.0078 0.0142 0.0000—0.4492 36.4310
blockhash crop 0.1668 0.1641 0.0610 0.0000—-0.7344 0.0180
blockhash mirror 0.4450 0.4531 0.1410 0.0000—1.0000 0.0460
blockhash scale 0.0013 0.0000 0.0040 0.0000-0.1719 85.4360
blockhash thumbs96 0.0254 0.0234 0.0179 0.0000—-0.4961 5.5890
blockhash watermark 0.0504 0.0469 0.0305 0.0000—-0.3672 2.9450
neuralhash border 0.0763 0.0729 0.0381 0.0000—-0.5312 0.3670
neuralhash compression 0.0082 0.0104 0.0105 0.0000—0.3333 49.1630
neuralhash crop 0.0605 0.0521 0.0332 0.0000—0.4688 1.1540
neuralhash mirror 0.2823 0.2812 0.1251 0.0000—-0.6979 0.0960
neuralhash scale 0.0036 0.0000 0.0069 0.0000—0.1458 73.6020
neuralhash thumbs96 0.0809 0.0729 0.0445 0.0000—0.4792 0.9690
neuralhash watermark 0.0551 0.0417 0.0424 0.0000—-0.5729 3.6560
pdq border 0.3949 0.3984 0.0599 0.0547—-0.7422 0.0000
pdq compression 0.0094 0.0078 0.0091 0.0000—0.4453 23.4350
pdq crop 0.3255 0.3281 0.0564 0.0234—-0.6719 0.0000
pdq mirror 0.4975 0.5000 0.0226 0.0000—0.9844 0.0020
pdq scale 0.0237 0.0234 0.0132 0.0000—0.4609 1.6320
pdq thumbs96 0.0721 0.0703 0.0281 0.0000—0.4844 0.0060
pdq watermark 0.1029 0.0938 0.0489 0.0000—0.5469 0.0020
phash border 0.2656 0.2500 0.0745 0.0000—0.6562 0.0000
phash compression 0.0053 0.0000 0.0138 0.0000—0.4688 83.9040
phash crop 0.1686 0.1562 0.0586 0.0000—0.6562 0.0430
phash mirror 0.4904 0.5000 0.0339 0.1562—0.6875 0.0000
phash scale 0.0020 0.0000 0.0091 0.0000—0.4688 94.0050
phash thumbs96 0.0245 0.0312 0.0250 0.0000—0.5938 39.0830
phash watermark 0.1227 0.1250 0.0824 0.0000—-0.6875 4.5350
wavehash border 0.2744 0.2500 0.1333 0.0000—-0.8750 0.2570
wavehash compression 0.0029 0.0000 0.0106 0.0000—0.5312 91.4070
wavehash crop 0.1049 0.0938 0.0649 0.0000—-0.8750 3.5740
wavehash mirror 0.3474 0.3125 0.1698 0.0000—1.0000 1.2670
wavehash scale 0.0007 0.0000 0.0052 0.0000—0.8438 97.9830
wavehash thumbs96 0.0158 0.0000 0.0214 0.0000—0.5938 57.3560
wavehash watermark 0.0451 0.0312 0.0483 0.0000—0.4688 39.6030
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