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Abstract
The subjectivity and inaccuracy of in-clinic Cognitive Health Assessments (CHA) have led many researchers to explore 
ways to automate the process to make it more objective and to facilitate the needs of the healthcare industry. Artificial Intel-
ligence (AI) and machine learning (ML) have emerged as the most promising approaches to automate the CHA process. In 
this  paper, we explore the background of CHA and delve into the extensive research recently undertaken in this domain 
to provide a comprehensive survey of the state-of-the-art. In particular, a careful selection of significant works published 
in the literature is reviewed to elaborate a range of enabling technologies and AI/ML techniques used for CHA, including 
conventional supervised and unsupervised machine learning, deep learning, reinforcement learning, natural language process-
ing,  and image processing techniques. Furthermore, we provide an overview of various means of data acquisition and the 
benchmark datasets. Finally, we discuss open issues and challenges in using AI and ML for CHA along with some possible 
solutions. In summary, this paper presents CHA tools,  lists various data acquisition methods for CHA, provides techno-
logical advancements, presents the usage of AI for CHA, and open issues, challenges in the CHA domain. We hope this 
first-of-its-kind survey paper will significantly contribute to identifying research gaps in the complex and rapidly evolving 
interdisciplinary mental health field.

Keywords  Healthcare · Internet of Things · Healthcare services · Remote monitoring · Smart homes · Sustainability · Best 
practices · Internet of Healthcare Things · Mental health · Cognitive health · Dementia

Extended author information available on the last page of the article

 *	 Mufti Mahmud 
	 mufti.mahmud@ntu.ac.uk; 

muftimahmud@gmail.com

Introduction

Cognitive health assessments (CHA) measure an individu-
al’s cognitive abilities and functioning. These assessments 
are typically used in diagnosing and monitoring conditions 
that affect cognitive abilities, such as dementia, Alzhei-
mer’s disease, and other forms of cognitive decline. They 
can also assess cognitive abilities in individuals with 
brain injuries and neurological conditions. CHA typically 
involves a series of tests and tasks designed to evaluate 
specific aspects of cognitive function, such as memory, 
attention, language, reasoning, and perception. Health-
care professionals, such as neurologists, psychologists, or 

occupational therapists, usually administer these assess-
ments. The dysfunction or inability of the brain to perform 
cognitive functions such as learning, thinking, remember-
ing, comprehension, decision-making, and attention has 
been termed Cognitive Impairment (CI)  [1]. A natural 
cognitive decline occurs as one ages; however, if this 
decline is more than what usually comes with age, it is 
termed the onset of Mild Cognitive Impairment (MCI) [2]. 
MCI can be triggered by stress, depression, stroke, brain 
injury, and  other underlying health conditions. The 
condition gradually progresses from Early Mild Cogni-
tive Impairment (EMCI) to MCI to Late Mild Cognitive 
Impairment (LMCI), and finally, to Alzheimer’s Disease 
(AD). Although AD is the most frequent type of demen-
tia, MCI could progress to dementia with Lewy bodies as 
well. The impairment in all these stages affects a patient’s 
daily activities and can show varying degrees of cognitive 

http://orcid.org/0000-0002-2037-8348
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-023-10153-4&domain=pdf


	 Cognitive Computation

1 3

decline symptoms [3, 4]. Figure 1 presents the early signs 
of MCI.

According to the Alzheimer’s Association, a leading vol-
untary health organisation in Alzheimer’s care, support, and 
research, by 2050, the number of  AD patients is expected to 
rise to 13.8 million. The overall cost of care and management 
of AD is very high, and in 2019 alone, it was valued at $290 
billion. Hence, it has been observed that diagnosed and man-
aged MCI provides medical benefits and reduces long-term 
care costs. Forecasts suggest that early diagnosis in the MCI 
stage in the year 2050 can bring health care costs down by 
$231 billion [5].

MCI screening and early intervention is currently the 
most widely accepted strategy to manage AD. Diagno-
sis of MCI is established through various assessments. 
These assessments not only help diagnose but also help 
characterise cognition at the stage of MCI; hence they 
may help in understanding the cognitive pathophysiol-
ogy [6]. Unfortunately, the lack of proper guidelines and 
standardised screening has resulted in undiagnosed MCI. 
The likelihood of this disease's progression and decline 
in cognitive health is becoming common. With the advent 
of the Internet of Medical Things (IoMT) and Artificial 

Intelligence (AI), several researchers have proposed auto-
mated assessment techniques to improve the accuracy of 
diagnosis. Needless to say, this has been driven   by AI 
and Machine Learning (ML) due to their recent contri-
butions in the methodological developments for diverse 
problem domains, including computational biology [7, 
8], cyber security [9–12], disease detection [13–19] and 
management [20–25], elderly care [26, 27], epidemio-
logical study [28], fighting pandemic [29–35], healthcare 
[36–40], healthcare service delivery [41–43], natural lan-
guage processing [44–48], social inclusion [49–51] and 
many more. This paper is a detailed study of different 
automated CHA techniques and technologies available in 
the literature, their challenges, and the future prospects in 
objectively assessing cognitive health using state-of-the-
art technology. The notations used in the paper is listed 
in Table 1.

Existing Studies

Misdiagnosed or undetected CI can lead to a rapid decline 
in the mental health of a patient and can rapidly progress to 
AD. To automate the assessment process, many researchers 

Fig. 1   Early signs of mild cog-
nitive impairment
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Table 1   List of abbreviations

Abbreviation Description Abbreviation Description

4G Forth-generation IBSR Internet Brain Segmentation Repository
5G Fifth-generation IBSR (Internet Brain Segmentation Repository)
3D-PET Three dimensional Positron Emission Tomography IoMT Internet of Medical Things
ADNI Alzheimer’s Disease Neuroimaging Initiative ICC Intra-class correlations
ADAS-cog The Alzheimer’s Disease Assessment Scale-Cognitive 

Subscale
IMU Inertial Measurement Unit

APOe4 Apolipoprotein E4 JAFFE The Japanese Female Facial Expression
AMT Abbreviated Mental Test KDEF The Karolinska Directed Emotional Faces
AUC​ Area under curve KSVM-DT kernel support vector machine - decision tree
ADLs Activities of Daily Living KNN K-Nearest Neighbour
AIBL Australian Imaging Biomarkers and Lifestyle Study 

of Ageing
LDA linear discriminant analysis

AI Artificial Intelligence LSTM Long short-term memory
API Application programming interface LR Linear regression
ACE-III Addenbrooke’s Cognitive Examination III LMCI Late Mild Cognitive Impairment
AD Alzheimer’s Disease LASSO Least absolute shrinkage and selection operator
ANN Artificial Neural Network LC-KNN Lattice Computing- K-Nearest Neighbour
ASGD Average-Stochastic Gradient Descent LDR Light Dependent Resistor
ASR Automatic Speech Recognition LMCI Late MCI
ASA Automatic Speech Analysis MEG Magnetoencephalography
AWD-LSTM ASGD Weight-Dropped long short-term memory MICCAI BraTs Medical Image Computing and Computer Assisted 

Intervention Brain Tumor Segmentation
ADReSS Alzheimer’s Dementia Recognition through 

Spontaneous Speech
MoCa Monreal Cognitive Assessment

Bi-LSTM Bidirectional LSTM MLP Multilayer Perceptron
ConvBLSTM Convolutional Bidirectional Long Short-Term 

Memory
MCI-C MCI converter

CDR clinical dementia rating MCI-NC non-converter
CLC-KSVD Correlation-based Label Consistent K-SVD MEMS Micro-Electro-Mechanical System
CI Cognitive Impairment MOCA Montreal-Cognitive Assessment
CPD Change Point Detection MCI Mild Cognitive Impairment
CSF Cerebrospinal fluid MoCA Montreal Cognitive Assessment
CASA Centre for Advanced Studies in Adaptive Systems ML Machine Learning
CSF cerebrospinal fluid MRI Magnetic Resonance Imaging
CAAB Clinical Assessment using Activity Behaviour MCDA Multicriteria Decision Aid
CAMCI Computerised assessment of mild cognitive 

impairment
MRS Magnetic Resonance Spectroscopy

CANTAB Cambridge neuropsychological test automated battery MMSE Mini-mental state examination
CPS Cognitive performance scale MES Memory and executive screening
CDT Clock Drawing Test MEFO Memory, fluency, and orientation test
CADi Cognitive Assessment for Dementia, iPad version MLP Multi-Layer Perceptron
CHA Cognitive Health Assessment NLP Natural Language Processing
CNN Convolutional Neural Networks NC Normal Controls
CAD computer-assisted diagnosis NACC​ National Alzheimer’s Coordinating Center
CAD Cornell Activity Dataset NC Cognitively Normal
CRT​ Cognitive rehabilitation therapy NPV Negative predictive value
CSF Cerebrospinal fluid OASIS The Open Access Series of Imaging Studies
CAVE (Cave Automated Virtual Environment) PCD Permutation-Based Change Detection
C-MARL Communicative multiagent reinforcement learning PET Positron Emission Tomography
CER Classification Error Rate PCA Principal Component Analysis
CRF Conditional random field PCANet Pyramid convolutional attention network
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have been working to develop systems that can use different 
technologies to automate CI assessment   leading to accurate 
and timely prediction of MCI so that it’s progression can 
be slowed down and effective management of the disease  

can be put in place to improve the quality of life of the 
patients. Several reviews have been found on similar topics 
assessing the validity of different AI tools and techniques 
used for cognitive health management.

Table 1   (continued)

Abbreviation Description Abbreviation Description

CK+ Extended Cohn-Kanade PLS partial least squares
Caffe Convolutional Architecture for Fast Feature 

Embedding
PPV Positive predictive value

CA-SHR Cognitive Assessment of Smart Home Resident RF Random Forest
DTI Diffusion Tensor Imaging RRE-IR Resident Relative Entropy-Inverse Reinforcement 

Learning
DU MD University of Dhaka (DU) Mobility Dataset RCS Rapid Cognitive Screen
DPM disease probability risk map rsfMRI Resting-state functional magnetic resonance imaging
DRQLRM Deep Recurrent Q Learning-based Reinforcement 

Model
ROC Receiver operating characteristic curve

DQN Deep Q-network RNN Recursive Neural Network
DL Deep Learning RRE-IRL Resident Relative Entropy-Inverse Reinforcement 

Learning
DRQLRM Deep Recurrent Q Learning-based Reinforcement 

Model
SPMSQ Short Portable Mental Status Questionnaire

DCN dilated convolutional end network SVR Support Vector Regression
DBN Bayesian network SVM Support Vector Machines
DPMM Dirichlet Process Mixture Model SL supervised Learning
EMCI early mild cognitive impairment SPECT Single Photon Emission Computed Tomography
EEG electroencephalogram SLR Systematic Literature Review
ECG Electrocardiogram SAQ Self Administered Questionnaire
EHR Electronic Health Record SSIM Structural Similarity Index Measure
EMCI Early MCI SVF Semantic Verbal Fluency
EEG Electroencephalography SADL Simple Daily Life Activities
FER2013 Facial Expression Recognition 2013 sMRI Structural MRI
feNet Frequency Extraction Network TR-LDA trace ratio linear discriminate analysis
FL Federated learning T1-MRI longitudinal relaxation time MRI
fMRI functional MRI TCDSA Trinity College Dublin Speaker Ageing
FSM Finite State Machine UniMiB SHAR University of Milano Bicocca Smartphone-based HAR
FFNN feed-forward neural network UDS Uniform Dataset
FDG-PET fluorodeoxyglucose - positron emission tomography UMLS Unified Medical Language System
GBM Gradient Boosted Machine VR-DOT Virtual Reality Day-Out-Task
GANs Generative adversarial network VR Virtual Reality
GA Genetic Algorithm VRA Virtual Reality Assessments
GPCOG The General Practitioner Assessment of Cognition VGG Visual Geometry Group
HIPPA Health Insurance Portability and Accountability Act VAE Variational Autoencoders
HMM Hidden Markov model VBM Voxel-based Morphometry
HDS-R Revised Hasegawa’s dementia scale WSN Wireless Sensor Network
HC Healthy Controls XAI Explainable AI
HR hazard ratio ICA Integrated Cognitive Assessment
HAR Human Activity Recognition Using Smartphones Isudra Indirectly Supervised Detector of Relevant Anomalies
HTKS Head-Toes-Knees-Shoulders IT Information Technology
IQCODE Informant Questionnaire on cognitive decline in the 

elderly individuals
IAQ interview Administered Questionnaire

IoT Internet of Things IoMT Internet of Medical Things
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Authors in  [52] reviewed  different AI techniques 
used in detecting AD from MRI images. Theydiscussed in 
detail the different MRI image-based datasets commonly 
used by researchers and the most prominent AI tools, like 
ML and CNN, used for feature extraction and classifica-
tion of AD. The authors have explored only the image-based 
datasets and their efficacy in  CHA.

Authors in [53] provided another review that discusses 
the AI approaches to predict cognitive decline in the elderly. 
The authors highlighted six different areas of features and 
datasets that researchers have used in employing AI tech-
niques. These include socio-demographic data, clinical and 
psychometric assessments, neuroimaging and neurophysi-
ological data, Electronic Health Record (EHR) data and 
claims data, various assessment data (e.g., sensor, hand-
writing, and speech analyses), and genomic data. Further-
more, the authors discussed about the future prospects and 
the ethical use of AI in CHA. One limitation of the paper 
was that it lacked an in-depth analysis of different AI tools 
and techniques.

Authors in  [54]  reviewed the different AI techniques 
like ML-supervised learning, unsupervised learning, Deep 
Learning (DL), and Natural Language Processing (NLP) 
to predict AD or develop diagnostic markers for AD. The 
authors discuss how researchers have used AI techniques 
to obtain and analyse data to predict AD. Augmented Real-
ity (AR), Kinematic Analysis (KA), and Wearable Sensors 
(WS) have also been discussed as tools to establish digital 
biomarkers for AD. In this review, the discussion on AI tech-
niques is brief and does not include the state-of-the-art AI 
tools for disease prediction and management.

Authors in [55] reviewed computer-aided diagnosis tools 
used in assessing and evaluating areas such as: 1) in the use 
of AI tools for early detection of AD, 2) in identifying MCI 
subjects who are at risk of AD, 3) in predicting the course 
and progression of the disease and 4) the use of AI in pre-
cision medicine for AD. It discussed the promising work  
of different researchers using ML, DL, NLP, Virtual Real-
ity (VR),WS, etc., to analyse patient data. The authors dis-
cussed the possibility of precision medicine for AD using 
AI by highlighting novel research based on layered clusters.

Authors in  [56] presented a detailed review of exist-
ing automated approaches used in neurodegenerative dis-
orders, like AD, Parkinson’s Disease (PD), Huntington’s 
Disease (HD), Amyotrophic Lateral Sclerosis (ALS), and 
Multiple System Atrophy (MSA). It also includes a discus-
sion on open challenges and future perspectives. The authors 
analysed symptom-wise computational methods that dif-
ferent researchers have used along with the classification 
methodologies and datasets used for each disease and their 
symptoms.

Authors in [57] presented a systematic literature review of 
51 articles on using AI, speech, and language processing to 

predict CI and AD. The author categorised the features into 
text-based and speech-based and further elaborated on the 
speech and text-based datasets that different researchers have 
used in identifying digital biomarkers that can be assessed 
using ML. A detailed analysis of the current research 
regarding their objectives, population samples, datasets and 
datatypes used, feature extraction methods, pre-processing 
techniques, etc. have been performed. Unfortunately, the 
authors just explored one modality and analysed the role 
of natural language and speech processing in the prediction 
and diagnosis.

Authors in [58] reviewed 11 research studies that dis-
cuss different computerised assessment techniques like 
tablet-based cognitive assessment, remotely administered 
tablet and smartphone-based cognitive assessment, and 
other recent data collection systems and analysis proce-
dures like speech, eye movement, and spatial navigation 
assessment. A study of their validation with AD biomark-
ers has been presented along with their potential in evalu-
ating AD. This work just discussed the data acquisition 
techniques. It lacked a discussion on the potential barriers 
to implementation, future challenges, and data security 
issues.

Authors in [59] provided a systematic literature review on 
the significance of technologies producing digital biomark-
ers  used for home-based monitoring of MCI and AD. The 
authors gathered research and categorised them according to 
the mode of automatic data collection via different sensors 
and other modalities, e.g., data from embedded or passive 
sensors in homes and cars, data from dedicated wearable 
sensors, data from smartphone-based automated interviews, 
Nintendo Wii, and VR. Also data obtained from secondary 
sources of everyday computer use and Activities of Daily 
Living assessment were included. Very little discussion 
regarding the different AI tools used in the domain and the 
future challenges was presented in this paper.

Authors in  [60] also reviewed 16 papers discussing 
11 assessment tools conducted over a computer, laptop, 
tablet, or touchscreen. The authors then evaluated all the 
outcomes and compared the accuracy, sensitivity, speci-
ficity, and Area Under the Curve (AUC) measure. The 
Authors in  [61] compared different ML algorithms to 
detect and diagnose Dementia. The authors suggested a 
model whereby ML and MRI scan images can yield the 
best results. Authors in [62] reviewed different applica-
tions used for medical assessment of dementia and AD and 
presented a summary of features evaluated by different AD 
screening apps. It further listed the cognitive assessment 
tools used in various apps and their validity measures. It 
then reported their sensitivity and specificity measures 
to evaluate the performance of these screening tools. 
The limitation of this paper is that the authors have only 
explored the use of smartphones for cognitive assessment.
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Table 2 concisely compares the important survey papers 
and highlights the existing surveys’ gaps, focusing on the 
different AI techniques used to diagnose and predict CI 
using different data modalities. Considering the limita-
tions and gaps of the existing surveys, there is a high need 
for research focusing on different the state-of-the-art AI 
techniques for a precise and timely diagnosis of the disease 
to slow down cognitive decline and it’s progression.

Research Methodology

In formulating this research paper, we employed the sys-
tematic literature review process defined by the benchmark 
PRISMA approach. First, the existing surveys in the domain 
of AI-based CHA assessment were analysed to identify 
the research gaps. Keeping the research gaps in mind, an 
electronic search was performed using the keywords “Cog-
nitive” and/or “Assessment” and/or “Impairment” and/

or “Mild Cognitive Impairment” and/or “Dementia” and/
or “Alzheimer’s” and/or “Artificial Intelligence”, over the 
different digital repositories like Google Scholar, IEEE, 
Elsevier, Springer and ACM to find papers relevant to 
our study. Only high-quality peer-reviewed articles from 
reputed journals, conferences, workshops, and books were 
selected. Papers were included based on relevancy, accu-
racy, and timeliness. All research studies before the year 
2018 were excluded from the research. After performing 
the initial search, screening and shortlisting were done sys-
tematically. Initially, articles were screened based on their 
titles and relevance to the research objectives, and then they 
were further shortlisted by carefully reviewing the abstracts 
and contributions of the articles. Low-quality and irrelevant 
papers were excluded at each stage. The selected articles 
were then scrutinised. Finally, the included articles refer-
enced in the survey have been selected after scrupulously 
and meticulously studying them.

Table 2   Summary of important studies on cognitive health assessment
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Motivation

With the prevalence of cognitive diseases, the need for 
timely diagnosis and management is highly essential. At 
the current pace, it is estimated that by 2050 the cost of dis-
ease management and care services is expected to increase 
9.5 times worldwide, which amounts to approximately 9.1 
trillion dollars [63]. Delayed or missed diagnosis has been 
the leading cause of the prevalence of this disease. It has 
been observed that MCI can result in an early onset of AD 
and dementia. Early, timely and accurate diagnosis is the key 
to managing and delaying the onset of the disease and reduc-
ing the related health risks. We performed extensive research 
to compile different studies by authors in the domain of early 
detection of CI. Existing surveys lack an in-depth search of 
all the AI techniques used for MCI, AD, and dementia detec-
tion using different data acquisition means and modalities. 
Existing systematic literature reviews and surveys focus on 
either a single data modality like neuroimaging, speech, lan-
guage datasets and explore the different AI techniques used 
in detecting and diagnosing MCI, AD, and dementia. Some 
research papers briefly overview the different AI techniques 
employed in the domain. Only two researchers explored the 
different datasets that researchers have used.

To the best of our knowledge, no comprehensive survey 
has been compiled that discusses all the different AI tech-
niques applied to different data modalities used for auto-
mated CHA, their challenges, the state-of-the-art technol-
ogy, open issues, and future directions. Our work will assist 
future authors in developing solutions covering the identi-
fied research gaps and enhancing the CI assessment pro-
cess so that the progression to AD can be reduced by timely 
management and intervention. Furthermore, this detailed 
survey will help identify the evaluation techniques that are 
most effective and accurate in the early detection of CI and 
predicting cognitive disease progression.

Contributions

This paper is a detailed survey and analysis of all major AI-
based CHA techniques and approaches. It also highlights 
the challenges and future directions in the domain. The 
automation of cognitive assessment is rapidly progressing, 
transforming the process into an accurate, dependable, and 
objective one. Documenting and summarising all the find-
ings into one comprehensive survey is the need of the hour 
so that future researchers can explore the research gaps and 
further improve the assessment process. Among the main 
contributions of the current paper are the following: 

1.	 We analyse the existing clinical cognitive assessment 
tools, their drawbacks, and the evolution of cognitive 

assessment tools and techniques through the incorpora-
tion of AI techniques.

2.	 We highlight the different popular data acquisition meth-
ods currently used in obtaining data regarding CI indi-
viduals.

3.	 We identify and evaluate the latest advancements in 
technology which can uplift the health industry and 
reduce the financial burden caused by misdiagnosis of 
CI and AD.    

4.	 We explore the different AI techniques researchers use 
like conventional ML, DL, and NLP.

5.	 Lastly, we discuss the challenges and future directions 
in the domain of CHA, hence presenting an overview of 
the research gaps in the area.

Organisation

“Introduction” section  introduces the paper which includes 
a discussion on the present background of CHA, a look at 
the existing literature reviews and surveys on similar topics, 
our motivation to compile this survey, and its contributions 
to the research domain. “Background and Enabling Tech-
nologies for Automated Cognitive Health Assessment” sec-
tion explains all the enabling technologies used for CHA, 
like IoT and cloud computing. This is followed by “Artifi-
cial Intelligence Techniques for Assessing Cognitive Health” 
section, which provides a detailed discussion of the different 
AI techniques researchers use for CHA. “Data Acquisition 
Channels” section explores different data acquisition meth-
ods used in acquiring data to analyse using AI techniques. 
“Cognitive Health Assessment Datasets” section presents 
a comprehensive table highlighting the different datasets 
researchers have used for CHA. Finally, “Challenges and 
Open Issues and Future Directions” section discusses the 
challenges, open issues, and future directions in the field 
of AI for CHA. Figure 2 shows the structure of the paper.

Background and Enabling Technologies 
for Automated Cognitive Health Assessment

This section presents the existing background and enabling 
technologies for automated cognitive health assessment.

Present Background of Cognitive  
Healthcare Assessment

The current diagnosis of cognitively impaired individuals is 
a step-by-step process. A patient undergoes an initial assess-
ment at a local clinic. Further testing is done at the neuro-
logical centre. Various screening tools like self-administered  
questionnaires, interview-administered assessments, 
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Fig. 2   Organisation of the paper
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telephone-based assessments, and iPad assessment ver-
sions have been introduced to screen patients with cognitive 
symptoms [64]. According to PubMed, roughly eight cogni-
tive domains are evaluated in a cognitive assessment: sensa-
tion, perception, motor skills and construction, attention and 
concentration, memory, executive functioning, processing 
speed, and language and verbal skills [65]. To assess these 
domains, several screening tools have been used in the past 
ten years [64, 66]. Table 3 lists some of these. Furthermore, 
Fig. 3 presents the cognitive assessment domains.

The available objective methods for assessing Cognitive 
Impairment are frequently based on interview-based and 
self-administered questionnaires or are conducted in the 
clinical setting where an artificial environment can influ-
ence response, thus increasing the possibility for biases and 
misinformation. Automating the assessment and prediction 
process is the key to timely diagnosis and management.

Enabling technologies (i.e. Internet of Things (IoT), 
Cloud Computing, Edge Computing, Internet of Medical 
Things (IoMT), Big data Analytics, 5G and Beyond, Ubiq-
uitous Computing, and Virtual Reality) play a vital role to 
improves the way of living style of cognitively impaired 
individuals. This section provides the enabling technologies 
for automated cognitive health assessment.

Internet of Things

IoT is one key enabling technology for automated cogni-
tive health assessment. IoT is a vast linked network of 
various components that enable smart devices to detect, 
distribute and evaluate data and deploy these devices in 
different domains like food chain management, healthcare 
monitoring, smart homes, smart cities, and environmental 

mentoring [69, 70]. A considerable increase has been in IoT 
devices like smartwatches, sensors, smoke detectors, heart-
beat monitors, smart homes, and smartphones. There were 
8.4 billion IoT devices in 2020, which will touch 20.4 billion 
in 2022 [71]. IoT is significantly growing in the healthcare 
sector. The IoT industry is slowly picking up pace due to 
many issues, such as scalability, accepted standards, het-
erogeneity, and integration in IT infrastructure. To monitor 
patients’ health, wearable devices are gaining popularity in 
IoT. For the duration of medical examination and treatment, 
wearable devices are connected to an individual’s body to 
collect patient health data.

Smart Home

IoT significantly improves the living style by introducing 
smart homes. A smart home provides the ability to perform 
daily routines from simple to complex tasks to cognitively 
impaired individuals. Various sensors embedded in smart 
homes, like temperature, motion, heat, and light, are intel-
ligent enough to make decisions for the smart home environ-
ment. In the healthcare system, smart homes are used for 
activity recognition to promote sustainability and improve 
the lifestyle of cognitively impaired individuals [72]. The 
activity recognition process recognises the individual’s daily 
activities, such as preparing food, eating, drinking, toileting, 
reading newspapers or books, walking, sleeping, watching 
TV, and home cleaning. Several techniques are available for 
activity recognition, like on-body intrusive sensors, on-body 
non-intrusive sensors, and wearable devices [73]. Still, smart 
homes and smartphones are frequently used due to their non-
obtrusive behaviour.

Ability to understand language,
understand meanings and to respond to

verbal instructions appropriately

How quickly one is able to interpret
given information and give meaningful

responseses

Assessing motor abilities, and motor
speed

Assessing the ability to focus and for how
long the focus is  maintained

Evauating the reasoning and problem
solving ability of an individual

Ability to retain information, maintain and
retrieve it for adaptive use

Identification of the sensed objects from
previous information

Ability to detetct a stimulus using one of
the 5 senses

Fig. 3   Cognitive assessment domains



	 Cognitive Computation

1 3

Table 3   Cognitive health assessment tools

AT Assessment Type, AN Assessment Name, KF Key Features, SAQ Self-Administered Questionnaire, IAQ Interview Administered Question-
naire, VRA Virtual Reality Assessments

AT AN Time KF

1 SAQ Informant Questionnaire on cognitive decline in the 
elderly individuals (IQCODE)

10 mins Initial assessment of long-term and short-term memory, 
learning skills, and orientation

2 SAQ p-AD8 3 mins Initial screening of memory, orientation, and assessment
3 SAQ Computerised assessment of mild cognitive impair-

ment (CAMCI)
30 mins Computer-Aided Assessment of MCI

4 IAQ Mini-mental state examination (MMSE) 5–10 mins Most widely used, Evaluates multiple cognitive domains 
like orientation, calculation, attention, language, 
memory, etc.

5 IAQ Montreal Cognitive Assessment (MoCA) around 10 mins Tests multiple cognitive domains, including short-term 
memory, visuospatial skills, executive function, atten-
tion, concentration, working memory, language, and 
orientation

6 IAQ Revised Hasegawa’s dementia scale (HDS-R) 6–10 mins Assesses six cognitive domains, including short-term 
memory, attention, concentration, working memory 
language, and orientation

7 IAQ DemTect 8–10 mins Covers a broad range of cognitive functions, includ-
ing short-term memory, working memory, language, 
number processing

8 IAQ Cambridge neuropsychological test automated battery 
(CANTAB)

5–10 mins A computerised wordlist learning and delayed recall test

9 IAQ Memory and executive screening (MES) 7 mins Tests short-term memory and learning
10 IAQ Memory, fluency, and orientation test (MEFO) 5 mins Tests short-term memory, language, and orientation
11 IAQ Cognitive performance scale (CPS) 30 mins It is a test assessing the ability in decision-making, 

language, self-performance in eating (Activities of 
Daily Living (ADL)), short-term memory, as well as 
procedural memories

12 IAQ Short Portable Mental Status Questionnaire [67], 
SPMSQ

less than 5 mins Evaluates short and long-term memory, orientation in 
the environment, information on current events, and the 
ability to perform mathematical tasks

13 IAQ Addenbrooke’s Cognitive Examination III (ACE-
III) [68]

15–20 mins Encompasses five major cognitive domains: attention, 
memory, language, visuospatial function, and verbal 
fluency

14 IAQ 5 Object Test 5 mins Recalling the locations of five everyday objects immedi-
ately after placement and after a brief time

15 Rapid Cognitive Screen (RCS) less than 3 mins Recall of 5 words, a clock drawing test, and the ability to 
remember a story

16 IAQ Clock Drawing Test (CDT) 1–2 mins Evaluates the visuospatial, brains executive function 
abilities by drawing a clock and a said time on it

17 IAQ Abbreviated Mental Test (AMT) 3 mins A 10-item mental assessment. Evaluates the long-term 
memory and attention span of the patient

18 VRA Virtual Reality Day-Out-Task (VR-DOT) Not known to assess executive function by mimicking instrumental 
activities of daily living in a virtual reality module, 
such as fire evacuation and shopping in the supermar-
ket

19 IAQ Mini-Cog 3 mins Includes a three-word recall along with a clock drawing 
task to assess the memory and orientation of the patient

20 SAQ The General Practitioner Assessment of Cognition 
(GPCOG)

5–6 mins Similar to Mini-Cog test.Evaluates short-term memory 
and orientation along with a self-administered ques-
tionnaire

21 SAQ Cognitive Assessment for Dementia, iPad version 
(CADi)

10 mins Evaluates 10 items, recognition, memory, grouping, 
subtraction, backward repetition, rotation of shapes, 
long term memory test
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The motivation for using IoT for a cognitive health assess-
ment is to provide immediate care and treatment to cogni-
tively impaired individuals. IoT devices help keep track of 
cognitively impaired individuals’ daily activities to perform 
daily life tasks efficiently. IoT devices also allow healthcare 
professionals to monitor cognitively impaired individuals 
remotely.

The healthcare sector faces several significant challenges 
in the security and privacy of individual data. IoT devices 
help collect data for efficient treatment, but private data may 
be lost. The availability of IoT devices in the health care 
system makes personal data a more valuable target for cyber 
attackers. Data Analysis is also a challenge for IoT devices 
because the growing number of sensors, smart devices, and 
connected things indicate that a vast volume of data is being 
generated on daily bases; thus, it is challenging for IoT in 
the healthcare system to be able to analyse data and extract 
exact data for treatment. The connectivity of smart devices 
has also become an issue nowadays. A disruption in internet 
connectivity interrupts the interaction between healthcare 
professionals and cognitively impaired individuals. This can 
be disastrous for the monitoring process. IoT is a vast linked 
network that is used for cognitive health assessment. The 
primary purpose of using IoT is to assess people’s mental 
health and provide immediate care and treatment. In the 
healthcare system, IoT has gained immense importance. 
The healthcare system faces several challenges related to 
privacy and security, data analysis, and internet connection 
interruption.

Cloud Computing

Cloud computing has become the basic need of the health-
care industry due to complete access, automation backups, 
and disaster recovery options. Cloud computing provides 
an adaptable architecture where data is accessible from dif-
ferent locations without losing it [74, 75]. In the health care 
system, cloud computing offers a new level of safety and 
low-cost treatment. It helps healthcare professionals conduct 
voice and video appointments and access patients’ required 
private data for better treatment.

Cloud computing is impressively helpful in the health-
care sector. Telemedicine is the major motivation for using 
cloud computing for cognitive health assessment, as health-
care professionals can access a patient’s clinical history and 
mobile data through mobile telemedicine applications [76]. 
Thus cloud computing provides an opportunity to improve 
fast services, easily share information, improve operational 
efficiency and streamline costs.

Cloud computing is an emerging technology and faces 
many challenges in information handling in the healthcare 
industry. Security is the most common concern of cloud 

computing in healthcare. HIPPA compliance, data protec-
tion, and infrastructure changes are a few problems in cloud 
computing.

Cloud computing is a new model for computing resources 
and self-service internet infrastructure. Cloud computing 
improves patients’ immediate care and treatment at a low 
cost, and healthcare professionals can easily access patients’ 
clinical histories. Cloud computing also faces security and 
privacy problems in the healthcare sector. It is noticed s that 
cyber-attacks have been patiently reduced by compressing 
cloud computing to other storage magnesium [77].

Edge Computing

Edge computing and IoT are potent ways to analyse data in 
real-time quickly. Edge computing is a distributed comput-
ing framework in which data is collected, stored, processed, 
and analysed near the data source instead of in a centralise 
data-processing warehouse. Edge computing allows IoT 
devices to collect and process data at the edge where it is 
collected. Cloud computing becomes an inefficient struc-
ture for vast data processing and analysis collected from IoT 
devices [78]. Thus, edge computing becomes a basic need 
for moving data and services from centralised nodes to the 
network’s edge.

In the healthcare sector, edge computing plays a vital 
role. The primary motivation for edge computing is data 
efficiency, increased data security and ethical integrity, and 
reduced dependency on remote centralised servers [77].

Edge computing is also facing some major problems in 
the healthcare industry. It has been noticed that the primary 
challenges are coping with large data sets produced by medi-
cal sensors, patients’ personal medical data legal issues, and 
the integration of artificial intelligence in a 5G environment. 
Some challenges in intelligent manufacturing include opera-
tion and maintenance, scalability, and reliability of the data 
centres [79].

The exploration of edge computing is moving rapidly. 
Edge computing has become a basic need for moving data 
and services to the network’s edge due to limitations in the 
cloud computing platform. Edge computing enables real-
time medical equipment management and helps monitor 
patient history like glucose monitors and blood pressure 
cuffs remotely, alert medical professionals regarding patient 
health [80, 81]. Security and lack of consistent regulation is 
the noticeable challenge for edge computing.

Internet of Medical Things (IoMT)

The internet of medical Things (IoMT) is a huge network of 
physical devices integrated with sensors, network connec-
tions, and electronics, enabling the devices to collect patient 
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data for medical purposes. The IoMT has been called “Smart 
Healthcare” as the technology for creating a digitised health-
care system, connecting available medical resources and 
healthcare services. IoMT technology enables virtually any 
medical device to connect analyses and send data across dig-
ital devices and non-digital devices such as hospital beds and 
pills [82]. IoMT improves healthcare quality while reducing 
costs. IoM is an infrastructure of network software, health 
system devices, and service-connected to collect user data.

The major motivations for using the IoMT are Real-time 
data care systems and healthcare analytics. The IoMT in 
the medical field allows doctors to manage operations data 
systematically. Further to healthcare experts, the data is then 
examined and delivered to offer a better health solution for 
patients in real-time [83]. The real-time data care system can 
give the best health solution.

IoM is also facing challenges in the healthcare field, like 
other enabling technologies. Security and Privacy of IoT 
data are still on top. IoM has introduced other significant 
challenges like lack of standards and communication proto-
cols, errors in patient data handling, data integration, manag-
ing device diversity, and interoperability [84]. IoT devices 
have provided many ways to improve data collection and 
quality. IoM is considered the best option for collecting 
real-time patient data and monitoring. IoM has connected 
doctors, patients, researchers, manufacturers, insurers, and 
industries [85]. In the future, it is estimated that bringing the 
IoT into medicine will help in more substantial, healthier, 
and easier patient care.

Big Data Analytics

Big data is vital in improving healthcare delivery, helping to 
measure and evaluate comprehensive healthcare data [86]. 
Much medical data must be integrated and accessed intel-
ligently to support better and fast health care. Big data 
introduced a new network by measuring and monitoring 
data processes digitally, and we can compare data more 
efficiently. Such insights facilitate streamlined workflows, 
greater efficiencies, and improved patient care. Big data only 
benefits healthcare when structured, relevant, intelligent, 
and accessible.

The primary motivation to use big data analytics in 
healthcare is to provide insight from large data sets and 
improve outcomes at a low cost. Big data analytics reduce 
medical errors, detect disease early, and provide more accu-
rate treatment with real-time data collection. Big data analyt-
ics is associated with many challenges like data collection, 
cleaning, security of collected data, storage, and real-time 
updates [87]. Accessing big data from external sources is 
also a big challenge. The Healthcare sector is still concerned 
with privacy and security.

It has been noticed that big data analysis plays a major 
role in healthcare. In the healthcare industry, a massive 
amount of data is generated daily, stored in different loca-
tions, and expected to be efficiently accessed by healthcare 
professionals; thus, big data can potentially improve the 
quality of healthcare delivery at low costs [88]. Meanwhile, 
big data analysis faces security and privacy issues, but at 
the same time, it is considered the best technology to handle 
vast data effectively.

5G and Beyond

The promise of digital health is materialised without switch-
ing to fifth-generation (5G) cellular technology. 5G network 
directly contribute to better diagnosis and faster triage with 
higher bandwidth and low latency, saving lives [89]. 5G 
connected wearables (e.g. smartwatch, bands SGPS/GPRS 
body control, VR headset, and smart glasses) will facilitate 
real-time data streaming [90]. 5G will enrich everything 
from prevention to treatment to rehabilitation, teaching, and 
mentoring.

The primary motivation for using 5G networks is speed. 
5G networks will allow devices to download more than 1 
GB of data in one second; it could be 100 times faster than 
today’s 4G. 5G promises high bandwidth and low latency. 
5G can make many areas of telehealth, remote surgery, and 
continual treatment information efficient.

Health care is about communicating and connecting bet-
ter. 5G will cause a paradigm shift in healthcare. However, 
with the implementation of the 5G network, many compa-
nies and individuals are concerned about the loss of sensi-
tive information and data. Data mismanagement, medical 
identity theft, health privacy, and data security are the big 
challenges for 5G [91].

5G network can make communication easier, faster, and 
more real-time. In the healthcare sector, the 5G network can 
boost collaboration between healthcare professionals and make 
them collaborate during surgery and scans to provide faster 
care and health treatment to patients [92]. 5G can make smart 
hospitals efficient and reliable at low latency. 5G directly sup-
ports telemedicine in the aspect of security and privacy.

Mobile Computing

People can access data and information from everywhere 
through mobile computing. Mobile computing forms like Cell 
phones, tablets, wireless laptops, and push-to-talk devices 
make life easy. Mobile computing provides more security than 
other enabling technologies. Mobile computing strengthens 
the IoT health-based system with various services, applica-
tions, third-party APIs, and mobile sensors [93].
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Mobile Computing is used to support healthier lifestyles. 
Mobile computing allows patients to stay out of hospital 
beds and give them home-based healthcare services at a low 
cost. Mobile computing monitors patient health in surgery, 
spectroscopy, and Magnetic Resonance Imaging (MRI) [94]. 
It is helpful to maintain and secure data storage and diag-
nostic databases.

Mobile computing is also facing many challenges, like 
other enabling techniques. The major challenges are the 
usability of mobile applications, system integration, data 
security and privacy, network access, and, most importantly, 
reliability.

Mobile computing links the human brain and comput-
ers to improve the healthcare system. The computer system 
can tackle complex decision-making processes by learn-
ing patterns and behaviours and becoming more intelligent 
[95]. Mobile applications are vital in giving the cognitively 
impaired a healthier lifestyle.

Virtual Reality

Virtual reality (VR) is a computer-generated simulation that 
allows users to simulate a situation and experience of inter-
est using a VR headset [96, 97]. VR can be similar to or 
completely different from the real world. VR is revolutionis-
ing the healthcare industry by using different VR applica-
tions. Moreover, VR improves the knowledge and skills of 
medical professionals and students. Currently, many medical 
organisations are paying attention to various VR medical 
training. VR plays a vital role in different areas of health-
care, facilitating medical trainers, treatment of phantom limb 
pain, VR therapy, treatment of patients, Relief tools for doc-
tors, helping autistic children and adults, pain management, 
VR surgery simulation, and real-time conferences.

VR has many drawbacks in the healthcare sector, like 
the high cost of VR software and equipment, VR addiction, 
Disorienting users, lack of proper trials, and insufficient 
training.

Healthcare is the most important field, whether in the 
past, present, or future. VR is considered the best option 
for cognitive health assessment, establishing symptom cor-
relates, identifying differential predictors, and identifying 
environmental predictors [98].

Artificial Intelligence Techniques 
for Assessing Cognitive Health

Artificial Intelligence (AI) is a scientific field that falls 
under the computer sciences discipline. AI’s primary focus 
is on building systems or machines. These machines help 
carry out tasks typically involving decision-making and 

human intelligence. AI algorithms learn from datasets and 
continuously update their learning on the availability of 
new data [99]. The output of AI models depends on vari-
ous factors, including the size of the dataset, feature selec-
tion, and parameter selection. AI techniques are designed 
to handle large volumes and the complexity of datasets. 
These AI techniques produce ideal results in various com-
plex examples and are more accurate and efficient than 
human beings [100]. The development of various AI tech-
niques has contributed effectively to early detections, dis-
ease diagnoses, and referral management because experts 
are limited regarding performance, knowledge diversity and 
daily exertion can also affect their performance. AI-based 
systems are addressing these limitations. Machine learn-
ing (ML) is a sub-category of AI that learns from the data 
without being explicitly programmed. ML algorithms are 
being used in solving problems with high level of similari-
ties within data [101]. The advancement in machine learning 
techniques has also changed the field of computer-assisted 
medical image analysis and computer-assisted diagnosis 
(CAD). ML techniques have shown promising results in 
the timely prediction of disease. In this section, various 
ML techniques, including deep learning [102], supervised 
and unsupervised approaches [103], Reinforcement Learn-
ing [104], Natural Language Processing [105], and Com-
puter Vision [106] have been discussed to assess the cogni-
tive health of a person.

Supervised Learning Approaches

Supervised Learning (SL) approaches need labelled data 
(e.g. diagnosis of cognitive disorder vs healthy people). This 
labelled data is given as input to a model, which learns from 
this labelled data. Based on the learning, the trained model 
predicts the output [103]. The correctness of the SL mod-
els depends on the “ground truth” behind the labelled out-
comes. Figure 4 illustrates how supervised learning occurs. 
Supervised learning techniques are divided into supervised 
deep learning techniques and ML techniques. Below we have 
given a comprehensive tour of state-of-the-art supervised 
learning approaches.

Machine Learning

Supervised machine learning algorithms are designed for 
regression and classification-based problems. Various 
supervised learning techniques have been used for asses-
ment [72, 107–110] and detection of cognitive health dis-
eases [111–114, 114–124]. Popular examples of super-
vised ML techniques include Bayesian, Decision trees, 
Support Vector Machine (SVM) and its variants, Logistic 
regression, and many more. Authors in [113] a supervised 
machine learning method are discussed to detect patients 



	 Cognitive Computation

1 3

with cognitive disorders. It utilised a multifold Bayesian 
kernelisation approach and classified the patients into three 
classes, namely Alzheimer’s, MCI, and normal controls. 
This method produced good results in identifying Alzhei-
mer’s and normal controls but not in identifying patients 
with MCI. Catá Villá [125] Bayesian classifier used for Alz-
heimer’s disease detection. This technique achieved accu-
racy up to 92.0% when applied to the MRI dataset [126]. 
Another technique that used a Bayesian classifier to identify 
Alzheimer’s disease is presented in [112]. However, it used 
PCA and Linear Discriminate Analysis to extract features 
before applying Bayesian. Extracting features with PCA 
and LDA boosted the performance of the proposed model. 
Input images used in this method are PET and Single Photon 
Emission Computed Tomography (SPECT).

Authors in [115] utilised supervised learning and used 
Random Forest to classify multi-class Alzheimer’s Disease 
with an accuracy of 92.4%. Laske et al. [114] proposed a 
Support Vector Machine to classify subjects with Alzhei-
mer’s disease. This technique scored an accuracy of 81.7%. 
Authors in [116] PET and SPECT images are used for the 
detection of cognitive health of a patient using SVM. It 
has been shown that classification using SPECT images 
achieved higher accuracy than PET images. SVM is used 
for both regression and classification-based problems. SVM 
and its variants show promising results in identifying people 
with cognitive health issues. SVM-based Alzheimer’s detec-
tion [117] showed that instead of using a single input image, 
two types of images (MRI and FDG-PET) are combined 
for input to SVM could significantly increase the detec-
tion accuracy of Alzheimer’s patients. Input images used in 
[117] are taken from ADNI and Leipzig Cohorts datasets. 
SVM-based Alzheimer’s detection model [127] focused on 
Hippocampi input and distinguished patients with Alzhei-
mer’s disease from healthy controls with an accuracy of 
94.6%. Zhang et al. [128] classified elderly subjects into 
three classes, Alzheimer’s, MCI, and Normal control. They 

utilised 5-fold cross-validation for KSVM-DT. Authors in 
[129] combined a non-negative matrix factorisation with an 
SVM classifier to distinguish between patients with Alzhei-
mer’s and healthy controls. Authors in [130] used combined 
MRI and SPECT images with SVM, and good results were 
obtained for disease identification. Histogram and Support 
Vector Machine are combined to distinguish patients with 
Alzheimer’s Disease from other normal subjects. Using 
MRI images as input, accuracy, sensitivity, and specificity 
of 94.6%, 91.5%, and 96.6%, respectively, proved the tech-
nique’s novelty. Another hybrid technique is proposed in 
[118], which stacked Wavelet Transform and SVM together 
for diseased and normal patients classification. It produced 
accuracy, sensitivity, and specificity of 80.44%, 87.80%, and 
73.08%, respectively.

Logistic Regression performs classification for Alzhei-
mer’s disease by looking into the probabilistic value returned 
through the logistic sigmoid function. Authors in [119] have 
shown that timely detection and progression of Alzheimer’s 
disease can be detected with the help of logistic regression 
classifier. A two-staged methodology is presented in [120], 
which used Logistic regression to detect dementia. Authors 
in [131] introduced trace ratio linear discriminate analysis 
(TR-LDA) to distinguish patients with Dementia disease 
from healthy subjects. Fisher Linear Discriminant (LDA) 
develops a linear discriminant function which results in a 
minimum error. This hybrid technique worked well and 
achieved an accuracy of 90.01%.

Meng et al. [132] found new areas of the brain which are 
helpful in the early diagnosis of Alzheimer’s. Feature extrac-
tion described by them is a fusion of voxel-based features 
extracted from MRI and eigenvalues of Single Nucleotide 
Polymorphisms that can identify the important brain voxels 
that can classify AD, early mild cognitive impairment, and 
healthy control by using single kernel SVM and standard 
multi-kernel SVM. Another algorithm for early detection 
of Alzheimer’s is introduced in [121]. This technique is 
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built upon an operational research’s subdiscipline Multic-
riteria Decision Aid (MCDA) classification method. To 
adjust the weights and thresholds of the MCDA classifier, 
a Genetic Algorithm engine and ELECTRE IV algorithm 
are deployed. Authors in [108] utilised the three segments 
of the MRI dataset: Corpus Callosum, Hippocampus, and 
Cortex. SVM is used to classify the controls and attained an 
accuracy of 91.67% in the early Alzheimer’s disease finding.

Authors in [111], used resting-state functional magnetic 
resonance imaging (rsfMRI) to compute the time series 
of some anatomical regions and then applied the Latent 
Low-Rank Representation method to extract suitable fea-
tures. For the classification task, SVM was used to clas-
sify all the input patients in either of the classes, i.e. MCI 
and healthy controls. The obtained classification accuracy 
for this method is more than 97.5%. Experiments are per-
formed using images of 43 healthy subjects, 36 mild cogni-
tive impairment patients, and 32 Alzheimer’s patients.

In [109], Clinical Assessment using an Activity Behav-
iour (CAAB) based approach is described where a person’s 
health is assessed by detecting the change in their behaviour. 
CAAB considered the activity-labelled sensor dataset to find 
activity performance features. From these features, it then 
extracted statistical activity features (variance, autocorre-
lation, skewness, kurtosis, etc.), which are given as input 
to an SVM to calculate the cognitive and mobility scores. 
Authors in [72], used supervised learning to examine the 
simple daily living activities and complex daily living activi-
ties performed by smart home residents. This technique 
was assessed based on temporal features and classified the 
individuals into healthy, Mild Cognitive Impairment, and 
dementia. PCA was used to select the most valuable fea-
tures. This feature selection step is beneficial in avoiding 
overfitting, and at the same time, it improves accuracy and 
training time. Selected features are then used to classify the 
individuals into various classes. Classification models dis-
cussed in [72] are Decision Tree, Naıve Bayes, Sequential 
Minimal Optimization, Multilayer Perceptron, and Ensemble 
AdaBoost. Among these classification models, Ensemble 
Adaboost best predicted individuals with cognitive impair-
ment. Authors in [110] showed that a person’s cognitive 
health could easily be assessed based on the performance 
of different tasks. For this reason, the Day Out Task (DOT) 
is designed. DOT includes various activities and subtask 
performs to complete these activities. Various participants 
are asked to perform these tasks, and their response is cap-
tured using sensors. Features collected from these sensors 
are then fed into a machine learning algorithm to determine 
the quality of an individual’s performance based on DOT. 
Supervised and unsupervised machine learning techniques 
are used to classify the collected features. The supervised 
approach uses SVM with sequential machine optimisation 
and bootstrap aggregation. For the unsupervised approach, 

PCA is used to reduce the dimensions. Min-max normalisa-
tion is then applied to transform the variables to a uniform 
range. SVM is finally used to classify the participant into 
various classes depending on the sensor-based activity fea-
tures. Classes defined in this work are dementia, mild cogni-
tive impairment, and cognitively healthy.

The technique presented in  [107] detected behaviour 
change through smartwatch data. These smartwatches are 
designed to collect data continuously. The main goal is 
to detect and quantify the difference in overall behaviour 
activity patterns promoted by the intervention. Permutation-
based change detection (PCD) algorithm detects the change 
in activity pattern. The autoptimisationd a Permutation-
Based Change Detection (PCD) method. A random forest 
algorithm is applied to detect behaviour normalisation. The 
algorithm calculated the change in behaviour between time 
points with an accuracy of 0.87.

Authors in [133] proposed an onset detection model for 
dementia and MCI. Motion, power usage, and other related 
sensors detect activity in a smart environment. The data-
set used is self-created and collected from an IoT-enabled 
smart environment. Features are classified using several 
supervised machine learning algorithms and Ensemble 
RUSBoosted Model. These models have achieved 90.74% 
accuracy in detecting the onset of dementia. Limitations of 
this work include limited feature values, and while collect-
ing IoT-based data, security and privacy concerns are not 
considered. Authors in [134] used a supervised dictionary 
learning technique that applies Correlation-based Label 
Consistent K-SVD (CLC-KSVD) on extracted patches 
spectral features from EEG.

Anomaly detection techniques help to find the unrelated 
sample, also called an anomaly, from the given data. Such 
anomaly detection techniques are applied to the features 
to predict a sudden change in a person’s behaviour, which 
indicates a cognitive health issue. In [135], an anomaly 
detection method is proposed, which performs well than 
traditional anomaly detection methods. This algorithm is 
designed to provide indirect supervision to unsupervised 
methods. An Indirectly Supervised Detector of Relevant 
Anomalies (Isudra) detects anomalies from time series 
data. Isudra employed Bayesian optimisation to select time 
scales, features, base detector algorithms, and algorithm 
hyperparameters.

Workplace stress is one of the reasons for producing 
cognitive health issues. Therefore, Alberdi et al. [136] 
collected data from an office setting and applied various 
machine learning techniques, Naïve Bayes, Linear SVM, 
Ada boost, and C4.5, to this data. It is found that mental 
stress and workload levels define an employee’s behaviour 
change. Also, computer-use patterns combined with body 
posture helped predict a worker’s cognitive health.



	 Cognitive Computation

1 3

For dementia patients, repeating the same task, e.g. 
taking medicine and eating a meal, could be dangerous. 
Therefore, these repeated tasks must be recognised cor-
rectly. To recognise the similar behaviour of a person with 
dementia. Authors in [137] integrated hand movements 
with indoor position information to identify the activity 
performed. Data is collected with the help of wearable 
sensors. In the DPMM-Layer, the hand’s movements are 
clustered based on feature values, so each hand’s move-
ment is associated with one specific cluster. The indoor 
position is detected on the Bluetooth sensor’s data using 
the supervised algorithm Random Forest and Finite State 
Machine to recognise the individual’s position. The preci-
sion and recall of “eat” is 92.1% and 97.5%, and for “hav-
ing Medicine” are 99.1% and 99.5%, respectively.

Authors in [138] discussed the relationship between 
behaviour and cognitive health. A set of digital behav-
iour markers is developed to predict clinical scores from 
activity-labelled time series data. Data is collected by 
using data collected from ambient and wearable sensors 
of 21 participants in a smart home environment. These 
digital behaviour markers aim to predict clinical scores for 
the data collected. Mobile-AR and Home-AR algorithms 
are used to label activities in real time. Gradient boosting 
regressor is used to predict the clinical score.

Deep Learning

Deep Learning is a subset of ML that shows promising 
results when the input data is unstructured and complex. The 
deep learning algorithm requires input data in large volumes. 
Deep Learning models consist of multiple layers, each with a 
unique way of interpreting the data. Spasov et al. [139] dis-
cussed a deep learning algorithm that took multiple sorts of 
data as input. The input data comprised structural magnetic 
resonance imaging, neuropsychological, demographic, and 
APOe4 genetic data. This approach used a deep convolu-
tional neural network framework involving grouped and sin-
gle convolutions. The most noticeable characteristic of this 
deep learning model is that this model can simultaneously 
classify the individuals into Mild Cognitive Impairment vs 
Alzheimer’s Detection and Alzheimer’s Detection vs healthy 
subjects and attained classification accuracy of 86%.

Choi and Jin [140] developed a deep learning system 
to evaluate a patient’s cognitive health. They considered 
3D-PET images as input. This system used CNN to iden-
tify a person’s cognitive decline. The overall accuracy of 
this algorithm is 84.2%. Habuza et al. [141] came up with 
a model to detect the level of cognitive decline using MRI 
images. This model is based on a Convolutional Neural Net-
work (CNN) classification model to estimate the level of 
cognitive decline. The architecture of this CNN model is 
similar to AlexNet. The T1-weighted MRI images dataset 

is pre-processed before being input to the CNN. To draw a 
line between healthy people and Alzheimer’s disease peo-
ple, the Predicted Cognitive Gap is used as the biomarker. 
The proposed model is tested on a dataset that includes 422 
healthy control and 377 Alzheimer’s disease cases. The per-
formance of the proposed solution is 0.987 (ADAS-cog), 
0.978 (MMSE) for averaged brain and 0.985 (ADAS-cog), 
0.987 (MMSE) for the middle sliced image.

Authors in [124] analysed the effectiveness of ADNI data in 
determining how much the classification models can differenti-
ate people with various cognitive diseases by classifying them 
into three classes. Multi-Layer Perceptron (MLP) models and a 
Convolutional Bidirectional Long Short-Term Memory model 
are explored in [124]. MLP model outperforms the ConvBLSTM 
model with an accuracy of 86%. Authors in [142] utilised the 
attention mechanism in deep network architecture to detect early-
stage Alzheimer’s. The model is tested on a self-created dataset. 
Authors in [143] proposed the LeNet-5 deep model to distinguish 
Alzheimer’s patients using functional MRI (fMRI). The model 
produced a classification accuracy of 96.85%.

Authors in [144] predicted the existence of Alzheimer’s 
disease using multiple types of input data. The unique fea-
ture of this paper is that it presented deep learning models 
that use image and non-image data to detect Alzheimer’s 
disease. The input data consisted of socio-demographic, 
clinical notes, and MRI data. Deep convolutional Neural 
Network ResNet-50 predicts the clinical dementia rating 
(CDR) presence and severity from the input MRI whereas 
gradient boosted machine predicted Alzheimer’s using 
non-image data. The key limitations of this study include 
only 416 individuals whose MRI images are included in the 
dataset. Each image is composed of 51 selected slices of 
each patient’s MRI. The selection of slices is made care-
fully because eliminating a few slices may eliminate slices 
that help diagnose Alzheimer’s disease. In [145], another 
deep CNNs is proposed, which runs on MRI scans of the 
ADNI dataset. This deep model gave output by classifying 
each MRI image in either of the four classes, namely Alz-
heimer’s, Mild Cognitive Impairment, Late mild cognitive 
impairment, and healthy person. Various deep CNNs are 
tested, like GoogLeNet, ResNet-18, and ResNet-152; among 
these CNNs, GoogLeNet produced the highest accuracy of 
99.88%. Authors in [122], a 3-dimensional VGG convolu-
tional neural network is tested on two publically available 
datasets, namely, ADNI and OASIS. This 3D model has the 
advantage of preserving information as data loss may occur 
during converting 3-dimensional MRI into two-dimensional 
images and processing them by two-dimensional convolu-
tional filters. Classification accuracy achieved by this 3D 
model is 73.4% on ADNI and 69.9% on the OASIS dataset. 
These results show that the 3D model outperforms the 2D 
network models. Table 4 presents the summary of super-
vised studies for cognitive health assessment.
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Critical Analysis: Supervised learning techniques used 
for cognitive health assessment cannot detect cognitive dis-
ease but are also very helpful in detecting the progression 
of such cognitive disorders. As we have seen in the studies 
mentioned above, both traditional ML and DL techniques 
produced exceptional results in cognitive disease detection; 
nonetheless, the main challenge of these techniques is the 
availability of labelled data with interventions from human 
beings. In a hospital setting, such labelled data is unavail-
able and cannot be easily labelled at run time. Labelling data 
requires much effort by experts. DL techniques take the lead 
in performance as compared to ML techniques. Also, if a 
deep model is trained on one dataset, transfer learning tech-
niques are available to apply this trained model to another 
dataset without retraining it from scratch. However, it is nota-
ble that the quality of the output of the deep learning model 
mainly depends on the size of the dataset. Data augmenta-
tion has addressed this issue to some extent, but as the size 
increases, it also extends the training time. Therefore, the 
DL technique is a tradeoff between performance and training 
complexity. Overfitting is another challenge with supervised 
learning techniques. Therefore, if it is possible to collect a 
large dataset, then deep learning approaches will be a good 
choice; otherwise, ML approaches should be considered.

Unsupervised Learning Approaches

Unsupervised Learning (UL) algorithms work with unla-
beled data. A dataset for the classification task consists of 
data from all the classes, and an unsupervised algorithm is 
not privy to this knowledge [146]. Instead, the algorithm 
searches unstructured data for features and classifies them 
together in clusters. Figure 5 shows how data can be classi-
fied using the unsupervised learning approach. In this way, 
the data is segmented into different groups. All the grouped 
items share some common characteristics. Some items are 
classified as irrelevant, which means they do not possess 
the properties of a specific group. If this data is comprised 
of medical-related data, then involving a medical expert is 
a must to derive the meaning of identified clusters. In the 
following section, state-of-the-art Unsupervised Learning 
Approaches are discussed for the assessment [147–150] and 
detection [151–162] of the cognitive health of a person.

Machine Learning

Designing an activity recogniser for in-home settings and 
continuous data is very challenging. This difficulty is even 
more enhanced when the home residents are more than one. 
Estimating the number of residents and identifying each 
resident’s activity in a smart home is an open challenge 
that needs to be addressed. To address this challenge, [149] 
introduced an unsupervised learning approach based on a 

multi-target Gaussian mixture probability hypothesis density 
filter. If [149] is applied in the smart home environment. It 
can improve the accuracy of cognitive health assessment 
algorithms.

Authors in [152] discussed an unsupervised Alzheimer’s 
detection approach using a finite mixture model. Input data 
comprises a cerebrospinal fluid, magnetic resonance imag-
ing, and cognitive measures. Researchers in [153] discussed 
an anomaly detection model which recognised activity by 
first applying a probabilistic neural network on the pre-seg-
mented activity data obtained from the sensors deployed 
at different locations in a smart home. H2O autoencoder is 
used to identify the anomalous from the regular instances 
of activities. Anomalies are further categorised based on 
the criteria such as missing or extra subevents and unusual 
duration of action. Datasets for training and test purpose 
are Aruba and Milan datasets. The accuracy of detected 
achieved is more than 95% in all activities. For Alzheimer’s 
detection, [151] suggested a technique that used KNN to seg-
ment the areas in the MRI image. Authors of [163] presented 
an unsupervised technique on MRI data to detect various 
phases of Alzheimer’s disease. Authors in [164] provided 
techniques for making various clustering procedures more 
efficient. The authors aimed to describe cerebrum muscle 
physiognomies for assessing Alzheimer’s disease in vari-
ous phases. Rodrigues et al. [148] discriminate AD cases 
from normal subjects by utilising K-means clustering. They 
observed K-means as the best method for an unsupervised 
diagnosis of EEG temporal arrangements. Authors in [154] 
K-means is applied to different data features to divide the 
subjects into pathologic groups. “Bio profile” [155] is ana-
lysed to reveal the pattern for Alzheimer’s disease. Here the 
researchers used K-means clustering to detect AD on the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) data-
base. Detection of biomarkers is important, and therefore 
[147] suggested an unsupervised learning mixture modeling 
method to detect biomarker patterns of Alzheimer’s patients 
from the Alzheimer’s Disease Neuroimaging Initiative data-
base. Authors in [156] identified the groups of patients with 
signs of Alzheimer’s and divided the patients into three clus-
ters where three showed low, medium, and high extrapyram-
idal burden. The importance of brain imaging is highlighted 
in [165], where the researchers diagnosed AD or vascular 
dementia using the unsupervised model on brain imaging.

Authors in [159] LSTM process electronic health records, 
a deep learning technique to differentiate between a healthy 
person and a person with mild Cognitive Impairment. The 
clustering of patients is done by using a denoising autoen-
coder to represent the patient data better. The output of this 
autoencoder is visualised and clustered using t-stochastic 
neighbour embedding. The accuracy of LSTM is 73%, and 
the F1-score is 0.43. [159] highlights that if temporal char-
acteristics of the patient’s data are incorporated into the deep 
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learning model, it gives greater results in predicting Mild 
Cognitive Impairment. Authors in [157] is another unsu-
pervised technique that used K-means clustering to divide 
patients with Alzheimer’s into clusters. A cortical thickness-
based clustering method is proposed in [166]. Here the clus-
tering is performed on the data collected from 77 patients’ 
MRI, PET, and cerebrospinal fluid (CSF).

Gamberger et al. [167] applied a multi-clustering method 
to an AD dataset of male and female patients comprising 243 
biological and clinical features. Authors of [168] observed 
three clusters in a 3D-MRI, dominated by medial-temporal 
atrophy, parietal atrophy, and diffuse atrophy. Authors in 
[158] propose a clustering-based technique to detect Alzhei-
mer’s using pathological data. Patients often face sleep prob-
lem issues with cognitive impairment. To detect Alzheimer’s 
through sleep disorder, [169] took samples of 205 patients 
with AD from the Alzheimer’s Disease Patient Registry to 
investigate patterns of sleep problems. The authors applied 
hierarchical cluster analysis.

Deep Learning

An unsupervised Convolutional Neural Network (CNN) is 
discussed in [170], which is used to diagnose cognitive dis-
eases. PCANet learned the features from one slice and three 
orthogonal panels of MRI images and then used K-means 
clustering, an unsupervised classification technique. Experi-
ments are done on the ADNI dataset. Results generated 
through this model are auspicious, with an accuracy of 
95.52% for AD vs MCI classification and 90.63% accu-
racy for MCI vs NC when only one slice of MRI is taken 
as input. When three orthogonal panels of MRI images are 
considered, the accuracy improved even more, 97.01% for 
AD vs MCI and 92.6% for MCI vs NC. Here NC represents 
standard control.

Authors in [160] used a Stacked autoencoder to extract 
latent features on a huge set of features obtained from MRI 
and PET images. This is an unsupervised model for the 
assessment of the cognitive health of a person. Authors in 
[171] used a Stacked autoencoder accompanied by super-
vised fine-tuning to classify Alzheimer’s, Mild Cogni-
tive Impairment, and healthy controls. Experiments were 
conducted on the ADNI dataset. A deep 3D convolutional 
neural network prediction model of Alzheimer’s disease is 
presented in [172], which can learn generic features captur-
ing Alzheimer’s disease biomarkers. The advantage of this 
technique is that it can be used on different domain data-
sets. An autoencoder is an artificial neural network used 
to learn efficient coding of unlabeled data and its variant 
stacked autoencoders and a softmax output layer to detect 
Alzheimer’s disease from MRI and PET images [173]. The 
technique presented in [174] is a novel method for a high-
level latent feature representation from neuroimaging data 
via an ensemble classifier. Authors in [175] used fMRI data 
to distinguish between MCI and healthy controls. The use 
of deep AutoEncoder with HMM produced good results in 
prediction.

Han et al. [176] proposed a two-step unsupervised anom-
aly detection approach based on multiple-slice reconstruc-
tion. This technique showed promising results by detecting 
AD at a late stage with AUC 0.894. Alzheimer’s detection 
across different disease stages using MRI is presented in 
[177]. This algorithm can detect Alzheimer’s disease at 
various locations. Unsupervised Alzheimer’s detection 
using the deep convolutional generative adversarial network 
is discussed in [178]. It performed anomaly detection on 
brain MRIs to diagnose AD and achieved an accuracy of 
74.44%. Authors in [162] explore the anomaly analysis of 
Alzheimer’s disease using PET images for GANs. A feature 
vector is calculated using CNN and DCN. ADNI dataset 
is used to perform experiments. Authors in [179] proposed 
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an algorithm to generate images of the brain for different 
stages of Alzheimer’s disease. They used PET images, and 
the algorithm used was deep GANs. Authors in [180] used 
a restricted Boltzmann machine to classify cognitive normal 
and early mild cognitive impairment of Alzheimer’s disease 
by applying the Restricted Boltzmann Machine to fMRI 
data. Authors in [150] employed a Conditional Restricted 
Boltzmann Machine to simulate Alzheimer’s disease pro-
gression from a 1909 patient. Table 5 presents the summary 
of unsupervised studies for cognitive health assessment.

Critical Analysis: In the supervised learning section, we 
have seen various models’ superb performance in cognitive 
health assessment. However, we can not always give lots of 
samples with supervision. Most of the time, the machine 
needs to learn from the training data, and here comes the 
role of unsupervised learning. These unsupervised methods 
save time and energy in labelling the data. It is a power-
ful tool for discovering patterns and structures in the unla-
beled dataset, which we have seen is available in medical 
and smart home environments. Due to the high number of 
ADLs performed by the residents of the smart homes, it is 
not feasible to enumerate every activity. Even in hospital 
settings, EHR and other medical records are available in 
such a way that opens the avenue to exploit clustering algo-
rithms to learn patient data automatically. However, such 
clustering techniques do not give good accuracy compared 
to supervised learning methods. Another important aspect 
to consider is that if the information is collected over a more 
extended period, it will have diversified features, making 
clustering difficult if several clusters are defined a priori.

Reinforcement Learning

Reinforcement is a sub-category of artificial intelligence 
which trains the model by rewarding desired behaviour and 
punishing undesired behaviour. The unique characteristic of 
Reinforcement Learning (RL) is that it solves the problem 
by allowing the agent to collaborate and interact with the 
environment. The agent takes the most appropriate action 
according to its learning. If the action is correct, the agent 
rewards itself and vice versa. In this way, the agent keeps 
on learning without the interference of any human being. 
The process of reinforcement learning is illustrated in Fig. 6.

RL has been used to solve various real-life problems 
[181]. Reinforcement learning shows promising results when 
applied in assesment [104, 188] and detection [182–187] of 
cognitive health. It can sustain change for a more extended 
time. Some important RL methods are discussed below:

Authors in [104] described a Deep Recurrent Q Learn-
ing-based Reinforcement Model (DRQLRM) based on the 
reinforcement learning process. This model is designed to 
investigate the presence of Alzheimer’s in individuals. In 
this model, a retraining stage has been added in which a 

recurrent neural network is used to reduce the overfitting. 
In the learning stage, the reinforcement approach identi-
fied the unknown pattern. Sensor data is collected from the 
CASA smart home of 400 persons. The dataset comprised 
Activities of Daily Living (ADL), such as cooking, bath-
ing, and toileting. DRQLRM shows promising results with 
98% Accuracy and 12% MSE. Authors in [182] presented 
an LSTM-based reinforcement learning technique to detect 
early dementia and guided the patients who have dementia to 
perform ADL. LSTM model is used to infer the current goal 
of the person by observing previous normal ADL patterns to 
infer the current state. The authors then used a situ-learning 
agent that helped individuals to take the right action, thus 
preventing adverse events while guiding individuals through 
the task sequence that led to the goal state. In addition, a 
naive agent is also used to resolve the uncertainty older 
adults with early-stage dementia might experience. The 
accuracy achieved by this algorithm is 90.1%.

Authors in [188] performed individual and population-
level behaviour analysis from time series sensor data. They 
developed a novel algorithm-Resident Relative Entropy-
Inverse Reinforcement Learning (RRE-IRL) — to analyse 
a single smart home resident or a group of residents from 
time series sensor data. By employing this method, an indi-
vidual’s behavioural routine preferences are learned. It then 
analysed an individual’s daily routines and observed that 
routine behavioural preferences change over time. Further-
more, the behaviour preferences are used by a random forest 
classifier to predict a resident’s cognitive health diagnosis, 
with an accuracy of 0.84. One limitation of this technique is 
the participant sample size. Their analyses are based on large 
data collected from smart homes over many days. However, 
data for only eight participants are considered.

Authors in [183] proposed an interpretable multimodal 
deep reinforcement learning model. It helps in the diagnosis 
of AD. In the first step, the compressed-sensing MRI image 
is reconstructed using an interpretable deep reinforcement 
learning model. Then, the resultant MRI is fed into the CNN 
to generate a pixel-level disease probability risk map (DPM) 
of the whole brain for AD. Finally, an attention-based deep 
CNN is used to classify Alzheimer’s patients. The algo-
rithm was tested on ADNI, AIBL, and NACC datasets and 
obtained an accuracy of 99.6% for ANDI.

A reinforcement learning framework is designed in [184] 
which uses an agent trained on clinical transcripts and sketches 
a disease-specific lexical probability distribution. Therefore, it 
detects MCI by dialogue with the patient in a minimum num-
ber of conversations. In [186] a reinforcement learning-based 
technique showed promising results. Multi-agent reinforce-
ment learning is discussed in [185] which detected anatomi-
cal landmarks from MRI images using a novel communica-
tive multi-agent reinforcement learning (C-MARL). Authors 
in [189] Alzheimer’s disease progression is presented by 
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combining differential equations and reinforcement learning 
with a domain knowledge model. The researchers use deep 
Q-Network [187] for landmark detection in 3D medical scans 
in a single and multi-agent. Another automatic detection of 
anatomical landmarks is discussed by [186], which robustly 
localised target landmarks in medical scans and is also helpful 
in further investigation of diseases like Alzheimer’s. Table 6 
presents the summary of reinforcement learning studies for 
cognitive health assessment.

Critical Analysis: Reinforcement learning has achieved 
tremendous success in the past years despite its complex 
nature, notably in games but unfortunately, in the medical 
context, particularly in cognitive health assessment appli-
cations, it has not appropriately benefited from this tech-
nique. In most AI-based health systems, the sequential 
nature of decisions is not considered. Instead, the decisions 
exclusively rely on the current state of patients. RL offers 
an attractive alternative to such systems, considering the 
immediate effect of treatment and the long-term benefit to 
the patient. Besides the potential of RL to make a revolu-
tion in the medical field, there are a few obstacles that have 
to be removed in order to apply RL algorithms in health 
assessment. RL algorithm typically learns by its action, but 
guesswork has no room in the medical field. Moreover, RL 
algorithms should be designed to learn from existing data.

Natural Language Processing Techniques

Natural Language Processing (NLP) is the ability of com-
puters to understand the verbal and written communication 

of human beings [190, 191]. NLP includes speech recog-
nition, sentiment analysis, and optical character recogni-
tion [192]. NLP works by transferring data into a format 
understandable by NLP algorithms. NLP has been used in 
assesment [193] and detection [105, 194–200] of cognitive 
health. In these applications, NLP techniques are applied 
to the natural language speech or text, followed by some 
ML techniques, i.e. Supervised Learning, Unsupervised 
Learning, and Deep Learning for classification purposes. 
Figure 7 is an illustration of the main features of NLP.

Authors in [198], speech recordings are transcribed, and 
linguistic and acoustic variables are extracted through NLP 
and automated speech analysis. These linguistic and acoustic 
variables help find a cognitively impaired person who faces 
difficulty in finding the correct word while speaking. NLP-
extracted variables include lexical, semantic, and syntactic 
aspects of the recording. Acoustic variables include sound 
wave properties, speech rate, and several pauses. Spearman’s 
correlation is used to find the correlations between the NLP 
technique and clinically captured speech characteristics.

Speech disfluency is defined as any pause or abruption 
which occurs during fluent speech. Cognitively impaired 
people have a short vocabulary, which leads to speech disflu-
encies. Therefore speech disfluency can detect cognitively 
impaired people. Authors in [194] asked Patients to give spon-
taneous answers to the questions asked by an expert by recall-
ing two short back and white films. Acoustic parameters in a 
patient’s speech signals are noted both manually and automati-
cally. The ML technique then uses these features to classify 
participants into healthy and unhealthy classes. These features 
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Fig. 6   Reinforcement learning technique
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are then used to classify the patients in MCI and healthy con-
trols classes with an F1-score of 78.8%. Acoustic parameters 
used are hesitation ratio, speech tempo, length and number of 
silent and filled pauses, and length of utterance.

NLP technique for detecting the mild cognitively 
impaired person is presented in [195]. Mann–Whitney U-test 
is used to select the most relevant features from speech. For 
classification into MCI and healthy control class, ML algo-
rithms used are using K-nearest neighbours (K-NN), Support 

Vector Machines, Multilayer Perceptron (MLP), and a CNN. 
Classification Error Rate (CER) has been used to evaluate 
the results. Early-stage dementia and mild cognitive impair-
ment are important to identify, and authors in [197] used 
Linguistic features with a Transformer-based deep learning 
model to detect whether the individual has dementia. This 
model can detect linguistic deficits with much accuracy.

Yi et al. [196] indicated that NLP models have the poten-
tial to extract lifestyle information from clinical notes. This 

Table 6   Summary of RL studies for cognitive health assessment

Ref Focus Algorithms Used Results Limitations

[104] Presence of Alzheimer’s in 
individuals

Deep Recurrent Q Learning-
based Reinforcement Model 
(DRQLRM), Recursive Neural 
Network (RNN)

Accuracy 98%, MSE 0.12 Limited scope

[182] Early detection of dementia LSTM, situ, Naive agent Accuracy 90.1% Limited to single activity class
[188] Behaviour analysis from time 

series sensor data using inverse 
reinforcement learning

Resident Relative Entropy-
Inverse Reinforcement 
Learning (RRE-IRL)

Accuracy 84% Only eight participants

[183] Diagnosis of AD Deep Reinforcement and 
attention-based deep CNN

AUC 99.6% ± 0.2% (ANDI), 
97.9% ± 0.2% (AIBL) and 
96.1% ± 0.3% (NACC)

Small Dataset

[184] Dialogue system for MCI 
detection

Reinforcement Learning 0.818 AUC 0.680 Sen 0.956 Sep 
0.761 F1-score

Simulators are trained offline, 
which is not scalable to 
larger corpus and user 
volumes

[185] Anatomical landmarks detection Communicative multi-agent 
reinforcement learning 
(C-MARL)

Distance Error 1.53±0.76 Small dataset

[189] Alzheimer’s disease progression 
detection

Differential equations and 
reinforcement learning

MAE 0.641 (0.090), MSE 0.910 
(0.229)

Cannot capture multimodal 
changes, data is not diverse

[186] Automatic detection of 
anatomical landmarks

Deep Q-network (DQN) Distance Error 3.66 ± 2.11 Less accurate results

[187] Landmark detection Deep Q-Network Reinforcement 
Learning

Distance Error MAE (6.54) MSE 
(14.62)

Limited Dataset

Healthy
Individual

Cognitively
Impaired

Text Data gathered via oral
questionnaires or electronic

medical records

Video recordings of patients
performing ADL or other cognitive

tasks in controlled settings

Speech recordings gathered
during inclinic examination and

interviews

OCR

Tokenization

Phonetic Analysis

Clinical Findings

MORPHOLOGICAL
ANALYSIS

PRAGMATIC
ANALYSIS

LEXICAL
ANALYSIS

DISCLOSURE
ANALYSIS

SYNTACTIC
ANALYSIS

SEMANTIC
ANALYSIS

The features extracted using the NLP model are then passed on to
ML/DL models like SVM, K-NN, MLP and CNNs to predict and

distinguish between healthy and dementia/MCI/Alzheimer’s sufferers.

Fig. 7   Natural language processing technique for cognitive health assessment
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lifestyle information can include extreme diet, physical 
activity, sleep deprivation, and substance abuse. Various ML 
models are trained and evaluated on NLP exacted data. The 
bagging, random forest, KNN, and random forest showed 
promising results among these models.

A method to detect preclinical stages of dementia is 
discussed in [201] where 96 people are asked to describe 
a complex picture, a typical working day, and recall a last 
remembered dream. Linguistic features of spontaneous 
speech transcribed and analysed by NLP techniques showed 
significant differences between controls and pathological 
states. These features include computing rhythmic, acoustic, 
lexical, morpho-syntactic, and syntactic features, and par-
ticipants are categorised as healthy or cognitively impaired. 
The statistical analysis is performed by the non-parametric 
Kruskal-Wallis test and Mann–Whitney U-test.

Psychological disorders could affect cognitive health. 
Therefore detection of psychological disorders is also as 
important in the cognitive health assessment scenario. Psycho-
logical disorders like bipolar disorder, obsessive-compulsive 
disorder, and schizophrenia can be detected from speech input 
using the model discussed in [193]. This paper used an ASGD 
Weight-Dropped long short-term memory (AWD-LSTM) lan-
guage model for psychological disease diagnosis.

In [202] progress notes and discharge summaries are 
parsed using NLP techniques. This paper has used NLP with 
Electronic Health Record data. Machine learning techniques 
logistic regression, multilayer 37 perceptrons, and random 
forest are used to classify impaired and healthy persons 
using the clinical terms extracted by NLP. Random forest 
method showed the best performance. The limitation of this 
technique is that it can only give good results if the input 
dataset size is large. Authors in [203] discussed the NLP 
approach based on clinical notes. This approach extracts life-
style exposures and intervention strategies to predict Alzhei-
mer’s disease. MetaMap tool maps biomedical texts to stand-
ard medical concepts using the Unified Medical Language 
System (UMLS). Validity of results is done by comparing 
the proposed algorithm with data captured independently 
by clinicians. Authors in [204] discussed the use of NLP. 
Features are extracted from electronic medical records with 
the help of the NLP algorithm, and then the classification 
algorithm identifies whether a person has dementia or not. 
Classification algorithms discussed in this paper are gradient 
boosted models, neural networks, lasso, and ridge regres-
sion. Authors in [205] developed a system for identifying 
MCI from clinical text without screening or other structured 
diagnostic information. NLP and Least absolute shrinkage 
and selection operator logistic regression approach (LASSO) 
were used to detect MCI. Chatting and immediate formation 
of new sentences can detect a person with cognitive impair-
ment, as discussed by [199]. They proposed an automatic 
detection of cognitive impairment through chatbot dialogue. 

NLP algorithms were used to generate the sentences for a 
chatbot. Authors in [206] fully automated MCI detection 
technique is proposed based on multilingual word embed-
dings to create multilingual information units. Researchers 
trained an ANN using the spectrogram of the audio signal 
to detect Alzheimer’s in [105]. To distinguish between MCI 
and early-stage Alzheimer’s, patients are asked to perform 
tasks such as countdown, picture description, Scene descrip-
tion, and Semantic fluency (animals) [207]. The patients’ 
responses are recorded and analysed using NLP algorithms. 
Spontaneous speech again showed an excellent tool to be 
used in Alzheimer’s detection [208]. The authors proposed 
an NLP-based model for detecting early Alzheimer’s through 
spontaneous speech datasets in 2020. A recent technique 
[200] proposed an ensemble classifier based on four classifi-
ers: audio, language, dysfluency, and interactivity. This sys-
tem works with two modules proactive listener and ensemble 
AD detector. Authors in [209] explored the lexical perfor-
mance through spontaneous speech to detect Alzheimer’s.

The relevance of acoustic features of spontaneous speech 
for cognitive impairment detection is shown in [210]. Here 
the authors applied machine learning methods for classifi-
cation, which showed promising results. Authors of [105] 
claimed that they produced a fully automated audio file pro-
cessing without manual feature extraction. Therefore they 
introduced a new direction of cognitive health assessment 
through NLP. Authors in [211] an algorithm is proposed 
for predicting probable Alzheimer’s disease using linguistic 
deficits and biomarkers with the help of NLP and machine 
learning. Authors in [212] automated analysis of Semantic 
Verbal Fluency (SVF) tests method is discussed for detection 
of MCI. Table 7 presents the summary of NLP studies for 
cognitive health assessment.

Critical Analysis: The rise of big data analytics has 
proven NLP to be a potential approach in clinical settings to 
assess patients’ cognitive health. Electronic Health Records, 
spontaneous speech, discharge summaries, and progress 
notes contain much important information about cognitive 
abilities. NLP is helping the healthcare industry to make the 
best use of the myriad insights hidden in unstructured data. 
NLP attempts to be the heart of cognitive health assessment 
when applied to lifestyle exposures and intervention strate-
gies of adults to gather and extract features that can then 
be fed into a classification model to discriminate between 
healthy and diseased persons. However, NLP has to address 
various challenges when applied to the cognitive health 
assessment task. The main challenge of applying NLP is 
to make such data available/recorded, which is not easy in 
the traditional clinical setting. Another big challenge is that 
understanding clinical language often requires deep subject 
matter knowledge and integrating many separate pieces of 
context. Most of the words have multiple meanings. Phrasing 
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Ambiguities and Language differences also play a role in the 
generalisation of the NLP model.

Computer Vision/Image Processing

Recent advances in computer vision show vibrant perfor-
mance for clinical applications. When combined with deep 
learning techniques, computer vision techniques further 
enhance a system’s ability to assess [213, 214] and detect 
[106, 215–218] cognitive diseases correctly. A few computer 
vision/image processing-based techniques are discussed 
here, which help identify patients with mild or severe cog-
nitive impairment. Figure 8 illustrates how computer vision 
can be used for facial expression.

Authors in [213] claimed that facial emotions could be 
helpful in predicting the cognitive state of a person. They 
captured facial expressions of different emotions, and Mon-
treal Cognitive assessment was used to evaluate all par-
ticipants. This technique helped to identify patients at an 
early stage of cognitive impairment and other mature stages. 
Montreal Cognitive Assessment criteria are used to classify 
the individuals based on the extracted features. A similar 
concept of facial expression utilisation is used in [215]. The 
proposed model combined computer vision and Alexnet to 
identify cognitively impaired subjects. Its results are tested 
on bench-marking databases like JAFFE, KDEF, CK+, and 
FER2013. In [216] computer vision-based technique, i.e. 
optical flow, is used to detect patients having Alzheimer’s. 
This system worked on a video that contained a Patient and 
automatically collect statistical data about the handclap-
ping of a patient. This statistical data includes the frequency 
of clapping, the extent of clapping, and direction change. 
Results showed that these statistics are important if applied 
to disease diagnosis.

Diffusion Tensor Imaging (DTI) is a new imaging modal-
ity giving more information than anatomical MRI; there-
fore, it is used to identify cognitively impaired persons more 
accurately [217]. Researchers extracted biomarkers from 
DTI and sMRI, which are then used to classify individu-
als in AD and MCI classes of cognitive disorders. Authors 
in [106] showed that dementia and gait disorders are highly 
correlated. Therefore, they acquired gait data using a Kinect 
sensor, human pose estimation was performed, and gait fea-
tures were analysed to identify the persons with cognitive 
disorders. Authors in [218] proposed a technique that used 
inertial sensors to detect gait phases in cognitively impaired 
persons. In [214], a system “CogniLearn” is proposed for 
assessing physical exercises. The head-Toes-Knees-Shoul-
ders (HTKS) task is widely used as a cognitive evaluation 
tool for children and young adults. These physical exercises 
are designed to monitor the cognitive health of an individual. 
CogniLearn inspected physical activities by using a deep 
learning architecture and suggested action which is to be Ta
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taken to address any health issue. Users of this system per-
formed HTKS games, and CogniLearn automatically cap-
tured the motion and performed analysis to provide detailed 
evaluations by recognising activities with the help of com-
puter vision and deep learning techniques. This system is 
evaluated by a self-created dataset with 15 subjects and four 
variations of the HTKS tasks. CNN, feNet, and Caffe are 
used to evaluate the captured data. Table 8 presents the sum-
mary of computer vision-based studies for cognitive health 
assessment.

Critical Analysis: The Healthcare industry has recog-
nised the immense potential of computer vision in powering 
technology. CV and DL provide a revolutionary mechanism 
with the ultimate level of automation capabilities, one that 
only requires some fine-tuning to handle large datasets to 
work on its own successfully. The biggest advantage of com-
puter vision techniques in cognitive health assessment is that 
CV techniques perform judgment in real-time monitoring 
regarding the cognitive health of a person by capturing their 
daily routine activities (gait, clapping, physical exercises, 
etc.). CV algorithms diagnose a change in the cognitive 
health of a person accurately and timely, thus eliminating 
the need to go to a hospital, especially to get oneself checked 
up. Moreover, these techniques can also detect patterns in 
medical images, assisting a physician. Therefore we can 
conclude that the world of computer vision changed with 
the evolution of deep learning. It has proved to be a very 
effective tool capable of dramatically improving cognitive 
disease diagnosis.

Artificial intelligence is likely to transform healthcare 
in the near future. However, a few concerns need to be 
addressed in this regard. For AI systems to work in health-
care, these systems must gain the confidence of healthcare 
professionals and patients. To gain trust, the transparency 
of AI systems should be enhanced. In the future, poli-
cies should ensure that healthcare professionals should be 
involved in the design and implementation of such systems 
and introduce new regulations overseeing the transparent 
design, validation, deployment, and certification of systems 
leveraging artificial intelligence.

There is a need to convert the black boxes of typical deep 
learning models into transparent boxes with predictable 
results. Therefore, researchers are now focusing on such 
models which allow predictions generated by the neural 
network model as interpretable.

Data Acquisition Channels

Acquiring data is the most fundamental process in the auto-
mation process. Various modes and techniques have been 
used for data gathering or acquisition, which is further used 
for cognitive health assessment [219]. Data gathering is 
crucial in MCI detection. Objective assessment of patients 
in the most accurate environment and gathering physical 
responses in different scenarios play a vital role in under-
standing the patient’s mental health. Many researchers have 
suggested different tools to gather accurate data [220].
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Fig. 8   Computer vision for cognitive assessment
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Sensor‑based Data Acquisition

Sensor-based data acquisition entails gathering data through 
inertial, physiological, and environmental sensors. They 
are further categorised concerning the use and placement 
of the sensors, e.g. wearable sensor-based data acquisition, 
smartphone-based data acquisition, and smart home-based 
data acquisition.

–	 Wearable sensor-based acquisition:
	   Wearable sensors most commonly used in the domain 

of cognitive health are ECG, magnetometer, accelerom-
eter, and gyroscope sensors, along with temperature, light, 
and pressure sensors. EEG, ECG, and other sensors to 
monitor physiological biomarkers are also commonly 
used. The authors in [221] proposed a real-time context-
aware automated cognitive health assessment model that 
uses wearable physiological sensors comprising electro-
dermal and photoplethysmography sensors and physical 
sensors like accelerometers alongside ambient sensors 
to capture data of participants in a free-living environ-
ment. These sensors gather the participants’ physiological 
health indicators and hand and postural gestures. Chen 
et al. [222] proposes a design of a home-based assessment 
model using an iPhone, apple watch, A Digital Assess-
ment app, a Beddit sleep monitoring app, and an iPad to 
gather multimodal sensor stream data. Sensor data along-
side participant device usage, history, calls, and message 
information is collected and presented as data to differ-
ent algorithms to analyse patterns and behaviour related 
to CI. Bringas et al. [223] is another work that utilises 
time series data provided by accelerometers to assess 
the movement patterns of participants to classify them 

according to the CI stage. Commercially available wear-
able devices have been used to acquire different physi-
ological readings. Zephyr BioHarness34 for ECG moni-
toring [224] and Development Kit5 for Electrodermal 
activity [224], CorSense finger-worn device as a heart 
rate variability monitor [225]. Wearable devices attached 
to shoes that include inertial Micro-Electro-Mechanical 
System (MEMS) sensors have been fixed under the heel 
of the shoes to collect gait information of patients and 
assess their cognitive health [226]. Shimmer3 IMU [224, 
227] is commonly used to capture a patient’s physical 
activity readings. The SensorFootV2, a wearable inertial 
sensor part of the SmartWalk system, is placed on the feet 
of patients as well to gather gait-related data [228].

–	 Smart home-based sensors:
	   With the growing IoT industry, smart homes have 

become a promising tool to predict, diagnose and man-
age MCI, AD, and dementia. Data is gathered from the 
surroundings of a smart home resident. With the help 
of multiple sensors, physical, psychological, and physi-
ological health can be observed, which can help predict 
health problems timely and effective. Researchers have 
used the smart home setting to suggest effective models 
for estimating cognitive health. A combination of dif-
ferent sensors like flow sensors, infrared sensors, pres-
sure sensors, and switch sensors have been proposed by 
authors in [229]. These sensors have been employed in a 
room-like setting, and daily behaviour data is gathered 
using a Wireless Sensor Network (WSN) for pattern iden-
tification. This data is then used to distinguish standard 
patterns from abnormal patterns. Authors in [230] have 
proposed a fully integrated smart home-based prediction 
model for Alzheimer’s Disease symptom detection. The 

Table 8   Summary of CV studies for cognitive health assessment

Ref Focus Algorithms Used Results Limitations

[213] Facial emotions to predict early MCI Montreal Cognitive Assessment, Sup-
port vector regression, CNN, Faster 
Regional-CNN, VGG-16

Accuracy 90.1% Threshold criteria not defined

[215] MCI AlexNet, Linear Discriminant Analysis 
Classifier

Accuracy 94.1% Users with vision, hearing 
or facial muscles issues are 
ignored

[214] Assessment of Cognitive health through 
Physical exercise

CNN feNet Caffe Accuracy 92.54% Dataset consists of 15 subjects

[216] Alzheimer’s Detection based on hand-
clapping

Optical Flow - Quantitatively weak

[217] AD and MCI Bag-of-visual-Words, CodeBook, Mul-
tiple Kernel Learning framework

Accuracy:90.2, 
Sensitivity:97.2, 
Specificity:82.92

Not diverse

[218] MCI Phase Shift Detection in gait 100% reliability Small dataset
[106] MCI CNN Montreal-Cognitive 

Assessment 
(MOCA) results

Limited scope
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authors gathered 2yr time series statistics on ten behav-
ioural features via varying modalities. Mobility and 
activity data were gathered via activity sensors coupled 
with self-reported questionnaires data gathered to evalu-
ate cognition and mood. Authors in [72] proposed a new 
approach CA-SHR that uses data gathered from sensor 
stream data from Simple Daily Life Activities (SADL) 
and ADL to develop and evaluate the efficacy of early 
detection and diagnosis of MCI, dementia, and AD. In 
one such research [231], the authors used temperature and 
humidity sensors, gas sensors, fluid detection sensors, 
pressure-sensitive mats, and LDR photoresistance sensors 
to collect raw data. This sensor data enabled continuous 
behaviour monitoring and also helped alert caregivers in 
case of a fall or danger of a gas or water tap left open. 
Infrared motion and proximity sensors capture patient 
movement data within the smart home. A motion sensor 
gives a good insight into walking speed and ADL pat-
terns. Depth cameras like Microsoft Kinect are also used 
in smart homes to obtain images and videos of residents 
while performing ADL. To monitor sleep activities, sleep 
sensors and infrared sensors are installed in beds [232]. 
Other sensors called contextual sensors are mounted in 
devices like stoves, sinks, refrigerators, doors, and medi-
cine boxes capture consumption data [233]

–	 Smart phone-based data acquisition:
	   The potential of smartphones for cognitive health-

related data acquisition is by far the most. Embedded 
smartphone sensors not only gather the patient’s environ-
mental and physical data but also can obtain physiologi-
cal data and prompt the patients for mood and cognitive 
assessment at regular intervals to obtain a comprehensive 
picture of the patient’s mental health. Smartphones can 
gather high-dimensional datasets from a larger popu-
lation with utmost ease. Several researchers have used 
smartphones as a primary tool to obtain raw data regard-
ing MCI, dementia, and AD sufferers. An android-based 
smartphone app was also used in [234] to gather touch 
and visual stimulus responses to track CI. The app was 
able to automate decision support for Cognitive Assess-
ment. Similarly, in  [235], the author has also used a 
smartphone-based assessment model to gather infor-
mation from participants. The author has conducted a 
Cognitive Linguistic Assessment via the smartphone app 
and a Behaviour Assessment using a FitBit-like wearable 
device. Gait assessment is also conducted to gather data 
that is then analysed via different methods like AI and 
statistics. Lauraitis et al. [234] is another research where 
the authors have developed an android app to assess a 
patient’s cognitive function by performing three tasks 
that involves touching the screen at the correct speed 
and with precision. The inability to complete the tasks is 
marked as a symptom of cognitive decline.

Datasets and Electronic Health Record (EHR)

EHR are digital patient records that contain patients’ 
demographic and medical history, treatment plans, immu-
nisation records, allergies, laboratory and test results, and 
hospital treatment history, including billing and payment 
information. These datasets can be shared across different 
providers. Some of these datasets are released in the open 
public data repository that researchers can use for analysis 
and research. Some of the most famous datasets that have 
contributed to research in the field of cognitive health are 
the famous Alzheimer’s Disease Neuroimaging Initiative 
(ADNI), Open Access Series of Imaging Studies (OASIS), 
positron emission tomography (PET), Magnetic Resonance 
Imaging (MRI), Computerised Topography (CT), Electro-
encephalography (EEG), Magnetoencephalography (MEG) 
and Cerebrospinal fluid (CSF) biomarkers [52, 54]. Ques-
tionnaire response data and data from the ADL datasets 
have also been used for disease diagnosis, progression, and 
management. Authors in [139] used MRI images, standard 
cognitive tests, demographic information like age, gender, 
ethnicity, and education, and some genetic information col-
lected at the initial patient visit. This data was passed onto a 
Deep Learning (DL) model that predicts the risk of a patient 
diagnosed with MCI developing AD in 3 years. Kalafatis 
et al. [236] employed a combination of computerised self-
administered assessment tools like MoCA and ACE-iii to 
develop an Integrated Cognitive Assessment (ICA) tool. The 
data gathered from these assessments are then used to detect 
CI using Artificial Intelligence techniques. Javed et al. [72] 
is a smart home-based solution that uses a popular sensor 
stream data containing Activities of Daily Living (ADL) and 
applied ML algorithms to predict and analyse CI. A detailed 
summary of different datasets commonly used to access data 
regarding the cognitive health of patients has been discussed 
in “Cognitive Health Assessment Datasets” section.

Clinical Data and Questionnaires

A clinical evaluation is a clinician’s subjective report of a 
physical exam conducted in a health clinic. This information 
combines patient history, a physical checkup, and other dis-
ease-specific investigations and assessments. The gold stand-
ard for CHA has been in-clinic evaluation, self-administered 
questionnaires, and interview-administered questionnaires by 
health practitioners. Some of these have complied in Table 3. 
Other assessment tests for mobility include the “Timed Up 
and Go Test,” the Functional Reach Test, the Berg Balance 
Scale, the Arm Curl Test, handgrip strength, and the Mon-
treal Cognitive Assessment [237]. Interview-based question-
naires and activities further help gather speech and response 
data. Using Natural Language Processing (NLP) technique 
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on this data has allowed early identification of linguistic signs 
of MCI in the elderly [198, 201].

Virtual Reality‑based Data Acquisition

Augmented Reality (AR) and Virtual Reality (VR) have 
allowed for more accurate data acquisition by allowing real-
time communication and computation. Computer simulations 
replace a patient’s sensory world with a virtual environment 
that changes in real-time in response to a patient’s physical 
movement and activities. Although it is relatively costly, this 
is closer to reality experience and gives unbiased responses, 
hence the most accurate data. The authors in [238] designed 
an exciting data collection mechanism incorporating a mul-
timethod approach using Virtual Reality (VR) and gaits 
kinematic analysis to gather participant data. CAVE (Cave 
Automated Virtual Environment) gave participants a realistic 
experience while performing ADL (Activities of Daily Life). 
This helped make the participants feel more comfortable, 
helping them obtain accurate responses and behaviour. VR 
was also employed by [239] whereby data was gathered using 
a virtual supermarket. This model gathered information based 
on executive function tasks and improved the accuracy of 
diagnosis by evaluating in a real-life-like situation. Therapists 
have used VR cognitive training games to enable patients to 
perform their daily activities with considerable ease. In [240], 
two subsystems have been proposed, one for the patient and 
one for the therapist. The patient must complete assigned 
tasks in a virtual game environment, and the therapist con-
trols the training sessions and monitors the patient’s behav-
iour. A similar Virtual Reality (VR)-Based Environmental 
Enrichment program was proposed by [241]; the authors 
created virtual environments of famous landmarks to assess 
different cognitive domains like memory, attention, orienta-
tion, recognition, and executive functioning. The scope of VR 
for CH is not limited to prediction and diagnosis; in fact, VR 
is commonly used by the therapist for training and assistance 
for CI. It helps a patient train so that it can deal with life-like 
scenarios without actually making mistakes in daily life that 
could otherwise be disastrous.

Cognitive Health Assessment Datasets

Data quality is the foundation of all AI techniques. Good 
quality data enhances the learning process of the model. Sev-
eral modes of data acquisition have been discussed in “Data 
Acquisition Channels” section. One of these techniques is 
publicly available datasets. The choice of a dataset depends 
on the accuracy of the dataset, its completeness, reliability, 
relevance, and timeliness. Datasets relevant to CHA need to 
be relevant to disease progression, the symptoms, the changes 
in a patient’s daily activities, speech and language behaviour, 

and responses. Several studies were analysed to observe dif-
ferent datasets used for cognitive health assessment.

NeuroImaging Datasets

Among the most famous NeuroImaging datasets are the 
Alzheimer’s Disease NeuroImaging Initiative (ADNI) 
dataset [242–247], Australian Imaging biomarkers and 
lifestyle study (AIBL) [248–252], Open Access Series of 
Imaging Studies (OASIS-3) [122, 253–256], Internet Brain 
Segmentation Repository (IBSR) [257–260], and Medical 
Image Computing and Computer Assisted Intervention Brain 
Tumor Segmentation (MICCAI BraTs) [261–263]. Image-
based datasets include images of MRI, PET and FMRI 
scans. ADNI, AIBL and OASIS-3 datasets include demo-
graphic, clinical and biomarkers data of participants in the 
dataset thus giving a much more comprehensive outcome. 
Feature extraction from images can give accurate outcomes 
if the dataset is considerably large, therefore ADNI, AIBL 
and OASIS-3 are valuable datasets consisting a large number 
of MRI, PET, FMRI and clinical data records of patients. 
Most researchers have successfully used them to obtain the 
most accurate disease prediction and diagnosis results.

Activities of Daily Living (ADL) Datasets

The second most common type of dataset that researchers 
have used to predict and diagnose MCI, AD, and dementia 
is the ADL dataset. An ADL dataset consists of data on 
the daily activities of different subjects obtained from IMUs 
(Inertial Measurement Units) made of accelerometers, gyro-
scopes, and magnetometers. The most commonly used were 
the VanKasteren dataset [264–267], Center of Advanced 
Studies in Adaptive Systems (CASAS) dataset [268–271], 
and UCI HAR dataset [272–274]. UniMiB SHAR dataset 
[275, 276], DU MD dataset [277], and CAD datasets [278] 
are not as standard but were found in some researches too. 
The VanKasteren and the CASAS datasets are extensive 
datasets that acquire ADL information via smart homes and 
test beds that acquire ADL of healthy individuals over a 
prolonged time. These datasets have been valuable in dif-
ferentiating CI patients from their healthy counterparts.

Speech and Language Datasets

Another set of data that was commonly analysed to differenti-
ate patients with MCI, AD, and dementia from normal, healthy 
individuals was the speech and language data. It has been 
observed that speech and language alterations are among the 
first signs of cognitive decline [201]. Therefore many research-
ers have analysed the speech and language of a possible MCI 
patient for early detection. Some of the most commonly used 
datasets were the DimentiaBank dataset [197, 210, 279–281], 
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LibriSpeech dataset [279, 282, 283], Alzheimer’s Dementia 
Recognition through Spontaneous Speech (ADReSS) dataset 
[197, 279, 280], and Trinity College Dublin Speaker Ageing 
(TCDSA) dataset [280]. These datasets contain audio record-
ings of CI patients and healthy individuals, which have been 
used by researchers to analyse and detect CI in individuals.

Other Datasets

Several researchers have used data from different cohort 
studies to compare behaviour or MCI vs. normal healthy 
individuals. These longitudinal studies were gathered from 
hospitals and patients from different countries. Including 
the cohort, study datasets were not possible since they var-
ied significantly based on location. A few research studies 
included Magnetoencephalography (MEG) dataset [284, 
285]. MEG is a medical exam of the brain’s ability to pro-
duce magnetic impulses. The analysis is based upon the find-
ings obtained from the test to be able to distinguish healthy 
from MCI patients. Another commonly used dataset is the 
Uniform Dataset (UDS) [286–288], which analyses cogni-
tive health. This dataset contains questionnaire responses 
of different individuals to questions related to the cognitive 
assessment domains mentioned in Fig. 3.

Table9 is a summary of the most commonly used datasets 
for CHA.

Challenges and Open Issues  
and Future Directions

This section discusses some of the challenges and open issues in 
using AI/ML for cognitive health, along with possible solutions.

Security and Privacy Preservation

AI can play a significant role in assessing/predicting 
patients’ cognitive health. However, AI algorithms must be 
trained with a significant amount of data to uncover the pat-
terns existing in the datasets. This data includes sensitive 
and private patient information, which must be preserved at 
any cost. Malicious users may get hold of private and sensi-
tive data of patients and misuse/tamper with them. Hence, 
training the AI algorithms in a privacy-preserving manner 
is a significant challenge [289, 290].

Federated learning (FL) is a recent development in AI/
ML that offloads the ML model to the data source. The ML 
model will be trained at the source of the data rather than the 
central cloud as in a conventional ML setup. Only the param-
eters from the local devices will be sent across to the central 
cloud for global training, hence preserving the privacy of the 

sensitive information related to the cognitive health of the 
patients. In this way, FL can be used to strengthen the privacy 
preservation of the data related to the cognitive health of the 
patients [291]. Blockchain is a disruptive technology that can 
be used to tamper-proof cognitive health data.

Blockchain can also prevent malicious users from enter-
ing the network; thereby, it can help maintain the confiden-
tially and integrity of cognitive health data [292].

Multi‑hospital Collaboration

One of the challenges in training the AI/ML algorithms on 
cognitive healthcare data is the lack of sufficient data. AI/
ML algorithms need a large volume of data to train [293]. 
This problem may arise due to a limited number of patients 
in a single hospital. To address this problem, AI/ML model 
can be trained on the data collated from multiple hospitals. 
However, the hospitals may be hesitant to work collabora-
tively by sharing their patients’ private and personal infor-
mation as it may lead to the issue of privacy preservation.

FL, in which the raw data need not be transferred to the cen-
tral storage, can be a possible solution to solve this issue [294, 
295]. Through FL, the ML model can be distributed across 
individual hospitals to get trained on cognitive health data in 
a privacy-preserving manner. The model updates will then be 
aggregated from the individual hospitals to train the global 
ML model. In this way, the FL can solve the multi-hospital 
collaboration issue of lack of adequate data [296].

Optimisation of Repetitive Tasks During Cognitive 
Rehabilitation

Even after surgery/treatment, the patients may still not 
recover some of the lost cognitive skills due to brain injury. 
Cognitive rehabilitation therapy (CRT) is suggested to the 
patients to restore their cognitive functions completely. 
CRT is a set of therapies that medical practitioners use to 
restore/improve cognitive functions in patients who expe-
rience injuries in the brain due to stroke, traumatic brain 
injury, or some other reasons [297]. There are several kinds 
of CRT techniques that medical practitioners can follow. 
However, a technique that can be successful for one patient 
may not work for others. AI/ML algorithms can help identify 
the right kind of therapy for a particular patient. Based on 
the recommendations of AI/ML algorithms, the therapists 
can give appropriate exercises to the patients [298]. How-
ever, most of these tasks are repetitive and do not need to 
be addressed by skilled manpower who can work on other 
important tasks during that time. These repetitive tasks can 
be assigned to robots that can execute the required therapies 
on the patients to give the therapy to the patients [299, 300].
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Quality and Dimensionality of the Data

One of the challenges in using IoMT or allied technologies 
in cognitive healthcare to monitor the patients and extract the 
data through sensors is the quality of the data generated. The 
data generated from these devices may have some noise or 
missing values due to malfunctioning of the devices or net-
work connectivity problems. Another challenge is that all the 
attributes may not be required to train the ML model as some 
attributes may not impact the class label. The huge dimension-
ality of the data may increase the complexity of the ML model 
and also may have a negative impact on the performance of 
the model. To overcome these issues, thorough pre-processing 
techniques must be executed before training the ML model on 
the data. Some popular dimensionality reduction techniques, 
such as linear discriminant analysis, principal component 
analysis, regression, and clustering, can be applied to the 
dataset before training the ML models [301, 302].

Patients Not Reacting Well to the Medicines

Every patient has a different metabolism/condition or may 
have allergies to a certain drug combination. Hence, a medi-
cine that works well for one patient with a cognitive disease 
may not work well for other patients with the same condi-
tion. Hence giving the right dosage and drugs to patients 
with cognitive health problems is a significant challenge. 
Digital twins are a recent development where a digital rep-
lica of a patient can be created and tested on the drug com-
binations and dosages of medicines. Based on the reaction 
of the digital twin to the drugs, precision medicine can be 
given to the patients [303].

Interpretability/Justification

The machine/deep learning models are often black boxes 
in nature, i.e. we may never know how and why the ML/AI 
models have made a particular prediction [25, 304, 305]. 
This lack of explanation/interpretation/justification on why 
a particular decision is made hinders medical practitioners 
from adopting AI/ML models for diagnosing patients with 
cognitive health problems [15]. Even though the accuracy of 
AI/ML models is increased significantly, these models have 
several misclassified instances. Hence, doctors and other 
healthcare professionals hesitate to diagnose patients with 
AI/ML-based models. To overcome this problem, Explain-
able AI (XAI) can be used. XAI can explain/justify why the 
AI model gives a particular prediction or what factors made 
the model give a particular decision [306, 307].

Conclusion

This paper summarises the state-of-the-art on the use of AI 
for the assessment of cognitive/mental health. We explored 
different AI approaches for this purpose. Our findings sug-
gest that among the supervised approaches, SVM, ensemble 
methods and neural networks like CNN, AlexNet, LeNet5, 
MLP, and GoogLeNet, seem to have yielded the best accu-
racies. Among the unsupervised approaches, K-means, 
K-Nearest Neighbour, Clustering, AutoEncoders and Deep 
Q-network reinforcement learning seemed to be the most 
prevalent, resulting in good accuracies for the prediction 
of mental health problems. NLP techniques and computer 
vision have also been very promising in detecting cogni-
tive decline at early stages. A look at some of the datasets 
that have contributed to the research in the domain shows 
that NeuroImaging datasets and ADL datasets have gained 
focus in many researches and have helped train the AI mod-
els in predicting and diagnosing cognitive health problems 
effectively. This survey also helps bring to light the current 
challenges that are being faced to improve the accuracy of 
prediction and diagnosis so that future researchers are able 
to identify the research gaps better.
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