
International Journal of Information Security
https://doi.org/10.1007/s10207-023-00751-6

REGULAR CONTRIBUT ION

Start thinking in graphs: using graphs to address critical attack paths
in a Microsoft cloud tenant

Marius Elmiger1 ·Mouad Lemoudden1 · Nikolaos Pitropakis1 ·William J. Buchanan1

© The Author(s) 2023

Abstract
The challenge of securing IT environments has reached a new complexity level as a growing number of organisations adopt
cloud solutions. This trend increases the possibility of overseen attack paths in an organisation’s IT infrastructure. This paper
proposes a methodology for assessing the security of a Microsoft cloud tenant based on the relationships between different
cloud entities through the use of graphs. This paper argues for using graph theory as an effective method to understand and
uncover complex entity attack paths. To achieve this, we implemented a graph analytics platform using data from a Microsoft
cloud test tenant. Methods based on graph theory proved to measurably reduce possible attack paths. Our research can support
defenders who want to better understand the interrelationships of Microsoft cloud entities as well as identify and remediate
possible attack paths.

Keywords Graph theory · Attack path · Microsoft cloud · Azure AD · Cloud security · Neo4j · BloodHound

1 Introduction

A growing number of organisations are moving to cloud
infrastructures [49]. Microsoft, Amazon, and Google are the
most prominent players in the public cloud market. This
trend falls into the new emerging model of “Everything-
as-a-Service” (XaaS) where “virtualised physical resources,
virtualised infrastructure, as well as virtualised middleware
platforms and business applications are being provided and
consumed as services in the Cloud” [28]. Cloud service
providers (CSPs) are usually differentiating between three
services models, namely Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) or Software as a Service (SaaS)
[2, 30, 48]. By adopting a cloud service model, the customer
can profit from shared IT responsibilities, which allows them
to outsource repetitive tasks like hardware maintenance, OS
or application updates. However, the customer is always in
the driver’s seat with respect to configuring, monitoring, and

B Mouad Lemoudden
m.lemoudden@napier.ac.uk

Marius Elmiger
marius@elmigers.ch

1 School of Computing, Edinburgh Napier University,
Edinburgh EH10 5DT, UK

protecting the cloud tenant independently from the chosen
service model.

To provide the appropriate access level to the cloud
resources, identities play a crucial role in a cloud environ-
ment. “In the cloud, identity is everything” or “Identity is
the future” or “Identity is the new perimeter” are just a few
quotes from different sources (∼13’900 results on Google)
to underpin the importance of identity management in the
cloud. Therefore, organisationsmust be aware of theAuthen-
tication, Authorisation and Accounting (AAA) principle to
establish an identity-centric perimeter that protects entities
with appropriate controls.

In this paper, the focus lies on the Microsoft cloud. The
identity provider (IdP) in theMicrosoft cloud is AzureActive
Directory (Azure AD), responsible for AAA. A compromise
of an organisation’s Azure AD can lead to full access to
all cloud services in the tenant. This is comparable to a
compromise of an Active Directory (AD) forest in an on-
premises environment. AD and Azure AD are similar but
are built on different technologies. For example, AD uses
legacy authentication protocols such asNTLMandKerberos,
while Azure AD uses modern authentication protocols such
as OAuth, SAML, and OpenID Connect. Both IdPs share
similar challenges to defenders regarding the difficulty to
manage, analyse, or audit sequences of permissions or mem-
berships. As a result, adversaries often utilise such sequences

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-023-00751-6&domain=pdf

M. Elmiger et al.

to compromise IdPs such as Azure AD or Active Directory
[9, 14, 48]. Microsoft offers various reports regarding the
hygiene of privileged Azure AD roles or permissions as a
countermeasure [36, 40, 41]. While these reports are helpful,
they represent a list of improvements and are not providing
a holistic view of sequences of privileges in a tenant. With
the help of graph theory, this paper aims to overcome the
paradigm of “think in lists” by identifying and visualising
privileged identity attack paths in an Azure AD tenant.

1.1 Contributions

This paper offers a practical approach for integrating, rep-
resenting, and analysing Microsoft cloud tenant attack paths
with the help of graph theory. The following contributions
were made:

– A methodology for how a graph analytics platform can
be built to analyse aMicrosoft cloud tenant. The method-
ology can also be used for other solutions.

– A built solution based on Neo4j and BloodHound to
perform graph data analysis of ingested data from a
Microsoft cloud tenant.

– Practical examples of how graph analytic methods can
be used to identify privileged entities in a graph.

– A practical attack path demonstration on the basis of the
analysed attack graph.

1.2 Organisation of the paper

The paper is organised as follows: Section2 will present
background on cloud entities, attack graphs, and discuss
relatedwork, aswell as describing the proposal to find, imple-
ment, and analyse new attack paths in a Microsoft cloud
tenant. In Sect. 3, the technical details of how the implemen-
tation and research were conducted are described. Section4
discusses the analysis of the attack graph and the resulting
attack path. Finally, Sect. 5 concludes the paper by sum-
marising the work undertaken, presentingmajor findings and
future research directions.

2 Material andmethods

2.1 Background

In this section, we will present theoretical background on
cloud entities and attack graphs, discuss related work, and
describe the methods of our approach to find, implement,
and analyse new attack paths in a Microsoft cloud tenant.

Fig. 1 Azure AD architecture

2.1.1 Microsoft cloud entities

Overall, every CSP provides similar entities in their cloud
solution, but the characteristics and management can differ.
The identity provider for the Microsoft Cloud is Azure AD
(AAD), as depicted in Fig. 1. A Microsoft tenant hosts one
AAD instance. AAD is responsible for the tenant’s entities
by providing the functionality of authentication, authorisa-
tion, and accounting [31]. A compromise of an organisation’s
AAD can lead to full access to all cloud services in the cus-
tomer’s tenant. This is comparable to a compromise of anAD
Forest in an on-premises environment. In the following list,
we describe the essential entities in the scope of a Microsoft
cloud tenant:

– Rolesgrant access to various services like virtualmachines,
storage accounts, applications, and more.

– Groups are used to grouping AAD objects, simplify
access control and enable dynamic membership.

– Personal identities are generally used by a person to log in
to cloud services. Two major types of personal identities
exist: cloud-only users and hybrid-identities.

– Service principals represent the identity of a AAD cloud
application or are also used in IaaS and PaaS to provi-
sion new services, manage services, or in general, for
automation tasks.

– Cloud applications are software applications or services
that leverage the capabilities IaaS and PaaS offerings, and
they are typically associated with a service principal.

– Endpoints are desktops, laptops, or other devices com-
municating over a network with the tenant.

– Azure management groups, subscriptions, and resource
groups are used to establish a hierarchy for policy assign-
ment and for billing purposes.

– Azure resources are always assigned to resource groups
and have different configuration plane and security con-
figuration possibilities.

123

Start thinking in graphs: using...

Fig. 2 Example of a simplified pivoting graph in a Microsoft cloud
tenant

2.1.2 Graphs

After having identifying the most valuable Microsoft cloud
entities, how can an organisation keep track of possible piv-
oting points among them? One possibility would be to create
a list of critical entities and relationships. However, the list
would grow over time in size and complexity and would
barely allow an understanding of direct and indirect entity
relationships. Another approach is to use a graph. Graphs
have, besides visualisation, other advantages over lists. First,
direct and indirect relationships between entities can be eval-
uated. Second, possible attack paths are calculable and can be
weightedwith graph algorithms.Third, visualisation or graph
algorithms can assist in recognising patterns or possible
attack paths [26]. The graph in Fig. 2 depicts a hypotheti-
cal pivoting path.

Suppose an adversary stole an access token with Azure
key vault access rights by compromising an endpoint (1-2),
the adversary would then extract secrets from the Azure key
vault (3). Next, in the key vault, we assume that the adversary
found a service principal password. Finally, by enumerating
the service principal’s access rights, the adversary discov-
ers that the service principal has Azure subscriptions Owner
rights (4). With that right, the adversary has widespread
access to all resources located under this subscription. From
here, the adversary can continue with the pivoting loop till
the attacker’s goal has been reached.

2.1.3 Attack graphs

The literature describes an attack graph as a general tech-
nique to model security configurations in an environment
with machines connected over a network protected by fire-
walls, which may be vulnerable to attacks [1, 21, 23, 46, 55,
58–60]. The reviewed attack graph models from the authors
incorporate software vulnerabilities, insecure permissions,
insecure firewall rules and other security issues. MulVal is
an open-source tool that is used in research to visualise and
calculate possible attack paths and risk metrics [47, 59].

Sommestad & Sandström [57] did an empirical test of
the accuracy of the attack graph results. Two independent

Red Teams examined the test environment, which hosted
over a thousand virtual interconnected machines. The test
results yielded poor attack prediction results. The authors
rationalised the results due to the combination of inaccu-
rate vulnerability scans and improper interpretation of the
privileges that vulnerabilities grant. They also argue that vul-
nerability scanners are limited in their accuracy and can only
detect approximately half of the vulnerabilities in a network
[19, 20]. Researchers often use attack graphs in combination
with hosts, firewall rules, and vulnerabilities. However, our
research focuses on attack graphs related to identities and
their privileges and not vulnerabilities.
Identity AttackGraphs:Dunagan et al. [9] describe how,with
the help of graph theory, they identified highly privileged
accounts and how,with theirmethod, they couldminimise the
attack surface. They utilised machine learning in the graph
analytics process to identify privileged AD login sessions
on compromised hosts from which the adversary moved lat-
erally to other hosts. They describe the found attack paths
as “identity snowball attacks”, nowadays known as lateral
movement.

Based on prior work, Ho et al. [18] describe techniques
to detect lateral movement centred on commonly available
enterprise logs. They built a graph based on machine login
activities and identified suspicious login sequences corre-
sponding to lateral movement. An inference algorithm was
used to determine themovement towhich each login belongs.
The paths found by the interference algorithmwere then used
together with a set of detection rules and a new anomaly scor-
ing algorithm to identify the login paths most likely to reflect
lateral movement.

Bouillot & Gras [6] published a paper and a tool that,
with the help of Graph theory, allowed to analyse sequences
of AD permissions and memberships in order to identify
complex attack paths. Based on that study, Robbins et al.
released the tool BloodHound [53]. The tool is maintained
until today, incorporates the ideas from Bouillot & Gras, and
was extended with additional complex AD relationships to
identify sophisticated attack paths.
Identity Attack Paths: Identity attack paths are the chains
of abusable privileges and user behaviours that create direct
and indirect connections between entities. The graph in Fig. 3
presents an attack path to obtain tenant administrative rights
over an indirect path by abusing the privileges of User 3.
A directed edge in the graph means that the from-node can
control the to-node. In this paper, we want to reveal such
attack paths with the help of graph visualisation and graph
analytics.

2.2 Related work

A large number of organisations are using Active Directory
for the management and administration of their on-premises

123

M. Elmiger et al.

Fig. 3 Attack path example

IT environment. Due to the criticality of Active Directory,
security analysis and hardening measures are seen as manda-
tory. Various methods exist to audit an Active Directory
environment, such as vulnerability scanning tools or in the
form of security recommendations. However, the complexity
and possible blind spots in Active Directorywere and are still
a major concern. To address this challenge, Bouillot & Gras
[6] published a method to assess Active Directory with the
help of graph theory. Inspired by this idea, Robbins et al. [53]
releasedBloodHound, a dedicated tool in addition toBouillot
& Gras’s solution, which also uses graph theory at its core.
Both tools can uncover complex sequences of entity rela-
tionships that an adversary could abuse. By discovering such
unintended attack paths, an Active Directory security pos-
ture can be measurably improved [51]. The same approach
can be applied to cloud environments. At the beginning of
2022, two open-source tools exist, namely BloodHound and
Stormspotter [3]. Both tools use graph theory to find attack
paths in a Microsoft cloud tenant.

2.2.1 Microsoft cloud security

The security responsibilities when using a cloud solution
like the Microsoft cloud is shared between the customer and
the cloud provider. For example, for identity and directory
infrastructure, Microsoft provides AAD as the IdP. Still, the
life cycle and access management of identities is the cus-
tomer’s responsibility. From the responsibility model [39],
it is apparent that organisations remain with the primary
responsibilities such as governance over business-critical
processes, data, securitymonitoring, andmanyother IT tasks.
Unfortunately, this fact can be quickly overlooked by an
organisation and thus can lead to a chaotic adoption of cloud
solutions [8]. Therefore, it is crucial to avoid repeating known
bad practices and invest in a resilient and secure foundation
before leveraging the vast, lucrative possibilities a cloud plat-
form can offer [10, 31, 48].

The Microsoft Cloud services are designed with layers of
cloud security and support a zero-trust security model. This
means that the security of identities, data and applications is
not based on the assumption that the network is secure, but
rather on the principle that no one should be trusted by default
[56]. To maintain a high level of security, regular reviews
and adaptations to the hardening measures are essential. To
facilitate auditing of Microsoft cloud tenant, various built-
in methods are available, including vulnerability scanning

Fig. 4 Attack paths example with BloodHound

tools and security advice [36, 40, 41]. However, just like
withActiveDirectory, the discovering of access relationships
between different cloud entities also raises similar concerns
regarding complexity and potential blind spots.

2.2.2 BloodHound

The BloodHound tool was created by three red team
researchers [53]with the aim of finding attack paths inActive
Directory environments. The idea is based on priorwork such
as [6] and [9].

BloodHound itself is not collecting data. Instead, it is a
web interface that visualises AD attack paths in the form of
graphs from the ingested data to a Neo4j database. For the
data collection, Robbins et al. wrote a separate tool called
SharpHound. SharpHound queries data via LDAP from AD
controllers and from Windows systems via RPC and SMB.
The collected data are stored in JSON files, which can then
be imported to a Neo4j database.

For ARMandAzureAD, Robbins et al. [53] created a new
collector script named AzureHound. At the time of writing,
the script leverages Microsoft PowerShell modules to gather
data from a Microsoft cloud tenant. Similar to SharpHound,
the data are written to a JSON file. If imported together with
AD data, the graph can reveal attack paths in the tenant.

Figure 4 illustrates an attack graph in BloodHound with
different paths from AD entities to an organisation’s tenant.
The red line, the numbered icons, and the green and blue text
in the figure are manually added annotations.

To generate the graph above, the shortest path algorithm
from any node n to node m: tenant with the length of 3 is
used in Listing 1.

1 MATCH p=shortestPath ((n) -[*1..3]->(m:
AZTenant {azname:"TEST TENANT "}))

2 WHERE NOT n=m AND (n:AZUser OR n:User)
RETURN p

Listing 1 Cypher query to show the shortest path to an Azure AD tenant

123

Start thinking in graphs: using...

Fig. 5 Attack path example with Stormspotter

The green nodes in the graph are users in AD, the yel-
low nodes are groups, the blue person nodes are cloud-only
users, the cloud symbol is the tenant, and the red icons are
computers. The edges between the nodes are MemberOf,
AllExtendedRights,GenericAll,Owns, AZGlobalAdmin, and
AZPrivilegedRoleAdmin.

A hypothetical attack path could be that an adversary com-
promises the AD user at step (1). The adversary is then a
member of an AD group withGenericAll rights over another
AD user account. With that right, the adversary can change
the password of the AD user in step (2). Finally, in step (3),
the adversary authenticates as the newly compromised user
and has complete control over the tenant as Global Admin-
istrator.

The applied example demonstrates the strength of graph
theory in combination with the BloodHound tool. Blood-
Hound4.0.3 hasmanyedges implemented forAD. In contrast
to AD, numerous edges still needed to be implemented to
allow a more comprehensive analysis of a Microsoft Cloud.

2.2.3 Stormspotter

Stormspotter visualises attack graphs like BloodHound but
focuses entirely on Azure AD and Azure ARM. The tool was
released in 2020 by the Microsoft Azure Red Team [3]. Like
BloodHound, Stormspotter has two components, namely a
frontend and a Python collector script called Stormcollector.
This script can collect data over APIs from Azure AD and
Azure ARM.

Figure 5 depicts the Stormspotter web frontend and shows
an attack graph from a cloud only user to a storage account

The cypher query in Listing 32 was used to show all edges
from any entity n to the storage account m with the name
cloudshell6d67 from the graph database.

1 MATCH (n) -[*1..]->(m:StorageAccount)
WHERE m.name = ’cloudshell6d67 ’
RETURN *

Listing 2 Cypher Query to show all edges to storage account
cloudshell6d67

The output shows a user, marius, which has the Con-
tributor rights over the subscription Visual Studio Premium
with MSDN. The subscription contains a resource group
called CloudShell6d67 with a storage account called cloud-
shell6d67. If an adversary can compromise the user account
marius, the contributor role grants extensive rights to the
adversary to control all resources assigned to the mentioned
subscription, which includes the storage account.

Stormspotter 1.0.0b4.4 offers edges focusing on Azure
AD and Azure ARM. But still, numerous edges need to be
included so that a complete attack graph cannot be drawn.
Also, graph algorithms such as shortest path still need to
be supported in the web frontend of Stormspotter. To sum-
marise, Stormspotter is an excellent tool for getting an
overview of an Azure ARM environment. However, more
edges and better support of cypher queries should be added
to tap into the full potential of graph analysis possibilities.

2.2.4 Summary

BloodHound 4.0.3 implements a high quantity of nodes and
edges to analyse AD. However, for the Microsoft cloud ten-
ant, important edges and nodes such as API permissions,
cloud application roles and Azure AD Privileged Identity
Management (PIM) roles need to be included. The fron-
tend of BloodHound is stable and fulfils our requirements
to analyse attack graphs. On the other hand, Stormspotter
1.0.0b4.4 would offer slightly more edges and nodes regard-
ing ARM but has many gaps in its current version, such
as stability, missing Azure AD edges, and supportability of
cypher queries in the Stormspotter GUI. Table 1 summarises
the comparison of both tools. In conclusion, BloodHound
is more suitable for our purposes and will be used for our
implementation.

2.3 Methodology

The previous sections provided the theoretical background
regarding how graph theory can be used to identify and
address critical attack paths in the Microsoft cloud. The fol-
lowing sections describe how the theoretical knowledge was
applied to find, implement, and analyse new attack paths in
a Microsoft cloud tenant.

Figure 6 represents the stages that were defined to conduct
our research. Stage 1 covers the high-level planning, stage
2 implements new nodes and edges and stage 3 analyses
and evaluates the newly added nodes and edges. Multiple
iterations are possible between stage 2 and stage 3. In the
following subsections, the stages are explained in detail.

123

M. Elmiger et al.

Table 1 Attack graph tool
comparison

Criteria BloodHound v4.0.3 Stormspotter v1.0.0b4.4

AD A high number of edges
implemented

No Active Directory edges
implemented

AAD Basic nodes and edges are
implemented

Basic nodes and edges are
implemented

ARM A few entities are implemented.
Comprehensive Graph analysis is
limited

Most entities are available, but
numerous relationships are
missing

CloudApp Not implemented Not implemented

Dashboard Based on Linkurious [29] and
compiled with Electron [15]. The
web frontend is stable

Based on Vue [25] and the Quasar
Framework [50]. The web
frontend is not always stable

GraphDB Neo4j Neo4j

Fig. 6 Project methodology

2.3.1 Stage 1: planning

This stage covers the fundamental decisions on which the
implementation and analysis stage depends on.

Step 1. The first step in the workflow was to decide
which tool to use to visualise and analyse our attack graphs.
Based on the comparisons of both tools, we decided to use
BloodHound 4.0.3. BloodHound offers a stable visualisa-
tion GUI, using Neo4j as a graph platform, and already has
Active Directory and a limited set of theMicrosoft cloud ten-
ant nodes and edges implemented. Stormspotter v1.0.0b4.4
could have been an option, but it is, in its current version, not
stable enough, has only a few more Microsoft cloud tenant

edges implemented compared with BloodHound, and has no
nodes or edges for Active Directory.

Step 2. Figure7 illustrates the components which were
required for the research platform. The first component of
the figure is the Microsoft cloud tenant, from which we
extract data and research possible attack paths. Microsoft
offers developer subscriptions that are suitable for projects
like ours [37]. The second component is a script with which
we will extract data from the tenant and import the data to
the Neo4j database.

The third component is Neo4j. Neo4j has two versions—
the community edition, which is open source and licensed
under GPLv3 and the enterprise edition, which requires a
commercial license and offers additional features such as

123

Start thinking in graphs: using...

Fig. 7 Research platform

horizontal scaling, fine-grained access control, high avail-
ability, and clustering. We decided to use the Neo4j Desktop
Version for our project, which comes with a free developer
license for the enterprise edition. The fourth component is
BloodHound, which can be downloaded from GitHub [53]
and can be redistributed and modified under the terms of
the GPLv3 or above. The fifth and last component is a Win-
dows 10 virtual machine running on a Hyper-V on which
we will run the script, the graph database, and BloodHound.
A trial license will be used for Hyper-V and the Windows
10 OS. Windows offers all the options to extract data from
a Microsoft cloud tenant, such as existing tools and Pow-
erShell modules. Linux could have also been an option but
was not considered as more effort would have been required
to obtain some data without the already existing community
implementations and officialMicrosoft PowerShellmodules.

2.3.2 Stage 2: research and implementation

In Stage 2, the test tenant will be implemented to allow the
actual research to map attack paths to entities and integrate
the logic into the graph database.

Steps 3–4. During steps three and four, we will set up a
Microsoft cloud tenant with a Developer E5 and an Azure
ARM subscription. More details on how the setup was done
are described in Sect. 5.

Step 5. In this step,we investigated the existing entities in a
Microsoft tenant andhow they are related to eachother.Based
on the outcome, we create graph data models by defining
nodes and edges by following the rule of thumb from [16,
27]:

1. If you want to start your traversal on some piece of data,
make that data a node.
Finding:By studying howaMicrosoft cloud tenantworks
or by creating examples in the test tenant, we can find
entities that can be managed by a particular role. The role
and the found entities are nodes.

2. Node-Edge-Node should read like a sentence or phrase
from your queries.
Finding: An example could be: The role Global Admin-
istrator has the ADMIN_TO right over ARM as shown in
Fig. 8.

Fig. 8 Translating noun-verb-noun to a graph model

Fig. 9 Overview of the test tenant setup

3. Nouns and concepts should be node labels. Verbs should
be edge labels.
Finding: For our example, Global Administrator and
Azure ARM are the nouns, and ADMIN_TO is the verb.

4. When in development, let the direction of your edges
reflect howyouwould think about the data in your domain.
Finding: By applying the rule of thumbs from the pre-
vious rules with the pattern Node-Edge-Node, which is
equal to subject-verb-object, we usually can identify the
direction. Thus, the edge direction comes from the sub-
ject and goes to the object, as illustrated with an arrow in
Fig. 8.

Steps 6–8. Based on the required nodes and edges defined
in Step 5, the export and import script will be adapted and
executed. Depending on the modification, the BloodHound
WebApplication requires adaptation to graphically represent
new nodes correctly. Further details of these three steps can
be found in Sect. 5.

2.3.3 Stage 3: analysis and evaluation

Stage 3 analyses and evaluates the implementation of the
attack paths prepared in Stage 2. If further iterations are
required due to adaptations or a new attack path implemen-
tation, we will start over again at step 5 in Stage 2. This
iteration can be ongoing because of the continuous change
in the Microsoft cloud and the discovery of new attack paths.
Details regarding the analysis and evaluation are explained
in Sect. 4.

123

M. Elmiger et al.

Table 2 Graph analysis
platform component
prerequisites

Applications Neo4j Desktop 4.4 BloodHound 4.0.3 Scripts

Oracle JDK 11 Required Not required Not required

NodeJS 16.13.1 Not required Optional Not required

Python 3.10.1 Not required Not required Required

Azure CLI PowerShell Module Not required Not required Required

Azure AD PowerShell Module Not required Not required Required

3 Implementation and results

In this section, the technical details of how the imple-
mentation and research were conducted are described. The
sequence is in alignment with the presented methodology
workflow described in the previous section. All scripts used
during this implementation can be found on GitHub [12].

3.1 SetupMicrosoft cloud test tenant

A Microsoft cloud test tenant was created by following the
Microsoft 365 developer Visual Studio guideline [37]. The
test tenant comes with aMicrosoft 365 E5Developer license,
which includes most of the products Microsoft is offering
regarding SaaS applications. For Azure ARM, we are using
a Visual Studio Premium subscription, which has a 150 USD
limit per month.

To simulate a small company, we configured the tenant
according to the Microsoft Azure Active Directory deploy-
ment guide [32]. In addition, we also created three virtual
machines on Azure ARM to simulate an on-premises Active
Directory environment. The identities are synchronised with
the Microsoft tool AAD Connect. Figure9 provides an
overview of the test tenant setup.

3.2 Setup graph analysis platform

To set up the specified graph analysis platform, a virtual
machine using Windows 10 20H2 as OS was created on
an already existing hypervisor. On the virtual machine, we
installed the Neo4j desktop application 4.4 according to
Neo4j desktop installation guideline [45]. For BloodHound
4.0.3, we followed the BloodHound installation manual for
Windows [53]. Table 2 provides an overview of the installed
applications, including the prerequisites for the graph anal-
ysis platform. NodeJS was required for our project because
we must adapt and re-compile the web frontend with new
nodes and edges.

3.3 Research

The goal of the research was to gain the required technical
knowledge to utilise the implemented graph analytics plat-

form and extend the attack graph provided by BloodHound
with additional Microsoft cloud entity edges. The research
was conducted along the following lines:

1. Analyse the graph database schema of BloodHound 4.0.3.
2. Analyse the import and export script of BloodHound

4.0.3.
3. Analyse the web interface of BloodHound 4.0.3.
4. Analyse which use cases are already covered by Blood-

Hound 4.0.3 to represent Microsoft cloud entities in a
graph.

5. Define new use cases to extend the attack graph.
6. Create a graph database schema that can represent the new

use cases.

3.3.1 BloodHound 4.0.3 schema analysis

The BloodHound database schema was analysed with the
Hackolade tool and the Neo4j browser. The developers of
BloodHound implemented 17 use cases. Examples of the use
cases covered by this version are noted in Table 3. Figure10
depicts the schema.

3.3.2 Modelling the new graph database schema

Based on the knowledge gathered during the literature review
and the analysis conducted in the previous section, a graph
database schema was created, as depicted in Fig. 11. Com-
pared with BloodHound 4.0.3, the new schema introduces 7
new nodes and redefines the edges to include more granular
relationships between cloud entities. The number of edges in
BloodHound 4.0.3 is 7, while for our schema, the number has
increased to 17 edges. In total, 52 use cases were defined and
noted during our knowledge gather. The identified use cases
give us a more complete view of the different interactions
between the different entities in a Microsoft cloud tenant,
specifically Identity-centric and Azure DevOps-related ones.
Other nodes that relate to storage services and network com-
ponents, to name a few, could be added and those would
entail new edges. It is expected that more use cases could be
identified in the future as new cloud entities and relationships
are added and implemented by the cloud provider. Table 4
offers a few examples of the new use cases. One important

123

Start thinking in graphs: using...

Table 3 Example of use cases covered by BloodHound 4.0.3

Use case Subject Edge Object

Azure AD Tenant contains Azure entities AZTenant AZContains All AZ Objects

Azure AD Account can own an Azure AD Group AZUser AZOwns AZGroup

Azure ARM Resource Group can contain ARM resources AZResourceGroup AZContains AZVM,AZKeyVault

Azure AD Account can own a device AZUser AZOwns AZDevice

Azure AD Account is a member of an Azure AD Group AZUser MemberOf AZGroup

Fig. 10 BloodHound 4.0.3
graph database schema

design difference compared to the BoodHound 4.0.3 schema
is that in our schema, roles are represented as nodes and not as
edges. The rationale for this decision is to show role-specific
attack paths too. For example, at the time of the data collec-
tion, an Azure AD user could not be assigned to a role but
still be eligible to request one.

3.4 Export and import script

3.4.1 Review export and import script

To export data from theMicrosoft cloud, BloodHound comes
with a PowerShell script called AzureHound.ps1. The script
utilises Microsoft Cloud PowerShell modules and stores the
acquired data in JSON files.

The import of the data to the Neo4j Database is done over
the BloodHoundWebApplication by using an import option.

3.4.2 Export script creation

We decided to extend the AzureHound.ps1 script with the
required functionality based on our use case definitions. The
rationale for this decision was mainly to leverage as many of
the default components as possible to save time. During the
development, a substantial amount of the existing code was
replaced or extended. Eventually, we decided to rename the
export script toAzHound.ps1 to avoid confusion. The process
used to export data with AzHound.ps1 is depicted in Fig. 12.

Figure 12 also shows the Azure AD PowerShell mod-
ules that were used to export the required data with
’AzHound.ps1’. To understand the functionality of each
module, we consulted the Azure Active Directory Power-
Shell for Graph module and Azure PowerShell reference
documentation from Microsoft [33]. During the develop-
ment phase, we discovered that the Azure AD modules are

123

M. Elmiger et al.

Fig. 11 Final graph analysis platform schema

Table 4 Examples of added use case coverage of the graph analytics platform

Use case Subject Edge Object

Azure AD Account is eligible for an Azure AD role AzUser EligibleTo AzAdRole

Azure AD Account owns an Azure Service Principal AzUser Owns AzServicePrincipal

Azure AD Role Group has a permanent AAD role assignment AzRoleGroup PermanentTo AzAdRole

Azure AD Group can be a member of an Azure Role Group AzGroup MemberOf AzRoleGroup

Azure AD Group can be represented as an Azure DevOps Group AzGroup SyncsTo AzDevOpsGroup

Azure AD Service Principal can manage Azure AD Roles AzServicePrincipal CanGrant AzAdRole

Certain Azure AD Roles can reset passwords of Azure AD Users AzAdRole ResetPassword AzAdUser

ARM Management Groups can contain ARM Subscriptions AzMgmtGroup Contains AzSubscription

AD Service Principals to deploy ARM resources AzDevOpsPrj RunsAs AzServicePrincipal

Azure DevOps Projects or Organisations AzDevOpsGroup AssignedTo AzDevOpsOrg

not offering all attributes that we needed to implement our
use cases. Thus, information for privileged identity manage-
ment and DevOps had to be retrieved over the Microsoft
GraphRESTAPI [38] and theAzureDevOps Services REST
API [35]. Most of the information could be queried with an
unprivileged Azure AD user account. However, to retrieve
privileged identity management data, additional permissions
had to be granted, such as PrivilegedAccess.Read to the user.
In a similar way, in order to query data fromARM, at the very
least, read rights were required. Summarised, the user who

executed the script requires low-level access rights to query
all the data. The script then retrieves data from the Microsoft
cloud APIs and saves the acquired data to structured JSON
files.

The code snippet example, shown in Listing 3, explains
the export process of Azure AD users more in detail. On the
lines 1–5, the connection is established with Azure AD. If
there is no existing token available, the user who executes
the script receives a login prompt. On line 7, Azure AD user
information is dumpedwith specific object properties tomin-

123

Start thinking in graphs: using...

Fig. 12 AzHound.ps1 export process overview

imise the data size. On lines 9–17, every user in the array
$AADUsers is parsed, and if required, data are manipulated
and again added to an array. Lines 18–22 interpret the array
and writes a structured JSON file to a defined directory. The
script AzHound.ps1 can be found on GitHub [12].

1 $LoginStatus = Get−AzContext # Check to see i f we are logged in
2 . . .
3 Connect−AzAccount # If not we connect with the Az module to the ARM endpoint
4 . . .
5 Connect−AzureAD−TenantId $LoginStatus .Tenant . Id−AccountId $LoginStatus .Account. Id | Out−Null
6 . . .
7 $AADUsers = Get−AzureADUser−All 1 | Select−Object ObjectType,UserPrincipalName,

OnPremisesSecurityIdentifier ,ObjectID,TenantId , email ,AccountEnabled, ImmutableId, JobTitle ,
Mobile,ProxyAddresses ,UserType # Get al l Azure AD User object

8 . . .
9 $AADUsers | ForEach−Object { # Loop through User objects

10 . . .
11 $CurrentUser = [PSCustomObject]@{ # Add User attributes to an object
12 objectid = $User .ObjectID
13 userPrincipalName = $User .UserPrincipalName
14 email = $User .Mail
15 . . .
16 $null = $Coll .Add($CurrentUser) # Add the object to an array
17 . . .
18 New−Output−Coll $Coll−Type ‘‘users ’ ’−Directory $OutputDirectory # Write the JSON File with gathered

information
19 . . .
20 function New−Output($Coll , $Type, $Directory) { # Writes a JSON fi le
21 . . .
22 $FileName = $Directory + [IO.Path] : : DirectorySeparatorChar + ‘‘az’ ’ + $($Type) + ‘ ‘. json ’ ’

Listing 3 AzHound.ps1 code snippet

3.4.3 Import script creation

We decided not to use or modify the existing BloodHound
importer process. Instead, we decided to use the APOC
library and cypher-shell.jar [44] as an import solution. The
APOC library comes with the Neo4j database and consists
of about 450 functions to help with many different tasks in
areas like data integration, graph algorithms, or data conver-
sion. For our import script, we used two functions from the
library apoc.load to parse the JSON files and apoc.merge
to create edges. cypher-shell.jar is the Neo4j command-line
interface to execute cypher queries against a Neo4j database.
Figure13 depicts the import script process.

The code snippet Listing 4 showcases an example of how
information of an Azure AD user is parsed to create a new
AzUser node in the Neo4j database. The azusers.json file,
which was created during the export process, is presented.

Fig. 13 Import script process overview

Lines 3–7 are metadata information and are used for the
BloodHound import process. Lines 8–13 contain the user
information required to create a new node. In this example,
the user is Leto.

1 / / azusers . json
2 "meta" : {
3 "count" : 17,
4 "type" : "azusers" ,
5 },
6 "data" : [
7 {
8 "displayname" : "Leto" ,
9 "userPrincipalName" : "leto@019840. onmicrosoft .com" ,

10 "objectid" : "569d91c1−8f8c−4ac5−aaf8−9e753f7e45df" ,
11 . . .

Listing 4 azusers.json file snippet

The second file loadDataToNeo4j.cypher, shown in List-
ing 5, calls on line 2, the APOC load.json function, to parse
the data from the azusers.json file. Lines 5–9 create the
AzUser node based on the parsed data from the JSON file.

1 / / cypher−shell −f loadDataToNeo4j. cypher
2 CALL apoc. load . json(" f i le : / / azusers . json") / / Parse the JSON fi le with the Azure AD User information
3 YIELD value / / Create a bound veriable from the APOC procedure call
4 UNWIND value . data AS fromJson / / Transform data l i s t back into individual rows
5 MERGE (n:AzUser{objectid :fromJson. objectid}) / / Create AzUser node with the objectid from the JSON
6 ONCREATE SET n.displayname = fromJson.displayname, / / Set properties
7 n.userPrincipalName = fromJson.userPrincipalName ,
8 n. email = fromJson . email ,
9 . . .

Listing 5 loadDataToNeo4j.cypher code snippet for node creation

The code snippet in Listing 6 shows another example that
creates edges between Azure AD users and Azure AD roles.
The azrolesAndAssignments.json, which was created during
the export process, is presented. Lines 3–7 are once again

123

M. Elmiger et al.

the metadata information. Lines 8–14 contain the role id, the
member of the role, and the assignment status.

1 / / azrolesAndAssignments . json
2 "meta" : {
3 "count" : 18,
4 "type" : "azrolesAndAssignments" ,
5 },
6 "data" : [
7 {
8 "roleDisplayName" : "Password Administrator" ,
9 "roleojectid" : "966707d0−3269−4727−9be2−8c3a10f19b9d" ,

10 "member" : "569d91c1−8f8c−4ac5−aaf8−9e753f7e45df" ,
11 "assignmentState" : "EligibleTo" ,
12 . . .

Listing 6 azrolesAndAssignments.json file snippet

Listing 7 calls, on line 2, the APOC load.json function
to load the data from the azrolesAndAssignments.json file.
On line 5, the database is queried for the objectid, which
is the user Leto we saw before in the azusers.json file. On
line 6, we search for the role with the objectid, which repre-
sents the Password Administrator. The roles were separately
imported before, just like the Azure users. After the match,
line 7 creates, with the apoc.merge.relationships function, an
edge between the two nodes with the property EligibleTo.

1 / / loadDataToNeo4j. txt
2 CALL apoc. load . json(" f i le : / / azrolesAndAssignments . json") / / Parse the JSON fi le
3 YIELD value / / Create a bound veriable from the APOC call
4 UNWIND value . data AS fromJson / / Transform data l i s t back into individual rows
5 match (a {objectid :fromJson .member}) / / Find member objectid pattern in the database
6 match (b {objectid :fromJson . roleojectid}) / / Find roleobjectid pattern in the database
7 CALL apoc.merge. relationship (a , fromJson. assignmentState ,{} ,{} ,b) yield rel as rely / / Create an edge

from member a to role b
8 return count(∗) as relationships ; / / Return the amount of created edges

Listing 7 loadDataToNeo4j.cypher code snippet for edge creation

Further import statements can be found in the file
loadDataToNeo4j.cypher under the BloodHoundAz GitHub
repository [12].

3.5 Modification of the BloodHoundweb GUI

TheBloodHoundweb application is based onLinkurious and
compiled with Electron. It consists of multiple JavaScript
files, which encompasses the functionality of the GUI, such
as the navigation, loading of data, additional node, and edge
information. We only did a minimal change to at least sup-
port the visualisation of the newly introduced node types.
Therefore, we did not introduce any significant contribution
to BloodHound’s web GUI. With that decision, we do not
have additional information regarding the nodes or edges
available directly in the GUI. However, this will not impact
the analysis as we still can query information directly from
the graph database or use the Neo4j Browser if we require
detailed node or edge information. The complete adjustment
of the web application is something to be considered for
future work. The change to the Bloodhound index javascript
file is reflected in Fig. 14. The supported nodes in the current
version are described in Table 5.

Fig. 14 Modified BloodHound GUI showing the 18 supported node
types

Table 5 Description of the supported node types

Nodes Description

AzTenant Azure AD Tenant

AzAdRole Azure Active Directory roles

AzApplication Applications in an AAD Tenant

AzArmRole Roles in Azure ARM

AzDevice Devices in Azure AD

AzDevOpsGroup Azure DevOps groups

AzDevOpsOrg Azure DevOps organisations

AzDevOpsPrj Azure DevOps projects

AzDevOpsUser Azure DevOps users

AzGroup Azure AD Groups

AzKeyVault Key Vaults in Azure ARM

AzMgmtGroup Management Groups in Azure ARM

AzResourceGroup Resource Groups in Azure ARM

AzRoleGroup Azure Role Groups in Azure AD

AzServicePrincipal Azure Service Principal in AAD

AzSubscription Subscriptions in Azure ARM

AzUser Azure Users in Azure AD

AzVm Virtual Machines in Azure ARM

3.6 Run the export and import script

Two manual steps are required to query the data from the
Microsoft cloud and load the data to the Neo4j database.
The first step is to execute in a PowerShell console the
’AzHound.ps1’ script. The Azure AD user should have the
following rights to guarantee the export of the required data:

– Assigned ARM Reader role.
– Approved PrivilegedAccess.Read.AzureAD delegation.

123

Start thinking in graphs: using...

Fig. 15 Import and export process overview

– Approved PrivilegedAccess.Read.AzureADGroup dele-
gation.

– Approved PrivilegedAccess.Read.AzureResources dele-
gation.

The second step is executed in a command-line window. The
cypher-shell will prompt for the username and password of
the Neo4j database. Afterwards, the data is imported and
ready for the analysis stage. Figure15 depicts the described
process.

4 Discussion

This section describes methods to analyse an attack graph
and a resulting attack path. The outcome of the analysis is
based on the defined use cases mentioned in the previous
section and the entities created in the Azure AD test tenant.

4.1 Azure AD test tenant analysis

The attack graph analysis and the implementation steps
depend on available test data. For that reason, we created
in the Azure AD tenant multiple test entities. Following, we
present the test tenant entities onwhich the attack graph anal-
ysis is based.

The cypher query was used to retrieve all available nodes
from the Neo4j graph database. Figure16 depicts the result
of the query with a bar chart. Noticeable is the high num-
ber of AzServicePrincipals. Around 390 of the 405 service
principals were created by Microsoft and should exist in
every Azure AD tenant. They are required to guarantee the
operability of M365 applications such as Graph Explorer,
Exchange Online, SharePoint Online and Teams. But also,
these default service principals can be abused. Therefore,
these service principals were also added to the Graph [42].

To verify the use cases outlined in the previous section,
we granted various permissions to the created entities in
the Microsoft cloud. In total, 2108 edges were created from
ingested data. A cypher query was used to retrieve all edges
from the Neo4j graph database. Figure 17 depicts the result
in the form of a bar chart. The two highest edge numbers are
CanManage and ResetPassword. The high number is due to
the fact that certain Azure AD roles have the right to manage
or reset passwords of all entities in an Azure AD tenant.

Fig. 16 Nodes overview

Fig. 17 Edges overview

Fig. 18 Confusing and abstract attack graph

4.2 Attack graph analysis

When chosen poorly, a graph can become too abstract and
too confusing tofind the correct information. Figure18 shows
such a graph which was generated with a cypher query that
used the all shortest path graph algorithm to calculate all
possible paths to any node in the graph.

A better method to analyse an attack graph is to find influ-
ential nodes by using centrality algorithms. Neo4j provides
multiple available centrality algorithms. For the attack graph
presented in this work, two centrality algorithms were used
to identify powerful nodes or, in the context of a Microsoft
cloud, privileged entities.

123

M. Elmiger et al.

Fig. 19 Closeness centrality result

4.2.1 Closeness centrality algorithm

The closeness centrality algorithmmeasures the nodes’ aver-
age distance to all other nodes and generates a list of nodes
that are able to propagate information efficiently through a
graph [43]. Nodes with a high closeness score have the short-
est distances to all other nodes, which makes them privileged
entities in the context of a Microsoft cloud. A cypher query
was used to run the algorithm against the graph.

The result of the query is depicted in Fig. 19. For visuali-
sation reasons, not every node was included in the chart. The
closeness score shows that roles such as Global Administra-
tor or Application administrators have the shortest distance
to all, followed by certain users such as marius and partic-
ular service principals such as 019840-Thinking-in-Graphs
and myApplication.

4.2.2 Degree centrality algorithm

The degree centrality algorithm can help to determine pop-
ular nodes in a graph. The algorithm measures the number
of incoming and outgoing edges from a node. If nodes have
a high number of edges, in particular outgoing edges, the
entity should be flagged as highly privileged in the context
of the Microsoft cloud. A cypher query was used to run the
algorithm against the graph.

The result of the query is depicted in Fig. 20. For visual-
isation reasons, not every node was included in the treemap
chart. Similarly to the results presented by the closeness cen-
trality chart, degree centrality also identified the roles as
highly privileged in the context of the Microsoft cloud. The
roles are followed by service principals such as myApplica-
tion and Azure AD users such as marius.

In summary, both algorithmspresent similar results,which
underline that the aforementioned discovered entities, in
particular the role Global Administrator, are the privileged
entities in the Microsoft cloud. The result proves on one side
that the created graph provides accurate data because the
Global Administrator is, in fact, the most powerful entity in
the Microsoft cloud [34]. On the other side, they show that

powerful entities that are not existing by default in an Azure
AD tenant can be prioritised for further analysis.

4.2.3 Shortest path algorithm

The centrality algorithm results can help to identify powerful
nodes or, in the context of the Microsoft cloud, privileged
entities. Path algorithms can help to find all nodes that have
direct or indirect paths to such powerful nodes. A cypher
query was used to find the shortest path from any node to the
node with the name Global Administrator overall available
edges. The result of the cypher query is presented in the form
of an attack graph in Fig. 21.

The visualisation shows that different types of entities
have direct or indirect paths to the role Global Adminis-
trator. The first edges to the Global Administrator role are
EligibleTo,PermanentTo,CanManage, andCanGrant. These
are the closest chokepoints (Warning symbol) to becoming a
Global Administrator. Going further to the left, other edges
appear, which form the indirect paths to the node Global
Administrator. For defenders, the chokepoints are essential.
This is because edges that are close to theGlobal Administra-
tor node are controlling a vast number of entities. But which
edges should be removed first to reduce the total amount
of Azure AD users that can become Global Administrators?
One method to answer this question is to measure with the
cypher query in Listing 8 the current percentage of AzureAD
users who have a direct or indirect path to Global Adminis-
trator.

1 MATCH (u:AzUser)
2 MATCH (r :AzAdRole{name: "Global Administrator"})
3 WITH g, COUNT(u) as userCount
4 MATCH p = shortestPath ((u:AzUser)−[∗1..]−>(r))
5 RETURN 100.0 ∗ COUNT(DISTINCT u) / userCount as percent
6 / / Result : 62\%

Listing 8 Cypher query to measure how many users have a path to the
Global Administrator role

For our attack graph in Fig. 21, 62% of the total 24 Azure
AD Users have a path to the Global Administrator role. To
minimise this controlling number, graph theory can be used
to calculate the effectiveness of edge removals before touch-
ing the actual IT environment. For example, by removing
the CanGrant edge from the Service Principal (1) shown in
Fig. 21 and by re-running the cypher query in Listing 8, the
new net result would be 54%. This means that by removing
the CanGrant edge, an additional 8% of Azure AD Users
would not be able to become Global Administrators in the
Azure AD tenant.

4.3 Attack path example

In the following, a hypothetical attack path presenting how
a user can become a Global Administrator by exfiltrating
credentials fromAzureDevOps and abusingAzureADappli-
cation role permissions is described. The presented attack

123

Start thinking in graphs: using...

Fig. 20 Degree centrality result

Fig. 21 Shortest path result from any node to the Azure AD tenant

path was inspired by [52], who covers the app role abuse sce-
nario more in detail. The chosen attack path was extracted
from the shortest path attack graph. A cypher query was used
to visualise the attack path in Fig. 22. It is important to note
that this example was extracted manually from the attack
graph shown in Fig. 21 to showcase the impact of an attack
path scenario.

The attack path depicts, in the upper-left corner, a user
called Rabban. The assumption is that the user was compro-
mised by an adversary. The adversary has the goal to become
Global Administrator to gain full control over the Azure AD
tenant. The following six steps describe the attack path from
the viewpoint of the adversary.

1. The adversary activates the privileged access group called
DevOpsRole-Build Admin in the Privileged IdentityMan-
agement GUI for the user Rabban.

2. The Group DevOpsRole-Build Administrators with its
members are synchronised to Azure DevOps. Azure
DevOps is a SaaS platform from Microsoft that pro-
vides an end-to-end DevOps toolchain for developing
and provisioning. TheDevOpsRole-Build Administrators
group is a direct member of three built-in DevOps groups.
According to the description of the Microsoft documen-
tation, the memberships should allow the user Rabban to
create and modify pipelines. In Azure DevOps, pipelines
are generally used for deployments. The deployments use
service principals or other types of keymaterial to authen-

123

M. Elmiger et al.

Fig. 22 Attack path example

ticate to a target system. This makes the Azure DevOps
platform particularly interesting for adversaries.

3. By opening the pipeline configuration, the adversary
notices that a service principal is used to deploy resources
to the targeted Azure AD tenant. This is also shown by the
edge RunsAs in the attack path in Fig. 22. The adversary
decides to dump the password of the service principal by
modifying the pipeline to print the password to the ter-
minal. By default, Azure DevOps prevents the output of
credentials in plain text. Converting the credentials to hex
circumvents these preventive measures, and the creden-
tials can be retrieved as shown in Fig. 23 and Fig. 24.

4. The next three steps use a PowerShell script [11] that was
created to automate the second part of the attack. The
gained service principal key is converted to ASCII, and
the adversary connects with the service principal to Azure
AD.

5. The service principal has now been assigned the app role
AppRoleAssignment.ReadWrite.All. This role allows the
service principal to request a new app role called Role-
Management.ReadWrite.Directory. Per documentation of
Microsoft, the newly granted app role allows the service
principal to manage Azure AD role memberships.

6. In the last step, depicted in Fig. 25, a new token, which
includes the new app role, is requested for the service
principal. The adversary decides to add the user Rabban
to the Global Administrator role and achieves the goal to
become a Global Administrator.

To prevent the described multistage attack path, differ-
ent security controls such as MFA, role approval requests,
or auditing could have been implemented to make it more
difficult for an attacker. But in our opinion, prevention starts
already before the implementation of such security layers.
It begins with understanding how an IT system such as the
Microsoft cloud works. One method is screening entities and
their permissions and by asking the question, how can this
permissionor entity impactmyAzureAD tenant?Finding the
answer canbe trivial or difficult, but itwill help categorise and
map entities according to their priorities.With that approach,
the journey to “knowing your assets” has started. Graph the-

Fig. 23 Azure DevOps attack path

Fig. 24 Dump service principal key from Azure DevOps pipeline

Fig. 25 Privilege escalation to Global Administrator

ory is an effective method that can help on this journey which
makes complex relationships visible and remediation mea-
surable. Blind spots such as the presented attack path can
be analysed, and decisions can be made to remove unwanted

123

Start thinking in graphs: using...

paths toGlobal Administrator or implement tangible preven-
tive measures.

5 Conclusion

Our work highlighted that cloud technology is primarily
identity-centric, unlike on-premises environments, where
everything is placed in an internal network, and the security
configurations are set around the perimeter. Based on this
insight, cloud credential pivoting, a post-compromise tech-
nique by which the adversary tries to gather new credentials
from cloud tenant resources, was presented. Similar to on-
premises, resources in the cloud can have different access
permissions that form direct or indirect relationships with
one another. Thus, the most familiar Microsoft cloud tenant
entities were presented, followed by a pivoting graph exam-
ple, illustrating the relationship between the entities which
could be abused by an adversary. We concluded that when
it comes to identifying critical attack paths in a Microsoft
cloud tenant, graphs provide unique and valuable insights
into highly connected data.

To validate this statement through a practical implemen-
tation, a methodology with three main stages was presented.
During the first two stages, a graph analysis platform using
tools such as the Neo4J graph database and BloodHound
was planned and built. This also included the design of a
graph database schema and the definition of new node and
edge types. To populate the graph database with data, an
export and import script was created to ingest test data from
aMicrosoft cloud test tenant. In the last stage, the graph ana-
lytics methods were presented to identify privileged entities,
and a proposal was described to measurably reduce attack
paths to such entities.

The goal of this paper is to evaluate the benefits of graph-
based data representation for understanding and uncovering
complex entity attack paths in the Microsoft cloud. Through
the work, we presented the advantages of using graphs. The
presented technical approach can also be applied to other IT
environments such as Google or Amazon Cloud.

Our work recorded the following key findings:

– Attack path identification and analysis are limited by two
aspects, the collected data and the implemented edges
between nodes.

– Various methods exist to query data from the Microsoft
cloud, such aswith the official Azure PowerShell cmdlets
or directly from the Microsoft Graph REST API.

– The data that can be queried from the Microsoft cloud
is not always following the same data schema. Hence,
often research is required to interpret the queried data
correctly.

– The Microsoft cloud, compared with an on-premises
Active Directory, has multiple services which can make
access decisions, such as Azure AD API, ARMAPI, MS
Graph API, various cloud applications and more. Visu-
alising these access decisions in the form of edges in a
Graph can uncover the complexity of a Microsoft cloud
environment.

5.1 Future work

The edges and nodes that were implemented during this
research were just a start and can be extended with many
more use cases. New nodes could be added in regard toAzure
ARM, such as storage accounts, Azure functions, Azure
logic apps, network components and many more. New edges
could be added as well between the already implemented
nodes, such as key vault access permissions, app role permis-
sions, Azure AD roles and so on. Summarised, theMicrosoft
cloud is continuously changing as new features are added;
thus, the iteration of finding new attack paths is an ongo-
ing task. In addition, the generation of attack graphs and
the identification of relevant attack paths are a manual pro-
cess that would benefit from automation. In future research,
we can look into automating this procedure and ranking
the identified attack paths based on relevancy using graph
algorithms.

Moreover, the BloodHound extensions that were added
during this research would require further adaptations. These
include the modification of the import functionality in the
BloodHound web GUI and the adaptation in general of the
web GUI to support the newly added node types. After these
changes are completed, we foresee a release of the modified
BloodHound version to the public. This would benefit any-
one that is interested in using graphs to assess their Azure
AD tenant. Furthermore, we are committed to run a com-
parative analysis study using our approach against existing
methods, which should offer a better understanding of the
limitations and advantages of our approach. Careful consid-
eration will be given to important factors such as the scope of
the analysis, the criteria for evaluation, and the source of the
data.

Data availability The data generated and/or analysed in the current
study can be obtained at https://github.com/m8r1us/BloodHoundAz.

Declarations

Conflict of interest The authors have no competing interests to declare
that are relevant to the content of this article.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-

123

https://github.com/m8r1us/BloodHoundAz

M. Elmiger et al.

tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Al-Mohannadi, H., Mirza, Q., Namanya, A., Awan, I., Cullen, A.,
Disso, J.: Cyber-attackmodeling analysis techniques:An overview.
In: 2016 IEEE 4th international conference on future internet of
things and cloud workshops (FiCloudW), pp. 69–76. IEEE, 2016

2. Ali, M., Khan, S.U., Vasilakos, A.V.: Security in cloud computing:
opportunities and challenges. Inf Sci 305, 357–383 (2015)

3. Azure. Github - azure/stormspotter: Azure red team tool for graph-
ing azure and azure active directory objects. https://github.com/
Azure/Stormspotter, 2020. Accessed: 14-10-2022

4. Bechberger, D., Perryman, J.: GraphDatabases inAction.Manning
Publications, New York (2020)

5. Besta, M., Peter, E., Gerstenberger, R., Fischer, M., Podstawski,
M., Barthels, C., Alonso, G., Hoefler, T.: Demystifying graph
databases: Analysis and taxonomy of data organization, system
designs, and graph queries. arXiv preprint arXiv:1910.09017, 2019

6. Bouillot, L., Gras, E.: Chemins de Contrôle en Environnement
Active Directory, 2014

7. Brath, R., Jonker, D.: Graph Analysis and Visualization: Discov-
ering Business Opportunity in Linked Data. John Wiley & Sons,
New York (2015)

8. Burrough, M.: Pentesting Azure Applications: The Definitive
Guide to Testing and Securing Deployments. No Starch Press, San
Francisco (2018)

9. Dunagan, J., Zheng, A. X., Simon, D. R.: Heat-ray: combating
identity snowball attacks using machinelearning, combinatorial
optimization and attack graphs. In: Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles pp.
305–320, 2009

10. Duncan, R.: A multi-cloud world requires a multi-cloud security
approach. Comput. Fraud Secur. 2020(5), 11–12 (2020)

11. Elmiger, M.: Attack path automation powershell. https://gist.
github.com/m8r1us/5babd1d63c25c0199520a0a2f8e4f2e4, 2022.
Accessed: 14-10-2022

12. Elmiger, M.: Bloodhoundaz. https://github.com/m8r1us/
BloodHoundAz, 2022. Accessed: 14-10-2022

13. Fernandes, D.A., Soares, L.F., Gomes, J.V., Freire, M.M., Inácio,
P.R.: Security issues in cloud environments: a survey. Int. J. Inf.
Secur. 13(2), 113–170 (2014)

14. Fosaaen, K.: How to escalate azure privileges with the log analytics
contributor role, 2021. Accessed: 14-10-2022

15. Fritzson, P.: Electron-build cross platform desktop apps with
javascript, html, and css. URL: http://electron.atom.io/, 2016

16. Gosnell, D., Broecheler, M.: The Practitioner’s Guide to Graph
Data: Applying Graph Thinking and Graph Technologies to Solve
Complex Problems. O’Reilly Media Inc, Sebastopol (2020)

17. Grobauer, B., Walloschek, T., Stocker, E.: Understanding cloud
computing vulnerabilities. IEEE Secur. Privacy 9(2), 50–57 (2010)

18. Ho, G., Dhiman, M., Akhawe, D., Paxson, V., Savage, S., Voelker,
G. M., Wagner, D.: Hopper: Modeling and detecting lateral move-

ment. In: 30th USENIX Security Symposium (USENIX Security
21), pp. 3093–3110, 2021

19. Holm, H., Sommestad, T., Almroth, J., Persson, M.: A quantitative
evaluation of vulnerability scanning. Inf. Manage. Comput. Secur.
19, 231–247 (2011)

20. Hyllienmark, E.: Evaluation of Two Vulnerability Scanners Accu-
racy and Consistency in a Cyber Range, 2019

21. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph
generation for network defense. In: 2006 22nd Annual Computer
Security Applications Conference (ACSAC’06), pp. 121–130.
IEEE, 2006

22. Johnson, A., Faust, S.: Cloud post exploitation techniques infil-
trate. https://sec.today/events/talk/c559e549-35ad-4122-b64f-
2ef7f78e1d2e/, 2017. Accessed: 14-10-2022

23. Kheir, N., Mahjoub, A.R., Naghmouchi, M.Y., Perrot, N., Wary,
J.-P.: Assessing the risk of complex ICT systems. Annals Telecom-
mun. 73(1), 95–109 (2018)

24. Kunz, B.: Blue cloud of death: Red teaming azure. https://
speakerdeck.com/tweekfawkes/blue-cloud-of-death-red-
teaming-azure-1, 2018. Accessed: 14-10-2022

25. Kyriakidis, A., Maniatis, K., You, E.: The majesty of Vue. js. Packt
Publishing, Birmingham (2016)

26. Lambert, J.: Defenders Think in Lists. Attackers Think in Graphs.
As Long as this is True, Attackers Win, 2015

27. Lassila, O., Swick, R. R.: et al. Resource Description Framework
(RDF) Model and Syntax Specification. Citeseer, 1998

28. Lenk,A., Klems,M., Nimis, J., Tai, S., Sandholm, T.:What’s inside
the cloud? An architectural map of the cloud landscape. In: 2009
ICSE Workshop on Software Engineering Challenges of Cloud
Computing, pp. 23–31. IEEE, 2009

29. Linkurious. Linkurious| investigation solutions | bringing criminal
activity to light. Accessed: 14-10-2022

30. Mell, P., Grance, T., et al.: The NIST Definition of Cloud Comput-
ing. National Computer Security Division, Information Technol-
ogy Laboratory (2011)

31. Mescheryakov, S., Shchemelinin, D., Izrailov, K., Pokussov, V.:
Digital cloud environment: present challenges and future forecast.
Future Internet 12(5), 82 (2020)

32. Microsoft. Azure active directory feature deployment guide.
https://learn.microsoft.com/en-us/azure/active-directory/
fundamentals/active-directory-deployment-checklist-p2.
Accessed: 14-10-2022

33. Microsoft. Azure active directory powershell for graph module.
https://learn.microsoft.com/en-us/powershell/module/azuread/?
view=azureadps-2.0. Accessed: 14-10-2022

34. Microsoft. Azure ad built-in roles - global administrator.
https://learn.microsoft.com/en-us/azure/active-directory/roles/
permissions-reference#global-administrator. Accessed: 14-10-
2022

35. Microsoft. Azure devops services rest api reference. https://learn.
microsoft.com/en-us/rest/api/azure/devops/?view=azure-devops-
rest-7.1. Accessed: 14-10-2022

36. Microsoft. Azure Monitor workbooks for reports - Microsoft
Entra. https://learn.microsoft.com/en-us/azure/active-directory/
reports-monitoring/howto-use-azure-monitor-workbooks

37. Microsoft. Microsoft 365 developer subscriptions in visual stu-
dio subscriptions. https://docs.microsoft.com/en-us/visualstudio/
subscriptions/vs-m365. Accessed: 14-10-2022

38. Microsoft.Microsoft graph rest api v1.0 endpoint reference. https://
learn.microsoft.com/en-us/graph/api/overview?view=graph-rest-
1.0. Accessed: 14-10-2022

39. Microsoft. Shared responsibility in the cloud - Microsoft Azure.
https://learn.microsoft.com/en-us/azure/security/fundamentals/
shared-responsibility

40. Microsoft. View audit report for Azure resource roles in Privileged
Identity Management (PIM) - Azure AD -Microsoft Entra. https://

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/Azure/Stormspotter
https://github.com/Azure/Stormspotter
http://arxiv.org/abs/1910.09017
https://gist.github.com/m8r1us/5babd1d63c25c0199520a0a2f8e4f2e4
https://gist.github.com/m8r1us/5babd1d63c25c0199520a0a2f8e4f2e4
https://github.com/m8r1us/BloodHoundAz
https://github.com/m8r1us/BloodHoundAz
http://electron.atom.io/
https://sec.today/events/talk/c559e549-35ad-4122-b64f-2ef7f78e1d2e/
https://sec.today/events/talk/c559e549-35ad-4122-b64f-2ef7f78e1d2e/
https://speakerdeck.com/tweekfawkes/blue-cloud-of-death-red-teaming-azure-1
https://speakerdeck.com/tweekfawkes/blue-cloud-of-death-red-teaming-azure-1
https://speakerdeck.com/tweekfawkes/blue-cloud-of-death-red-teaming-azure-1
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-deployment-checklist-p2
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-deployment-checklist-p2
https://learn.microsoft.com/en-us/powershell/module/azuread/?view=azureadps-2.0
https://learn.microsoft.com/en-us/powershell/module/azuread/?view=azureadps-2.0
https://learn.microsoft.com/en-us/azure/active-directory/roles/permissions-reference#global-administrator
https://learn.microsoft.com/en-us/azure/active-directory/roles/permissions-reference#global-administrator
https://learn.microsoft.com/en-us/rest/api/azure/devops/?view=azure-devops-rest-7.1
https://learn.microsoft.com/en-us/rest/api/azure/devops/?view=azure-devops-rest-7.1
https://learn.microsoft.com/en-us/rest/api/azure/devops/?view=azure-devops-rest-7.1
https://learn.microsoft.com/en-us/azure/active-directory/reports-monitoring/howto-use-azure-monitor-workbooks
https://learn.microsoft.com/en-us/azure/active-directory/reports-monitoring/howto-use-azure-monitor-workbooks
https://docs.microsoft.com/en-us/visualstudio/subscriptions/vs-m365
https://docs.microsoft.com/en-us/visualstudio/subscriptions/vs-m365
https://learn.microsoft.com/en-us/graph/api/overview?view=graph-rest-1.0
https://learn.microsoft.com/en-us/graph/api/overview?view=graph-rest-1.0
https://learn.microsoft.com/en-us/graph/api/overview?view=graph-rest-1.0
https://learn.microsoft.com/en-us/azure/security/fundamentals/shared-responsibility
https://learn.microsoft.com/en-us/azure/security/fundamentals/shared-responsibility
https://learn.microsoft.com/en-us/azure/active-directory/privileged-identity-management/azure-pim-resource-rbac

Start thinking in graphs: using...

learn.microsoft.com/en-us/azure/active-directory/privileged-
identity-management/azure-pim-resource-rbac

41. Microsoft. What is identity secure score? - Azure Active Directory
- Microsoft Entra. https://learn.microsoft.com/en-us/azure/active-
directory/fundamentals/identity-secure-score

42. Mollema,D.: Abusing azure ad SSOwith the primary refresh token,
2020. Accessed: 14-10-2022

43. Needham, M., Hodler, A.E.: Graph Algorithms: Practical Exam-
ples in Apache Spark and Neo4j. O’Reilly Media, Sebastopol
(2019)

44. Neo4j. Cypher shell - operations manual. https://neo4j.com/docs/
operations-manual/4.4/tools/cypher-shell/

45. Neo4j. Installation - Neo4j Desktop. https://neo4j.com/docs/
desktop-manual/1.4/installation/

46. Noel, S., Wang, L., Singhal, A., Jajodia, S.: Measuring security
risk of networks using attack graphs. Int J Next-Gener Comput 1,
135–147 (2010)

47. Ou, X., Govindavajhala, S., Appel, A.W., et al.: Mulval: a logic-
based network security analyzer. In: USENIX Security Sympo-
sium. vol 8, pp. 113–128. Baltimore (2005)

48. Paxton, N. C.: Cloud security: a review of current issues and pro-
posed solutions. In: 2016 IEEE 2nd International Conference on
Collaboration and Internet Computing (CIC), pp 452–455. IEEE,
2016

49. Pitropakis, N., Darra, E., Vrakas, N., Lambrinoudakis, C.: It’s all
in the cloud: Reviewing cloud security. In: 2013 IEEE 10th Inter-
national Conference on Ubiquitous Intelligence and Computing
and 2013 IEEE 10th International Conference on Autonomic and
Trusted Computing, pp 355–362. IEEE, 2013

50. Quasar. Quasar framework - build high-performance vuejs user
interfaces in record time. https://quasar.dev/. Accessed: 14-10-
2022

51. Robbins, A.: Introducing the adversary resilience methodology -
part one, 2018. Accessed: 14-10-2022

52. Robbins, A.: Azure privilege escalation via azure API permissions
abuse, 2021. Accessed: 14-10-2022

53. Robbins, A., Schroeder, W., Vazarkar, R.: Github - blood-
houndad/bloodhound: Six degrees of domain admin. https://github.
com/BloodHoundAD/BloodHound, 2016. Accessed: 14-10-2022

54. Robinson, I.,Webber, J., Eifrem, E.: GraphDatabases: NewOppor-
tunities forConnectedData.O’ReillyMedia Inc, Sebastopol (2015)

55. Sheyner, O., Wing, J.: Tools for generating and analyzing attack
graphs. In: International Symposium on Formal Methods for Com-
ponents and Objects, pp. 344–371. Springer, Berlin (2003)

56. Soh, J., Copeland, M., Puca, A., Harris, M., Soh, J., Copeland, M.,
Puca, A., Harris, M.: Microsoft azure and cloud computing. In:
Microsoft Azure: Planning, Deploying, and Managing the Cloud,
pp. 3–20. Apress, Berkeley (2020)

57. Sommestad, T., Sandström, F.: An empirical test of the accuracy of
an attack graph analysis tool. Inf. Comput. Secur. 23(5), 516–531
(2015)

58. Swiler, L. P., Phillips, C., Ellis, D., Chakerian, S.: Computer-attack
graph generation tool. In: Proceedings DARPA Information Sur-
vivability Conference and Exposition II. DISCEX’01, vol 2, pp.
307–321. IEEE, 2001

59. Yi, S., Peng, Y., Xiong, Q., Wang, T., Dai, Z., Gao, H., Xu,
J., Wang, J., Xu, L.: Overview on attack graph generation and
visualization technology. In: 2013 International Conference on
Anti-Counterfeiting, Security and Identification (ASID), pp. 1–6.
IEEE, 2013

60. Zeng, J., Wu, S., Chen, Y., Zeng, R., Wu, C.: Survey of attack
graph analysismethods from the perspective of data and knowledge
processing. Secur. Commun. Netw. 2019, 1–16 (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://learn.microsoft.com/en-us/azure/active-directory/privileged-identity-management/azure-pim-resource-rbac
https://learn.microsoft.com/en-us/azure/active-directory/privileged-identity-management/azure-pim-resource-rbac
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/identity-secure-score
https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/identity-secure-score
https://neo4j.com/docs/operations-manual/4.4/tools/cypher-shell/
https://neo4j.com/docs/operations-manual/4.4/tools/cypher-shell/
https://neo4j.com/docs/desktop-manual/1.4/installation/
https://neo4j.com/docs/desktop-manual/1.4/installation/
https://quasar.dev/
https://github.com/BloodHoundAD/BloodHound
https://github.com/BloodHoundAD/BloodHound

	Start thinking in graphs: using graphs to address critical attack paths in a Microsoft cloud tenant
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Organisation of the paper

	2 Material and methods
	2.1 Background
	2.1.1 Microsoft cloud entities
	2.1.2 Graphs
	2.1.3 Attack graphs

	2.2 Related work
	2.2.1 Microsoft cloud security
	2.2.2 BloodHound
	2.2.3 Stormspotter
	2.2.4 Summary

	2.3 Methodology
	2.3.1 Stage 1: planning
	2.3.2 Stage 2: research and implementation
	2.3.3 Stage 3: analysis and evaluation

	3 Implementation and results
	3.1 Setup Microsoft cloud test tenant
	3.2 Setup graph analysis platform
	3.3 Research
	3.3.1 BloodHound 4.0.3 schema analysis
	3.3.2 Modelling the new graph database schema

	3.4 Export and import script
	3.4.1 Review export and import script
	3.4.2 Export script creation
	3.4.3 Import script creation

	3.5 Modification of the BloodHound web GUI
	3.6 Run the export and import script

	4 Discussion
	4.1 Azure AD test tenant analysis
	4.2 Attack graph analysis
	4.2.1 Closeness centrality algorithm
	4.2.2 Degree centrality algorithm
	4.2.3 Shortest path algorithm

	4.3 Attack path example

	5 Conclusion
	5.1 Future work

	References

