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Abstract. The mining and analysis of social networks can bring significant 

economic and social benefits. However, it also poses a risk of privacy leakages. 

Differential privacy is a de facto standard to prevent such leaks, but it suffers 

from the high sensitivity of query functions. Although projection is a technique 

that can reduce this sensitivity, existing methods still struggle to maintain a 

satisfactory level of sensitivity in query functions. This results in lower data 

utility and an inevitable risk of privacy leakage. To prevent the disclosure of user 

privacy, we need to significantly reduce the sensitivity of the query functions and 

minimize the error of the projected values with respect to the original values. To 

address this issue, we first explore the influence of mapping and projection on 

reducing the sensitivity of query functions. We then propose a Probability 

Mapping (PM) algorithm, based on multi-armed bandit, which however tends to 

generate mapped graphs with a wide range of degrees and containing 

considerable nodes with high degrees. Thus, we develop a new Probability 

Projection (PP) algorithm to overcome these weaknesses. Finally, we propose 

four histogram publishing algorithms built upon PM and PP, namely PMTC, 

PPTC, PMCTC and PPCTC. Extensive experimental results on three different 

sized datasets show that PM and PP not only retain more edge information and 

reduce the error but also improve the data availability. 

Keywords: Differential Privacy; Multi-Armed Bandit; Mapping; Projection; 

Histogram; Social Networks 

1 Introduction 

The amount of data shared on social networks has increased significantly and contains 

a lot of personal information and social connections. This sharing has led to a significant 

breach of privacy. For instance, in March 2020, some data sets from Sina Weibo were 

stolen by attackers, which resulted in the exposure of information belonging to 538 

million Weibo users. Similarly, in June 2021, LinkedIn was hacked, and data of 

approximate 500 million users were stolen. As a result, researchers are now focusing 

on the issue of privacy protection for social networks, and the development of social 

networks with privacy protection features is a current research priority. 



 

Nowadays, there are various techniques available to safeguard data privacy. Some 

of these include K-anonymity [1], L-diversity [2], t-closeness [3], and m-invariance [4]. 

While these methods can effectively prevent the disclosure of user information, they 

may not be able to protect against background knowledge attacks. However, the 

differential privacy mechanism has a solid mathematical foundation and is capable of 

defending against such attacks. As a result, this mechanism is commonly employed in 

the release of private data on social media platforms [5]. 

When publishing differential privacy data, it can be difficult to balance query 

function sensitivity and data availability. To reduce query function sensitivity, 

projection is a common technique that maps an original graph to a graph with nodes 

having a maximum degree of 𝜃. However, current projection methods may compromise 

privacy or lose original information. To address these issues, we introduce a new 

projection method, Probability Projection (PP), that limits edge increase through 

probability and node degree thresholds. Our proposed method provides better privacy 

protection with less information loss. Overall, our contributions include developing a 

novel projection method that enhances privacy and preserves data integrity.  

This paper is structured as follows. Section 2 reviews related research on differential 

privacy algorithms. Section 3 provides definitions and explanations of social networks, 

differential privacy, and the multi-armed bandit. Section 4 introduces the Probability 

Selection Algorithm Based on Multi-Armed Bandit (PSMAB), Probability Mapping 

(PM), PP, and four histogram publishing methods based on PM and PP. Section 5 

conducts experimental verification analysis and measures the data utility of the 

proposed algorithms. Section 6 summarizes the paper. 

2 Related Work 

Data publishing using differential privacy [6] involves adding random noise to real 

datasets. This approach can be divided into two categories: edge differential privacy 

and node differential privacy. Edge differential privacy is where the two graphs are 

adjacent only if they differ on a single edge. On the other hand, node differential privacy 

is where deleting a node and all its connected edges in a graph results in a new graph 

that is adjacent to the original graph. 

2.1 Edge Differential Privacy 

To the problem of losing original information and weak privacy protection in edge 

differential privacy, Lv et al. [7] developed an edge removal projection algorithm based 

on the Triangle-count Sort Edge Removal (TSER) algorithm. This algorithm preserves 

more triangles in the original graph and enhances the availability of data. Zhou et al. 

[8] also proposed a model for generating social networks called the structure-attribute 

social network model. This model introduces uncertainty graphs into network 

partitions. However, it has high time complexity and low data validity. Huang et al. [9] 

proposed the Privacy-preserving approach Based on Clustering and Noise (PBCN). 

This approach makes the published graph resistant to degree and graph structure attacks 

while maintaining high execution efficiency. Gao et al. [10] proposed a differential 

private graph model that combines sequences dK-1, dK-2, and dK-3 and adds three 



levels of rewiring algorithms. This model preserves the original graph structure 

information to a greater extent. 

However, edge differential privacy is vulnerable to attacks that involve re-

identifying nodes in anonymized graph data. Besides, it is designed to protect the 

relationship between two entities, which is represented in the form of an edge, from 

being disclosed, but in social networks, a node and its associated edges represent all of 

a person's data, whereas an edge cannot represent all of a person's data.  

2.2 Node Differential Privacy 

On contrast, node differential privacy offers a greater level of privacy protection 

compared to edge differential privacy. In order to address the issue of large errors in 

algorithm under node differential privacy, several methods have been proposed. Day et 

al. [11] introduced 𝜋𝜃, which involves adding edges while ensuring that the degree of 

the two connected nodes does not exceed the node degree threshold. This helps reduce 

errors in fitting the true degree distribution. Meanwhile, Zhang et al. [12] proposed a 

Sequential Edge Removal (SER) algorithm to decrease the global sensitivity of 

histogram publication. However, both 𝜋𝜃  and SER suffer from uncertainty in edge 

ordering, which limits their ability to preserve edge information to the fullest extent.  

Liu et al. [13] put forth two algorithms for releasing the intensity distribution and 

analyzed the impact of projection on node intensity histograms through introspection. 

Ding et al. [14] suggested the Best Adaptation (BA) strategy, which involves removing 

the connection edge of a node that has the largest number of triangles adjacent to it. 

However, while this method improves data availability, it also reduces privacy 

protection effects. Prasad et al. [15] introduced FlowGraph (FG), which constructs a 

weighted graph by creating new nodes between a source node v and a sink node u. It 

then calculates the maximum flow from v to u, removes v from the maximum flow 

graph, and constructs the degree distribution. By combining the Lipschitz extension and 

the generalized exponential mechanism, FG greatly published a degree distribution that 

approximates the original graph and is more accurate than previous algorithms. 

However, current node differential privacy methods often suffer from issues such as 

loss of original information and significant errors before and after projection. To 

address these challenges, this paper aims to minimize errors and preserve more of the 

original data while enhancing data availability and ensuring privacy protection. 

3 Preliminaries 

This section introduces the preliminaries to our proposed probability mapping-based 

privacy preservation method. They include social network graphs and differential 

privacy. 

 

3.1 Social Network Graph 

A social network can be represented by a graph, which is defined as 𝐺 =  (𝑉, 𝐸). In 

this graph, 𝑉 =  {𝑣1,  𝑣2, … ,  𝑣𝑛} represents a set of users, and 𝐸 =  {𝑒1, 𝑒2, … ,  𝑒𝑚} 

represents a set of relationships between users. 



 

3.2 Differential Privacy 

Differential privacy is a technique that allows for sharing information about a group of 

individuals, while protecting their personal privacy by obscuring their data. The 

following are the key concepts in contemporary differential privacy.  

 

𝜀 -Differential Privacy [6]. A random algorithm 𝑀: 𝐷 →  𝑀(𝐷)  satisfies 𝜀 - 

Differential Privacy if any two neighboring datasets 𝐷 and 𝐷′ maintains the following 

relationship. 

𝑃𝑟[𝑀(𝐷)  ∈  𝑆]  ≤  𝑒𝜀  ∙  𝑃𝑟[𝑀(𝐷′)  ∈  𝑆],                                   (1) 

where the probability 𝑃𝑟  is controlled by the randomness of the algorithm 𝑀 , 𝑆 ∈
𝑅𝑎𝑛𝑔𝑒(𝐷) and 𝜀 is a parameter for privacy level. 

 

Global Sensitivity [16]. For any function 𝑓, given two adjacent datasets 𝐷 and 𝐷′ that 

differ at most one record, the global sensitivity of 𝑓 is defined as: 

∆𝑓 = ‖𝑓(𝐷)  −  𝑓(𝐷′)‖1 ,                                     (2) 

where ‖𝑓(𝐷)  −  𝑓(𝐷′)‖1 is the 𝐿1 normal form. The higher global sensitivity is, the 

less data is available and more noise is added. 

 

Laplace Mechanism. Given a dataset 𝐷 , there exists a function 𝑓: 𝐷 →  𝑅  with 

sensitivity ∆𝑓. If the mechanism 𝑀 satisfies 𝜀 -Differential Privacy, its output satisfies: 

𝑀(𝐷)  =  𝑓(𝐷) +  𝐿𝑎𝑝(
∆𝑓

𝜀
),                                         (3) 

where 𝐿𝑎𝑝(
∆𝑓

𝜀
) is a random noise following the Laplacian distribution. 

3.3 Multi-Armed Bandit 

The multi-armed bandit model has 𝑛 arms. Each pull of the arm 𝛼 results in a reward. 

The reward of each arm follows the same function 𝑟. The goal of the multi-armed bandit 

model is to find the arm with the most appropriate reward after 𝑡 iterations. 

We define the reward function 𝑟 for each arm as follows: 

𝑟 =  𝛼 ×  𝐿 +  𝛽 ×  𝑝 +  𝛾 ×  𝛥𝑓 ,                                      (4) 

where 𝐿 represents the error of the histogram, 𝑝 represents the utility of the probability, 

𝛥𝑓 represents the privacy loss, and 𝛼, 𝛽, and 𝛾 are the weight. The errors obtained by 

each probability are set as the reward function of each arm. 

4 Proposed Method 

Our Probability Mapping (PM) and Probability Projection (PP) algorithms are built 

upon the Probability Selection Algorithm Based on Multi-Armed Bandit (PSMAB). 



They only differ in the node degree threshold that restricts the addition of edges. See 

Sections 4.1, 4.2 and 4.3 for the details of PSMAB, PM and PP algorithms.  

The process flowchart for safeguarding social network privacy through PM or PP is 

illustrated in Fig. 1. We start by inputting a social network G and a node degree 

threshold θ. Then, we select probability p based on PSMAB. Finally, we obtain four 

triangle count histograms: PM-based Triangle Counting (PMTC), PP-based Triangle 

Counting (PPTC), PM-based Cumulative Triangle Count (PMCTC), and PP-based 

Cumulative Triangle Count (PPCTC) histograms, through processing by PM or PP. 

 

Fig. 1. Flowchart of publishing algorithm of triangle count histogram in social networks based 

on PM or PP. 

4.1 The Probability Selection Algorithm Based on Multi-Armed Bandit 

A probability selection algorithm based on multi-armed bandit (PSMAB) is a method 

for selecting an action from a group of options that have uncertain rewards. The 

algorithm aims to balance the exploration of new actions that may provide greater 

rewards with exploiting the best known action. We came up with PSMAB inspired by 

[17]. The process flowchart of PSMAB is shown in Fig. 2, where 𝑟𝑖 denotes the reward 

of arm 𝑖, and 𝐿𝑝𝑖
 and 𝐿𝑖  denote the probability error and total error corresponding to 𝑟𝑖, 

respectively. 

 

Fig. 2. Flowchart of PSMAB. 

PSMAB first initializes the reward, probability, and reward function of each arm. In 

each iteration, PSMAB starts with the comparison between the generated random 

number 𝑟 and an initial parameter 𝑙𝑟. If 𝑟 is less than 𝑙𝑟, PSMAB randomly selects an 

arm and then updates its reward. If 𝑟 is greater than 𝑙𝑟, PSMAB selects the arm with 

the largest reward and updates its reward. Then, the probability error 𝐿𝑝 and total error 



 

𝐿 for each arm are calculated based on the reward and probability of the three arms, 

respectively. The ratio of 𝐿𝑝 to 𝐿 for each arm is then obtained using Eq. (5). 

𝑝 =  𝐿𝑝 / 𝐿 ,                                                      (5) 

where 𝐿𝑝 is the probability error, and 𝐿 is the total error caused by the probability, noise, 

and node degree threshold. 𝑝 is the new probability for each arm. The three arms with 

the latest probabilities are carried into the next iteration. Then, 𝑝, 𝐿𝑝, and 𝐿 of each arm 

are recalculated. To account for the randomness of probabilities, this process is repeated 

10 iterations. Once complete, the probability with the medium value 𝑟𝑖 is selected as 

the proper probability. This is due to the fact that when there is a larger error, fewer 

edges are retained, resulting in decreased data utility. Conversely, when there is a 

smaller error, more original data must be retained, which can lead to a weaker privacy 

protection effect.  

4.2 Probability Mapping Algorithm 

This section proposes a novel edge addition algorithm, named Probability Mapping 

(PM) that is built upon PSMAB. In the PM algorithm, the first step involves creating a 

new graph 𝐺′ by mapping all the nodes in the original graph 𝐺. However, no edges are 

added at this stage. Next, PM traverses through the edge set of the original graph and 

generates a random number 𝑟𝑎. 𝑟𝑎 is then compared with the probability 𝑝 chosen by 

PSMAB. If 𝑟𝑎 is less than 𝑝, the edge 𝑒 =  (𝑢, 𝑣) is added, and the degrees of the nodes 

at each end of the edge are incremented by one. On the other hand, if 𝑟𝑎 is greater than 

or equal to 𝑝, no edge is added. Once the traversal is complete, the new mapped graph 

𝐺′  =  (𝑉, 𝐸′) is generated. The pseudocode of PM is shown in Algorithm 1. 

 
Algorithm 1: PM Algorithm. 

Input: An original social network 𝐺 =  (𝑉, 𝐸)，probability 𝑝, and an edge ordering ∧ = < 𝑒1, 𝑒2, … , 𝑒𝑛 >. 

Output: A mapped graph 𝐺′  =  (𝑉,  𝐸′). 

1：𝑑(𝑣)  ←  0 for each 𝑣 ∈  𝑉, 𝐸′  ←  𝜙 

2：for 𝑒 =  (𝑢, 𝑣)  ∈ ∧ do 

3：   if random number 𝑟𝑎 <  𝑝 

4：        𝐸′  ←  𝐸′  ∪ {𝑒} 

5：        𝑑(𝑢)  ←  𝑑(𝑢)  +  1;  𝑑(𝑣)  ←  𝑑(𝑣) +  1 

6:      end if 

7：end for 

8：return 𝐺′ =  (𝑉, 𝐸′) 

4.3 Probability Projection Algorithm 

There are several nodes in the mapped graph with large degrees, and the range of degree 

values is also quite broad. This can result in increased errors in the histogram. To 

address this issue, we introduce the Probability Projection (PP) algorithm, which is an 

enhancement of the PM algorithm. PM and PP follow the same principles, with the 

difference being that PP imposes a stricter condition by adding a node degree threshold 

for adding edges. The pseudocode for PP is shown in Algorithm 2. Compared to the 



existing methods of 𝜋𝜃  [11] and FG [15], PP can reduce the sensitivity of query 

functions, minimize the error between the original and projected data, and preserve 

more original information. This reduces the risk of user privacy breaches.  

The total time complexity of both Algorithm 1 and Algorithm 2 is 𝑂 (|𝐸|), as the 

majority of time is consumed in the process of traversing the edges. The total space 

complexity of both algorithms is 𝑂 (|𝐸| + |𝑉|) because they both need to create new 

memory to save nodes and edges during the process of constructing a mapping graph 

and a projection graph. 

 
Algorithm 2: PP Algorithm. 

Input: An original social network 𝐺 = (𝑉, 𝐸)，probability 𝑝, node degree threshold 𝜃 and an edge ordering 

∧ = < 𝑒1, 𝑒2, … ,  𝑒𝑛 >. 

Output: A projected graph  𝐺′′  =  (𝑉,  𝐸′′). 

1：  𝑑(𝑣)  ←  0 for each 𝑣 ∈  𝑉, 𝐸′′  ←  𝜙  

2：  for 𝑒 =  (𝑢, 𝑣)  ∈ ∧  do 

3：      if 𝑑(𝑢)  <  𝜃 & 𝑑(𝑣)  <  𝜃 then 

4：          if random number 𝑟𝑎 <  𝑝 

5：              𝐸′′  ←  𝐸′′  ∪ {𝑒} 

6：             𝑑(𝑢)  ←  𝑑(𝑢)  +  1;  𝑑(𝑣)  ←  𝑑(𝑣)  +  1 

7：          end if 

8：      end if 

9：  end for 

10：return 𝐺′′  =  (𝑉, 𝐸′′) 

4.4 Publishing Algorithm for Triangle Counting Histogram 

For counting triangles in social networks, we create two types of histograms: PM-based 

Triangle Counting histogram (PMTC) and PP-based Triangle Counting histogram 

(PPTC).  

The process of generating PMTC involves generating a probability from PSMAB, 

creating a mapped graph 𝐺′ from PM and generating a histogram of the corresponding 

triangle count. To make the histogram publishable, we add noise to each bucket. This 

results in a histogram that can be used to count triangles in social networks. The process 

of generating PPTC is similar to that of PMTC. 

 

Theorem 1. Given two adjacent graphs 𝐺  and 𝐺′  that only differ by one node, the 

following equation holds: 

𝛥𝑃𝑀𝑇𝐶  =  ‖𝑃𝑀𝑇𝐶(𝐺) −  𝑃𝑀𝑇𝐶(𝐺′)‖1  <  4𝑝 +  1. 

Proof: Suppose the graphs 𝐺 =  (𝑉, 𝐸) and 𝐺′  =  (𝑉,  𝐸′) differ by only one node 

𝑣′. We refer to the set of all triangles that exists solely in 𝐺′  as 𝑇, and the number of 

triangles in this set as 𝑚. All triangles in the set 𝑇 have a common node 𝑣′ at least. 

Removing the node 𝑣′ from the graph 𝐺′ effectively removes all triangles from the set 

𝑇. Every triangle in 𝑇 change the triangle count result of the other two nodes, both 

nodes have a difference of 1. Because each bucket in the triangle count histogram result 

represents the number of nodes corresponding to the number of triangles. 

In the worst-case scenario, all triangles in the set 𝑇 have only one common node 𝑣′, 

which means that the number of nodes influenced by triangles in the set 𝑇 is at most 



 

2𝑚. Every node under the influence of the set 𝑇 will cause a difference of at most 2 in 

the histogram. The difference, caused by the removal of the node 𝑣′, in the histogram 

is 1. Therefore, the difference between the graphs 𝐺 =  (𝑉, 𝐸) and 𝐺′  =  (𝑉,  𝐸′) is 

4𝑚 +  1.  

In PMTC, the number (i.e., 𝑚) of the triangles in the set 𝑇 is determined by the ratio 

of the probability 𝑝 to the value range of a random number. As a random number range 

between 0 and 1, the ratio between 𝑝 and the random number also falls in the range of 

[0,1]. Thus, 𝛥𝑃𝑀𝑇𝐶 is always less than 4𝑝 + 1. 

 

Theorem 2. Given two adjacent graphs 𝐺  and 𝐺′  that only differ by one node, the 

following equation holds: 

𝛥𝑃𝑃𝑇𝐶  =  ‖𝑃𝑃𝑇𝐶(𝐺)  −  𝑃𝑃𝑇𝐶(𝐺′)‖1  <  4𝑝𝜃 +  1. 

Proof: The proof procedure is similar to Theorem 1. The difference is that a node 

degree threshold θ is set in PPTC to limit the addition of edges, and the difference 

caused in the histogram is 4𝑝𝜃 +  1 at most. 

4.5 Publishing Algorithm for Cumulative Triangle Counting Histogram 

To minimize noise-caused errors, this section proposes two enhanced publishing 

algorithms: PM-based Cumulative Triangle Count histogram (PMCTC) and PP-based 

Cumulative Triangle Count histogram (PPCTC). 

 

Theorem 3. Given two adjacent graphs 𝐺  and 𝐺′  that only differ by one node, the 

following equation holds: 

𝛥𝑃𝑀𝐶𝑇𝐶  =  ‖𝑃𝑀𝐶𝑇𝐶(𝐺) −  𝑃𝑀𝐶𝑇𝐶(𝐺′)‖1  <  2𝑝 +  1. 

Proof: Using the notations in Theorem 1. Suppose the node 𝑣′  connects to 𝑚 

triangles, then removing it from 𝐺′ will cause a shift in all the bins of the cumulative 

histogram by 1. The maximum number of nodes affected by deleting the node 𝑣′ is 2m. 

In the cumulative histogram, the difference of histogram caused by every 2𝑚 nodes is 

1, which means that the total difference between the graphs 𝐺 =  (𝑉, 𝐸) and 𝐺′  =
 (𝑉,  𝐸′) in the cumulative histogram is 2𝑚 +  1.  

In PMCTC, the probability 𝑝 is used to decide whether to add or delete an edge. The 

value of 𝑚 is determined by the ratio of 𝑝 to the value range of a random number. As 

the random numbers range between 0 and 1, the ratio between p and the random number 

also falls in the range of [0,1]. This means that 𝛥𝑃𝑀𝐶𝑇𝐶 is always less than 2𝑝 +  1. 

 

Theorem 4. Given two adjacent graphs 𝐺  and 𝐺′  that only differ by one node, the 

following equation holds: 

𝛥𝑃𝑃𝐶𝑇𝐶  =  ‖𝑃𝑃𝐶𝑇𝐶(𝐺)  −  𝑃𝑃𝐶𝑇𝐶(𝐺′)‖1  <  2𝑝𝜃 +  1. 

Proof: The proof procedure is similar to Theorem 2 and Theorem 3, and the 

difference caused by PPCTC is 2𝑝𝜃 + 1 at most. 

The probability 𝑝 takes a value ranging from [0,1]. Taking the probability value into 

Theorems 1-4 shows that the algorithms proposed in this paper reduce the sensitivity 

of the query functions compared with 𝜋𝜃 [11] and FG [15]. The sensitivity of 𝜋𝜃 [11] 

is 2𝜃 +  1, and the sensitivity of FG [15] is 6𝜃. 



5 Experimental Results and Analysis 

5.1 Datasets 

Three real-world datasets from [18], as shown in Table 1, were used in our experiments. 

Tri_Num is the number of node triangles in the dataset, and Max_degree is the 

maximum degree of nodes in the dataset. Each network dataset was pre-processed and 

converted into an undirected graph. 

Table 1. Information of the datasets. 

Graph |𝑽| |𝑬| Tri_Num Max_degree 

Facebook 4,039 88,234 1,612,010 1,045 

Email-Enron 36,692 183,831 727,044 1,383 

Twitter 75,879 1,768,149 1,768,149 81,306 

 

The initial range of probability for PSMAB is set to [0,1]. However, when the 

probability ranges from [0,0.5], it retains little of the original graph information, which 

significantly affects the availability of data. On the other hand, when the probability is 

[0.9,1], too much original graph information is retained, resulting in too much noise. 

To balance between the availability of data and retaining original graph information, 

the multi-armed bandit model has three arms that correspond to different probabilities: 

𝑝 =  0.6 , 𝑝 =  0.7 , and 𝑝 =  0.8 . The selection of the specific probability is 

performed by iterations based on PSMAB depicted in Fig. 2. 

5.2 Performance Indicators 

𝐿1 error, edge retention rate, and 𝐾𝑆 distance are used to evaluate the experimental 

results, and their definitions are as follows: 

• 𝑳𝟏 𝒆𝒓𝒓𝒐𝒓 : The 𝐿1  error shows the difference between the two histograms 

obtained before and after PM or PP algorithm. The 𝐿1 error is defined in Eq. (6): 

𝐿 =  ∑ |𝑓(𝑥𝑖)′  −  𝑓(𝑥𝑖)|𝑛
𝑖 = 1  ,                                        (6) 

where 𝑓(𝑥𝑖)′
 represents the frequency of each degree value after any one of the 

four algorithms is processed in this paper, and 𝑓(𝑥𝑖) represents the frequency of 

each degree value in the original social network graph. 

• Edge retention rate: It can be expressed as (|𝐸′|/|𝐸|), where 𝐸′ represents the 

edge in the graph after projection, and 𝐸 represents the edge in the original graph.  

• 𝑲𝑺 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆: The smaller the 𝐾𝑆 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, the more similar the histogram after 

noise is added to the original histogram, and the higher the data availability. The  

𝐾𝑆 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is defined in Eq. (7): 

𝐾 =  𝑚𝑎𝑥|𝑓(𝑥)′  −  𝑓(𝑥)| ,                                         (7) 

where 𝑓(𝑥)′ represents the histogram data distribution after adding noise, and 

𝑓(𝑥) represents the histogram data distribution of the original social network. 



 

5.3 Experimental Results and Analysis 

The Effect of Error on Probability Selection. We explored the effect of total error on 

probability in PSMAB by setting a node degree threshold of θ = 128. Considering the 

randomness of the probability and Laplacian noise, the averaged results shown in Fig. 

3 were obtained from 100 trials. 

   
(a) Result on Facebook.             (b) Result on Email-Enron.                 (c) Result on Twitter. 

Fig. 3. The effect of different errors on probability selection. 

It can be seen from Fig. 3 that the probability tends to stabilize at a constant value of 

0.88 as the error increases across the three datasets. The reason behind this phenomenon 

can be attributed to the fact that PSMAB algorithm restricts the addition of edges based 

on probability and node degree threshold, while ignoring the dataset size. PSMAB takes 

into account the balance between preserving privacy and maximizing data utility, hence 

it retains more data information while minimizing the error rate.  

Comparison Between PM and PP. We conducted a study to compare PM and PP by 

setting a node degree threshold of 𝜃 =  128. We compared the 𝐿1 errors and the edge 

retention rates (|𝐸′|/|𝐸|) of PM and PP against the various probabilities, respectively 

across three datasets. The averaged results shown in Fig. 4 were obtained from 100 

trials. 

   
(a) 𝐿1 error on Facebook.        (b) 𝐿1 error on Email-Enron.              (c) 𝐿1 error on Twitter.   

   
(d) |𝐸′|/|𝐸| on Facebook.            (e) |𝐸′|/|𝐸| on Email-Enron.                  (f) |𝐸′|/|𝐸| on Twitter.      

Fig. 4. Comparison between PM and PP under different probabilities across 3 datasets. 

As can be seen in Fig. 4, the 𝐿1 errors of both PM and PP show a decreasing trend 

as the probability increases, while the |𝐸′|/|𝐸| show an increasing trend. PP has a 



smaller 𝐿1 error than PM on smaller datasets (e.g., Facebook) and a higher 𝐿1 error 
on larger datasets (e.g., Email-Enron and Twitter). However, the |𝐸′|/|𝐸| of PM is 

higher than that of the PP on any dataset. Because PP has stricter restrictions on adding 

edges compared with PM, and the relationship between nodes and edges is more 

intensive in a large social network, deleting edges is more likely to lead to a larger 𝐿1 

error. 

In summary, PM is more suitable for large datasets with complex relationships, 

while PP is more suitable for small datasets with simpler relationships. 

Comparison with Other Projection Algorithms. Comparing PP with 𝜋𝜃 [11] and FG 

[15], two metrics (i.e., the 𝐿1 error of the node degree histogram and the |𝐸′|/|𝐸| 
before and after projection) are used. In this experiment, a node degree threshold of θ 

= 128 was set. Considering the randomness of the probability and Laplacian noise, the 

averaged results shown in Tables 2 and 3 were obtained from 100 trials. 

Table 2.  Comparison of 𝐿1 error of our methods with other projection methods. 

Dataset FG 𝝅𝜽 PP 

Facebook 1092 801 611 

Email-Enron 13602 12577 7126 

Twitter 17116 15293 12623 

Table 3. Comparison of the edge retention rate of our methods with other projection methods. 

Dataset FG 𝝅𝜽 PP 

Facebook 0.90 0.88 0.86 

Email-Enron 0.75 0.74 0.71 

Twitter 0.77 0.74 0.74 

 

The experimental results in Table 2 show that PP has a smaller 𝐿1 error than the 

other three methods, which implies that the error caused by PP is smaller and a better 

distribution shape is maintained. Moreover, based on Theorems 2 and 4, it can be 

inferred that PP reduces the sensitivity of the query function, which reduces the risk of 

user privacy leakages. The stricter the conditions for adding edges, the lower the edge 

retention rate, but the more edge information is retained. Our purpose is to reduce the 

sensitivity of the query function and the error before and after projection while ensuring 

that more edge information is retained. 

In conclusion, PP not only significantly reduces the 𝐿1 error of the degree histogram 

and the sensitivity of the query function on each dataset, but also retains more edge 

information, effectively mitigating the risk of user privacy leakage. 

Comparison of Triangle Retention Numbers. This section compares the numbers of 

triangles retained by PMTC and PPTC with that of 𝜋𝜃 [11]. On different datasets, we 

set different node degree thresholds. Considering the randomness of the probability, the 

averaged results shown in Fig. 5 were obtained from 100 trials. 



 

          
(a) Result on Facebook.                                       (b) Result on Twitter. 

Fig. 5. Comparison of number of triangles retained. 

It can be seen from Fig. 5 that PM retains more triangles than other algorithms. 

Besides, the number of triangles retained by PP and 𝜋𝜃 is increasing as the node degree 

threshold increases. Because in PM, the probability is the basis for adding edges, and 

the node degree threshold does not affect the results of PM, while the results of other 

algorithms are affected by the node degree threshold. The larger the node degree 

threshold, the more edges are added. In addition, the number of triangles retained by 

PP is less than that of 𝜋𝜃. An explanation is that PP is limited by probability and node 

degree threshold, while 𝜋𝜃 is limited only by node degree threshold. 

Comparison with Other Publishing Algorithms. PMTC, PPTC, PMCTC, and 

PPCTC are compared with TSER [7] and BA [14] on the Facebook and Twitter datasets. 

The results are shown in Fig. 6. 

      
(a) 𝐿1 error on Facebook.                                         (b) 𝐾𝑆 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 on Facebook. 

      
(c) 𝐿1 error on Twitter.                                             (d) 𝐾𝑆 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 on Twitter.  

Fig. 6. Cumulative histogram comparison of 𝐿1 𝑒𝑟𝑟𝑜𝑟 and 𝐾𝑆 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒. 

Fig. 6 shows that the 𝐿1 error of the four algorithms proposed is better than BA and 

TSER. As the privacy budget increases, the 𝐿1 error of the four methods shows a 

decreasing trend. Due to the randomness of probability, the 𝐾𝑆 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 generated by 

the four algorithms may produce the same result under different privacy budgets. As 

the privacy budget increases, the added noise decreases, the data availability increases 



and more original graph information is preserved. It can be seen from Fig. 6 on the 

smaller dataset (Facebook) that the 𝐾𝑆 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of PPCTC is slightly higher than BA 

when the budget is greater than 1.25. Because BA retains more edges while maintaining 

a data distribution more similar to the original social network. However, PPCTC does 

not take into account the number of node triangles connected to the edges in the process 

of adding the edges. While on the larger dataset (Twitter), the 𝐾𝑆 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of PPCTC 

and PMCTC is higher than BA and TSER. Because in PPCTC and PMCTC, the 

probability is used as a constraint for adding edges, and the probability is random. In 

addition, the 𝐿1 error and 𝐾𝑆 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  of PPCTC are higher than PMCTC on any 

dataset. Because PPCTC has stricter restrictions on adding edges. 

Comparing PMTC, PPTC, PMCTC and PPCTC, Fig. 6 shows that the 𝐿1 error and 

𝐾𝑆 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 of PMTC and PPTC are higher than PMCTC and PPCTC. Because from 

Theorems 1-4 the sensitivity of PMTC and PPTC is higher than that of PMCTC and 

PPCTC, leading to the addition of more noise and a larger error in the histogram. 

6 Conclusions 

In this paper, we have presented the probability selection technology based on PSMAB. 

We have also developed PM and PP to anonymize triangles in large social networks 

using node differential privacy. Based on PM and PP, we have built four methods for 

displaying triangles. These include the PMTC and PPTC histogram publishing 

algorithms, as well as the cumulative PMCTC and PPCTC histogram publishing 

algorithms. Extensive experiments were conducted to validate the probability effects of 

PM and PP. The experimental results show PP algorithm achieves a smaller 𝐿1 𝑒𝑟𝑟𝑜𝑟 

rate than those of the existing algorithms. Furthermore, PMCTC and PPCTC have 

higher data usage and lower global sensitivity than other algorithms. However, it should 

be noted that our research focuses on data from static social networks. In real-world 

scenarios, social networks change dynamically in real time. Consequently, the 

application of these algorithms to dynamic social networks is a key field of future 

research. 
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