
Vol.:(0123456789)

SN Applied Sciences (2023) 5:309 | https://doi.org/10.1007/s42452-023-05535-0

Research

Optimal controller selection and migration in large scale software
defined networks for next generation internet of things

Mohammad Shahzad1 · Lu Liu1 · Nacer Belkout2 · Nick Antonopoulos3

Received: 30 July 2023 / Accepted: 17 October 2023

© The Author(s) 2023   OPEN

Abstract
The substantial amount of IoT traffic, coupled with control messages, places a heavy burden on SDN controllers, which
compromises their capacity. We investigate how SDN can revolutionize the conventional approach, aiming to overcome
the limitations of communication overhead. Additionally, we delve into the essential optimizations required to minimize
control overhead and migrations. Determining the appropriate controller necessitates the implementation of a mecha-
nism that justifies the selection. Once the optimal controller has been identified, migration can be initiated. This paper
introduces a solution that employs the NSGA-II algorithm to achieve the optimal selection of controllers. We assess the
performance of the NSGA-II migration approach linking with the length-based same destination aggregation proposed
in our previous work, in terms of packet delivery, packet loss, performance metrics, and the cost associated with the
selected optimal controller.

 *  Mohammad Shahzad, mns14@leicester.ac.uk | 1School of Computing and Mathematical Sciences, University of Leicester, Leicester,
UK. 2Department of Computer Science, University of Science and Technology, Houari Boumediene, Algiers, Algeria. 3Edinburgh Napier
University, Edinburgh, UK.

Article highlights

•	 The article selects optimal controller based on perfor-
mance and cost calculated mathematically reducing
control overhead.

•	 NSGA-II is employed to select controller to reduce
migrations and control communication.

•	 NSGA-II is linked with our previous work burst assembly
and compared with 4 state-of-the-art methods.

Keywords  Internet of things · Optimal controller selection · Software defined networking (SDN) · SDN migration

1  Introduction

Software Defined Networking (SDN) revolutionizes the
conventional networking approach, which involves rout-
ing traffic through switches and routers to reach its des-
tination. In SDN, incoming traffic at switches is processed
using a Ternary Content Addressing Memory (TCAM) flow

table to identify specific packets [1]. However, issues arise
when the flow table in switches lacks certain entries. In
such cases, switches rely on the controller to handle flow
requests, which returns matching rules. As the number of
clients increases, the requests sent to the controller esca-
late, leading to heightened communication overheads
caused by the increased traffic. Consequently, the SDN

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-023-05535-0&domain=pdf

Vol:.(1234567890)

Research	 SN Applied Sciences (2023) 5:309 | https://doi.org/10.1007/s42452-023-05535-0

controller is burdened as the growing number of clients
or devices push its limits by generating higher communi-
cation overhead. IoT-centric applications such as smart cit-
ies [2], self-driving cars [3], telehealth, and numerous oth-
ers have now become ubiquitous. Accompanying these
applications are demanding requirements for throughput,
latency, bandwidth, and data rates. Overcoming the chal-
lenge of overloaded controllers is a crucial issue that needs
to be addressed. Among various factors, communication
overhead plays a role, but migration to a controller capa-
ble of handling the increased load becomes necessary.
However, this migration process is not without costs, and
attempts have been made to minimize it when complete
avoidance is not possible. Latency, controller capacity, and
migration costs are critical factors to consider in real net-
work scenarios.

This paper emphasizes the importance of SDN control-
ler selection while emphasizing the need for efficient con-
trol communication management. It tackles the challenges
associated with control communication and switch migra-
tion by implementing essential optimizations. To enhance
the selection process of controllers by the switches, we
employ NSGA-II and compare the outcomes with the exist-
ing state-of-the-art methods.

The paper is structured as follows: Sect. 2 provides lit-
erature review on controller selection and migration. Sec-
tion 3 discusses the design and implementation aspects.
Performance evaluation and results are presented in
Sect. 4, and Sect. 5 concludes the paper.

2 � Related works

In this study, the widely used communication protocol
“OpenFlow” is employed to access the forwarding plane.
Authors in [4] discuss the issue of rule duplication during
network updates in SDN and propose a strategy to mini-
mize TCAM usage during updates. However, the network
still experiences a burden of communication and struggles
to alleviate the load on the controller, leading to migration
and does not guarantee a low communication overhead.
Controllers are only capable of managing the switch and
performing configurations in their master state [5]. When
controllers become overloaded and exceed their capac-
ity threshold, they are unable to ensure accuracy through
dynamic switch migration. Frequent switch migrations not
only disrupt ongoing traffic but also come with their own
costs. Achieving a balanced load on the controllers and
utilizing their full potential necessitates the availability of
traffic information and optimized selection. In this con-
text, SDN controllers achieve load balancing through the
implementation of the NSGA-II algorithm, which selects

the optimal controller based on performance and cost
considerations.

In [6], the authors focus on load balancing utilizing
OpenFlow in conjunction with genetic algorithms. Their
approach aims to reduce costs and alleviate bottlenecks
caused by a single controller. By implementing efficient
policies for load balancing and configuring appropriate
entries, client data is effectively distributed to servers while
ensuring each flow is directed accordingly. Work presented
in [7] proposed an algorithm that addresses the load bal-
ancing challenge in a multi-controller network by con-
sidering capacity and latency constraints. The algorithm
utilizes a clustering technique to evenly distribute the load
across each controller, ensuring a balanced allocation of
resources. In [8] and [9], researchers propose an algorithm
for optimizing the deployment position of controllers. This
algorithm evaluates the quality of paths and the efficiency
of nodes by adjusting the weights of individual nodes
using weight parameters. Based on the selected control-
ler deployment location, a sub-domain algorithm is intro-
duced in the SDN environment to enhance the k-center
clustering method. In SDN IoT, effective communication
between sensors and controllers is crucial. Increased flow
requests can lead to performance degradation, highlight-
ing the significance of optimal controller selection. [10]
employs an analytical network decision-making process
technique to choose the optimal controller based on its
features. The controller features are compared with a high-
weight controller, prioritizing features over performance.
The proposed technique claims to reduce delay in both
normal and heavy traffic scenarios. The chosen controller
efficiently utilizes the CPU, resulting in increased through-
put and reduced recovery latency.

A two-step approach is considered in selection of con-
troller in [11] with analytical network process ranking the
controllers. The qualitative features that affect the con-
troller are used to rank it and performance is compared
against QoS. The controller that exhibits a significant
weight value in the feature-based comparison under-
goes quantitative analysis through experimental evalua-
tion. The primary focus of this paper lies in assessing the
suitability of the Analytic Network Process (ANP) for the
selection of controllers in SDN, considering both their
features and real-world performance in Internet and Brite
topologies. The simulation outcomes demonstrate that the
controller chosen using our proposed method surpasses
those selected through existing techniques. Opting for the
ANP-driven optimal controller leads to decreased topol-
ogy discovery time and reduced delays in scenarios involv-
ing both normal and heavy traffic loads. Additionally, there
is an observed increase in throughput while maintaining
a reasonable CPU utilization for the controller suggested
in the approach.

Vol.:(0123456789)

SN Applied Sciences (2023) 5:309 | https://doi.org/10.1007/s42452-023-05535-0	 Research

The controller plays a vital role in the context of SDN.
These controllers possess a range of features that allow
them to monitor the network and respond quickly to its
ever-changing dynamics. The performance of these con-
trollers has a direct impact on the QoS delivered within an
SDN environment. Each controller comes with its unique
set of features. However, the prominence of specific fea-
tures can vary among different controllers. Additionally,
relying on a single controller introduces performance
bottlenecks, single points of failure (SPOF), and scalability
challenges. To address these issues, it becomes essential to
have access to an SDN controller with an optimal feature
set. Furthermore, creating a cluster of controllers with opti-
mal feature sets can eliminate SPOF concerns and enhance
QoS in SDN. In [12], it leverages the analytical network
process (ANP) to assess and rank SDN controllers based
on their feature support. Subsequently, it creates a hierar-
chical control plane-based cluster (HCPC) comprising the
highest-ranked controllers as determined by the ANP. The
performance of this cluster is evaluated in the context of
the OS3E network topology. The results obtained through
experiments conducted in the Mininet environment illus-
trate that the HCPC configuration, featuring an optimal
controller, leads to improved QoS. Furthermore, in experi-
mental findings, verified within Mininet, demonstrates
that the proposed approach outperforms existing distrib-
uted controller clustering (DCC) schemes across various
performance metrics, including delay, jitter, throughput,
load balancing, scalability, and CPU utilization.

Employing SDN in IoT networks holds the promise
of simplifying IoT complexity and delivering improved
QoS. As the demand for IoT continues to grow, the net-
work will likely accommodate an increasing number of
sensors, resulting in substantial network traffic. With the
potential surge in traffic generated by IoT sensors, SDN
controllers may struggle to cope with the processing
demands. To address this challenge and achieve optimal

network performance, a dynamic allocation of slave con-
trollers with a strategic mechanism becomes essential
for effective task management and migration planning.
In response, [13] have introduced an efficient approach
based on slave controller allocation for load balancing
within a multi-domain SDN-enabled IoT network. This
approach is designed to intelligently distribute switches
to controllers with available resources. Among the various
slave controllers considered for selecting a target control-
ler, the approach employs a multi-criteria decision-making
(MCDM) strategy known as the Analytical Network Process
(ANP). This enriches communication metrics and main-
tains high-quality QoS statistics. Furthermore, the model
utilizes switch migration using a knapsack 0/1 problem to
maximize the utilization of slave controllers. The proposed
scheme offers a flexible decision-making process that
accommodates controllers with varying resource capaci-
ties. The results, as demonstrated in an emulation envi-
ronment, underscore the effectiveness of the approach,
referred to as ESCALB, in addressing the challenges and
optimizing SDN-enabled IoT networks.

3 � Design and implementation

The system architecture in Fig. 1 includes multiple Open-
Flow switches connected to SDN controllers. Each switch
is linked to multiple clients and servers, and every task
received by the switch is transmitted to the controller’s
application as PACKET_IN messages. The controller appli-
cation processes these tasks and provides instructions to
the switch on how to handle them. Additionally, an addi-
tional system controller is introduced into the architecture
as depicted.

At regular intervals, each controller transmits informa-
tion about its current resource consumption and load to
the system controller. The system controller plays the role

Fig. 1   System architecture

Vol:.(1234567890)

Research	 SN Applied Sciences (2023) 5:309 | https://doi.org/10.1007/s42452-023-05535-0

of monitoring the state of all controllers within the system
by gathering essential data related to their load and per-
formance. The overloaded controller sends a message to
inform the system controller that it has reached the migra-
tion threshold. Upon receiving this notification, the system
controller instructs the controller to initiate the migration
process by executing the migration application. The migra-
tion application selects the most heavily loaded switch to be
migrated. Subsequently, the migration application running
on the controller requests the ID of the target controller to
which the selected switch should be migrated. The system
controller takes charge of selecting the new controller by
utilizing the NSGA-II algorithm. Since it possesses compre-
hensive information about the state of each controller, the
NSGA-II algorithm can determine the optimal controllers
based on two key parameters: the controller’s performance
( Per ) and the migration cost ( C ). These parameters are influ-
enced by various metrics, including RAM and CPU consump-
tion, delay, and the cost associated with exchanging migra-
tion message packets. The calculation of each parameter is
performed using mathematical computations. Upon receiv-
ing the ID of the new controller, the overloaded controller
initiates communication with the new controller to facilitate
the switch migration process. This involves synchronizing
their parameters and exchanging essential information
about the target switch, such as the OpenFlow protocol ver-
sion, IP address, system version, and other relevant details.

Algorithm 1 presents the switch migration to the destina-
tion controller chosen based on the metrics calculated.

3.1 � Migration performance calculation

The first parameter is performance ( Per ), which indicates the
current performance level of each controller. Performance is
calculated using (1):

Per: Controller resource performance left at a specific time
t.

RAMleft: Memory capacity percentile left at a specific time
t.

CPUleft: CPU capacity percentile left at a specific time t.
RAM and CPU resource availability is calculated by (2) and

(3).

RAMc : Total RAM in the controller.
RAMapp : Total RAM required to manage a switch

application.

(1)Per(t) = RAMleft(t) + CPUleft(t)

(2)RAMleft(t) =
RAMc −

(

RAMapp ∗ Ns(t)
)

RAMc

Ns : number of switches managed by the controller c at a
specific time t .

CPUc : CPU capacity of the controller c.
MCPU : CPU power required to process a packet.
np : number of packets processed by the controller c at

a specific time t.

(3)CPUleft(t) =
CPUc −

(

Mcpu ∗ np(t)
)

CPUc

Input: load threshold LT; controllerList;
Output: destController; switchToMigrate;

1 Initialization: controllerQueue ← ∅; connectedSwitches ←

∅; switchToMigrate ← ∅; destController ←

∅; netDevController ← ∅; switchLoad ←

∅; controllerLoad ← ∅; CqueueLoad ← ∅;maxSwitchLoad ←

∅;

2 for each TimeUnit in SimulationTime do
3 for each C in controllerList do
4 netDevController ←

getNetDevController (C)

5 controllerQueue ← getcontrollerQueue
(netDevController)

6 CqueueLoad ← getCQueueLoad
(controllerQueue)

7 if CqueueLoad = LT then
8 connectedSwitches ←

getConnectedSwitches (C)

9 for each switch in connectedSwitches
do

10 switchLoad ← getSwitchLoad
(switch)

11 if switchLoad > maxSwitchLoad
then

12 switchToMigrate ← switch
13 maxSwitchLoad ← switchLoad
14 end if
15 end for
16 for each controller in controllerList do
17 controllerLoad ← getSwitchLoad

(controller)
18 if CqueueLoad > controllerLoad

then
19 destController ← controller
20 controllerLoad ← CqueueLoad
21 end if
22 end for
23 C. remove FromSwitchList

(switchToMigrate) destController
.addToSwtichList(switchToMigrate)

24 perform hello handshake between

destController and switchToMigrate
25 end if
26 end for
27 end for

Algorithm 1   Pseudo code for switch migration

Vol.:(0123456789)

SN Applied Sciences (2023) 5:309 | https://doi.org/10.1007/s42452-023-05535-0	 Research

3.2 � Migration cost calculation

The cost of migration is calculated as in (4). While the
dropped packets during migration and the cost of migra-
tion are presented in (5) and (6). Equation 7 presents the
delay of each control message sent.

Cx : The cost of the exchange control messages between
the controllers during the migration.

CDp : The dropped packets while performing the
migration.

k : the number of dropped packets.
� : the delay in sending control messages.

d : the distance between different controllers, represented
by the number of hops from source to destination.

nx : number of exchanged control messages between
controllers.

� : delay of each control message sent.

Msize : control message size.
� : link bandwidth.

3.3 � NSGA‑II implementation

In our case, we employ Non-dominated Sorting Genetic
Algorithm (NSGA-II) as a multi-objective optimization
algorithm to select the most suitable controller based
on performance and minimal migration cost. This algo-
rithm involves non-dominated sorting and crowding

(4)C = Cx + CDp

(5)CDp = k ∗ �

(6)Cx = d ∗ nx ∗ �

(7)� =
Msize

�

distance sorting to identify the optimal migration con-
troller. Given that the NS3 simulation is implemented in
C++ while NSGA-II is developed in Python, the interac-
tion between the two languages is facilitated through
external files, as illustrated in Fig. 2. The state of each
controller, comprising its performance and migration
cost, is periodically recorded in an external file. When
executing the NSGA-II algorithm, the program reads this
external file to determine the optimal new controller.
Subsequently, the output of the NSGA-II algorithm, i.e.,
the selected controller, is written to another file. This file
is then read by the NS3 simulation to facilitate the migra-
tion process.

NSGA -II addresses the optimization of two conflicting
objectives: controller performance and migration cost.
This approach uses rigorous mathematical principles to
ensure efficiency and effectiveness. For efficient initiali-
zation and objective functions, this proposed approach
for SDN switch migration using the NSGA-II, prioritizes
efficiency right from the initialization of optimization
process. It commences by initializing a population of
potential solutions, denoted as a set of real numbers X,
where each solution xi falls within a predefined range
[min_x, max_x]. This initialization procedure ensures
diversity in exploration of controller configurations.

Population Initialization,

Furthermore, two pivotal objective functions are:
i. Controller performance objective is represented as

FP(x), quantifying controller performance.

ii. Migration cost objective assesses migration cost
employing FM(x), which is expressed as,

(8)X =
{

x1, x2, ..., xN
}

(9)FP(x) = − x2

Fig. 2   Interaction between
NSGA-II and NS3

Vol:.(1234567890)

Research	 SN Applied Sciences (2023) 5:309 | https://doi.org/10.1007/s42452-023-05535-0

A distinctive feature of this approach is the seamless
integration of NS3 SDN data. This integration is facili-
tated through an external dataset, denoted as D, which
contains crucial information about controller perfor-
mance (Per) and migration cost (C) for each controller.
Dataset is represented as,

The NSGA-II algorithm categorizes solutions into dis-
tinct fronts based on their dominance relationships, as
determined by our defined objective functions. Specifi-
cally, a solution A dominates a solution B if the following
dominance condition holds true:

This dominance relation is at the core of NSGA-II’s non-
dominated sorting, allowing us to categorize solutions
into fronts, where each front contains solutions that are
not dominated by others. Moreover, to maintain diversity
within each front and prevent premature convergence,
the crowding distance (CD) calculation is employed. CD
reflects the density of solutions around a given solution
and is determined by Eq. 13.

 where xnext and xprev represent solutions adjacent to ‘x’
based on their rank within the same front. A similar calcu-
lation is applied to FM, ensuring that diversity is preserved
in both objective spaces. In the selection phase of NSGA-II,
selection probabilities are assigned to solutions based on
their ranks and crowding distances. These probabilities are
denoted as Pselect(x) to guide the choice of parent solutions
for crossover. The weighted combination of two parent
solutions, xi and xj, is represented by Eq. 14.

 where α is a random weight within the range (0, 1). This
mechanism ensures that parent solutions with superior
ranks and crowding distances have a higher likelihood
of contributing to the next generation while preserving
diversity within the population. To introduce controlled
randomness and enhance the exploration of the solution
space, this work incorporates a mutation mechanism into
the proposed approach. Each solution ‘x’ has an associated
mutation probability, denoted as Pmutation. If Pmutation is less
than 1, a mutation operation is applied as follows.

Pmutation is a stochastic event that determines whether
a solution undergoes mutation. In each generation of the

(10)FM(x) = − (x − 2)2

(11)D =
{(

Per1, C1
)

,
(

Per2, C2

)

, ...,
(

PerN, CN

)}

(12)FP(A) ≤ FP(B) and FM(A) ≤ FM(B)

(13)
CD(x) =

(

FP
(

xnext
)

− FP
(

xprev
))

∕(max(FP) − min(FP))

(14)xoffspring = � ∗ xi + (1 − �) ∗ xj

NSGA-II algorithm, Pmutation is a random variable taking
values in the range of (0, 1) to represent the probability
of mutation. In mathematical terms, Pmutation follows a
uniform distribution, Pmutation ~ U (0,1). U(a,b) represents a
uniform distribution with a lower bound ‘a’ and an upper
bound ‘b’. This distribution models the random nature of
mutation probability, allowing for controlled exploration
within the optimization process.

If Pmutation < 1, a mutation is applied:

This mechanism allows for the emergence of unex-
pected and potentially more efficient solutions while
preventing convergence to local optima. NSGA-II runs
for a specified number of generations (max_gen). After
termination, the algorithm produces a set of non-domi-
nated solutions, forming the Pareto front. These solutions
provide a trade-off between controller performance and
migration cost.

4 � Performance evaluation

4.1 � Experimental environment

In this section, we focus on obtaining performance
results for the switch migration and assembly strategy
proposed in our previous linked work [14] by configuring
simulation parameters. These parameters are carefully
selected based on extensive runs to effectively evalu-
ate the performance of migration and aggregation. For
instance, the bandwidth parameter is set to a sufficiently
high value to facilitate the transmission of numerous
packets from the switch to the controllers, thereby trig-
gering controller overloading. Without this condition,
there would be no need to initiate switch migration. The
remaining parameters such as the number of clients,
packet size, and controller CPU are also selected to ana-
lyze the system’s behavior comprehensively. We conduct
the simulation in two distinct scenarios:

(1)	 In the first scenario, we vary the number of clients to
generate a larger volume of data, thereby increasing
the workload on the controllers.

(2)	 In the second scenario, we modify the switch migra-
tion threshold in the controllers to trigger switch
migration at different levels of controller load.

Table 1 provides an overview of the simulation configu-
ration, showcasing the values assigned to each parameter
for the respective scenarios.

(15)xmutation = min_x + (max_x − min_x) ∗ Pmutation

Vol.:(0123456789)

SN Applied Sciences (2023) 5:309 | https://doi.org/10.1007/s42452-023-05535-0	 Research

4.2 � Results

The results are compared with state-of-the-art methods
presented in [15–17]. In scenario 1, we observe through
the total packets transmitted graphs depicted in Figs. 3
and 4 that as the number of hosts increases, a correspond-
ing rise in the number of packets generated is observed
across all strategies. However, it is worth noting that there
is a discernible difference between the strategies. Specifi-
cally, when 200 hosts are present, all migration strategies
exhibit nearly identical numbers of transmitted packets.

Nevertheless, the classic strategy (without migration
and burst assembly) shows a lower count of transmitted

packets compared to the other strategies. This disparity

Table 1   Simulation parameters

Number of clients [200–600]
Number of controllers 3
Number of switches 6
Packet size (KB) 500
Link data rate (Gbps) 1
Controller CPU rate (Gbps) 4
Controller RAM (GB) [2–4]
Switch application RAM (MB) 500
Migration threshold (%) 50
Burst assembly threshold (n) 50

Fig. 3   Packets transmitted
with variable hosts

Fig. 4   Packets transmitted
with migration threshold

Vol:.(1234567890)

Research	 SN Applied Sciences (2023) 5:309 | https://doi.org/10.1007/s42452-023-05535-0

can be attributed to the communication overhead caused
by the migration processes. Additionally, as the number
of hosts increases, the discrepancy in the number of
transmitted packets among the strategies becomes more
pronounced. This is primarily because the system experi-
ences substantial packet loss, which can be attributed to
two main factors: controller overloading and link satura-
tions. The packet loss is illustrated in the packet loss graph
shown in Fig. 5.

The packet loss graph clearly indicates that the classic
strategy (without migration and burst assembly) exhibits
the highest packet loss rate, reaching up to 30%. This is
expected as this strategy does not employ any specific
measures to mitigate controller overloading or links satu-
ration. On the other hand, the migration strategies dem-
onstrate improved packet loss performance, with a lower
percentage of dropped packets attributed to controller
limitations. Notably, the NSGA-II migration strategy shows
a significant reduction in packet loss (approximately 10%
with 600 hosts) compared to random migration. This can
be attributed to the selection of the optimal controller for
switch migration, which effectively alleviates controller
overloading. Furthermore, the combination of NSGA-II
migration and burst assembly achieves the best per-
formance with packet loss below 5%. This strategy suc-
cessfully addresses both controller overloading and links
saturation, which are not effectively mitigated by switch
migration alone.

Now, let’s delve into the performance and cost out-
comes of the NSGA-II migration combined with burst
assembly, as depicted in Figs. 6 and 7. The performance
result showcases the performance of the selected

controller, while the cost results illustrate the associated
migration cost. These outcomes specifically pertain to
the switch migration strategies, as explained earlier in the
equations. Hence, these results exclusively focus on the
implications of the switch migration strategies.

It is evident that both migration performance and cost
increase as the number of hosts grows, since more switch
migrations are triggered. Notably, the NSGA-II migration
strategy exhibits superior performance compared to ran-
dom migration. This is due to the NSGA-II’s ability to select
a high-performance controller for migration, resulting
in improved overall performance. Additionally, NSGA-II
migration achieves this with minimal cost, as depicted in
the graphs. Based on this analysis, it can be concluded that
a random migration strategy may occasionally select a less
performant controller with higher associated costs. In con-
trast, utilizing the NSGA-II algorithm allows for an optimal
choice balancing performance and cost considerations.
Furthermore, the burst assembly algorithm effectively
addresses network issues. Network performance metrics
are significantly enhanced when compared to strategies
without burst assembly (Classic, random, and NSGA-II).

Simultaneously, the migration takes place with the
objective of achieving the lowest cost, as depicted in the
figures. From this analysis, it can be inferred that a random
migration strategy may occasionally select a less perfor-
mant controller with a higher cost. However, by utilizing
the NSGA-II multi-objective optimization algorithm, an
optimal choice can be made considering both perfor-
mance and cost factors. Furthermore, the burst assem-
bly algorithm effectively tackles network issues. It leads
to substantial enhancements in network performance

Fig. 5   Packet loss with variable
hosts

Vol.:(0123456789)

SN Applied Sciences (2023) 5:309 | https://doi.org/10.1007/s42452-023-05535-0	 Research

metrics compared to strategies without burst assembly,
such as classic, random, and NSGA-II approaches.

5 � Conclusion

This paper focuses on exploring the load balancing chal-
lenge among multiple SDN controllers while addressing
communication overhead. To enhance communication
overhead, we employ our previously proposed burst
assembly method that operates based on the same des-
tination principle. Additionally, for migration purposes,
we adopt an optimal controller selection approach using
the NSGA-II algorithm, considering both cost and perfor-
mance factors. Enhancing the overall system performance
involves tackling both processing and networking loads
concurrently. The migration strategy plays a crucial role in

improving CPU response time by migrating switches from
high load controllers to ones with lower loads. Addition-
ally, the NSGA-II algorithm enables the selection of more
suitable controllers based on their performance and cost,
resulting in significant improvements in controller com-
puting speed and reduced packet loss. On the network-
ing side, the burst assembly technique proves beneficial
in addressing networking metrics by assembling packets
destined for the same destination. As a result, the switch
migration strategy utilizing NSGA-II and burst assembly
complement each other and contribute to achieving opti-
mal system performance.

The research proposed here has major contributions in
terms of selecting right controller and using burst assem-
bly. The aggregation here is based on same destination
while in future work, aggregation without destination
can be achieved. Other than CPU response time, CPU

Fig. 6   Performance with vari-
able hosts

Fig. 7   Cost with variable
thresholds

Vol:.(1234567890)

Research	 SN Applied Sciences (2023) 5:309 | https://doi.org/10.1007/s42452-023-05535-0

utilization can be considered. NSGA-II can also be used
to select controller other than performance and cost.
Another future extension is selecting right switches to
connect to the right controller using fair selection.

6 � Discussion

Selecting an optimal controller in SDN is crucial for ensur-
ing efficient operation. It addresses the problems of over
migration and the cost associated with the migrations.
This study has tackled the same problem by mitigating
unnecessary migrations and their associated expenses. It
accomplishes this by carefully selecting the most suitable
controller based on factors such as cost and performance.
Control communication is influenced by numerous vari-
ables, including the need for updates and the addition
of missing entries, which can impose an extra burden. To
alleviate this, the proposed approach minimizes control
communication by introducing a burst assembly tech-
nique for communication to the same destination. Sec-
tion II of the paper provides an overview of the existing
literature that addresses controller selection challenges.
In response to this challenge, our work leverages NSGA-
II and implements it within ns-3 to determine controller
states and make informed controller choices. The choice
of controller holds a pivotal role in the context of NG-IoT
within SDN and sets the stage for further advancements
in this domain. Future endeavors will involve expanding
the criteria for controller selection beyond cost and per-
formance considerations.

Author contributions  MS—Writing, Concept, Experiment, Simula-
tion. LL—Supervisor, Review. NB—Experiment, Concept discussion.
NA—Supervision.

Data availability  Data sharing is not applicable to this article as no
datasets were generated or analyzed during the current study.

Declarations 

Competing interests  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​
org/​licen​ses/​by/4.​0/.

References

	 1.	 Aqdus A et al (2023) “Detection collision flows in SDN based
5G using machine learning algorithms. Comput Mater Continua
75(1):1413

	 2.	 Duraisamy A, Subramaniam M, Robin CRR (2021) An optimized
deep learning-based security enhancement and attack detec-
tion on IoT using IDS and KH-AES for smart cities. Stud Inf Con-
trol 30(2):121–131

	 3.	 Patel MJA, Punam C, Phade GM (2021) Design of SMV model
in machine to machine (M2M) communication for 5G network.
IJETT 8(2):138

	 4.	 Maity I, Mondal A, Misra S, Mandal C (2018) CURE: consistent
update with redundancy reduction in SDN. IEEE Trans Commun
66(9):3974–3981

	 5.	 Dixit A, Hao F, Mukherjee S, Lakshman TV, Kompella RR (2014)
ElastiCon; an elastic distributed SDN controller. In: ACM/IEEE
symposium on architectures for networking and communica-
tions systems (ANCS), IEEE, pp. 17–27

	 6.	 Chou LD, Yang YT, Hong YM, Hu JK, Jean B (2014) A genetic-
based load balancing algorithm in openflow network. In: Huang
YM, Chao HC, Deng DJ, Park JJ (eds) Advanced technologies,
embedded and multimedia for human-centric computing.
Springer, Dordrecht, pp 411–417

	 7.	 Qin K, Huang C, Wang C, Chen X (2016) Balanced multiple con-
trollers’ placement with latency and capacity bound in software-
defined network. J Commun 37(11):90–103

	 8.	 Tao H, Jian-Hui Z, Teng M, Wei Z (2017) “Multi-controller balanc-
ing deployment strategy based on reliability evaluation in SDN.
J Commun 38(11):188–198

	 9.	 Hu T, Yi P, Guo Z, Lan J, Zhang J (2018) Bidirectional matching
strategy for multi-controller deployment in distributed software
defined networking. IEEE Access 6:14946–14953

	10.	 Ali J, Roh BH (2022) A novel scheme for controller selection in
software-defined internet-of-things (SD-IoT). Sensors 22(9):3591

	11.	 Ali J, Roh BH, Lee S (2019) QoS improvement with an optimum
controller selection for software-defined networks. PLoS ONE
14(5):e0217631

	12.	 Ali J, Roh BH (2021) Quality of service improvement with opti-
mal software-defined networking controller and control plane
clustering. Comput Mater Contin 67:849–875

	13.	 Ali J, Jhaveri RH, Alswailim M, Roh BH (2023) ESCALB: an effec-
tive slave controller allocation-based load balancing scheme
for multi-domain SDN-enabled-IoT networks. J King Saud Univ
Comput Inform Sci 35(6):101566

	14.	 Shahzad M, Liu L, Eddine N (2023) Control overhead reduction
using length-based same destination aggregation (LSDA) for
large scale software defined networks in next generation inter-
net of things, Accepted,. The 26th IEEE International Conference
on Computational Science and Engineering (CSE-2023), Exeter,
UK, 1–3 Nov 2023

	15.	 Cziva R, Jouët S, Stapleton D, Tso FP, Pezaros DP (2016) SDN-
based virtual machine management for cloud data centers. IEEE
Trans Netw Serv Manage 13(2):212–225

	16.	 Raza A, Lee S (2018) Gate switch selection for in-band control-
ling in software defined networking. IEEE Access 7:5671–5681

	17.	 Soleimanzadeh K, Ahmadi M, Nassiri M (2019) SD-WLB: An SDN-
aided mechanism for web load balancing based on server sta-
tistics. ETRI J 41(2):197–206

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Optimal controller selection and migration in large scale software defined networks for next generation internet of things
	Abstract
	Article highlights
	1 Introduction
	2 Related works
	3 Design and implementation
	3.1 Migration performance calculation
	3.2 Migration cost calculation
	3.3 NSGA-II implementation

	4 Performance evaluation
	4.1 Experimental environment
	4.2 Results

	5 Conclusion
	6 Discussion
	References

