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Abstract
The substantial amount of IoT traffic, coupled with control messages, places a heavy burden on SDN controllers, which 
compromises their capacity. We investigate how SDN can revolutionize the conventional approach, aiming to overcome 
the limitations of communication overhead. Additionally, we delve into the essential optimizations required to minimize 
control overhead and migrations. Determining the appropriate controller necessitates the implementation of a mecha-
nism that justifies the selection. Once the optimal controller has been identified, migration can be initiated. This paper 
introduces a solution that employs the NSGA-II algorithm to achieve the optimal selection of controllers. We assess the 
performance of the NSGA-II migration approach linking with the length-based same destination aggregation proposed 
in our previous work, in terms of packet delivery, packet loss, performance metrics, and the cost associated with the 
selected optimal controller.
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Article highlights

•	 The article selects optimal controller based on perfor-
mance and cost calculated mathematically reducing 
control overhead.

•	 NSGA-II  is employed to select controller to reduce 
migrations and control communication.

•	 NSGA-II is linked with our previous work burst assembly 
and compared with 4 state-of-the-art methods.
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1  Introduction

Software Defined Networking (SDN) revolutionizes the 
conventional networking approach, which involves rout-
ing traffic through switches and routers to reach its des-
tination. In SDN, incoming traffic at switches is processed 
using a Ternary Content Addressing Memory (TCAM) flow 

table to identify specific packets [1]. However, issues arise 
when the flow table in switches lacks certain entries. In 
such cases, switches rely on the controller to handle flow 
requests, which returns matching rules. As the number of 
clients increases, the requests sent to the controller esca-
late, leading to heightened communication overheads 
caused by the increased traffic. Consequently, the SDN 
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controller is burdened as the growing number of clients 
or devices push its limits by generating higher communi-
cation overhead. IoT-centric applications such as smart cit-
ies [2], self-driving cars [3], telehealth, and numerous oth-
ers have now become ubiquitous. Accompanying these 
applications are demanding requirements for throughput, 
latency, bandwidth, and data rates. Overcoming the chal-
lenge of overloaded controllers is a crucial issue that needs 
to be addressed. Among various factors, communication 
overhead plays a role, but migration to a controller capa-
ble of handling the increased load becomes necessary. 
However, this migration process is not without costs, and 
attempts have been made to minimize it when complete 
avoidance is not possible. Latency, controller capacity, and 
migration costs are critical factors to consider in real net-
work scenarios.

This paper emphasizes the importance of SDN control-
ler selection while emphasizing the need for efficient con-
trol communication management. It tackles the challenges 
associated with control communication and switch migra-
tion by implementing essential optimizations. To enhance 
the selection process of controllers by the switches, we 
employ NSGA-II and compare the outcomes with the exist-
ing state-of-the-art methods.

The paper is structured as follows: Sect. 2 provides lit-
erature review on controller selection and migration. Sec-
tion 3 discusses the design and implementation aspects. 
Performance evaluation and results are presented in 
Sect. 4, and Sect. 5 concludes the paper.

2 � Related works

In this study, the widely used communication protocol 
“OpenFlow” is employed to access the forwarding plane. 
Authors in [4] discuss the issue of rule duplication during 
network updates in SDN and propose a strategy to mini-
mize TCAM usage during updates. However, the network 
still experiences a burden of communication and struggles 
to alleviate the load on the controller, leading to migration 
and does not guarantee a low communication overhead. 
Controllers are only capable of managing the switch and 
performing configurations in their master state [5]. When 
controllers become overloaded and exceed their capac-
ity threshold, they are unable to ensure accuracy through 
dynamic switch migration. Frequent switch migrations not 
only disrupt ongoing traffic but also come with their own 
costs. Achieving a balanced load on the controllers and 
utilizing their full potential necessitates the availability of 
traffic information and optimized selection. In this con-
text, SDN controllers achieve load balancing through the 
implementation of the NSGA-II algorithm, which selects 

the optimal controller based on performance and cost 
considerations.

In [6], the authors focus on load balancing utilizing 
OpenFlow in conjunction with genetic algorithms. Their 
approach aims to reduce costs and alleviate bottlenecks 
caused by a single controller. By implementing efficient 
policies for load balancing and configuring appropriate 
entries, client data is effectively distributed to servers while 
ensuring each flow is directed accordingly. Work presented 
in [7] proposed an algorithm that addresses the load bal-
ancing challenge in a multi-controller network by con-
sidering capacity and latency constraints. The algorithm 
utilizes a clustering technique to evenly distribute the load 
across each controller, ensuring a balanced allocation of 
resources. In [8] and [9], researchers propose an algorithm 
for optimizing the deployment position of controllers. This 
algorithm evaluates the quality of paths and the efficiency 
of nodes by adjusting the weights of individual nodes 
using weight parameters. Based on the selected control-
ler deployment location, a sub-domain algorithm is intro-
duced in the SDN environment to enhance the k-center 
clustering method. In SDN IoT, effective communication 
between sensors and controllers is crucial. Increased flow 
requests can lead to performance degradation, highlight-
ing the significance of optimal controller selection. [10] 
employs an analytical network decision-making process 
technique to choose the optimal controller based on its 
features. The controller features are compared with a high-
weight controller, prioritizing features over performance. 
The proposed technique claims to reduce delay in both 
normal and heavy traffic scenarios. The chosen controller 
efficiently utilizes the CPU, resulting in increased through-
put and reduced recovery latency.

A two-step approach is considered in selection of con-
troller in [11] with analytical network process ranking the 
controllers. The qualitative features that affect the con-
troller are used to rank it and performance is compared 
against QoS. The controller that exhibits a significant 
weight value in the feature-based comparison under-
goes quantitative analysis through experimental evalua-
tion. The primary focus of this paper lies in assessing the 
suitability of the Analytic Network Process (ANP) for the 
selection of controllers in SDN, considering both their 
features and real-world performance in Internet and Brite 
topologies. The simulation outcomes demonstrate that the 
controller chosen using our proposed method surpasses 
those selected through existing techniques. Opting for the 
ANP-driven optimal controller leads to decreased topol-
ogy discovery time and reduced delays in scenarios involv-
ing both normal and heavy traffic loads. Additionally, there 
is an observed increase in throughput while maintaining 
a reasonable CPU utilization for the controller suggested 
in the approach.
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The controller plays a vital role in the context of SDN. 
These controllers possess a range of features that allow 
them to monitor the network and respond quickly to its 
ever-changing dynamics. The performance of these con-
trollers has a direct impact on the QoS delivered within an 
SDN environment. Each controller comes with its unique 
set of features. However, the prominence of specific fea-
tures can vary among different controllers. Additionally, 
relying on a single controller introduces performance 
bottlenecks, single points of failure (SPOF), and scalability 
challenges. To address these issues, it becomes essential to 
have access to an SDN controller with an optimal feature 
set. Furthermore, creating a cluster of controllers with opti-
mal feature sets can eliminate SPOF concerns and enhance 
QoS in SDN. In [12], it leverages the analytical network 
process (ANP) to assess and rank SDN controllers based 
on their feature support. Subsequently, it creates a hierar-
chical control plane-based cluster (HCPC) comprising the 
highest-ranked controllers as determined by the ANP. The 
performance of this cluster is evaluated in the context of 
the OS3E network topology. The results obtained through 
experiments conducted in the Mininet environment illus-
trate that the HCPC configuration, featuring an optimal 
controller, leads to improved QoS. Furthermore, in experi-
mental findings, verified within Mininet, demonstrates 
that the proposed approach outperforms existing distrib-
uted controller clustering (DCC) schemes across various 
performance metrics, including delay, jitter, throughput, 
load balancing, scalability, and CPU utilization.

Employing SDN in IoT networks holds the promise 
of simplifying IoT complexity and delivering improved 
QoS. As the demand for IoT continues to grow, the net-
work will likely accommodate an increasing number of 
sensors, resulting in substantial network traffic. With the 
potential surge in traffic generated by IoT sensors, SDN 
controllers may struggle to cope with the processing 
demands. To address this challenge and achieve optimal 

network performance, a dynamic allocation of slave con-
trollers with a strategic mechanism becomes essential 
for effective task management and migration planning. 
In response, [13] have introduced an efficient approach 
based on slave controller allocation for load balancing 
within a multi-domain SDN-enabled IoT network. This 
approach is designed to intelligently distribute switches 
to controllers with available resources. Among the various 
slave controllers considered for selecting a target control-
ler, the approach employs a multi-criteria decision-making 
(MCDM) strategy known as the Analytical Network Process 
(ANP). This enriches communication metrics and main-
tains high-quality QoS statistics. Furthermore, the model 
utilizes switch migration using a knapsack 0/1 problem to 
maximize the utilization of slave controllers. The proposed 
scheme offers a flexible decision-making process that 
accommodates controllers with varying resource capaci-
ties. The results, as demonstrated in an emulation envi-
ronment, underscore the effectiveness of the approach, 
referred to as ESCALB, in addressing the challenges and 
optimizing SDN-enabled IoT networks.

3 � Design and implementation

The system architecture in Fig. 1 includes multiple Open-
Flow switches connected to SDN controllers. Each switch 
is linked to multiple clients and servers, and every task 
received by the switch is transmitted to the controller’s 
application as PACKET_IN messages. The controller appli-
cation processes these tasks and provides instructions to 
the switch on how to handle them. Additionally, an addi-
tional system controller is introduced into the architecture 
as depicted.

At regular intervals, each controller transmits informa-
tion about its current resource consumption and load to 
the system controller. The system controller plays the role 

Fig. 1   System architecture
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of monitoring the state of all controllers within the system 
by gathering essential data related to their load and per-
formance. The overloaded controller sends a message to 
inform the system controller that it has reached the migra-
tion threshold. Upon receiving this notification, the system 
controller instructs the controller to initiate the migration 
process by executing the migration application. The migra-
tion application selects the most heavily loaded switch to be 
migrated. Subsequently, the migration application running 
on the controller requests the ID of the target controller to 
which the selected switch should be migrated. The system 
controller takes charge of selecting the new controller by 
utilizing the NSGA-II algorithm. Since it possesses compre-
hensive information about the state of each controller, the 
NSGA-II algorithm can determine the optimal controllers 
based on two key parameters: the controller’s performance 
( Per ) and the migration cost ( C ). These parameters are influ-
enced by various metrics, including RAM and CPU consump-
tion, delay, and the cost associated with exchanging migra-
tion message packets. The calculation of each parameter is 
performed using mathematical computations. Upon receiv-
ing the ID of the new controller, the overloaded controller 
initiates communication with the new controller to facilitate 
the switch migration process. This involves synchronizing 
their parameters and exchanging essential information 
about the target switch, such as the OpenFlow protocol ver-
sion, IP address, system version, and other relevant details.

Algorithm 1 presents the switch migration to the destina-
tion controller chosen based on the metrics calculated.

3.1 � Migration performance calculation

The first parameter is performance ( Per ), which indicates the 
current performance level of each controller. Performance is 
calculated using (1):

Per: Controller resource performance left at a specific time 
t.

RAMleft: Memory capacity percentile left at a specific time 
t.

CPUleft: CPU capacity percentile left at a specific time t.
RAM and CPU resource availability is calculated by (2) and 

(3).

RAMc : Total RAM in the controller.
RAMapp : Total RAM required to manage a switch 

application.

(1)Per(t) = RAMleft(t) + CPUleft(t)

(2)RAMleft(t) =
RAMc −

(

RAMapp ∗ Ns(t)
)

RAMc

Ns : number of switches managed by the controller c at a 
specific time t .

CPUc : CPU capacity of the controller c.
MCPU : CPU power required to process a packet.
np : number of packets processed by the controller c at 

a specific time t.

(3)CPUleft(t) =
CPUc −

(

Mcpu ∗ np(t)
)

CPUc

Input: load threshold LT; controllerList;
Output: destController; switchToMigrate;

1 Initialization: controllerQueue ← ∅; connectedSwitches ←

∅; switchToMigrate ← ∅; destController ←

∅; netDevController ← ∅; switchLoad ←

∅; controllerLoad ← ∅; CqueueLoad ← ∅;maxSwitchLoad ←

∅;

2 for each TimeUnit in SimulationTime do
3 for each C in controllerList do
4 netDevController ←                 

getNetDevController (C)

5 controllerQueue ← getcontrollerQueue       
(netDevController) 

6 CqueueLoad ← getCQueueLoad 
(controllerQueue) 

7 if CqueueLoad = LT then
8 connectedSwitches ←   

getConnectedSwitches (C) 

9 for each switch in connectedSwitches
do

10 switchLoad ← getSwitchLoad 
(switch)

11 if switchLoad > maxSwitchLoad  
then

12 switchToMigrate ← switch
13 maxSwitchLoad ← switchLoad
14 end if
15 end for
16 for each controller in controllerList do
17 controllerLoad ← getSwitchLoad 

(controller)
18 if CqueueLoad > controllerLoad 

then
19 destController ← controller
20 controllerLoad ← CqueueLoad
21 end if
22 end for
23 C. remove FromSwitchList 

(switchToMigrate) destController      
.addToSwtichList(switchToMigrate)

24 perform hello handshake between        

destController and switchToMigrate
25 end if
26      end for
27 end for

Algorithm 1   Pseudo code for switch migration
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3.2 � Migration cost calculation

The cost of migration is calculated as in (4). While the 
dropped packets during migration and the cost of migra-
tion are presented in (5) and (6). Equation 7 presents the 
delay of each control message sent.

Cx : The cost of the exchange control messages between 
the controllers during the migration.

CDp : The dropped packets while performing the 
migration.

k : the number of dropped packets.
� : the delay in sending control messages.

d : the distance between different controllers, represented 
by the number of hops from source to destination.

nx : number of exchanged control messages between 
controllers.

� : delay of each control message sent.

Msize : control message size.
� : link bandwidth.

3.3 � NSGA‑II implementation

In our case, we employ Non-dominated Sorting Genetic 
Algorithm (NSGA-II) as a multi-objective optimization 
algorithm to select the most suitable controller based 
on performance and minimal migration cost. This algo-
rithm involves non-dominated sorting and crowding 

(4)C = Cx + CDp

(5)CDp = k ∗ �

(6)Cx = d ∗ nx ∗ �

(7)� =
Msize

�

distance sorting to identify the optimal migration con-
troller. Given that the NS3 simulation is implemented in 
C++ while NSGA-II is developed in Python, the interac-
tion between the two languages is facilitated through 
external files, as illustrated in Fig. 2. The state of each 
controller, comprising its performance and migration 
cost, is periodically recorded in an external file. When 
executing the NSGA-II algorithm, the program reads this 
external file to determine the optimal new controller. 
Subsequently, the output of the NSGA-II algorithm, i.e., 
the selected controller, is written to another file. This file 
is then read by the NS3 simulation to facilitate the migra-
tion process.

NSGA -II addresses the optimization of two conflicting 
objectives: controller performance and migration cost. 
This approach uses rigorous mathematical principles to 
ensure efficiency and effectiveness. For efficient initiali-
zation and objective functions, this proposed approach 
for SDN switch migration using the NSGA-II, prioritizes 
efficiency right from the initialization of optimization 
process. It commences by initializing a population of 
potential solutions, denoted as a set of real numbers X, 
where each solution xi falls within a predefined range 
[min_x, max_x]. This initialization procedure ensures 
diversity in exploration of controller configurations.

Population Initialization,

Furthermore, two pivotal objective functions are:
i. Controller performance objective is represented as 

FP(x), quantifying controller performance.

ii. Migration cost objective assesses migration cost 
employing FM(x), which is expressed as,

(8)X =
{

x1, x2, ..., xN
}

(9)FP(x) = − x2

Fig. 2   Interaction between 
NSGA-II and NS3
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A distinctive feature of this approach is the seamless 
integration of NS3 SDN data. This integration is facili-
tated through an external dataset, denoted as D, which 
contains crucial information about controller perfor-
mance (Per) and migration cost (C) for each controller. 
Dataset is represented as,

The NSGA-II algorithm categorizes solutions into dis-
tinct fronts based on their dominance relationships, as 
determined by our defined objective functions. Specifi-
cally, a solution A dominates a solution B if the following 
dominance condition holds true:

This dominance relation is at the core of NSGA-II’s non-
dominated sorting, allowing us to categorize solutions 
into fronts, where each front contains solutions that are 
not dominated by others. Moreover, to maintain diversity 
within each front and prevent premature convergence, 
the crowding distance (CD) calculation is employed. CD 
reflects the density of solutions around a given solution 
and is determined by Eq. 13.

 where xnext and xprev represent solutions adjacent to ‘x’ 
based on their rank within the same front. A similar calcu-
lation is applied to FM, ensuring that diversity is preserved 
in both objective spaces. In the selection phase of NSGA-II, 
selection probabilities are assigned to solutions based on 
their ranks and crowding distances. These probabilities are 
denoted as Pselect(x) to guide the choice of parent solutions 
for crossover. The weighted combination of two parent 
solutions, xi and xj, is represented by Eq. 14.

 where α is a random weight within the range (0, 1). This 
mechanism ensures that parent solutions with superior 
ranks and crowding distances have a higher likelihood 
of contributing to the next generation while preserving 
diversity within the population. To introduce controlled 
randomness and enhance the exploration of the solution 
space, this work incorporates a mutation mechanism into 
the proposed approach. Each solution ‘x’ has an associated 
mutation probability, denoted as Pmutation. If Pmutation is less 
than 1, a mutation operation is applied as follows.

Pmutation is a stochastic event that determines whether 
a solution undergoes mutation. In each generation of the 

(10)FM(x) = − (x − 2)2

(11)D =
{(

Per1, C1
)

,
(

Per2, C2

)

, ...,
(

PerN, CN

)}

(12)FP(A) ≤ FP(B) and FM(A) ≤ FM(B)

(13)
CD(x) =

(

FP
(

xnext
)

− FP
(

xprev
))

∕(max(FP) − min(FP))

(14)xoffspring = � ∗ xi + (1 − �) ∗ xj

NSGA-II algorithm, Pmutation is a random variable taking 
values in the range of (0, 1) to represent the probability 
of mutation. In mathematical terms, Pmutation follows a 
uniform distribution, Pmutation ~ U (0,1). U(a,b) represents a 
uniform distribution with a lower bound ‘a’ and an upper 
bound ‘b’. This distribution models the random nature of 
mutation probability, allowing for controlled exploration 
within the optimization process.

If Pmutation < 1, a mutation is applied:

This mechanism allows for the emergence of unex-
pected and potentially more efficient solutions while 
preventing convergence to local optima. NSGA-II runs 
for a specified number of generations (max_gen). After 
termination, the algorithm produces a set of non-domi-
nated solutions, forming the Pareto front. These solutions 
provide a trade-off between controller performance and 
migration cost.

4 � Performance evaluation

4.1 � Experimental environment

In this section, we focus on obtaining performance 
results for the switch migration and assembly strategy 
proposed in our previous linked work [14] by configuring 
simulation parameters. These parameters are carefully 
selected based on extensive runs to effectively evalu-
ate the performance of migration and aggregation. For 
instance, the bandwidth parameter is set to a sufficiently 
high value to facilitate the transmission of numerous 
packets from the switch to the controllers, thereby trig-
gering controller overloading. Without this condition, 
there would be no need to initiate switch migration. The 
remaining parameters such as the number of clients, 
packet size, and controller CPU are also selected to ana-
lyze the system’s behavior comprehensively. We conduct 
the simulation in two distinct scenarios:

(1)	  In the first scenario, we vary the number of clients to 
generate a larger volume of data, thereby increasing 
the workload on the controllers.

(2)	  In the second scenario, we modify the switch migra-
tion threshold in the controllers to trigger switch 
migration at different levels of controller load.

Table 1 provides an overview of the simulation configu-
ration, showcasing the values assigned to each parameter 
for the respective scenarios.

(15)xmutation = min_x + (max_x − min_x) ∗ Pmutation
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4.2 � Results

The results are compared with state-of-the-art methods 
presented in [15–17]. In scenario 1, we observe through 
the total packets transmitted graphs depicted in Figs. 3 
and 4 that as the number of hosts increases, a correspond-
ing rise in the number of packets generated is observed 
across all strategies. However, it is worth noting that there 
is a discernible difference between the strategies. Specifi-
cally, when 200 hosts are present, all migration strategies 
exhibit nearly identical numbers of transmitted packets.

Nevertheless, the classic strategy (without migration 
and burst assembly) shows a lower count of transmitted 

packets compared to the other strategies. This disparity 

Table 1   Simulation parameters

Number of clients [200–600]
Number of controllers 3
Number of switches 6
Packet size (KB) 500
Link data rate (Gbps) 1
Controller CPU rate (Gbps) 4
Controller RAM (GB) [2–4]
Switch application RAM (MB) 500
Migration threshold (%) 50
Burst assembly threshold (n) 50

Fig. 3   Packets transmitted 
with variable hosts

Fig. 4   Packets transmitted 
with migration threshold
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can be attributed to the communication overhead caused 
by the migration processes. Additionally, as the number 
of hosts increases, the discrepancy in the number of 
transmitted packets among the strategies becomes more 
pronounced. This is primarily because the system experi-
ences substantial packet loss, which can be attributed to 
two main factors: controller overloading and link satura-
tions. The packet loss is illustrated in the packet loss graph 
shown in Fig. 5.

The packet loss graph clearly indicates that the classic 
strategy (without migration and burst assembly) exhibits 
the highest packet loss rate, reaching up to 30%. This is 
expected as this strategy does not employ any specific 
measures to mitigate controller overloading or links satu-
ration. On the other hand, the migration strategies dem-
onstrate improved packet loss performance, with a lower 
percentage of dropped packets attributed to controller 
limitations. Notably, the NSGA-II migration strategy shows 
a significant reduction in packet loss (approximately 10% 
with 600 hosts) compared to random migration. This can 
be attributed to the selection of the optimal controller for 
switch migration, which effectively alleviates controller 
overloading. Furthermore, the combination of NSGA-II 
migration and burst assembly achieves the best per-
formance with packet loss below 5%. This strategy suc-
cessfully addresses both controller overloading and links 
saturation, which are not effectively mitigated by switch 
migration alone.

Now, let’s delve into the performance and cost out-
comes of the NSGA-II migration combined with burst 
assembly, as depicted in Figs. 6 and 7. The performance 
result showcases the performance of the selected 

controller, while the cost results illustrate the associated 
migration cost. These outcomes specifically pertain to 
the switch migration strategies, as explained earlier in the 
equations. Hence, these results exclusively focus on the 
implications of the switch migration strategies.

It is evident that both migration performance and cost 
increase as the number of hosts grows, since more switch 
migrations are triggered. Notably, the NSGA-II migration 
strategy exhibits superior performance compared to ran-
dom migration. This is due to the NSGA-II’s ability to select 
a high-performance controller for migration, resulting 
in improved overall performance. Additionally, NSGA-II 
migration achieves this with minimal cost, as depicted in 
the graphs. Based on this analysis, it can be concluded that 
a random migration strategy may occasionally select a less 
performant controller with higher associated costs. In con-
trast, utilizing the NSGA-II algorithm allows for an optimal 
choice balancing performance and cost considerations. 
Furthermore, the burst assembly algorithm effectively 
addresses network issues. Network performance metrics 
are significantly enhanced when compared to strategies 
without burst assembly (Classic, random, and NSGA-II).

Simultaneously, the migration takes place with the 
objective of achieving the lowest cost, as depicted in the 
figures. From this analysis, it can be inferred that a random 
migration strategy may occasionally select a less perfor-
mant controller with a higher cost. However, by utilizing 
the NSGA-II multi-objective optimization algorithm, an 
optimal choice can be made considering both perfor-
mance and cost factors. Furthermore, the burst assem-
bly algorithm effectively tackles network issues. It leads 
to substantial enhancements in network performance 

Fig. 5   Packet loss with variable 
hosts



Vol.:(0123456789)

SN Applied Sciences           (2023) 5:309  | https://doi.org/10.1007/s42452-023-05535-0	 Research

metrics compared to strategies without burst assembly, 
such as classic, random, and NSGA-II approaches.

5 � Conclusion

This paper focuses on exploring the load balancing chal-
lenge among multiple SDN controllers while addressing 
communication overhead. To enhance communication 
overhead, we employ our previously proposed burst 
assembly method that operates based on the same des-
tination principle. Additionally, for migration purposes, 
we adopt an optimal controller selection approach using 
the NSGA-II algorithm, considering both cost and perfor-
mance factors. Enhancing the overall system performance 
involves tackling both processing and networking loads 
concurrently. The migration strategy plays a crucial role in 

improving CPU response time by migrating switches from 
high load controllers to ones with lower loads. Addition-
ally, the NSGA-II algorithm enables the selection of more 
suitable controllers based on their performance and cost, 
resulting in significant improvements in controller com-
puting speed and reduced packet loss. On the network-
ing side, the burst assembly technique proves beneficial 
in addressing networking metrics by assembling packets 
destined for the same destination. As a result, the switch 
migration strategy utilizing NSGA-II and burst assembly 
complement each other and contribute to achieving opti-
mal system performance.

The research proposed here has major contributions in 
terms of selecting right controller and using burst assem-
bly. The aggregation here is based on same destination 
while in future work, aggregation without destination 
can be achieved. Other than CPU response time, CPU 

Fig. 6   Performance with vari-
able hosts

Fig. 7   Cost with variable 
thresholds
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utilization can be considered. NSGA-II can also be used 
to select controller other than performance and cost. 
Another future extension is selecting right switches to 
connect to the right controller using fair selection.

6 � Discussion

Selecting an optimal controller in SDN is crucial for ensur-
ing efficient operation. It addresses the problems of over 
migration and the cost associated with the migrations. 
This study has tackled the same problem by mitigating 
unnecessary migrations and their associated expenses. It 
accomplishes this by carefully selecting the most suitable 
controller based on factors such as cost and performance. 
Control communication is influenced by numerous vari-
ables, including the need for updates and the addition 
of missing entries, which can impose an extra burden. To 
alleviate this, the proposed approach minimizes control 
communication by introducing a burst assembly tech-
nique for communication to the same destination. Sec-
tion II of the paper provides an overview of the existing 
literature that addresses controller selection challenges. 
In response to this challenge, our work leverages NSGA-
II and implements it within ns-3 to determine controller 
states and make informed controller choices. The choice 
of controller holds a pivotal role in the context of NG-IoT 
within SDN and sets the stage for further advancements 
in this domain. Future endeavors will involve expanding 
the criteria for controller selection beyond cost and per-
formance considerations.
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