
1

1



Förster et al. Working with Troubles & Failures

Working with Troubles and Failures in
Conversation between Humans and Robots:
Workshop Report
Frank Förster 1,∗, Marta Romeo 2,3, Patrick Holthaus 1, Luke Wood 1, Christian
Dondrup 3, Joel E. Fischer 10, Farhana Ferdousi Liza 4, Sara Kaszuba 5, Julian
Hough 6, Birthe Nesset 3, Daniel Hernández Garcı́a 3, Dimosthenis
Kontogiorgos 7,8, Jennifer Williams 9, Elif Ecem Özkan 10, Pepita Barnard 11,
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ABSTRACT2

This paper summarizes the structure and findings from the first Workshop on Troubles and3
Failures in Conversations between Humans and Robots. The workshop was organized to4
bring together a small, interdisciplinary group of researchers working on miscommunication5
from two complementary perspectives. One group of technology-oriented researchers was6
made up of roboticists, Human-Robot Interaction (HRI) researchers and dialogue system7
experts. The second group involved experts from conversation analysis, cognitive science,8
and linguistics. Uniting both groups of researchers is the belief that communication failures9
between humans and machines need to be taken seriously and that a systematic analysis10
of such failures may open fruitful avenues in research beyond current practices to improve11
such systems, including both speech-centric and multimodal interfaces. This workshop12
represents a starting point for this endeavour. The aim of the workshop was threefold:13
Firstly, to establish an interdisciplinary network of researchers that share a common interest14
in investigating communicative failures with a particular view towards robotic speech15
interfaces; secondly, to gain a partial overview of the “failure landscape” as experienced16
by roboticists and HRI researchers; and thirdly, to determine the potential for creating a17
robotic benchmark scenario for testing future speech interfaces with respect to the identified18
failures. The present article summarizes both the ”failure landscape” surveyed during the19
workshop as well as the outcomes of the attempt to define a benchmark scenario.20

Keywords: human-robot interaction, speech interfaces, dialogue systems, multi-modal interaction, communicative failure,21
repair22

1 INTRODUCTION

Speech interfaces, user interfaces that allow interaction with technology through spoken commands23
or queries, are commonplace in many types of robots and robotic applications. Despite the progress24
in speech recognition and many other areas of natural language processing in recent years, failures of25
speech interfaces in robotic scenarios are numerous, especially in real-world situations (Porcheron26
et al., 2018; Fischer et al., 2019). In contrast to the common experience of failure of speech interfaces27
in robotics, the literature is positively skewed towards the success and good performance of these.28
While Marge et al. (2022) identified key scientific and engineering advances needed to enable29
effective spoken language interaction with robotics; little attention was given to communicative30
failures. To our knowledge, the documentation of failure in speech interfaces and systematic studies31
of such failures and their causes is exceedingly rare. Honig and Oron-Gilad (2018) provides the32
most in-depth literature review of prior failure-related HRI studies. The authors found that research33
in HRI has focused mostly on technical failures, with few studies focusing on human errors, many34
of which are likely to fall under the umbrella of conversational failures. In addition to this focus on35
technical errors, the majority of failure-related studies in HRI take place in controlled experimental36
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conditions, where ‘failures’ are explicitly designed and occur only at specific moments (Ragni37
et al., 2016; Washburn et al., 2020a; Cuadra et al., 2021; Green et al., 2022), instead of a natural38
occurrence of the interactions between humans and robots. Closer to the topic of the workshop is39
the recently proposed taxonomy of Tian and Oviatt (2021) that focuses on social errors in HRI and40
their relationship with the perceived socio-affective competence of a robot. However, while there is41
significant overlap between social errors, as categorized by Tian and Oviatt, and the workshop topic42
of conversational failure, the perspective on the role of these errors and failures in interaction as43
well as the view as to whether these could be overcome eventually differs significantly. While social44
errors should ultimately be reduced by increasing a robot’s perceived socio-affective competence, it45
appears unlikely that conversational failure could be totally extinguished by means of technological46
progress. Too frequent is their occurrence in human-human conversation and too deeply ingrained47
are the related repair mechanisms in the fabric of human communication.48

To the best of our knowledge, there are currently no survey papers specifically on conversational49
failures in human-robot interaction, a fact that illustrates an important gap in the research landscape.50
To address this gap, we conducted a two-phase workshop with experts in adjacent fields. This paper51
presents the findings from this workshop series that brought together a multidisciplinary group of52
researchers from fields such as robotics, human-robot interaction (HRI), natural language processing53
(NLP), conversation analysis, linguistics and pragmatics. The workshop provided a platform to54
discuss the multitude of failures of speech interfaces openly and to point out fruitful directions for55
overcoming these failures systematically. The workshop focused mainly on human-robot joint action56
scenarios involving multimodal coordination between humans and robots, as these are the norm in57
scenarios where robotic speech interfaces are deployed. The identified types of failures range from58
failures of speech recognition to pragmatic failures and infelicities.59

We begin by describing the aims, structure, and materials used in the workshop in Sect. 2. We then60
present findings that result from the workshop, including participant contributions and outcomes of61
the structured discussion in Sect. 3. This leads to Sect. 4, where we reflect on problems and identify62
themes that emerged from the workshop’s discussions before concluding the paper.63

2 MATERIALS AND METHODS

The Working with Troubles and Failures (WTF) in Conversations between Humans and Robots64
workshop included a virtual gathering over two consecutive days in June 2022 and an in-person65
full-day meeting at the University of Hertfordshire in September 2022. Here, we sketch the structure66
and summarize the findings for each of these parts.67
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2.1 Before the Workshop68

In order to attract workshop participants interested in an open discussion of their experience and69
investigations of failing speech interfaces, we directly contacted some of the potentially interested70
research groups within the United Kingdom. Additionally, the workshop was advertised via mailing71
lists relevant to the HRI (e.g. hri-announcement, robotics-worldwide, euRobotics-dist), natural72
language processing (NLP, e.g. ACM sigsem), and artificial intelligence communities (e.g. ACM73
sigai-announce). To verify participants’ genuine interest in the topic and to collate information on74
the different types of conversational failures experienced by them, they were asked to submit the75
following pieces of information:76

1. the number of years of experience using or developing speech interfaces,77

2. an indication of what they perceive to be the most pressing issue or the biggest source of failure78
for speech interfaces,79

3. their most memorable WTF moment, that is, which of their experiences of failure with a speech80
interface they remembered most vividly,81

4. a summary of their motivation to attend the workshop,82

5. a suggestion for a future benchmark scenario that would expose the kind of failure described in83
their WTF moment.84

Applicants that stated a meaningful entry for item 4, and made some attempt to answer the other85
questions, were admitted to the workshop. As a result, 15 participants were admitted and initially86
attended the virtual part. Of these fifteen participants, eight would go on to attend the face-to-87
face part of the workshop. The face-to-face workshop was re-advertised via the above-mentioned88
mailing lists and the same set of questions and answers was used to filter out additional prospective89
participants. Ultimately, six new participants joined the face-to-face part of the workshop, resulting90
in fourteen non-speaker, non-organiser participants. Two of these attended the face-to-face workshop91
virtually, as we decided to go for a hybrid format in order not to exclude anyone who was not able92
or willing to travel on site.93

Keynote speakers for both parts of the workshop were chosen based on their expertise in the94
subject area. The subject areas considered most relevant to the workshop were robotics-centred NLP95
on the one hand and Conversation Analysis (CA) on the other. The emphasis on CA was based on96
the fact that the documentation and analysis of conversational failure have been an integral part97
of this discipline since its very inception. Moreover, it was hoped that having keynote speakers98
and participants from both areas would soften discipline-specific boundaries and limitations and99
potentially open up new directions for future research.100
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2.1.1 Motivations for Attending the Workshop101

The following is a summary of the participants’ motivation for attending the workshop as extracted102
from the application forms:103
Several PhD students were hoping to connect and network with other researchers working in speech104
interaction technologies. Multiple other researchers working on the CA-HRI interface wanted to105
learn more about how conversational trouble emerges, while others occupied with developing speech106
interfaces, or with integrating these into robots were interested in gaining a deeper understanding of107
current issues. Many of them were also interested in sharing their experiences with peers.108
One researcher working in animal communication hoped to learn something from a different domain109
of ”inter-being communication”, while yet another researcher working on speech privacy wanted110
to connect to other researchers working on speech interfaces. One participant saw value in the aim111
of identifying or creating a benchmark scenario that would be able to tease out the most common112
failures, if they occurred - an aim explicitly set out by the workshop.113
Another motivation of multiple participants to attend the workshop was their shared belief that a114
deeper analysis of communicative failures would not only help to improve future speech interfaces115
but also gain a deeper understanding of (human) conversations themselves.116
Finally, a researcher interested in explainable AI was interested to see what other types of failures,117
apart from faulty explanations, there are and how these may connect to research in explainable AI.118

2.2 Virtual Workshop119

To facilitate participation in the virtual session of the workshop, it was divided into two half-day120
events. On the first day, the workshop opened with a keynote talk by Prof. Patrick Healey, Professor121
of Human Interaction and Head of the Cognitive Science Research Group in the School of Electronic122
Engineering and Computer Science at Queen Mary University of London, on “Running repairs:123
Coordinating meaning in dialogue” (Section 3.1.1). This was followed by participants’ lightning124
talks on their most memorable WTF moments when working with communication between humans125
and robots (Section 3.2). Following the lightning talks, and based on the underlying themes identified126
by the organisers, participants were divided between 4 breakout rooms to continue discussing the127
issues they brought to the workshop. The four identified themes were: (i) Context Understanding,128
(ii) Handling Miscommunication, (iii) Interaction Problems, and (iv) General Failures.129

The second day of the virtual workshop saw Dr. Saul Albert, Lecturer in Social Science (Social130
Psychology) in Communication and Media at Loughborough University, give a keynote talk on131
“Repair, recruitment, and (virtual) agency in a smart homecare setting” (Section 3.1.2). Following132
the talk, each group from the breakout rooms of the first day reported what was discussed and each133
debate was opened to all participants. The workshop ended with a short summary of the day.134
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2.3 Face-to-Face Workshop135

The in-person part of the workshop was held at the University of Hertfordshire three months136
after the virtual event. During this full-day meeting, keynote talks were given by Prof. Gabriel137
Skantze, Professor in Speech Technology at KTH Royal Institute of Technology on “Building138
Common Ground in Human-Robot Interaction” (Section 3.1.3) and by Dr. Ioannis Papaioannou,139
Chief Technology Officer & Co-Founder of Alana 1 on “Tackling the Challenges of Open-Domain140
Conversational AI Systems” (Section 3.1.4).141

Since the registration to the face-to-face workshop was also opened to participants who did not142
take part in the virtual workshop, new attendees were given the opportunity to present their own143
lightning talks on their WTF moments (Section 3.2).144

A central part of the face-to-face workshop was the World Café session2, which provided145
participants an opportunity to freely discuss troubles and failures in small groups across several146
table topics. Based on the participants’ submitted WTF moments, and the themes from the breakout147
rooms of the virtual part, four themes were chosen for this session: (i) Context Understanding, (ii)148
Interaction Problems, (iii) Handling Miscommunication, and (iv) Suggested Benchmark Scenarios.149
Each theme was allocated to one table, and each table had one designated organizer. Participants150
and speakers were split into four different groups and moved between the tables within time slots151
of approximately 15 minutes per theme. The tasks of a table’s organizer were to summarize the152
findings and discussions from previous groups to a newly arriving group, to encourage discussions153
around the table topic, and to either encourage note taking or take notes themselves on a large flip154
chart that was allocated to each table.155

3 RESULTS

In this section, we present findings from both the virtual and the face-to-face parts of the workshop,156
describing how the keynotes shaped the discussion and how the participant lightning talks contributed157
to identify some of the most pressing problems in conversations between humans and robots. Most158
importantly, we will present the outcomes of the structured discussion, summarising the workshop159
findings.160

3.1 Keynotes161

To frame the discussion on troubles and failures with experiences from different perspectives, we162
invited four keynote speakers from scientific areas that are concerned with research problems around163

1 https://alanaai.com/
2 https://theworldcafe.com/key-concepts-resources/world-cafe-method/
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conversations between humans and robots. This section summarises their presentations in the context164
of the workshop goals to scope and identify common troubles and failures in conversation between165
humans and robots. In the virtual part of the workshop, the first keynote (Sect. 3.1.1) provided a166
conversation analytical perspective on repairs and meaning in dialogue, while the second one looked167
at repairs but from a more applied perspective in a user’s home (Sect. 3.1.2). The in-person workshop168
provided insights considering human-robot interactions (Sect. 3.1.3) and an industry viewpoint169
(Sect. 3.1.4).170

3.1.1 Running Repairs: Coordinating Meaning in Dialogue171

Healey presented the Running Repairs Hypothesis (Healey et al., 2018b), which captures the idea172
that successful communication depends on being able to detect and adjust to misunderstandings on173
the fly. The basic assumption is that no two people ever understand exactly the same thing by the174
same word or gesture and, as a result, misunderstandings are ubiquitous. Data from conversations175
support this assumption. For example, the utterance ”huh?” occurs around once every 84 seconds in176
conversation and appears to be universal across human languages (Enfield, 2017; Dingemanse et al.,177
2015). Around a third of turns in ordinary conversation involve some sort of real-time adjustments178
in language use (Colman and Healey, 2011).179

The processes for detecting and resolving problems with understanding have conventionally been180
regarded as ‘noise in the signal’ by the cognitive sciences (Healey et al., 2018a). However, there181
is evidence that they are fundamental to our ability to adapt, in real-time, to new people, new182
situations and new tasks. Conversation analysts have described a set of systematic turn-based repair183
processes that structure how people identify and respond to misunderstandings (Schegloff et al.,184
1977a; Schegloff, 1992a, 1997). Experimental evidence shows these repair processes have a critical185
role in building up shared understanding and shared languages on the fly (Healey et al., 2018b;186
Healey, 2008, 1997).187

The Running Repairs Hypothesis characterises human communication as a fundamentally error-188
prone, effortful, active, collaborative process but also highlights how these processes are structured189
and how they make human communication flexible and adaptable to new people and new situations.190
This can liberate human-robot interaction from the fantasy of perfect competence (Park et al., 2021).191
Instead, robots could, in principle, take advantage of the resources of interaction by engaging in192
repairs. This requires developing the ability to recognise critical verbal and non-verbal signals of193
misunderstanding and the use of incremental online learning processes that build on the sequential194
structure of interaction to make real-time revisions to language models (see e.g. Howes and Eshghi195
2021; Purver et al. 2011).196

Frontiers 8



Förster et al. Working with Troubles & Failures

3.1.2 Repair, Recruitment, and (virtual) Agency in a Smart Homecare Setting197

Albert argued that moments of trouble and failure can provide researchers with ideal empirical198
material for observing the structure of the participation frameworks we use to get things done in199
everyday life (Goodwin, 2007; Albert and Ruiter, 2018). His presentation used multimodal video200
analysis to show how a disabled man and his (human) carer leveraged troubles and failures in their201
interactions with an Amazon Echo with voice-controlled lights, plugs, and other devices to co-design202
an effective smart homecare participation framework.203

Instances in this case study highlighted how the human carer used troubles and failures to prioritise204
the independent role and agency of the disabled person within a joint activity. For example, the205
carer would stop and wait for the disabled person to resolve the trouble in their interactions with the206
virtual agent and complete their task even when it would have been faster for the carer to complete207
the disabled person’s task manually. In other examples, trouble in the interactions between the carer208
and the virtual assistant provided an opportunity for the disabled person to intervene and assist209
the carer by correcting and completing their vocal instruction to the device. The disabled person210
was also able to tacitly ‘recruit’ (Kendrick and Drew, 2016) assistance from the human carer by211
repeatedly re-doing failed commands to the virtual assistant within earshot of the carer, soliciting212
support without having to ask for help directly.213

These episodes show how people can harness trouble and failures in interaction with a virtual214
assistant to enable subtle shifts of agency and task-ownership between human participants. This215
kind of hybrid smart homecare setting can support and extend the independence of a disabled216
person within an interdependent, collaborative participation framework (Bennett et al., 2018). More217
broadly, the communicative utility of trouble and failure in interactions with machines highlights the218
shortcomings of our idealized–often ableist–models of the ‘standard’ user, and medicalized models219
of assistive technology (Goodwin, 2004; Albert and Hamann, 2021).220

3.1.3 Building Common Ground in Human-robot Interaction221

Skantze highlighted two aspects of miscommunication and error handling in human-machine222
interaction. First, he discussed how language is ultimately used as part of a joint activity.223
For communication to be meaningful and successful, the interlocutors need to have a mutual224
understanding of this activity, and of their common ground (Clark, 1996). From this perspective,225
language processing is not a bottom-up process, where we first figure out what is being said before226
interpreting and putting it in context. Rather, we use the joint activity to steer the interpretation227
process and possibly ignore irrelevant signals. Skantze exemplified this with an early experiment,228
where a noisy channel (including a speech recognizer) was used in a human-human communication229
task, where one person had to guide another person on a virtual campus (Skantze, 2005). Although230
much of what was said did not get through (due to the error prone speech recognition), the humans231
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very seldom said things like “sorry, I didn’t understand”, which are frequent responses in human-232
machine interactions. Instead, they relied on the joint activity to ask task-related questions that233
contributed to task progression. Another implication of this view on communication is that the234
idea of “open-domain dialogue”, where there is no clear joint activity, is not meaningful to pursue235
(Skantze and Doğruöz, 2023).236

The second aspect that was discussed was the need to incorporate user feedback when the system237
is speaking, and use that feedback to model what can be regarded as common ground between the238
user and the system. Skantze exemplified this issue with a research project at KTH (Axelsson and239
Skantze, 2023), where an adaptive robot presenter is being developed (in the current demonstrator240
it is talking about classic works of art in front of a human listener). The robot presenter uses a241
knowledge graph to model the knowledge it is about to present, and then uses that same graph to242
keep track of the “grounding status” of the different pieces of information (Axelsson and Skantze,243
2020). Multimodal feedback from the user (e.g., gaze, facial expressions, nods and backchannels)244
are interpreted as negative or positive, and the graph is updated accordingly, so that the presentation245
can be adapted to the user’s level of knowledge and understanding (Axelsson and Skantze, 2022).246

3.1.4 Addressing the Challenges of Open-Domain Conversational AI Systems247

Papaioannou’s presentation showed how designing conversational AI systems able to engage in248
open-domain conversation is extremely challenging and a frontier of current research. Such systems249
are required to have extensive awareness of the dialogue context and world knowledge, the user250
intents and interests, requiring more complicated language understanding, dialogue management,251
and state and topic tracking mechanisms compared to traditional task-oriented dialogue systems.252

In particular, some of these challenges include: (a) keeping the user engaged and interested over253
long conversations; (b) interpretation and generation of complex context-dependency phenomena254
such as ellipsis and anaphora; (c) mid-utterance disfluencies, false starts, and self-corrections255
which are ever-present in spoken conversation (Schegloff et al., 1977b; Shriberg, 1994) (d) various256
miscommunication and repair phenomena such as Clarification Requests (Purver, 2004) and Third257
Position Repair (Schegloff, 1992b) whereby either the user or system does not understand the other258
sufficiently or misunderstands, and later repairs the misunderstanding. (b-d) are all crucial to robust259
Natural Language Understanding in dialogue.260

A modular conversational AI system, (called Alana), tackling some of the aforementioned261
challenges (i.e. user engagement over long conversations, ellipsis and anaphora resolution, and262
clarification requests) was developed between 2017-2019 (Papaioannou et al., 2017; Curry et al.,263
2018) and deployed to thousands of users in the United States as part of the Amazon Alexa Challenge264
(Ram et al., 2018). The Alana system was also evaluated in a multimodal environment and was used265
as the overall user conversational interaction module in a multi-task and social entertainment robotic266
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system as part of the MuMMER project (Foster et al., 2019). The integrated system was deployed in267
a shopping mall in Finland and was able to help the user with specific tasks around the mall (e.g.268
finding a particular shop or where they could buy a certain product, finding the nearest accessible269
toilet, or asking general questions about the mall) while at the same time engaging in social dialogue270
and being entertaining.271

The output of that research was fed to the implementation of the ‘Conversational NLU’ pipeline by272
Alana AI, a modular neuro-symbolic approach further enhancing the language understanding of the273
system. The Conversational NLU module is able to detect and tag a number of linguistic phenomena274
(e.g. disfluencies, end-of-turn, anaphora, ellipsis, pronoun resolution, etc) as well as detect and275
repair misunderstandings or lack of sufficient understanding, such as self-repairs, third-position276
corrections, and clarifications. The system is currently being evaluated by blind and partially sighted277
testers in the context of multi-modal dialogue allowing the users to find mislocated objects in their278
environment via a mobile application.279

3.2 Lightning Talks280

The following section contains short summaries of the lightning talks of both the virtual and the281
face-to-face part of the workshop. From the presentations, three themes were identified: Description282
and Analysis of Failures and Troubles (Sect. 3.2.1) grouping presentations that have a descriptive283
or analytical focus; Technical Aspects of Conversational Failure (Sect. 3.2.2) for presentations284
that have a more technical focus; and Adjacent Topics in Speech Interfaces (Sect. 3.2.3), grouping285
presentations on topics that, while not focusing strictly on conversational failures, covering other286
forms of errors and issues that fall into the wider topic of speech-centric human-machine interactions.287
Note that many of the talks falling into the second, technical category still contain a substantial288
element of analysis that enabled or inspired the technical solutions described therein.289

3.2.1 Description and Analysis of Failures and Troubles290

The following ten of the contributions took a more analytical approach to the failure they reported291
in their lightning talks. They describe possible reasons or implications of the failure they present.292

3.2.1.1 Laundrobot: Learning from Human-Human Collaboration293

Barnard and Berumen presented their work on Laundrobot, a human acting as a collaborative robot294
designed to assist people in sorting clothing into baskets. The study focused on participants’ ability295
to collaborate through verbal instructions and body movements with a robot that was sometimes296
erroneous when completing the task. The team analysed social signals, including speech and gestures,297
and presented three cases demonstrating human-human collaboration when things do not go as298
expected. In one of the cases, a participant gave clear instructions to an erroneous Laundrobot, which299
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led to frustration on the participant’s part, with statements such as “Okay, I’m doing this wrong”.300
The presenters described how the participant appeared to take responsibility for the errors made by301
the robot. They examined the use of language and expression of intent in different instances for302
pieces of clothing that were either correctly or incorrectly identified by Laundrobot. During this303
analysis, Barnard, Berumen, and colleagues came across an interesting case regarding the use of the304
word “right”, which was frequently used in both erroneous and non-erroneous instances. The group305
explored how that word had different meanings depending on the success or failure of Laundrobot.306
For instance, for one participant (P119), the word had a single meaning of indicating a direction in307
erroneous instances, whereas, on other occasions, it had alternative purposes. It was sometimes used308
to refer to directions and, at other times, used for confirmation, immediacy (“right in front of you”),309
or purpose (“Right, OK”).310

3.2.1.2 Sequential Structure as a Matter of Design and Analysis of Trouble311

As part of the Peppermint project3 corpus, Tisserand presented a transcript fragment, reproduced312
below. They designed a Pepper robot as an autonomous reception desk agent that would answer313
basic requests asked by library users. They captured naturally-occurring interactions: the robot was314
placed in the library, and users were free to interact and leave whenever they wanted.315

01 Hum: where can I find books of maths? | Sequence A - Part 1316
02 Rob: ((provides the direction for books of maths)) | Sequence A - Part 2317
03 Rob: is it clear to you? | Sequence B - Part 1318
04 Hum: yes thanks | Seq B-2 && Seq A-3319
05 Rob: okay, I will repeat ((repeats turn line 2)) | Sequence C - Part 1320

The failure here is the fact that the robot recognized “no thanks” instead of two separate actions:321
“yes” + “thanks” (l.4); the robot thus repeats the answer to the user’s question. Reflecting on this322
WTF moment, Tisserand highlighted how this failure occurred due to decisions made during the323
scenario design phase. Firstly, poor speech recognition differentiation between the words “yes” and324
“no” had led the scenario design team to add ”no thanks” to a word list provided for recognising325
an offer rejection:(a dispreferred turn design for this type of action (Schegloff, 2007, Chap.5)) in326
another scenario in which the robot makes an offer. Secondly, because the state machine was based327
on isolated so-called “contexts”, it was designed only to make one decision when processing a spate328
of talk. Here, therefore, the clarification check turn in line 3 was treated as independent from the329
question response in line 2. Because the speech recognition system struggled to differentiate “yes”330
and “no”, and was using the word list that labelled “no thanks” as a case ofoffer rejection, here it331
erroneously recognized “yes thanks” in line 4 as a negation (a clarification denial), and proceeded332
to repeat the turn.333

3 https://peppermint.projet.liris.cnrs.fr/
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What should have happened is that when the robot asks the user to confirm (l.3), it should recognize334
that this sequence is embedded in the previous question/answer sequence (l.1-2). In this case, the335
human’s “yes” (l.3) is a response to the just-prior confirmation request while the “thanks” responds336
(in the first structurally provided sequential slot) to the Robot’s answer as a ’sequence closing third’337
(l.3). This is why the team is now sequentially annotating training datasets to show what utterances338
correspond not only to questions and answers, but also the cement in-between: how the user might339
delay, suspend, abandon, renew or insert actions (e.g. repair). Here interaction is seen as a temporally340
continuous and incremental process and not a purely logical and serial one. In other words, context341
is seen as an organized resource more than an adaptability constraint.342

3.2.1.3 Design a Robot’s Spoken Behaviours Based on How Interaction Works343

Huang pointed out that spoken interaction is complicated. It is grounded in the social need to344
cooperate (Tomasello, 2009; Holtgraves, 2013) and requires interlocutors to coordinate and build345
up common ground on a moment-by-moment basis (Krauss and Fussell, 1990, p.112)(Holtgraves,346
2013).347

Speech is only one tool in a larger picture. Some errors are caused by failures in natural language348
understanding (NLU) as illustrated in the following sequence:349

01 User: Let’s talk about me.350
02 Robot: What do you want to know about ‘me’?351

Other issues, however, could be caused by a lack of understanding of common ground. For example,352
when a naive user asked, “Where to find my Mr Right”, the system provided a place named “Mr353
& Mrs Right” and told the user it was far away. This reply contains several layers of failure: (1)354
the robot fails to capture the potential semantic inference of the expression Mr Right; (2) it fails355
to consider the social norm that Mr Right belongs typically to one person only; and (3) it makes356
a subjective judgement about distance. One may argue that this error would not happen if the357
user knew a question-answer robot could not chat casually. However, the issue is whether a clear358
boundary of a social robot’s capability is set in the system or communicated to the user during the359
interaction. It is difficult to tell why speech interfaces may fail and how to work around the limits360
without understanding what makes interaction work and how speech assists in the process.361

Also, spoken interaction requires interlocutors, including robots, to adjust their behaviours based362
on the verbal and non-verbal feedback provided by others. A social robot that does not react363
appropriately could be deemed improperly functional, as illustrated in the following sequence. In364
the scenario, the robot failed to generate satisfactory answers several times in an open conversation;365
the user felt frustrated.366

User: You are generating GPT rubbish.367
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Robot: (No response, carries on)368

3.2.1.4 Hey Siri . . . You Don’t Know How to Interact, huh?369

The WTF moment Wiltschko presented concerned the use of huh in interaction with Siri, Apple’s370
voice assistant.371

User: Hey Siri, send an e-mail.372
Siri: To whom shall I send it?373
User: huh?374
Siri: I couldn’t find huh in your contacts. To whom shall I send it?375

It is evident from the example that Siri cannot understand huh. This is true for huh used as an376
other-initiated repair strategy as in the example above, but it is also true for its use as a sentence-final377
tag. This is a significant failure as in human-human interaction the use of huh is ubiquitous. In fact,378
huh as a repair strategy has been shown to be available across a number of unrelated languages379
(Dingemanse et al., 2013). Wiltschko speculates that successful language use in machines is restricted380
to propositional language (i.e., language used to convey content) whereas severe problems arise in381
the domain of interactional language (i.e., language used to regulate common ground building as382
well as the conversational interaction itself). The question that arises, however, is whether human383
users feel the need to use interactional language with machines. After all, this aspect of language384
presupposes interaction with another mind for the purpose of common ground construction and it385
is not immediately clear whether humans treat machines as having a mind with which to share a386
common ground.387

3.2.1.5 Utilising Explanations to Mitigate Robot Failures388

Kontogiorgos presented current work on failure detection (Kontogiorgos et al., 2020a, 2021)389
and how robot failures can be used as an opportunity to examine robot explainable behaviours.390
Typical human-robot interactions suffer from real-world and large-scale experimentation and tend to391
ignore the ‘imperfectness’ of the everyday user (Kontogiorgos et al., 2020b). Robot explanations392
can be used to approach and mitigate robot failures by expressing robot legibility and incapability393
(Kwon et al., 2018), and within the perspective of common-ground. The presenter discussed394
how failures display opportunities for robots to convey explainable behaviours in interactive395
conversational robots according to the view that miscommunication is a common phenomenon396
in human-human conversation and that failures should be viewed as being an inherent part of397
human-robot communication. Explanations, in this view, are not only justifications for robot actions,398
but also embodied demonstrations of mitigating failures by acting through multi-modal behaviours.399
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3.2.1.6 Challenging Environments for Debugging Voice Interactions400

Porcheron presented the challenge of how we expect users to understand and debug issues with401
‘eyes-free voice interactions’, and of parallelism to the prospects of voice-based robots. A recurrent402
promise of voice-based technologies is their simplicity: we issue a command to a computer and it can403
respond accordingly. Of course, not all technology use goes as planned and sometimes errors occur.404
With graphical user interfaces (GUIs), we have a plethora of well-tested heuristics (e.g., Nielsen405
(1995)), especially for dealing with ‘errors’ where users need ‘fix’ something. However, with voice,406
in situations where people encounter something going wrong, they have to carry out work to figure407
out how to resolve the issue (Porcheron et al., 2018; Fischer et al., 2019). One specific example408
is responses which do not reveal specifics, such as “I had an issue responding to that request”.409
Users are given little purchase with which to debug this issue, and attempt to resolve this. This user410
challenge is exacerbated in the new settings where voice technologies are appearing: in our cars,411
on our bikes, and anywhere we take our smartwatch—in these settings, there is often little time412
to read and respond to a text, little audible information to go on, and plenty of distraction for the413
user. Porcheron suggested that if we want to consider voice as a modality for controlling robots, we414
first need to think through how we help users understand and recover from ‘errors’ in these sorts of415
environments first.416

3.2.1.7 The Robot [does not] Hear Me Correctly417

Hernández Garcı́a presented examples of failures of user interactions with a receptionist robot.418
Gunson et al. (2022) developed a social conversational robot that can act as a receptionist in a419
hospital waiting room for tasks such as greeting visitors, answering common questions, providing420
directions and/or scheduling information, etc. During the evaluation with users (student participants421
in a lab setting), a majority of failed interactions that prevented user task completion were the result422
of problems with the ASR. These ASR failures predominately took the form of an ASR result that423
contained only part of the user’s utterance, misrecognition of critical words, or a combination of424
the two (to the extent that the user’s original intention could not be discerned), leading the dialogue425
management into a non-coherent path and frustrating the user.426

USER: can you help me to find the exit please | ASR: please427
ROBOT: Anyway it’s a big building we’re in, isn’t it.428
Did you know you can ask me for help if you ever get lost here?429
USER: can you direct me to the exit please | ASR: can you direct me430
to Netflix please431
ROBOT: Such a lot of waiting around isn’t there.432
USER: thank you [user left]433
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Participants rated the conversation negatively when these errors occurred, as they experienced434
difficulties in making themselves understood. The user evaluations reported by Gunson et al. (2022)435
highlighted that users did not feel it was natural or that it flowed in the way they expected. Participants436
did not believe that “the robot heard me correctly most of the time” or that “the robot recognised the437
words I said most of the time” nor “felt confident the robot understood the meaning of my words”.438

Conversational troubles may start at a speech recognition level, but these failures are propagated439
throughout the whole speech interface pipeline, compounding to create WTF moments and leading440
to poor performance, increasing user frustration, and loss of trust, etc.441

3.2.1.8 Hello, It’s Nice to “Meat” You442

Nesset shared examples of WTF moments encountered while interacting with Norwegian chatbots443
through written text. The first failure presented was users’ committing spelling mistakes interacting444
with a virtual agent through chat. This caused the agent to misunderstand the overall context of the445
conversation. A good example of this is misspelling meet with meat, and the chatbot then replying446
with a response about sausages.447

The second part entailed a user failure that is specifically for multilingual users. In some non-native448
English-speaking countries, such as Norway, technical terms and newer words are often commonly449
said in English. This potentially leads users to interact with agents in two languages within the same450
sentence/conversation. This can lead to the agent struggling to interpret the terms in the second451
language, and assuming that they mean something else in the original interaction language. These452
are some examples of how uncertain user output can result in failures from the robot.453

3.2.1.9 Speech Misrecognition: A Potential Problem for Collaborative Interaction in454
Table-grape Vineyards455

Kaszuba presented troubles and failures encountered while designing a spoken human-robot456
interaction system for the CANOPIES project4. This project aims to develop a collaborative paradigm457
for human workers and multi-robot teams in precision agriculture, specifically in table-grape458
vineyards. When comparing some already existing speech recognition modules (both online and459
offline), the presenter identified communication issues associated with the understanding and460
interpretation of specific words of the vineyard scenario, such as ”grape”, ”bunch”, and ”branch”.461
Most of the tested applications could not clearly interpret such terms, leading the user to repeat the462
same sentence/word multiple times.463

Hence, the most significant source of failure in speech interfaces that Kaszuba has described is464
speech misrecognition. Such an issue is particularly relevant, since the quality and effectiveness of465

4 https://www.canopies-project.eu/
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the interaction strictly depend on the percentage of words correctly understood and interpreted. For466
this reason, the choice of the application scenario has a crucial role in the spoken interaction, and467
preliminary analysis should be taken into consideration when developing such systems, as the type468
and position of the acquisition device, the ambient noise and the ASR module to adopt. Nevertheless,469
misrecognition and uncertainty are unavoidable when the developed application requires people470
to interact in outdoor environments and communicate in a language that is not the users’ native471
language.472

Hence, some relevant considerations concerning ASR modules should be taken into account in473
order to implement a robust system that, eventually, can also be exploited in different application474
scenarios. The percentage of uncertainty, the number of misrecognized words and the environmental475
noise that can negatively affect communication are some fundamental issues that must be addressed476
and minimized.477

3.2.1.10 Leveraging Multimodal Signals in Human Motion Data During Miscommunication478
Instances479

Approaching from a natural dialogue standpoint and inspired by the Running Repairs Hypothesis480
Healey et al. (2018b), Özkan shared a presentation on why and how we should take advantage of481
WTF-moments or miscommunications to regulate shared understanding between humans and speech482
interfaces. Rather than avoiding these moments (which is impossible), if speech interfaces were to483
identify them and show appropriate behaviour, it could result in more natural, dynamic and effective484
communication.485

Detecting miscommunications from the audio signal can only can be costly in terms of486
computational load or prone to error due to noise in most environments. Fortunately, repair487
phenomena manifest themselves in non-verbal signals as well Healey et al. (2015); Howes et al.488
(2016). Findings regarding speaker motion during speech disfluencies (self-initiated self-repairs)489
have shown that there are significant patterns in the vicinity of these moments Özkan et al. (2021,490
2023); Ozkan et al. (2022). Specifically, the speakers have higher hand and head positions and491
velocities near disfluencies. This could be treated as a clear indicator for artificial interfaces to492
identify troubles of speaking in their human partner. For example, to the user input “Could you493
check the flights to Paris -uh, I mean- Berlin?”, the interface, instead of disregarding the uncertain494
utterance, could offer repair options more actively by returning “Do you mean Paris or Berlin?” in495
a collaborative manner.496

Though not in the context of disfluencies, a common example of not allowing repair (in this case497
other initiated other repair) occurs when the user needs to correct the output of an interface or498
simply demand another response to a given input. As a WTF moment in the repair context, Özkan499
demonstrated a frequent problem in their interaction with Amazon Alexa. When asked to play a500

Frontiers 17



Förster et al. Working with Troubles & Failures

certain song, Alexa would play another song with the same or similar name. The error is not due to501
speech recognition, because Alexa understands the name of the song very well. However, it maps502
the name to a different song that the user does not want to hear. No matter how many times the503
user tries the same song name input, even with the artist name, Alexa would still pick the one that504
is the ‘first’ result of its search. If the conversational repair was embedded in the design, a simple505
solution to this problem could have been “Alexa, not that one, can you try another song with the506
same name?”, but Alexa does not respond to such requests.507

3.2.2 Technical Aspects of Conversational Failure508

The following five of the contributions describe technical aspects of failures. Presentations in this509
section either discuss the technical causes of failures, point out technological attempts to recognize510
when conversational trouble occurs, or summarize approaches on handling troubles on part of the511
robot.512

3.2.2.1 Chefbot: Reframing Failure as a Dialogue Goal Change513

Gkatzia presented their work on Chefbot, a cross-platform dialogue system that aims to help users514
prepare recipes (Strathearn and Gkatzia, 2021a). The task moves away from classic instruction515
giving and incorporates question-answering for clarification requests, and commonsense abilities,516
such as swapping ingredients and requesting information on how to use or locate specific utensils517
(Strathearn and Gkatzia, 2021b). This results in altering the goal of the communication from cooking518
a recipe to requesting information on how to use a tool, and then returning to the main goal. It519
was quickly observed that changing the dialogue goal from completing the recipe to providing520
information about relevant tasks resulted in failure of task completion. This issue was subsequently521
addressed by reframing failure as a temporary dialogue goal change, which allowed the users to522
engage in question answering that was not grounded to the recipe document, and then forcing the523
system to resume the original goal.524

3.2.2.2 Failure in Speech Interfacing with Local Dialect in a Noisy Environment525

Liza (Farhana) presented their ongoing work in capturing the linguistic variation of speech526
interfaces in real-world scenarios. Specifically, local dialects may impose challenges when modelling527
a speech interface using an artificial intelligence (deep learning) language modelling system. Deep528
learning speech interfaces rely on language modelling which is trained on large datasets. A large529
dataset can capture some linguistic variations; however, dialect-level variation is difficult to capture530
as a large enough dataset is unavailable. Moreover, very large models require high-performance531
computation resources (e.g., GPU) and take a long time to respond, which imposes further constraints532
in terms of deploying such systems in real scenarios. Large data-driven solutions also cannot easily533
deal with noise as it is impractical to give access to enough real-world data from noisy environments.534
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Overall, state-of-the-art AI models are still not deployable in scenarios with dialect variation and535
noisy environments. Alharbi et al. (2021) identified several hurdles in training end-to-end Automatic536
Speech Recognition (ASR) models. Additionally, the conditional interdependence between the537
acoustic encoder and the language model was emphasized by (Xu et al., 2020). Consequently, while538
augmenting the standard text training data can enhance the efficacy of general-purpose language539
models, the limited availability of corresponding acoustic data poses challenges in training end-to-540
end ASR systems. Moreover, when addressing dialect modeling (Hirayama et al., 2015), the scarcity541
of training data exacerbates the difficulties in integrating speech interfacing and language modeling542
(Liza, 2019) within the ASR framework.543

3.2.2.3 The ‘W’ in WTF Moments can also be ‘When’: The Importance of Timing and544
Fluidity545

Hough presented WTF moments driven more by inappropriate timing of responses to user546
utterances, rather than by content misunderstandings. Improving the first-time accuracy of Spoken547
Language Understanding (SLU) remains a priority for HRI, particularly given errors in speech548
recognition, computer vision and natural language understanding remain pervasive in real-world549
systems. However, building systems capable of tolerating errors whilst maintaining interactive550
fluidity is an equally important challenge. In human-human situated interactions where an instructee551
responds to a spoken instruction like “put the remote control on the table” and a follow-up repair552
like “no, the left-hand table” when the speaker realizes the instructee has made a mistake, there is553
no delay in reacting to the initial instruction, and adaptation to the correction is instant (Heldner554
and Edlund, 2010; Hough et al., 2015), in stark contrast to state-of-the-art robots with speech555
interfaces. Increasing interactive fluidity is vital to give robots with speech understanding more556
seamless, human-like transitions from processing speech to taking physical action without delay,557
permitting appropriate overlap between the two, and the ability to repair actions in real-time. Rather558
than waiting for components to be perfected, preliminary experiments with a pick-and-place robot559
show users can be tolerant of errors if fluidity is kept high, including appropriate repair mechanisms560
(Hough and Schlangen, 2016).561

3.2.2.4 Laughter in WTF Moments562

Maraev presented a hypothesis that laughter can be treated as an indicator of a WTF moment.563
Laughter can occur in such moments as a) speech recognition failures disclosed to a user via explicit564
grounding feedback, b) awkwardness due to retrieval difficulties, c) resulting system apologies and565
down players (e.g., “don’t worry”). Along with examples from task-oriented role-played dialogues,566
Maraev discussed the following constructed example, where laughter communicates a negative567
feedback to the system’s clarification of speech recognition result:568
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Usr> I would like to order a vegan bean burger.569
Sys> I understood you’d like to order a vegan beef burger. Is that correct?570
Usr> HAHAHA571

Maraev et al. (2021) focused on non-humorous laughs in task-oriented spoken dialogue systems.572
The paper shows how certain types of laughter can be processed within the dialogue manager and573
natural language generator, namely: laughter as negative feedback, laughter as a negative answer to574
a polar question and laughter as a signal accompanying system feedback.575

3.2.2.5 To Err is Robot576

Giuliani presented findings from six years of research on erroneous human-robot interactions.577
The team of researchers led by Giuliani has shown that participants in human-robot interaction578
studies show unique patterns of social signals when they experience an erroneous situation with579
a robot (Mirnig et al., 2015). The team annotated two large video corpora of 201 videos showing580
578 erroneous situations and 1200 videos showing 600 erroneous situations, respectively (Giuliani581
et al., 2015; Cahya et al., 2019). They found that there are two types of errors that do occur in582
human-robot interaction. Social norm violations are situations in which the robot does not adhere583
to the underlying social script of the interaction. Technical failures are caused by the technical584
shortcomings of the robot. The results of the video analysis show that the study participants use585
many head movements and very few gestures but they often smile when in an error situation with586
the robot. Another result is that the participants sometimes stop moving at the beginning of error587
situations. The team was also able to show in a user study for which a robot was purposefully588
programmed with faulty behaviour that participants liked the faulty robot significantly better than589
the robot that interacted flawlessly (Mirnig et al., 2017). Finally, the team trained a statistical model590
for the automatic detection of erroneous situations using machine learning (Trung et al., 2017). The591
results of this work demonstrate that automatic detection of an error situation works well when the592
robot has seen the human before.593

3.2.3 Adjacent Topics in Speech Interfaces594

The two contributions under this theme do not discuss conversational failures directly but address595
the related topics of explanatory AI and privacy of speech interfaces.596

3.2.3.1 What is a ’Good’ Explanation?597

Kapetanios presented some thoughts around the long-standing research question of what is a598
good explanation in the context of the current buzz around the topics of explainable AI (XAI)599
and interpretable Machine Learning (IML). Using Amazon’s Alexa and Google’s Digital Assistant600
to generate explanations for answers being given to questions being asked of these systems, he601
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demonstrated that both systems, at the technological forefront of voice-based HCI approaches to602
answering specific questions, fail to generate convincing explanations. Convincing explanations603
should fit the facts, be relevant, tailored to the recipient, and typically do more than merely describe604
a situation (Dowden, 2019, chap. 14). It is frequently the latter where digital assistants have been605
observed to struggle. Hence, when describing the results of running several thousand queries through606
the most common digital assistants, provides the following example (Enge, 2019):607
Siri, when being asked the question “Who is the voice of Darth Vader?”, instead of providing608
the name of the (voice) actor, returns a list of movies featuring Darth Vader. While this answer609
is topically relevant, it certainly is not a proper answer to the question. The same problem of610
explanation persists with ChatGTP-3/4, despite its fluency in generating precise answers to specific611
questions in natural language.612

3.2.3.2 Privacy and Security Issues with Voice Interfaces613

Williams presented privacy and security issues and how these are often underestimated, overlooked,614
or unknown to users who interact with voice interfaces. What many voice interface users are unaware615
of is that only three to five seconds of speech are required to create a voiceprint of a person’s real616
voice as they are speaking (Luong and Yamagishi, 2020). One of the risks that follows is that617
voiceprints can be re-used in other voice applications to impersonate or create voice deepfakes618
(Williams et al., 2021b,a). In the UK and many other countries, this poses a particular security risk619
as voice-authentication is commonly used for telephone banking and call centres. In addition, some620
people may be alarmed when a voice interface reveals private information by “speaking out loud”621
sensitive addresses, birth dates, account numbers, or medical conditions. Anyone in the nearby622
vicinity may overhear this sensitive information and technology users have no ability to control what623
kinds of information a voice interface may say aloud (Williams et al., 2022).624

3.2.4 Summary of Lightning Talks625

Through their lightning talks, our participants contributed to an initial gathering of different626
troubles and failures in conversational interactions between humans and robots. Thanks to the627
description of their memorable failures and their analysis, we could identify the themes of analysis,628
technical aspects and adjacent topics, which all impact the success (or failure) of a conversation.629

3.3 Summary of World Café Session630

During the World Café session, four working groups were created based on recurring themes631
from the lightning talks, participants’ answers as to what they perceived as the most pressing issue632
or the biggest source of failure for speech interfaces, as well as the aim to define the sought after633
benchmark scenario. Through the initial submissions of the participants, their lightning talks and the634
keynotes, three main macro-categories have emerged: i) miscommunication, ranging from speech635
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recognition failures to more semantic and conversation-dependent failures; ii) interaction problems,636
encompassing all those failures that are due to users’ expectations and behaviours; iii) context637
understanding, linked to the fact that interaction is shaped by context and that context changes fast,638
calling for a need to find more robust ways to establish common ground. While these three themes639
are highly interdependent and could culminate in the sought after benchmark scenario (the fourth640
working group), each of them presents peculiarities that we considered worth discussing in detail.641

3.3.1 Handling Miscommunication642

The discussion focused on the need to acknowledge and embrace the concept of miscommunication.643
One of the open challenges identified by this group was to equip robots with the ability to learn644
from various forms of miscommunication and to actively use them as an opportunity to establish645
common ground between users and robots. When communicating with a robot, the human user646
usually has a goal in mind. The robot could exploit miscommunication to understand this goal647
better by asking for clarifications at the right moments and updating the common ground. The648
discussion also acknowledged that miscommunication is only the starting point. Two distinct new649
challenges and opportunities arise when working on resolving miscommunication: 1) how to explain650
the miscommunication, and 2) how to move the conversation forward. Both problems are highly651
context-dependent and related to the severity and type of miscommunication. Moreover, being652
able to repair a breakdown in conversation may also depend on being able to establish appropriate653
user expectations in the first place by giving an accurate account of what the robot is really able654
to accomplish. The final discussion point from this group centered on the possibility of enriching655
the multimodal and non-verbal component of conversations to help the robot perceive when a656
miscommunication has happened by detecting and responding to, for example, long pauses or657
changes in specific types of facial expressions.658

3.3.2 Interaction Problems659

Interaction problems do not only encompass challenges that are specific to the technology used,660
like issues with automatic speech recognition or the presence of long delays when trying to engage661
in a “natural” conversation. They are related to perceived failures that longitudinally include all the662
technical problems identified by the other themes and relate to how the interaction with the human663
user is managed. In this context, human users play an essential role and the participants of this664
group emphasized the necessity of creating expectations that allow users to build an adequate mental665
model of the technology they are interacting with. In Washburn et al. (2020a), authors examine how666
expectations for robot functionality affected participants’ perceptions of the reliability and trust of a667
robot that makes errors. The hope is that this would lead to an increased willingness and capacity668
to work with the failures that inevitably occur in conversational interactions. Anthropomorphism669
was identified as one of the possible causes for the creation of wrong expectations: the way robots670
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both look and speak risks tricking users into thinking that robots have human-like abilities and are671
able to follow social norms. Once this belief is abandoned, users could then form an appropriate672
expectation of the artificial agents, and the severity of the failures would decrease. Setting the right673
expectations will also enable users to understand when a failure is a technological error in execution674
or when it is a design problem: humans are unpredictable, and some of the problems that arise in the675
interactions are due to users’ behaviours that were not embedded in the design of robot’s behaviours.676
A related aspect that was considered important by this group is the transparency of the interaction:677
the rationale behind the failures should be explained and made clear to the users to enable mutual678
understanding of the situation and prompt recovery. This could, in fact, be initiated by the users679
themselves. Another need, identified as a possible way to establish better conversational interactions,680
is the missing link of personalisation. The more the agents are able to adapt to the context and the681
users they are interacting with, the more they will be accepted, as acceptance plays a fundamental682
role in failure management. A general consensus converged regarding the fact that we are not yet683
at the stage where we can develop all-purpose chatbots - or robots - and the general public should684
be made aware of this, too. Each deployment of conversational agents is context related and the685
conversation is mainly task-oriented, where a precise exchange of information needs to happen for a686
scenario to unfold.687

3.3.3 Context Understanding688

All four groups agreed that context understanding is crucial for reducing or entirely eliminating689
failures of interactive systems that use spoken language. We determined that capturing and modelling690
context is particularly challenging since it is an unbound and potentially all-encompassing problem.691
Moreover, all dialogue, and in fact, interaction as a whole, would be shaped by the context while at692
the same time renewing it. Likewise, the volatility of context, in particular, potentially rapid context693
switches, was also identified as challenging in human-robot conversation. Modelling the interaction694
partner(s) and evaluating their focus of attention was thereby discussed as one potential approach to695
reducing context search space.696

A precise and consistent representation of the dialogue context was therefore identified as one of697
the most important problems that would rely on modelling not only the current situation but also any698
prior experiences of humans with whom the system is interacting. Such previous experience was seen699
to have significant effects on expectations about the interactive system that would potentially require700
calibration before or during system runtime to avoid misunderstandings as well as misaligned trust701
towards the system Hancock et al. (2011). However, even if we assume an optimal representation of702
context would be possible, the problem of prioritisation and weighting would still persist.703

Another challenge discussed was the need for a multi-modal representation of the current situation704
comprised of nonverbal signals, irregular words, and interjections. Such a model would be required705
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for an appropriate formulation of common ground, whereby it remains unclear what exactly would706
be required to include. In that context, one group identified the benefits of a typology that could707
encompass an interaction situation in a multi-modal way, potentially extending work by Holthaus708
et al. (2023). The exact mapping between a signal or lexical index and their meanings is, however,709
still difficult to establish.710

On the other hand, considering the dialogue context was unanimously regarded as beneficial to711
enrich human-robot conversations offering numerous opportunities to increase its functionality, even712
if it would not be possible to capture all context comprehensively. With a personalised model of713
interaction partners, for example, the spoken dialogue could be enhanced by taking into account714
personal interaction histories and preferences. Conversational agents could be improved for highly715
constrained settings and converge faster to relevant topics.716

It is noteworthy to mention that enriching the capabilities of conversational agents with context717
information poses ethical challenges, e.g. in terms of privacy and data protection. This approach718
might thus introduce barriers in terms of user acceptance that need to be considered Lau et al. (2018).719
However, using context appropriately could also help to improve a system’s transparency either by720
designing it with its intended context in mind or by utilising it during a conversation, for example,721
by providing additional interfaces to transport further information supporting the dialogue or by722
analysing context to reduce ambiguities and eliminate noise. The context was regarded to often play723
a vital role in providing the necessary semantic frame to determine the correct meaning of spoken724
language. Making use of domain and task knowledge was thereby identified as particularly helpful.725

Moreover, intentionally misapplying context or analysing situations where context has previously726
misled a conversation, might be avenues to recognize and generate error patterns to help detect727
future troubles and failures in speech understanding.728

3.3.4 Benchmark Scenario(s)729

On this discussion table, participants struggled to devise a single benchmark scenario that would730
elicit most, if not all, commonly occurring conversational failures. As a main reason for the difficulty731
of identifying such a prototypical scenario, the lack of a comprehensive taxonomy of conversational732
failures was determined.733
An alternative suggestion to the proposed task of identifying one, failure-wise all encompassing,734
scenario was also made. Rather than seeking to specify a single scenario, it may be necessary735
to create test plans for each specific interaction task using chaos engineering, with some of the736
defining characteristics for a scenario being (1) the type(s) of users, (2) the domain of use (e.g.737
health-related, shopping mall information kiosk), (3) the concrete task of the robot, (4) the types738
of errors under investigation. Chaos engineering is typically used to introduce a certain level of739
resilience to large distributed systems (cf. Fomunyam (2020). Using this technique, large online740
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retailers such as Amazon deliberately knock out some of their subsystems, or introduce other kinds741
of errors, to ensure that the overall service can still be provided despite the failure of one or more742
of these, typically redundant, components (cf. Siwach et al. (2022)). While both the envisioned743
benchmark scenario(s) and chaos engineering are meant to expose potential failures of human-made744
systems, the types of systems and types of failure differ substantially. While failures in technical745
distributed systems are unilateral, in the sense that the source of failure is typically attributed solely746
to the system rather than its user, attribution of blame in conversational failure is less unilateral. If a747
successful conversation is seen to be a joint achievement of at least two speakers, conversational748
failure is probably also best seen as a joint “achievement” of sorts. In other words, the user of a749
conversational robot is always also an interlocutor during the interaction. Hence, whatever approach750
we use to identify and correct conversational failures, the correct level of analysis is that of the dyad751
rather than of the robot alone.752
Independent of the chaos engineering approach, another suggestion was that at least two benchmarks753
might be needed in order to distinguish between low-risk and high-risk conversations. Here, low-risk754
conversations would be the more casual conversations that one may have with a shop assistant whose755
failure would not carry any hefty consequences. High-risk conversations, on the other hand, would756
be those where the consequences of conversational failure might be grave - imagine conversational757
failure between an assistive robot and its human user that are engaged in some joint task of removing758
radioactive materials from a decommissioned nuclear site. If such a distinction should be made, the759
logical follow-up question would be how the boundary between low and high-risk scenarios should760
be determined. Finally, it should be mentioned that at least partial benchmarks such as Paradise761
exist for the evaluation of spoken dialogue systems Walker et al. (1997).762

4 DISCUSSION

One significant result from the workshop is that no succinct and, more importantly, singular763
benchmark scenario could be envisioned that would likely elicit all or, at least, a majority of764
identified failures. A likely reason behind this is the lack of a comprehensive categorization of765
conversational failures and their triggers in mixed human-machine interactions. Having such a766
taxonomy would allow us to embed such triggers systematically in benchmark scenarios.767

4.1 Wanted: A Taxonomy of Conversational Failures in HRI768

Honig and Oron-Gilad (2018) recently proposed a taxonomy for failures in HRI based on a769
literature review of prior failure-related HRI studies. Their survey indicated a great asymmetry in770
these investigations, in that the majority of previous work focused on technical failures of the robot.771
In contrast, Honig & Oron-Gilad noticed that no strategies had been proposed to deal with “human772
errors”. From a conversation analytic viewpoint, the dichotomy of technical vs. human error may not773
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always be as absolute when applied to conversational failures, especially since, despite sharing some774
terminology, CA conceptualizes conversational success and failure quite differently. Conversation775
analysts conceive of successful conversation as the achievement of joint action by any party (robot or776
human). In this sense, when a failure occurs, the ‘blame’ lies with all participants. Similarly, success777
in CA terms might mean that a joint action is ‘successfully’ achieved interactionally, even if there778
are informational errors. For example, an invitation to meet under the clock at Grand Central station,779
where the recipient misunderstands the time/place might be ‘successfully’ achieved as an orderly780
interaction, the error being marked. In HRI, however, this failure of the ‘Schelling game’ would781
be considered a classic ‘grounding error’ Clark (1996), and it would certainly matter who made782
the error: the human or robot. While not assigning blame for some singular failure simultaneously783
to both participants, Uchida et al. (2019a) recently used a blame assignment strategy where the784
responsibility for a sequence of failures was attributed in an alternating fashion to the robot and785
the human. As indicated by our struggle to find a good general characterisation of conversational786
failures during the workshop, we advocate the construction of a taxonomy of conversational failures787
for mixed, that is human-machine dyads and groups. To build such a taxonomy, an interdisciplinary788
effort is needed, given that the types of relevant failures span the entire spectrum from the very789
technical (e.g. ASR errors) to the very “relational” (e.g. misunderstanding based on lack of common790
ground). The relevant disciplines would include linguistics, conversation analysis, robotics, NLP,791
HRI, and HCI. This workshop represented the first stepping stone towards this interdisciplinary792
effort. One theory-related advantage of taxonomy building is that it forces us to reconsider theoretical793
constructs from different disciplines, thereby potentially exposing gaps in the respective theories -794
similarly to how conversation analysis has exposed shortcomings of speech act theory (cf. Levinson,795
1983).796
The process of defining the types of errors could also help us to understand why they arise, measure797
their impact and explore possibilities and appropriate ways to detect, mitigate and recover from798
them. If, for example, artificial agents and human users are mismatched conversational partners as799
suggested by Moore (2007) and Förster et al. (2019), and if this mismatch creates constraints and a800
“habitability gap” in HRI (Moore, 2017), are their specific types of failures that only occur due to801
such asymmetric setups? And, if yes, what does that mean for potential error management in HRI?802
If priors shared between interlocutors matter (Moore, 2022; Huang and Moore, 2022), how does803
the aligning of interactive affordances help to increase the system’s capacity to deal with errors?804
Moreover, errors can affect people’s perception of a robot’s trustworthiness and reliability (e.g.,805
Washburn et al., 2020b), as well as their acceptance and willingness to cooperate in HRI (e.g., Salem806
et al., 2015). What type of errors matters more? In terms of error recovery, it has been shown that807
social signals, such as facial action unit (AU), can enhance error detection (Stiber et al., 2023);808
Users’ cooperative intention can be elicited to avoid or repair from dialogue breakdowns (Uchida809
et al., 2019b). The question is, when facing different errors, do these strategies need to be adaptable810
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to tasks/scenarios, and if so, to what degree? Answering the above questions requires a deeper811
understanding of conversational failures, and taxonomy building is one possible way to increase our812
understanding.813
A more practical advantage of having such a taxonomy is discussed in the next section.814

4.2 Benchmarking Multimodal Speech Interfaces815

One of the intended aims of the workshop was to define, or at least outline, some benchmark816
scenario that would have the “built-in” capacity to expose, if not all, at least a good number of817
potential communicative failures of some given speech interface. During the workshop, it became818
apparent that we would fail to come up with such a single scenario. It questionable whether such a819
scenario could exist or whether a number of scenarios would be needed to target different settings in820
which the speech interface is to be deployed. One main reason for our struggle that emerged during821
the World Café session was the lack of a taxonomy of communicative failures in HRI. Having such822
a taxonomy would allow the designer, or user, of a speech interface to systematically check whether823
it could handle the type of situation in which the identified failures are likely to occur prior to testing824
it “in the wild”.825
Related to the construction of a potential (set of) benchmarks is the question of how to evaluate826
multimodal speech interfaces. The popular evaluation framework PARADISE Walker et al. (1997),827
originally designed for the assessment of unimodal dialogue systems, has already been used in828
multimodal HRI studies (e.g. Giuliani et al., 2013; Hwang et al., 2020; Peltason et al., 2012). Also829
within the HCI community multimodal alternatives to PARADISE have been proposed (e.g. Kühnel,830
2012). Given these existing evaluation frameworks for multimodal dialogue systems, what would a831
failure-based method bring to the table?832
A characteristic of PARADISE and related frameworks is that they tend to evaluate a past dialogue833
according to a set of positive performance criteria. PARADISE, for example, uses measurements of834
task success, dialogue efficiency, and dialogue quality to score a given dialogue. There is likely an835
inverse relationship between a failure-based evaluation and, for example, dialogue efficiency as a836
dialogue containing more failures, will likely require more turns to accomplish the same task due837
to repair-related turns. This would mean that the efficiency of this failure-laden dialogue would be838
reduced. However, despite this relationship, the two methods are not commensurate. A failure-based839
scoring method could, for example, put positive value on the resilience of some speech interface,840
by assigning positive values to the number of successful repairs. This would, in some sense, be841
diametrically juxtaposed to efficiency measures. On the other hand, these two ways of assessing a842
speech interface are not mutually exclusive and could be applied simultaneously.843
One interesting observation with respect to the surveyed studies points to a potential limitation844
of existing evaluation frameworks such as PARADISE. All of the referenced studies are based845
on turn-based interaction formats. While turn-based interaction is certainly a common format in846
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many forms of human-human and human-robot interaction, it is likely not the only one. Physical847
human-robot collaboration tasks which require participants to coordinate their actions in a near-848
simultaneous manner, for example when carrying some heavy object together, do not necessarily849
follow a turn-based format. While some of the involved communication channels such as speech850
will likely be turn-based, other channels such as sensorimotor communication (SMC, cf. Pezzulo851
et al., 2019) may or may not follow this format.852

5 CONCLUSION

The first workshop on “Working with Troubles and Failures in Conversation between Humans and853
Robots” was the first effort to gather an interdisciplinary team of researchers interested in openly854
discuss the challenges and opportunities in designing and deploying speech interfaces for robots.855
Thanks to insights from conversation analysis, cognitive science, linguistics, robotics, human-robot856
interaction, and dialogue systems, we initiated a discussion that does not simply dismiss failures in857
conversational interaction as a negative outcome of the robotic system, but engages with the nature of858
such failures and the opportunities that arise from using them to improve the interactions. We believe859
this initial push will spawn a deeper research effort towards the identification of a benchmark for860
multimodal speech interfaces and the creation of a systematic taxonomy of failures in conversation861
between humans and robots which could be useful to interaction designers, both in robotics and862
non-robotics fields.863

6 NOMENCLATURE

Voice interfaces: User interfaces that allow interaction with technology through spoken commands864
or queries.865
Robotic speech interfaces: Voice interfaces applied on robots that use both speech recognition as866
well as synthesised or artificial voices to communicate and interact with users.867
Chatbots: Text-based interfaces able to provide information, answer questions, or assist with various868
tasks.869
Agents, artificial agents, conversational agents: Terms used interchangeably for systems designed870
to engage in natural language conversations with humans, by employing natural language processing871
and machine learning to understand and respond to user queries, provide information or assistance.872
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