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A B S T R A C T

In the dynamic field of the Industrial Internet of Things (IIoT), the networks are increasingly vulnerable
to a diverse range of cyberattacks. This vulnerability necessitates the development of advanced intrusion
detection systems (IDSs). Addressing this need, our research contributes to the existing cybersecurity literature
by introducing an optimized Intrusion Detection System based on Deep Transfer Learning (DTL), specifically
tailored for heterogeneous IIoT networks. Our framework employs a tri-layer architectural approach that
synergistically integrates Convolutional Neural Networks (CNNs), Genetic Algorithms (GA), and bootstrap
aggregation ensemble techniques. The methodology is executed in three critical stages: First, we convert a
state-of-the-art cybersecurity dataset, Edge_IIoTset, into image data, thereby facilitating CNN-based analytics.
Second, GA is utilized to fine-tune the hyperparameters of each base learning model, enhancing the model’s
adaptability and performance. Finally, the outputs of the top-performing models are amalgamated using
ensemble techniques, bolstering the robustness of the IDS. Through rigorous evaluation protocols, our
framework demonstrated exceptional performance, reliably achieving a 100% attack detection accuracy rate.
This result establishes our framework as highly effective against 14 distinct types of cyberattacks. The findings
bear significant implications for the ongoing development of secure, efficient, and adaptive IDS solutions in
the complex landscape of IIoT networks.
1. Introduction

Industry 4.0 revolutionized smart manufacturing operations by
incorporating many modern technologies, including the Internet of
Things (IoT), artificial intelligence (AI), cloud and edge computing, big
data analytics, robotics, and cybersecurity. Industry 4.0, also referred
to as the IIoT, enhances the automation level in smart industries and
warehouses (Sisinni et al., 2018). The IIoT is a pervasive network of
interconnected devices that provide various computing services for
smart industries. IIoT nodes can identify, process, and transfer useful in-
formation across different IIoT platforms. This allows for more efficient
services and a better user experience in industries ranging from man-
ufacturing to service supply. Along with several benefits, IIoT devices
and networks are vulnerable to multiple types of cyberattacks because
of their heterogeneous nature (Driss et al., 2021). It can cause multiple
security and privacy issues in smart industries, which may lead to a
huge financial loss in the worst-case scenario. Therefore, the enormous
potential of IIoT cannot be realized without incorporating fast and
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robust cybersecurity mechanisms. Different types of cyberattacks can
harm smart industries in multiple ways, such as unauthorized access to
valuable consumer and industrial data, unavailability of IoT services,
and damage the valuable equipment. An intrusion detection system
(IDS) is considered a second-line defensive framework frequently used
in conjunction with other security mechanisms to protect IIoT networks
from cyberattacks (Latif et al., 2021; Moustafa et al., 2019; Khan et al.,
2022).

Modern IDSs leverage traditional machine and deep learning
(ML/DL) techniques to correlate the features from IoT traffic, iden-
tify the patterns in collected data, and detect the malicious traffic
corresponding to attacks (Lee et al., 2021). Cybersecurity researchers
spend a lot of time understanding these attacks and classifying them
into well-known categories. However, the highly expandable nature
of IIoT systems invites cybercriminals to try and find new ways to
compromise an IIoT system. Therefore, a pre-defined list of attack
classifications will not be able to respond to new and unique techniques
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used by intruders. The second major challenge is that most cybersecu-
rity datasets are unbalanced, in which normal class samples contain
a very high number compared to malicious samples. The uneven
distribution of classes prevents the existing ML/DL-based IDSs from
further improvements (Alzahem et al., 2022). To address these issues,
a smart and robust system is required to deal with uneven distribution,
auto-label the network alerts, and categorize them so the IDS analyst
can focus on the specific alert type.

Deep transfer learning (DTL) can be a promising cybersecurity
solution to overcome these issues, especially the problems related to
training heterogeneous data of the IIoT. DTL utilizes the knowledge
from pre-trained models to improve the performance of traditional DL
models. DTL can alleviate the lack of labeled data for the targeted
network by transferring information from a comparable circumstance
with high-quality data (Yang and Shami, 2022; Li et al., 2021). Further-
more, the DTL can exchange knowledge even if the data characteristics
of the source and target networks are not substantially similar. This
article proposes an efficient and robust intrusion detection scheme
using DTL. The proposed scheme is based on seven pre-trained convolu-
tional neural network (CNN) architectures, including Xception, VGG16,
VGG19, Inception, InceptionResNetV2, EfficientNetB7, and Efficient-
NetV2L. The optimum outcome of a CNN architecture also depends
on selecting suitable hyperparameters. The proposed design’s utilized
pertained architectures are optimized and trained using a genetic algo-
rithm (GA). After training, the five best-performing models are selected
and integrated using the bootstrap aggregation ensemble technique.
Finally, the efficiency of the proposed scheme is investigated using the
latest IIoT security dataset Edge-IIoTset. The main contributions of the
article are summarized in the following.

• First, the Edge-IIoTset dataset is preprocessed by removing unnec-
essary feature columns and encoding categorical data. After that,
the complete preprocessed dataset is transformed into an image
dataset, enabling easy learning to distinguish various cyberattack
patterns.

• A highly efficient DTL-based intrusion detection scheme is pro-
posed to detect a wide range of cyberattacks in IIoT networks. The
proposed scheme is based on seven advanced pre-trained CNN
architectures. Furthermore, all these architectures are optimally
trained using GA. Finally, the outputs of the five best-performing
models are integrated through the bootstrap aggregation ensem-
ble technique.

• The proposed framework is rigorously evaluated through a com-
prehensive experimental performance analysis. The evaluation
includes assessing the effectiveness of the framework in both
binary and multiclass scenarios. This analysis provides valuable
insights into the system’s performance, demonstrating its robust-
ness and efficacy in detecting a wide range of cyberattacks in IIoT
networks.

The remainder of the article is structured as follows. Section 2
riefly examines the most recent cutting-edge transfer learning-based
DSs for IoT/IIoT networks. Section 3 presents the proposed frame-
ork, including the description of the dataset, its preprocessing, image

ransformation, training and testing of DL models, hyperparameter
ptimization, and ensembling. Section 4 contains the experimentation
rocess, a brief discussion of results, and a comparison with existing
tudies. Finally, Section 5 concludes the research and presents some
uture directions.

. Related work

Transfer learning (TL) is an emerging paradigm to develop and
nvestigate the latest intrusion detection schemes for IoT/IIoT appli-
ations. This section briefly discusses some of the latest state-of-the-art
2

L-based schemes for cybersecurity applications.
Traditional IDSs are facing new and emerging challenges in terms
of accuracy, efficiency, and robustness. Li et al. (2021) developed a
TL-based scheme for intrusion detection in the Internet of Vehicles
(IoV). The authors introduced a local update scheme that obtained
pseudo-labels of unlabeled data in new attacks through pre-classifiers
and utilized the pseudo-labeled data for multiple rounds of TL. The
experimental results indicated that the proposed TL-based approach
attained an accuracy of around 92%. Mehedi et al. (2022) developed a
DTL-based IDS for IoT networks. The suggested scheme is based on an
efficient attribute selection and dependable DTL-based ResNet model
evaluation with real-world data. The efficiency of the designed model
is investigated by conducting extensive experiments on the ToN_IoT
dataset. Gou et al. (2009) presented a distributed transfer learning
technique for intrusion detection in IoT. The suggested frameworks
introduced TL into distributing network boosting algorithms for in-
structing the attack learning with poor performance. The proposed
scheme is evaluated using KDD Cup 99 dataset and attained an attack
detection accuracy of 97.3%. Mehedi et al. (2021) developed a DTL
based IDS for In-Vehicle Network (IVN). The main contribution of this
work is developing an attribute selection method to identify anomalous
messages and accurately detect normal and malicious activities through
the DTL-based LeNet model. The proposed scheme is investigated on a
personal synthetic dataset and achieved an accuracy of 98.10%.

The advancement of DTL and its impactful outcomes in multiple
fields has opened several paths to develop effective cybersecurity so-
lutions for IoT networks. Bierbrauer et al. (2023) proposed a TL-based
framework for network intrusion detection using raw network traffic.
The authors utilized two datasets, UNSW-NB15, and CICIDS2017, to
train one-dimensional CNN combined with a retained random forest
model. The experimental results indicated that the proposed scheme
attained an attack detection accuracy of 96.89%. Xu et al. (2021)
designed a privacy-preserving multisource TL-based IDS. First, a Pail-
lier homomorphic encryption scheme is utilized to encrypt the model
trained from different resources. After that, a multisource TL-based
IDS is proposed based on XGBoost. The experimental results demon-
strated that the suggested approach effectively transferred encryption
models from various source domains to the target domain with an
accuracy of 93.01%. Singh et al. (2021) presented a DTL model to
detect the darknet network from the network traffic data. The authors
transformed the time-based features into color images to attain more
accurate results and fed them into a pre-trained model for optimal
feature extraction. The authors used ten pre-trained models with three
baseline classifiers to identify the optimized pre-trained network. Ex-
periment results illustrated that the VGG19 attained the highest attack
detection accuracy of 96%. Abosata et al. (2023) proposed a federated-
transfer-learning-assisted customized distributed IDS (FT-CID) model
for intrusion detection in IoT. The proposed model contains three main
stages: dataset collection, FTL-assisted edge IDS learning, and intrusion
detection. In the dataset collection stage, the central server initializes
the FT-CID model with a predefined model. It constructs a local model
by observing the unique features of different low-power and lossy
networks (RPL)-IoTs. Then, the edge IDSs are trained using local and
globally shared parameters, updating them through transfer learning.
As a result, the FT-CID achieved high RPL security by utilizing local
and global parameters and attained an attack detection accuracy of
85.52%. Yan et al. (2023) presented TL-CNN-IDS, an intrusion detec-
tion system based on transfer and ensemble learning. The proposed
approach involves preprocessing the dataset using IG-FCBF feature
engineering methods and converting it into an image format suitable
for input to CNN models. Three CNN models were selected as the
base models, and the Tree-Structured Parzen Estimator algorithm was
used for hyperparameter optimization. The optimized CNN model was
then integrated using confidence averaging in ensemble learning. The
proposed scheme attained impressive accuracy of 99.85% and 99.53%

for the CICIDS2017 and NSL-KDD datasets, respectively.



Journal of Network and Computer Applications 221 (2024) 103784S. Latif et al.
Several research works have been proposed in the literature related
to proposing novel DTL schemes for intrusion detection in IoT net-
works. However, the existing schemes discussed in the literature have
a few limitations. First, most proposed schemes only focused on de-
tecting a limited number of cyberattacks. Researchers utilized the old-
generation datasets for the evaluation of their schemes. These datasets
do not demonstrate the true IIoT environment. To overcome this is-
sue, we selected the latest IIoT cybersecurity dataset Edge-IIoTset for
our experiments. With this dataset, the proposed scheme successfully
classified 14 classes of cyberattacks. The second major shortcoming of
the existing research is the limited device profiling. In the proposed
scheme, the utilized cybersecurity dataset considers the behavior of
10 IoT devices to enhance the integrity characteristics of the pro-
posed model. Third, most studies consider one or a few pre-trained
models in their schemes. This affected the attack detection accuracy
and robustness of their schemes. The proposed scheme utilized 7 pre-
trained CNN architectures and the hyperparameter optimization of each
model through GA. After training, the five best-performing models were
selected and integrated through the bootstrap aggregation ensemble
technique. This technique increases the robustness and attack detection
accuracy of the proposed framework.

3. The proposed framework

This section presents the overall research methodology of the pro-
posed framework. First, it describes the dataset, data preprocessing, and
transformation. After that, it briefly discusses the DTL, hyperparam-
eter optimization, and ensembling. A block diagram of the proposed
framework is presented in Fig. 1.

3.1. Dataset description

In the proposed framework, we utilized the latest, most realistic,
and comprehensive cybersecurity dataset for IoT and IIoT applications.
The Edge-IIoTset dataset is generated by Ferrag et al. (2022b) and can
be publicly accessed from Ferrag et al. (2022a) for research purposes.
This dataset was generated by developing a realistic IIoT environment
containing more than 10 types of IoT devices, including temperature
and humidity sensors, ultrasonic sensors, water level detectors, soil
moisture sensors, flame sensors, pH sensors, and heart rate sensors.
Moreover, it contains 14 attack categories related to IIoT connectivity
protocols. The class distribution of the Edge-IIoTset is presented in
Fig. 2.

3.2. Dataset preprocessing

Data preprocessing plays an important role in the optimal training
of any ML/DL model. The original Edge_IIoTset dataset contains 62
features and 15 classes. After loading the dataset, first, we checked
the NaN values in the dataset. This dataset has no NaN values. In the
second stage, 815 duplicate rows are removed, which is just 0.037%
of the total dataset. In the third stage, we removed some unneces-
sary feature columns that do not play any significant role in output
predictions. These feature columns include ‘‘frame.time’’, ‘‘ip.dst_host’’,
‘‘ip.src_host’’, ‘‘arp.src.proto_ipv4’’, ‘‘http.file_data’’, ‘‘arp.dst.proto_
ipv4’’, ‘‘http.request.full_uri’’, ‘‘http.request.uri.query’’, ‘‘icmp.transmit_
timestamp’’, ‘‘tcp.payload’’, ‘‘tcp.options’’, ‘‘tcp.srcport’’, ‘‘udp.port’’,
‘‘tcp.dstport’’, and ‘‘mqtt.msg’’. After dropping these columns, the new
dataset contains 1909671 rows and 47 columns. In the new dataset,
the 8 features column contains object data type. We applied dummy
encoding to 7 feature columns except ‘‘Attack_type’’ These columns
include ‘‘http.request.method’’, ‘‘http.referer’’, ‘‘http.request.version’’,
‘‘dns.qry.name.len’’, ‘‘mqtt.conack.flags’’, ‘‘mqtt.protoname’’, and
‘‘mqtt.topic’’. After applying dummy encoding, the new dataset con-
tains 1909671 rows and 96 columns. This dataset is finally exported as
a CSV file.
3

Fig. 1. Workflow of the proposed DTL intrusion detection framework.

Fig. 2. Attacks distribution in Edge-IIoTset dataset.



Journal of Network and Computer Applications 221 (2024) 103784S. Latif et al.

3

c
d
t
t
t
t
I
t
r
t
e

o
d
w
A
p
l
a
a
S
D
F
c

3

c
C
s
l
l
t
d
c
g

t
f
i
l
a
T
u
c
t

Fig. 3. Representative samples from the transformed Edge-IIoTset dataset.

.3. Dataset transformation

In the proposed DTL model, we used the pre-trained CNN ar-
hitectures. As CNN models generally work better for image-based
atasets. The preprocessed Edge-IIoTset contains tabular data; we need
o transform it into an image-based dataset. The first stage of data
ransformation is normalization. As image pixel values vary from 0
o 255, we need to map the preprocessed dataset in the range of 0
o 255. There are several techniques available for data normalization.
n the designed IDS, the quantile normalization technique is utilized
o transform the feature distribution to a normal distribution and
ecalculates all the feature values based on a normal distribution. In
he results, most feature values remain close to the median values that
fficiently handle the outliers (Lokman et al., 2020).

After normalization, the samples are transformed into blocks based
n the feature sizes of the dataset. The preprocessed Edge-IIoTset
ataset contains 95 columns. Each block of 285 successive samples
ith 95 columns is transformed into a color image shape of 95 × 95x3.
fter transformation, all the images are categorized based on the attack
atterns. If all the samples in an image are normal, this image is
abeled ‘‘Normal’’. If the image contains attack samples, it is labeled
s this chunk’s most frequent attack type. For Edge-IIoTset, images
re labeled in14 attack categories including DDoS_UDP, DDoS_ICMP,
QL_injection, DDoS_TCP, Vulnerability_scanner, Password,
DoS_HTTP, Uploading, Backdoor, Port_Scanning, XSS, Ransomware,
ingerprinting, and MITM. The representative samples for each attack
ategory in Edge-IIoTset are presented in Fig. 3.

.4. Deep transfer learning with CNN

CNN is a widely used DL architecture for image recognition and
lassification applications. The images can be directly provided to the
NN architectures without further feature extraction and data recon-
truction operations (Song et al., 2020). A generic CNN contains three
ayers: convolutional, pooling, and fully connected. The convolutional
ayer enables the automatic feature extraction from images through
he convolution process. The pooling layers facilitate complexity re-
uction without compromising the important information using local
orrelations. Finally, a fully connected layer integrates all features and
enerates output.

DTL is the weight transfer of the DL model trained on one dataset
o another (Shao et al., 2018). The DTL approach has been success-
ully employed for several image processing and classification tasks
n the existing literature. The bottom layers of CNN models often
earn basic feature patterns that apply to various tasks. The features
cquired by the top layer of the model are specific to the dataset.
herefore, the bottom layers of CNN architectures can be directly
tilized for various tasks (Shao et al., 2018). In addition, fine-tuning
an increase DTL model performance. The majority of the layers of
4

he pre-trained architectures are frozen throughout this process. Still,
some of the top layers of these architectures are unfrozen to retain the
model with new datasets. Fine-tuning allows the models to adjust the
pre-trained architecture’s higher-order features to match the targeted
dataset better (Shao et al., 2018).

In the proposed DTL framework, seven CNN architectures, includ-
ing Xception, VGG16, VGG19, Inception, InceptionResNetV2, Efficient-
NetB7, and EfficientNetV2L, are selected. These CNN architectures have
been pre-trained on the ImageNet dataset and demonstrate promis-
ing results for generic image classification tasks. The ImageNet is a
popular dataset for image processing applications with more than one
million images of 1000 classes (Morid et al., 2021). VGG16 and VGG19
were developed and trained on ImageNet datasets by the University
of Oxford researchers (Simonyan and Zisserman, 2014). The main
difference between these two VGG models is the number of layers and
parameters, including weights and biases. VGG16 is a 16-layer CNN,
and VGG is a 19-layer CNN architecture. VGG19 has more layers and
parameters, making it a more complex and powerful architecture and
computationally intensive. Both of these models are widely utilized for
multiple image classification tasks.

CNN incorporates inception modules to provide more efficient com-
puting and deeper networks by dimensionality reduction with attacked
1 × 1 convolutions. Inception modules were specifically developed to
solve the issues of high computational cost and overfitting. In CNN,
these modules use various kernel filter sizes and arrange them to oper-
ate at the same level rather than stacking them sequentially (Szegedy
et al., 2016). Xception is a deep CNN architecture with Depthwise
Separable Convolutions (DSC). Google researchers introduced this ar-
chitecture, which interprets inception modules in CNN as an interme-
diary step between ordinary convolution and DSC operation (Chollet,
2017). The resource requirements of the Xception model are some-
how lower than the Inception model. Inception ResnetV2 is another
Inception modification that combines Resnet’s residual connections
into the Inception network. This 164-layer architecture can categorize
images into 1000 categories by learning rich feature representations
from a large image dataset. EfficientNet is based on the baseline net-
work created by the neural architecture search utilizing the AutoML
MNAS framework (Tan and Le, 2019). It is a CNN architecture and
scaling approach using a compound coefficient to consistently scale
all depth/width/resolution dimensions. In contrast to current prac-
tice, which randomly scales these elements, the EfficientNet scaling
technique uses a predetermined set of scaling factors to equally scale
network width, depth, and resolution. EfficientNetV2 improves the
EfficientNet by increasing training speed and parameter efficiency. This
network was created by combining scaling with neural architecture
search (Tan and Le, 2021). The primary objective is to maximize
training speed and parameter efficiency.

3.5. Hyperparameter optimization

To ensure the optimum performance of the base models for the
utilized dataset, the hyperparameters of CNN architectures must be
optimized. The optimal selection of these hyperparameters can signifi-
cantly impact the model’s performance and efficiency. The traditional
approach to finding the best hyperparameters for a specific dataset is
the manual search, which depends on their experience training the DL
models in solving similar problems. The major problem with manual
search is that it can find the best parameters for a particular dataset
and may not be the best settings for some other dataset. Therefore,
manual selection cannot be an appropriate method for hyperparameter
tuning in different experimental scenarios. More automated and guided
techniques are required to investigate different configurations of the DL
models for multiple problems.

The commonly used hyperparameter optimization (HPO) algorithms
for CNNs in existing literature are Grid Search (GS), Random Search
(RS), Bayesian Optimization (BO), and gradient-based optimization

(GO) (Yu and Zhu, 2020). Despite having several advantages, these
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techniques have a few drawbacks. GS usually requires dimensionality
reduction to avoid excessive resource utilization (Yu and Zhu, 2020).
The dimensionality reduction techniques usually compromise the ef-
fectiveness of the model. Compared to GS, the RS provides flexible
resource allocation and easy parallelization. However, the RS is still
a computationally expensive technique used for HPO to narrow the
search space (Kim and Cho, 2019). BO has higher computational ef-
ficiency compared to GS and RS. Parallel computing is difficult to
accomplish in BO since it is a sequential process in which a trial is
proposed based on prior trial experience (Victoria and Maragatham,
2021). As a result, the hardware’s performance cannot be completely
leveraged to accelerate the solution process. GO is usually used for
dealing with continuous hyperparameters and is not necessarily ap-
propriate for dealing with discrete parameters. Furthermore, GO will
increase the amount of forward and backward propagation calculations
during the training phase, increasing the model’s complexity (Zingg
et al., 2008). Genetic Algorithm (GA) is a population-based optimiza-
tion algorithm that speeds up the solution by simultaneously computing
several populations (Natesha and Guddeti, 2021). In comparison to the
aforementioned techniques, GA has no runtime constraints for data
dimension, and as an optimization technique, it can minimize the
number of model-solving iterations. The GA offers high parallelism,
and model optimization parameters can be configured as discrete or
continuous (Wu et al., 2022).

In this article, we utilized GA to obtain the best hyperparame-
ters for the optimal training of CNN models. In GA-based HPO, each
hyperparameter is represented by a chromosome. The value of the
relevant hyperparameter is assigned to the decimal value of the repre-
sentative chromosome. Several genes are encoded in binary format on
each chromosome. The genes on this chromosome are then processed
through selection, crossover, and mutation processes to determine the
best parameters. Chromosomes with high fitness function values are
more likely to be picked and passed on to the upcoming generation.
These chromosomes produce new ones with the best characteristics of
their parents in the next generation. Crossover is used to build new
chromosomes by swapping the percentages of genes from various chro-
mosomes representing the solution to acquire the mixing of solutions in
the search space (Srinivas and Patnaik, 1994). Another operation used
to make new chromosomes is a mutation, which involves randomly
modifying one or more genes on a chromosome. Crossover and muta-
tion processes ensure the diversity of subsequent generations, allowing
them to have diverse features and reducing the possibility of missing
valuable ones. The complete process of GA-based HPO is elaborated in
algorithm 1.

Algorithm 1: Genetic Algorithm for Hyperparameter
Optimization
Input population size: 𝑛

maximum number of generations: 𝑀
Output global best solution (Optimal hyperparameters): 𝐻𝑏𝑒𝑠𝑡

1 begin
2 generate an initial population of 𝑛 chromosomes

𝐻𝑖 (𝑖 = 1, 2, 3,… , 𝑛)
3 set generation counter 𝑔 = 0
4 while 𝑔 < 𝑀 do
5 train and evaluate the CNN model (population)
6 new generation (retain the fittest individual)
7 select the pair of chromosomes from the population

based on fitness
8 apply crossover operations on newly selected

chromosome
9 apply mutation on the offspring
10 replace the old population with the new one
11 𝑔 = 𝑔 + 1
12 end
13 return 𝐻𝑏𝑒𝑠𝑡
5

14 end
3.6. Bootstrap aggregation ensembling

Ensemble learning is a widely used ML technique combining multi-
ple base models to generate a robust and efficient prediction model (Al-
Sarem et al., 2020). In this article, we selected the top five performing
base models, including Generic CNN, Xception, Inception, Inseption-
ResntV2, and EffcientNetV2L. The Bootstrap Aggregation Ensemble
technique, also known as the bagging technique, is utilized to inte-
grate the output of these base models. This technique improves the
performance and accuracy of the models by dealing with variance
trade-offs and reducing the variance of a prediction model. Bagging
avoids overfitting data and can efficiently deal with higher dimensional
data. The process of bagging ensembling is elaborated in Algorithm 2.

Algorithm 2: Bootstrap Aggregation Ensemble Algorithm
Input dataset 𝐷 =

{(

𝑥1, 𝑦1
)

,
(

𝑥2, 𝑦2
)

,… ,
(

𝑥𝑛, 𝑦𝑛
)}

base learning algorithms: 
number of iterations: 𝑇

1 begin
2 for 𝑖 = 1, 2, 3,… , 𝑇 ∶
3 𝐷𝑖 = Bootstrap (𝐷) %Generate bootstrap sample from

𝐷
4 𝑏𝑖 = 

(

𝐷𝑖
)

% Train a base learner 𝑏𝑖 from the
bootstrap sample

5 end
14 end
Output 𝐸(𝑥) = argmax𝑦∈𝑌

∑𝑇
𝑖=0 𝑙

(

𝑦 = ℎ𝑡(𝑥)
)

4. Experiments and performance evaluation

This section presents the experimentation methodology and per-
formance evaluation of the proposed scheme. First, it describes the
implementation platform, performance evaluation metrics, and utilized
hyperparameters for model training. After that, a brief discussion of
the results and comparing the proposed DTL with the state-of-the-art
DTL-based IDSs is presented.

4.1. Implementation platform

The proposed DTL architecture is implemented, and performance
is investigated using Keras libraries on the Google Colab Pro plat-
form. The Google Colab Pro provides the Nvidia Tesla P100 graphic
processing unit (GPU) with 16 GB graphic card memory and 25 GB
RAM to ensure the smooth execution of DL algorithms. First, the image
datasets are loaded from Google Drive through the ImageDataGenerator
function in Keras. After that, 8 pre-trained CNN models are loaded into
the Keras platform. During the training process, we fixed the number of
epochs up to 25 and enabled the callback ‘‘save best model’’ based on
the validation accuracy. During training, all the best-performing models
are saved in Google Drive for future utilization. After the training,
all the trained models are loaded from the drive, and performance is
evaluated using the test dataset. The Google Colab notebooks of our
implementation can be accessed from our GitHub repository on request
and used for future endeavors.

4.2. Performance evaluation metrics

The performance of the proposed DTL framework is evaluated
through several performance metrics, including accuracy, precision,
recall, F1 score, Cohen Kappa score, and confusion matrices. These
metrics are calculated according to the following equation.

Accuracy is the ratio of accurate predictions to all predictions.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇 𝑟𝑢𝑒+ + 𝑇 𝑟𝑢𝑒− (1)

𝑇 𝑟𝑢𝑒+ + 𝑇 𝑟𝑢𝑒− + 𝐹𝑎𝑙𝑠𝑒+ + 𝐹𝑎𝑙𝑠𝑒−
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Table 1
Optimal hyperparameters for the training of CNN models.

Model Hyperparameters

Optimizer Activation function Dense units Dropout Fine tune layers Epochs

Xception Adamax selu 128 0.2 128 14
VGG16 Adagrad elu 128 0.5 8 11
VGG19 Adamax relu 128 0.3 10 16
Inception Adagrad relu 128 0.5 45 19
InceptionResnetV2 Adamax selu 128 0.3 451 15
EfficientNetB7 Adam selu 128 0.4 288 15
EfficientNetV2L Adam selu 128 0.5 316 19
The precision is the ratio of true positives over the sum of false
ositives and true negatives.

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑟𝑢𝑒+

𝑇 𝑟𝑢𝑒+ + 𝐹𝑎𝑙𝑠𝑒+
(2)

The recall is the ratio of correctly predicted outcomes to all predic-
ions.

𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑟𝑢𝑒+

𝑇 𝑟𝑢𝑒+ + 𝐹𝑎𝑙𝑠𝑒−
(3)

The F1 score is defined as the harmonic mean of precision and
recall.

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(4)

Cohen’s Kappa Statistic assesses the degree of agreement between
two raters or judges who classify objects into mutually exclusive cate-
gories.

𝐶𝑜ℎ𝑒𝑛𝐾𝑎𝑝𝑝𝑎𝑆𝑐𝑜𝑟𝑒 =
𝑃𝑜 − 𝑃𝑒
1 − 𝑃𝑒

(5)

here
𝑃𝑜 ∶ Relative observed agreement among raters
𝑃𝑒 : Hypothetical probability of chance agreement
The confusion matrix is used to determine the performance of the

lassification models for a given set of test data.

.3. Hyperparameters for model’s training

To ensure the optimum performance of the DL technique for the
tilized dataset, the hyperparameters must be tuned before training.
n the proposed framework, GA is incorporated for the HPO of each
ase learning model. In the proposed DTL, 8 CNN architectures with
ifferent hyperparameters are utilized. In GA, we defined the ini-
ial population of hyperparameters for each individual-based learning
odel. GA was executed for several generations and generated optimal
yperparameters for each model. All the CNN models are trained using
hese hyperparameters, and performance is investigated. The optimal
yperparameters for all base learning models are presented in Table 1.

.4. Results and discussion

The experimentation and performance analysis was performed in
wo phases. In the first phase, a range of hyperparameters was supposed
or all base learning models. All the models were trained using these
yperparameters. In the second phase, we incorporated GA to obtain
he optimal hyperparameters. Again, all the base learning models were
rained using optimal hyperparameters. For better visualization of re-
ults, we fixed the number of epochs to 25 in both scenarios. All
he best base learning models are saved in Google Drive for future
redictions. The best base learning models are saved on the criteria
f maximum validation accuracy. First, we evaluate each model’s pre-
iction performance for non-optimized scenarios. First, all the trained
odels and test datasets are loaded from Google Drive. After that, the
rediction results are obtained for each model in terms of accuracy,
recision, recall, F1, CK score, and confusion matrix. The prediction
esults of all models without HPO are summarized in Table 2. In
6

Table 2
Performance scores with non-optimized trained models.

Model Performance metrics

Accuracy Precision Recall F1 score CK score

Generic CNN 0.9210 0.9020 0.9210 0.9079 0.8415
Xception 0.9210 0.8976 0.9210 0.9022 0.8417
VGG16 0.8979 0.8979 0.8979 0.8741 0.7925
VGG19 0.9769 0.9749 0.9769 0.9741 0.9537
Inception 0.9784 0.9711 0.9784 0.9736 0.9570
InceptionResnetV2 0.8837 0.8435 0.8837 0.8522 0.7665
EfficientNetB7 0.9336 0.9225 0.9337 0.9167 0.8670
EfficientNetV2L 0.8845 0.8539 0.8845 0.8597 0.8597

Table 3
Performance scores with optimized trained models.

Model Performance metrics

Accuracy Precision Recall F1 score CK score

Generic CNN 0.9970 0.9970 0.9970 0.9969 0.9940
Xception 0.9977 0.9979 0.9977 0.9977 0.9955
VGG16 0.9955 0.9956 0.9955 0.9954 0.9910
VGG19 0.9925 0.9934 0.9925 0.9921 0.9850
Inception 0.9977 0.9979 0.9977 0.9978 0.9955
InceptionResnetV2 0.9985 0.9988 0.9985 0.9985 0.9970
EfficientNetB7 0.9821 0.9822 0.9821 0.9821 0.9641
EfficientNetV2L 0.9978 0.9979 0.9978 0.9977 0.9955

this phase, the performance of generic CNN and Xception models was
almost similar. Both of these models attained 92.10% accuracies and
successfully classified 8 types of cyberattacks. The performance score
of VGG16, InceptionResnetV2, and EfficientNetV2L was less than 90%.
The EfficientNetB7 was the third-best-performing model that attained
an attack detection accuracy of 93.36%. The next stage is to integrate
the output of some best-performing models. Here we selected the
five best-performing models based on their highest attack detection
accuracies. These models include Generic CNN, Xception, VGG19, In-
ception, and EfficientNetB7. The five best-performing models in the
non-optimized scenario are compared in bar graph Fig. 5. The outputs
of the best-performing models are integrated using the Bootstrap Aggre-
gation Ensemble technique. This technique is very useful in improving
the accuracy of the models by dealing with variance trade-offs and
reducing the variance of a prediction model. The final ensemble model’s
attack detection accuracy is attained as 97.17%. The other performance
metrics of final IDS precision, recall, F1, and CK score are 97.33%,
97.17%, 96.86%, and 94.33%, respectively. The confusion matrix of
the final ensemble model of the non-optimized scenario is presented in
Fig. 7.

In the second phase of experimentation, we obtained the optimal
hyperparameters proposed by GA. All the base learning models were
trained on these parameters. The training and testing accuracies and
losses for the optimized scenario are presented in Fig. 4. The predic-
tion results of all optimized models are summarized in Table 3. The
performance of generic CNN, InceptionResnetV2, and EfficientNetV2L
was similar. These models obtained an attack detection accuracy of
99.93% and accurately classified 13 classes with 100% accuracy. Only

6% of samples of one class were misclassified. The second model was
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Fig. 4. Training results of optimized CNN models.
Xception which attained an attack detection accuracy of 99.63% and
accurately classified 12 classes of the Edge-IIoTset dataset. The third
and fourth models are VGG16 and VGG19, respectively. The attack
detection accuracies for VGG16 and VGG19 are recorded as 99.55%
and 99.70%, respectively. The Inception model was the fourth best-
performing model, with an accuracy of 99.85%. The attack detection
accuracy of EfficientNetB7 was recorded as 98.851%, which is lower
than all other models. Same as phase 1, the output of the five best-
performing models was integrated through the Bootstrap Aggregation
7

Ensemble technique. Here five best-performing models are Generic
CNN, VGG19, Inception, InceptionResnetV2, and EfficientNetV2L. The
five best-performing models for the optimized scenario are compared in
bar graph Fig. 6. The final ensemble model attained an attack detection
accuracy of 100%. The other performance metrics of final IDS precision,
recall, F1, and CK score are also 100%. The proposed scheme accurately
classified 14 classes with 100% accuracy. The confusion matrix of
the final optimized model is presented in Fig. 8. The performance

comparison of the final ensemble models is depicted in bar graph Fig. 9.
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Fig. 5. Performance comparison of five best-performing models without HPO.

Fig. 6. Performance comparison of five best-performing models with HPO.

Fig. 7. Confusion matrix of the proposed DTL scheme without HPO.

.5. Performance comparison with related DTL-based IDSs

To evaluate the effectiveness of the proposed DTL scheme, we
ompared its performance with some of the latest TL-based intrusion
etection schemes. The DTL is not deeply explored for cybersecurity
pplications in the existing literature. Most researchers evaluated their
roposed schemes through old-generation datasets containing limited
lasses of cyberattacks. Therefore, these IDS can predict a limited
umber of cyberattacks. In the proposed framework, we utilized the
atest cybersecurity dataset, the Edge-IIoTset dataset. It was published
n 2022 and is one of the more realistic and comprehensive datasets for
enchmarking ML/DL-based intrusion detection schemes. The proposed
TL with Edge-IIoTset can predict 14 categories of cyberattacks. The

econd important comparison factor is that the existing DTL studies
8

Fig. 8. Confusion matrix of the proposed DTL scheme with HPO.

Fig. 9. Performance comparison of the final IDS models.

did not discuss the hyperparameter tuning for the training of their
models. We incorporated a well-known meta-heuristic algorithm, GA,
in the proposed scheme for hyperparameter optimization. The GA
generates the optimal range of model parameters that ensure the best
performance of each base learning model. The outcome of the pro-
posed framework is its attack detection accuracy, proving its superior
performance over other DTL-based schemes (see Table 4).

5. Conclusion

This article proposes an efficient and optimized framework for IIoT
intrusion detection. The proposed scheme employs DTL, hyperparam-
eter tuning, and ensemble learning. We used seven highly efficient
CNN architectures, including Xception, VGG16, VGG19, Inception, In-
ceptionResnetV2, EfficientNetB7, and EfficientNetV2L. To train these
architectures, Edge-IIoTset was used as the most comprehensive and
latest cybersecurity dataset. Moreover, GA is incorporated to ensure
that CNN models perform well when trained with optimal parameters.
To generate the final intrusion detection model, the outputs of the five
best models were combined via a bootstrap aggregation ensemble algo-
rithm. In order to assess the effectiveness of the proposed IDS, several
performance metrics were defined. The proposed scheme outperformed
various state-of-the-art intrusion detection systems in terms of attack
detection accuracy. Looking forward, our future research will focus on
further refining our scheme to develop a lightweight DTL that can be
deployed in edge-enabled IIoT systems. As a commitment to fostering
collaborative research, we have provided the complete source code and
transformed dataset for other researchers to utilize and contribute to
the development of DTL-based IDSs in the future.
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Table 4
Performance comparison of the proposed framework with related transfer learning-based IDSs.

Reference Proposed IDS scheme Dataset Predicted attacks Hyperparameter optimization Attack detection accuracy

Li et al. (2021) TL AWID 6 No 92%
Mehedi et al. (2022) DTL ToN_IoT 9 No 87%
Gou et al. (2009) Distributed TL Kdd Cup 99 4 No 97.3%
Mehedi et al. (2021) DTL Personally Generated Dataset 3 Yes 98.10%
Bierbrauer et al. (2023) TL UNSW-NB15, CICIDS2017 No Multiclass Evaluation No 96.89%
Xu et al. (2021) TL CTU-13 No Multiclass Evaluation No 93.01%
Singh et al. (2021) DTL ISCXVPN2016 No Multiclass Evaluation No 96%
Abosata et al. (2023) TL RPL-IIoT dataset No Multiclass Evaluation No 85.52%
Yan et al. (2023) TL CICIDS2017, NSL-KDD 7 Yes 99.85%, 99.53%
Proposed Scheme DTL Edge-IIoTset 14 Yes 100%
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