
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:1732 | https://doi.org/10.1038/s41598-024-51941-8

www.nature.com/scientificreports

Stabilized quantum‑enhanced
SIEM architecture and speed‑up
through Hoeffding tree algorithms
enable quantum cybersecurity
analytics in botnet detection
Madjid G. Tehrani 1, Eldar Sultanow 2, William J. Buchanan 3*, Malik Amir 4,
Anja Jeschke 2, Mahkame Houmani 1, Raymond Chow 1 & Mouad Lemoudden 3

For the first time, we enable the execution of hybrid quantum machine learning (HQML) methods
on real quantum computers with 100 data samples and real‑device‑based simulations with 5000
data samples, thereby outperforming the current state of research of Suryotrisongko and Musashi
from 2022 who were dealing with 1000 data samples and quantum simulators (pure software‑based
emulators) only. Additionally, we beat their reported accuracy of 76.8% by an average accuracy of
91.2%, all within a total execution time of 1687 s. We achieve this significant progress through two‑
step strategy: Firstly, we establish a stable quantum architecture that enables us to execute HQML
algorithms on real quantum devices. Secondly, we introduce new hybrid quantum binary classifiers
(HQBCs) based on Hoeffding decision tree algorithms. These algorithms speed up the process via
batch‑wise execution, reducing the number of shots required on real quantum devices compared to
conventional loop‑based optimizers. Their incremental nature serves the purpose of online large‑
scale data streaming for domain generation algorithm (DGA) botnet detection, and allows us to apply
HQML to the field of cybersecurity analytics. We conduct our experiments using the Qiskit library with
the Aer quantum simulator, and on three different real quantum devices from Azure Quantum: IonQ,
Rigetti, and Quantinuum. This is the first time these tools are combined in this manner.

In the rapidly evolving digital landscape where cyber threats are growing both in sophistication and perva-
siveness, maintaining robust cybersecurity measures has taken center stage. While traditional cybersecurity
approaches remain effective to a degree, they often struggle to keep up with the constant flood of cyber attacks1.
In recent years, machine learning has proven to be valuable in various cybersecurity applications. It’s been effec-
tive in tasks such as intrusion detection, malware classification, and anomaly detection by harnessing automated
data analysis and pattern recognition capabilities2. Now, the rise of quantum computing is paving the way for
even further improvements in cybersecurity analytics.

Quantum computing, renowned for its ability to perform intricate computations at a speed exponentially
faster than traditional computers3, shows promising potential to revolutionize cybersecurity. Quantum machine
learning, which has emerged as the intersection of quantum computing and machine learning, leverages the
distinctive properties of quantum systems to devise innovative algorithms with the potential to outperform their
classical counterparts4. In this paper, we explore the domain of quantum-enhanced cybersecurity analytics, with a
special focus on employing quantum machine learning algorithms for botnet detection—a pressing cybersecurity
issue with significant implications for network security5. By utilizing the power of quantum computing, we aim
to establish a stable architecture and capitalize on the prospective speed enhancement offered by tree algorithms,
thereby strengthening the effectiveness and efficiency of botnet detection methods.

The term Cybersecurity Analytics6,7 refers to the application of data analysis techniques to cybersecurity.
Much of the literature on this subject takes a practical approach, offering tangible examples and implementable
code for cybersecurity solutions8–10. However, a term that encapsulates cybersecurity analytics within the context

OPEN

1The George Washington University, Washington, DC, USA. 2Capgemini Deutschland GmbH, Berlin,
Germany. 3Blockpass ID Lab, Edinburgh Napier University, Edinburgh, UK. 4Université de Montréal, Montreal,
Canada. *email: b.buchanan@napier.ac.uk

http://orcid.org/0000-0002-4838-5865
http://orcid.org/0000-0001-5257-2236
http://orcid.org/0000-0003-0809-3523
http://orcid.org/0000-0001-6167-156X
http://orcid.org/0000-0001-7723-3986
http://orcid.org/0009-0005-2708-3744
http://orcid.org/0000-0002-6668-4594
http://orcid.org/0000-0002-0114-1054
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-51941-8&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:1732 | https://doi.org/10.1038/s41598-024-51941-8

www.nature.com/scientificreports/

of a quantum system is yet to be fully coined. This is a goal of our present work. In this paper, we introduce
Quantum Cybersecurity Analytics (QCA) as a field that employs quantum technology, particularly quantum
machine learning, to devise cybersecurity solutions.

We address the challenges and computational demands inherent to quantum machine learning algorithms
through the creation of a stable architecture and the adaptation of the Hoeffding tree algorithm for incremental
 learning11. The current state of the art defined in Ref.12 shows the classification with a hybrid approach of 1000
data samples on a quantum simulator from a botnet dataset with an accuracy of 76.8%, whereas the total execu-
tion time is not reported. In their study, no signs of any real-device-based simulations or even computations on
real quantum devices is shown. We outperform these achievements in the following ways:

1. We have extended the maximum sample size from 1000 to 5000 data samples in a quantum machine learn-
ing method, using real-device-based simulation through the quantum-enhanced Hoeffding Tree Classifier
(QHTC) algorithm. Our method achieves an average accuracy of 91.2% and a final-round accuracy of 100%,
all within a total computation time of 1687 s, which is on par with the total execution time observed in locally
deployed quantum simulations.

2. Furthermore, and for the first time, we implemented various HQBCs on actual quantum devices. We man-
aged to process a maximum of 100 randomly fixed data samples, achieving a top accuracy of 59.0%.

In addition, our work makes the following additional contributions:

1. We overcome the pitfalls due to the instabilities of long-running code on three different Azure Quantum
Providers by code hardening.

2. We apply the batch-wise Hoeffding Tree algorithm instead of the usual loop-wise algorithms relying on
gradient descent.

3. We compare a diverse set of binary classifiers on real devices, on real-device-based simulations as well as
quantum simulators. All experiments are conducted consistently using the IEEE Botnet DGA dataset.

4. Quantum Cybersecurity Analytics is made possible.

The source code implementation is publicly available on GitHub13.

Methods
This section emphasizes the experimental decisions made in this research. The first subsection covers the selec-
tion of quantum devices, real-device-based simulators, and quantum simulators utilized for conducting the
experiments. The second subsection provides an explanation for the selection of the IEEE Botnet DGA Dataset,
justifying its suitability for the analysis conducted in this research.

Selected platforms
For this research, we opted to use a combination of real quantum devices, real-device-based simulators, and quan-
tum simulators (pure software-based emulators) to reproduce the results reported in the study by Suryotrisongko
et al.14, which focused exclusively on quantum simulators. Additionally, our experiments were conducted on
three Azure Quantum Providers to expand the research scope beyond the utilization of IBM Quantum14. The
real quantum devices we selected for our experiments were IonQ, Rigetti, and Quantinuum. To perform quan-
tum simulations, we relied on the Qiskit SDK, utilizing Aer for simulations and real-device-based simulations.

The quantum computing configurations used in our experiments are presented in Table 1. The first column
introduces a naming convention for referencing the platforms, facilitating better comprehension of the experi-
mental results presented. Platforms functioning as real quantum devices are denoted by their respective names
followed by the letter R. Platforms that combine real quantum devices with simulations, thereby serving as real-
device-based simulators, are denoted by their names followed by the letter S.

Table 1. Naming conventions for selected platforms shown with their machine name and their device mode
(quantum simulator, real-device-based simulator, or real quantum device).

Naming convention Machine name Device mode

Aer Qiskit Quantum simulator

IonQ-R IonQ Aria Real quantum device

IonQ-R IonQ quantum simulator Real-device-based simulator

Rigetti-R Rigetti Aspen-M-3 with Qiskit Real quantum device

Rigetti-S Rigetti QVM Real-device-based simulator

Quantinuum-R Quantinuum H1-215 Real quantum device

Quantinuum-S Quantinuum H1-2 emulator16 Real-device-based simulator

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:1732 | https://doi.org/10.1038/s41598-024-51941-8

www.nature.com/scientificreports/

Description of the dataset
In this study, we evaluated our findings on DGA botnets using two datasets: the IEEE Botnet DGA Dataset14,17
and the UMUDGA dataset18. The UMUDGA dataset consists of 50 malware samples and is suitable for multiple
classifications using HQBCs. However, for the purpose of comparing our results to12, we focused solely on the
IEEE Botnet DGA Dataset in the current experiments. Nonetheless, the UMUDGA dataset may be considered
for future investigations.

The IEEE Botnet DGA Dataset comprises a total of 1,803,333 data records. For our experiments, we randomly
selected data samples from this dataset. Specifically, we used 1000 fixed random data samples for quantum
simulators, following the approach in12, and real-device-based simulators. Additionally, we utilized 100 fixed
random data samples for real quantum devices, and a separate set of 5000 fixed random data samples to test the
new algorithm on real-device-based simulators.

As described in Ref.12, we extracted seven features from the analyzed domain names in the dataset. These
features include:

1. CharLength The character length of the domain name.
2. EntropyValue The entropy value calculated using Shannon’s function with the probability distribution of

characters in the domain name.
3. RelativeEntropy The distance or similarity of a domain name to the character probability distributions of

either Alexa or DGA domain names, measured using the Kullback–Leibler divergence function.
4. MinREBotnets The minimum relative entropy with the domain names of DGA botnets.
5. InformationRadius The similarity or distance of a domain name to the domains of the ten botnet DGA

families, calculated using the Jensen-Shannon divergence function.
6. TreeNewFeature A feature generated by a decision tree algorithm that combines the features Entropy,

REAlexa, MinREBotnets, and CharLength to train a predictive model.
7. Reputation Provides information about the popularity and credibility of the website.

The summarized statistics for these features, including the mean, standard deviation, minimum, median,
maximum, skewness, and kurtosis values, are presented in Table 2.

Stable architecture for long‑running experiments
This section discusses the issues encountered during long-running experiments and presents a stabilized
architecture to address these problems. It includes the introduction of a new binary classifier and highlights
relevant implementation issues.

Reasons for instability
The current versions of Qiskit ML classifiers (qiskit-0.41.1 and qiskit-machine-learning-0.5.0), specifically
Quantum Support Vector Classifier (QSVC), Primal Estimated sub-Gradient Solver for Support Vector Machines
(Pegasos) QSVC, Variational Quantum Classifier (VQC), and Quantum Neural Network (QNN), have not been
tested for compatibility with Azure Quantum Providers such as IonQ, Rigetti, and Quantinuum. Additionally,
graceful exception handling has not been implemented. As a result, during the experimentation phase, we
frequently experienced instability, including unexpected aborts and missing error messages in long-running
notebook sessions. Code hardening revealed the following reasons for instability during experiments on real
quantum devices:

List 1: Reasons for instability

1. Issues on the real quantum devices

Table 2. Selected descriptive statistics of the IEEE Botnet DGA Dataset14 for the seven features according to
the Anderson-Darling normality test.

Feature Mean StDev Min. Median Max. Skewness Kurtosis

CharLength 17.20 6.82 4.00 16.00 73.00 0.81 0.02

EntropyValue 3.02 0.53 0.00 3.04 4.78 − 0.40 0.83

RelativeEntropy 1.66 0.82 0.20 1.55 10.10 1.63 6.91

MinREBotnets 1.28 0.57 0.00 1.23 5.99 0.84 1.24

InformationRadius 0.65 0.11 0.24 0.65 1.17 0.34 0.12

TreeNewFeature 0.45 0.34 0.00 0.35 0.99 0.38 − 1.52

Reputation 81.66 54.12 0.00 64.51 436.31 0.99 0.21

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:1732 | https://doi.org/10.1038/s41598-024-51941-8

www.nature.com/scientificreports/

(a) Failure of a single circuit run causing a cascade effect regardless of progress.
(b) Prioritization and scheduling bugs in the task queue.
(c) Maintenance downtime.
(d) Inability to deploy the quantum cloud architecture on a small scale due to insufficient or outdated

documentation.

2. Issues with the hosted Jupyter notebooks in Azure Quantum workspace

(a) Kernel failure.
(b) Low memory.
(c) Insufficient number of virtual CPUs.
(d) Lack of visibility on progress and log processing.

3. Issues in the communication between real quantum devices and notebooks
(a) Authentication and session failures.

4. Issues with the Jupyter Notebook on the client side
(a) Termination after a maximum of 24 h, regardless of CPU or RAM power.

5. Issues related to different real devices
(a) Deprecated application programming interfaces (API)s of Qiskit.

6. Issues stemming from the nature of the algorithm

(a) Excessive number of loops.
(b) Lack of code portability.
(c) Inadequate exception handling.

We discovered that the stability of computing and network elements within the architecture is the primary
limitation of cloud-based quantum computer delivery. However, none of our experiments on real quantum
devices could last longer than three weeks. We were unable to establish a stable Transport Layer Security (TLS)
connection and authentication for a 1000 random fixed data sample, leading us to select a reduced sample size of
100 random fixed data points for real quantum devices. The next subsection will present an architecture design
that addresses points (1)–(5) in List 1 of instability reasons, followed by a subsection that will discuss necessary
algorithmic changes to tackle point (6) in List 1. It is important to note that our experiments running on quantum
simulators did not exhibit any instability.

Stabilized architecture
Our enhanced architecture design addresses the instability reasons (1)–(5) in List 1. The original architecture that
led to instabilities consisted of an Azure real quantum device and an Azure component that involves an Azure
Job Management, a storage account and an authentification component. The updated architectures introduce
additional components to solve the instability issues mentioned in List 1. Experiments except QHTC are build
on the architecture displayed in Fig. 1 and QHTC experiments apply the architecture in Fig. 2. Table 3 shows a
series of steps that were executed to amend the instabilities.

The architecture for experiments except QHTC includes a preceding step in a Google Cloud instance, where
a Jupyter and Google Colab Notebook can be deployed on dedicated virtual machines to enable longer runtimes
beyond the 24-h limit. The additional Jupyter Notebook facilitates the implementation of Qiskit code changes
for exception handling specific to the algorithm and real quantum device. The Google Colab Pro+ Notebook
provides stable runs for more than 1000 random fixed data samples. Additionally, a monitoring instance of a
Google Cloud Platform (GCP) virtual machine with diverse logging capabilities aids in identifying, tracking,
and resolving errors, including authentication and session failures.

Table 3. Steps taken to address the instabilities and the resulting influence on the instability number as
displayed in List 1.

Action step Instability that was reduced

Applying the save-load-continuous training (SLCT) technique frequently. 1a, 1c, 3a

Using tree-based algorithms instead of those requiring an optimizer. 6a

Selecting PyQuil (Rigetti) for container-based deployment to evaluate HQTC. 1d

Downsizing the sample size to 100. 1b, 6a

Using Colab Pro+ deployed on a dedicated Virtual Machine (VM). 2a, 2b, 2c, 4a

Implementing incremental learning. 6a

Utilizing logging and progress monitoring. 2d

Monitoring the session token and handling token refreshment. 3a

Continuous code review (paper code) and keeping API migration up-to-date frequently. 5a, 6b

Conducting code review (Qiskit code) and implementing exception handling. 1a, 1b, 6b, 6c

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:1732 | https://doi.org/10.1038/s41598-024-51941-8

www.nature.com/scientificreports/

HQML opens the door to a new generation of Security Information and Event Management (SIEM) systems
known as quantum-enhanced SIEM (QSIEM). To illustrate the functioning of QSIEM, we present the first use
case: defending against DGA botnet attacks for Distributed Denial of Service (DDoS) at the application layer
using QSIEM. The integration of HQML with a robust SIEM like Azure Sentinel becomes highly beneficial at
OSI-layer 7 (application layer), where HTTP and DNS traffic occur. This integration enables the detection of
malicious domain names generated by DGA-Botnets for command-and-control servers, which are crucial for
coordinating DDoS attacks. By identifying and blocking traffic associated with these domains, botnets can be
prevented from receiving commands or initiating attack traffic.

Our stabilized architecture aligns with the concept of a QSIEM solution. The steps in Fig. 3 are explained
in List 2. Steps (2)–(9) are specific to training the HQML algorithm, while the productive algorithm utilizes
telemetry input data to generate a classification using Quantum SIEM and Azure Sentinel, which is then displayed
on the dashboard.

List 2: Steps in the solution architecture

 (1) Gather and preprocess the telemetry data required for the algorithm described in the next subsection.
 (2) Perform classic feature engineering as described in “Methods” section.
 (3) Deploy the algorithm for production use on Azure Quantum service.
 (4)–(7) Execute the entire circuit to and from the real quantum devices using the classical loop.
 (8) Collect all the results and accumulate the final output.
 (9) Save and update the classification algorithm.
 (10) Integrate the classification algorithm with Azure Sentinel.

Figure 1. Stabilized architecture of experiments on real quantum devices comprising of three components
Google Cloud, Azure and Azure Quantum Providers.

Figure 2. Stabilized architecture for QHTC experiments on quantum simulators Aer and Rigetti-S. The
difference in implementation originates from differences in library functionalities available on Aer and Rigetti-S.

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:1732 | https://doi.org/10.1038/s41598-024-51941-8

www.nature.com/scientificreports/

 (11) Display the results of the classification algorithm to the user.

Quantum‑enhanced Hoeffding tree classifier (QHTC)
This subsection first describes the historical development of our scientific advances in the direction of the
solution, followed by an explanation of the QHTC.

A realistic QCA solution, i.e., the QSIEM in the previous subsection, needs to be able to process online big
data streaming. Hence, we sought an incremental approach to be applied to already known HQBCs. The most
promising algorithmic candidate to reduce execution time and improve accuracy when executed on real-device-
based simulators was the PegasosQSVC, in our opinion. Due to its stochastic gradient descent (SGD) optimizer,
the PegasosQSVC performs fewer calculations by iterations and results in better generalization properties of the
trained model than conventional gradient descent19. Instead of making the PegasosQSVC truly incremental, we
applied a batch-wise strategy as an intermediate step between algorithms that need to process the entire training
or test data samples at once and incremental algorithms.

The performance of PegasosQSVC with respect to accuracy development over time is displayed in Fig. 4 for
batch sizes of 1000 as well as 100 random fixed data samples on the quantum simulator Aer. The PegasosQSVC
shows good behavior in terms of accuracy increase with the number of batches if a batch size of 1000 data samples
per batch is applied. But the real quantum devices are not able to handle 1000 data samples, but only 100 data
samples per batch, as the results in Table 4 will show. In contrast, a batch size of 100 samples will not exhibit
the appropriate increase in accuracy on real-device-based simulators or real quantum devices. Smaller batch
sizes in the range of 100 data samples require a higher number (one magnitude) of circuits to be sent to the real
quantum device, which will extend the execution time to an inappropriate level. This is the dilemma of limited
data volumes in the Noisy Intermediate-Scale Quantum (NISQ) era.

Therefore, we decided to transition to a truly incremental algorithm and apply it batch-wise to reduce the
number of shots sent to the real quantum device. The accuracy of a truly incremental algorithm will not suffer
in this way. This was the breakthrough in terms of the algorithm’s accuracy and execution time on real-device-
based simulators.

We found the algorithmic solution in a quantum-modified version of an incremental decision tree approach
called the Hoeffding tree algorithm20. It is a generation algorithm for incremental decision trees that applies the
Hoeffding bound21,22. The standard non-incremental version of the decision tree takes all data samples per leaf at
once to compute a decision criterion per leaf. In contrast, the incremental version of a decision tree can process
one data sample after another. The main advantage of this generation algorithm is that it guarantees, under
realistic assumptions, the generation of an asymptotically arbitrarily similar incremental version of a decision
tree compared to the same non-incremental version of the decision tree. Simultaneously, it maintains efficient
computation speed. Additionally, the Hoeffding bound is independent of the probability distribution of the data
samples. However, this implies the disadvantage that the Hoeffding bound, compared to distribution-dependent
bounds, requires more data samples to reach the same level of similarity between the incremental version and
non-incremental version of the decision tree.

We introduce the abbreviation HTC (Hoeffding tree classifier) for the original Hoeffding tree. Our quantum-
modified version is called the quantum-enhanced Hoeffding Tree Classifier (QHTC), as presented in algorithm 3
and described below. QHTC is a batch-wise learning procedure that applies HTC with modified input data. We
apply the HTC in an equivalent version following the HTC implementation of Ref.23 that is shown in Algorithms 1
and 2. The first step of QHTC is the mapping of the classical features of the input data to the quantum feature
space using ZFeatureMap, although other mappings are also possible. Each feature column entry in the feature
row represents a data point in quantum space (qubit) on the Bloch sphere and we want to measure the length of
the cycle connecting all qubits per feature row. The reason is that the distance between two qubits represents a
measure of how distinguishable they are. This cycle length is referred to as a ’quantum walk’ in the code.

The measurement of the cycle length relies on measuring the distance between two qubits on the Bloch sphere.
For that, each qubit is converted via wave functions to its density matrix. These density matrices are listed in the

Figure 3. Quantum-enhanced SIEM: The individual steps are marked with numbers in red circles and are
explained in List 2.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:1732 | https://doi.org/10.1038/s41598-024-51941-8

www.nature.com/scientificreports/

Figure 4. PegasosQSVC’s accuracy on quantum simulator AER with (a) a batch size of 100 data samples does
not improve its accuracy with an increased number of batches, unlike with (b) a batch size of 1000 data samples.

Table 4. Performance results in terms of accuracy and total execution time Ttotal of real quantum devices,
using 100 data samples for all runs. For each algorithm and platform, the choice of the optimizer is also shown.
The choice of feature map is ZFeatureMap for all experiments.

Algorithm and platform Optimizer

Number
of data
samples Accuracy (%) Ttotal (s)

VQC-IonQ-R COBLYA 100 50 1,325,133

VQC-Rigetti-R COBLYA 100 43 1,176,879

VQC-Quantinuum-R COBLYA 100 44 972,732

PegasosQSVC-IonQ-R SGD 100 41 156,156

PegasosQSVC–Quantinuum-R SGD 100 44 972,732

PegasosQSVC-Rigetti-R SGD 100 48 355,509

QSVC-IonQ-R COBLYA 100 53 283,325

QSVC-Quantinuum-R COBLYA 100 45 472,847

QSVC-Rigetti-R COBLYA 100 39 385,153

SamplerQNN-IonQ-R COBLYA 100 56 956,540

SamplerQNN-Quantinuum-R COBLYA 100 46 1,087,789

SamplerQNN-Rigetti-R COBLYA 100 53 1,601,895

EstimatorQNN-IonQ-R COBLYA 100 59 1,165,819

EstimatorQNN-Quantinuum-R COBLYA 100 50 1,167,143

EstimatorQNN-Rigetti-R COBLYA 100 51 1,437,085

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:1732 | https://doi.org/10.1038/s41598-024-51941-8

www.nature.com/scientificreports/

same order as the classical feature columns and the trace distance of two density matrices is applied to measure
the distance between two qubits that are neighbors on the cycle. The cycle length is determined by the order
of data points in quantum space and, hence, by the order of the classical features given in the original data set.
The determination of a distance metric that allows reordering of feature columns is left for future research. The
initialization of HTC is performed accordingly.

The batch-wise computation of an incremental decision tree reduces the number of shots sent to the real
quantum device drastically compared to usual loop-based optimizers, while not compromising its accuracy.
This provides a solution to the instability reason (6a) mentioned in List 1. It allows us to deal with the realistic
behavior of today’s real quantum devices that are prone to instability due to the noise problem inherent in today’s
NISQ devices. The execution times and the accuracy benefit accordingly, as the results in the next section show
in more detail.

Algorithm 1. The HoeffdingTreeClassifier (HTC) following implementation23.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:1732 | https://doi.org/10.1038/s41598-024-51941-8

www.nature.com/scientificreports/

Algorithm 2. TreeNode (as part of Algorithm 1).

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:1732 | https://doi.org/10.1038/s41598-024-51941-8

www.nature.com/scientificreports/

Algorithm 3. Batch-wise Learning with QHTC.

Experimental results
The experimental results for different algorithms and quantum devices are presented in the following subsections,
focusing on execution time, accuracy, and additional performance metrics for the QHTC algorithm.

Execution time and accuracy
In this section, we present the experimental results for five different binary classifiers in terms of accuracy and
execution time on quantum simulators, real-device-based simulators, and real quantum devices. The binary
classifiers are VQC, PegasosQSVC, QSVC, Sampler Circuit of a QNN (SamplerQNN) and Estimator Circuit of
a QNN (EstimatorQNN). Tables 4 and 5 showcase the accuracy, total computation time Ttotal , chosen feature

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:1732 | https://doi.org/10.1038/s41598-024-51941-8

www.nature.com/scientificreports/

map, and optimizer for various combinations of platforms and algorithms. The optimizer inherent in Pegas-
osQSVC is the SDG, all other algorithms used the optimizer Constrained Optimization by Linear Approximation
(COBYLA). The experiments on quantum simulators and real-device-based simulators were conducted with at
least 1000 random fixed data samples, while the experiments on real quantum devices used 100 data samples due
to computational limitations and instabilities. The source code implementation is publicly available on GitHub13
including a readme file showing the software library versions for all experiments.

On real quantum devices, it is the first time that HQML algorithms run stable with 100 data samples. The
PegasosQSVC performs well in terms of execution time due to its SGD optimizer which tends to converge a little
faster than non stochastic optimizers. The PegasosQSVC stands out as the superior binary classifier. However,
the algorithms in Table 4 don’t offer any quantum advantage over NISQ algorithms, whether in terms of time
or cost improvement. The data samples size of 100 is an achievement on real devices, but this is not enough for
the solution of real-life machine learning tasks of course. As the APIs of feature maps of Qiskit (see for example
https:// qiskit. org/ docum entat ion/ stubs/ qiskit. circu it. libra ry. ZFeat ureMap. html) have no endpoint to change
the quantum real device, specific implementations are needed for each algorithm. Hence, we didn’t intend to
compare QHTC over different quantum real devices. We left the implementation of additional coding routines
in order to enforce specific real quantum devices and real-device-based simulators for future investigations.

Table 5. Performance results in terms of accuracy and total execution time Ttotal of quantum simulator and
real-device-based simulator experiments, using 5000 data samples for QHTC, and 1000 data samples for all
other algorithms. For each algorithm and platform, the choice of the optimizer is also shown. The choice of
feature map is ZFeatureMap for all experiments. The QHTC achieves the accuracy result already after three out
of five batches.

Algorithm and platform Optimizer
Number of
data samples Accuracy (%) Ttotal (s)

QHTC-Rigetti-S n.a. 5000 100 1687

VQC-Aer by12 COBLYA 1000 76.8 Not reported

VQC-Aer by12 RawFeatureVector 1000 84.4 Not reported

VQC-Aer COBLYA 1000 54 4240

VQC-IonQ-S COBYLA 1000 51 957,755

VQC-Quantinuum-S COBYLA 1000 45 806,626

VQC-Rigetti-S COBYLA 1000 46 889,708

PegasosQSVC-Aer SGD 1000 90 45

PegasosQSVC-IonQ-S SGD 1000 49 113,950

PegasosQSVC-Quantinuum-S SGD 1000 49 174,416

PegasosQSVC-Rigetti-S SGD 1000 55 206,729

QSVC-Aer COBYLA 1000 87 3091

QSVC-IonQ-S COBYLA 1000 50 178,529

QSVC-Quantinuum-S COBYLA 1000 49 197,871

QSVC-Rigetti-S COBYLA 1000 45 205,877

SamplerQNN-Aer COBYLA 1000 76 374

SamplerQNN-IonQ-S COBYLA 1000 59 746,992

SamplerQNN-Quantinuum-S COBYLA 1000 48 852,774

SamplerQNN-Rigetti-S COBYLA 1000 58 656,629

EstimatorQNN-Aer COBYLA 1000 84 410

EstimatorQNN-IonQ-S COBYLA 1000 63 780,480

EstimatorQNN-Quantinuum-S COBYLA 1000 53 716,581

EstimatorQNN-Rigetti-S COBYLA 1000 54 955,654

Table 6. Metric results in terms of accuracy, F1-score and AUC for algorithm QHTC, displayed for five
batches with 1000 data samples each and their average.

Batch Accuracy (%) F1-score (%) AUC (%)

1 57.1 4.5 51.1

2 99.0 98.8 98.9

3 100.0 100.0 100.0

4 100.0 100.0 100.0

5 100.0 100.0 100.0

Average 91.2 80.7 90.0

https://qiskit.org/documentation/stubs/qiskit.circuit.library.ZFeatureMap.html

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:1732 | https://doi.org/10.1038/s41598-024-51941-8

www.nature.com/scientificreports/

On real-device-based simulators of quantum devices, it is the first time that a HQML algorithm run stable
with 5000 data samples. All experiments reported by Ref.12 are conducted with the VQC algorithm and on the
platform Aer. Among them, we show the one with the optimizer COBLYA, because we applied the same here,
and with an optimizer (RawFeatureVector) that resulted in the maximal accuracy. Both experiments applied the
variational form RealAmplitudes as we did in this study, where applicable. The PegasosQSVC on Aer exceeds
the experimental results of Ref.12 in accuracy (90%) and in addition, it yields very good execution time (45 s).
However, the QHTC algorithm outperforms all other binary classifiers in terms of accuracy, achieving perfect
accuracy of 100% already after three out of five batches. The accuracy is discussed in more detail in the next
subsection. Furthermore, QHTC exhibits significantly reduced total execution time (1687 s) of two orders of
magnitude compared to other algorithms on real-devise-based simulators. QHTC make the cost of the second
batch of 1000 data samples manageable. In contrast, other algorithms struggle to achieve the second batch. These
algorithms would still require much longer calculation time if all conditions remain stable.

The experiments conducted on real-device-based simulators and real quantum devices are considered as a
first step, and further improvements and specific implementations for each algorithm on different devices can be
explored in future research. Overall, these results demonstrate that it is possible to construct superior algorithms
for cloud-based NISQ deployments on real-device-based simulator Rigetti, achieving comparable execution
times to quantum simulators while exceeding in terms of accuracy.

Performance metrics of QHTC
We show the results of our QHTC (see algorithm 3) which is configured to run with five batches containing
1000 random fixed data samples each. We apply the feature map ZFeatureMap provided by Qiskit. Table 6
demonstrates achievements in terms of accuracy improvement. The increase in accuracy with the number of
batches meets our expectations. We obtained an average accuracy of 91.2% and a final-round accuracy of 100%
for QHTC already after three out of five batches. We used the same features and the same dataset as Ref.12 to
be able to compare our results with theirs. These features are the same features that are available in the entire
dataset itself. This may be the reason for such high accuracy. In future research, we can further improve the
metric computation to avoid over-fitting and to make it more realistic by applying a PCA analysis as well as
using a k-fold cross-validation per batch, with k = 10 for example. In addition, the features EntropyValue and
RelativeEntropy possess strong predictor properties for the entire dataset. Hence, the same issue will probably
not happen to other datasets that don’t possess very strong predictor features.

Conclusion and future work
Cybersecurity Analytics involves the collection of data to gather evidence, construct timelines, and analyze
threats, thereby enabling the design and execution of a proactive cybersecurity strategy that detects, analyzes,
and mitigates cyber threats. The next-generation Quantum Cybersecurity Analytics utilizes HQML to monitor
network activity, promptly identify resource use or network traffic changes, and address threats. This advancement
paves the way for a new generation of SIEM systems called quantum-enhanced SIEM (QSIEM). To illustrate
how QSIEM operates, we presented the first use case of defending against DGA botnet attacks for DDoS at the
application layer using quantum-enhanced SIEM.

As cybersecurity is built upon the analysis of amounts of big data, today’s NISQ era poses an obstacle for
QSIEM for cybersecurity due to its inherent instabilities that enlarge with repeated and prolonged computations.
This study found a way to overcome parts of the problem by proposing a new form of HQBCs that lead to
significant improvements in the result’s accuracy as well as the algorithm’s execution times with real-device-based
simulations compared to previous algorithms. The breakthrough was the application of a quantum-enhanced
version of the incremental Hoeffding tree algorithm in a batch-wise version in order to take account of large
amounts of incoming online stream data in addition to responding to the need for a reduced number of shots to
the real quantum device. In addition to the improved accuracy, the experimental run times in real-device-based
simulations were reduced drastically by three orders of magnitude to be in the same order as with the previous
algorithms on the quantum simulator Aer that is deployed locally.

In general, the world of quantum simulators is much more beautiful than the world of computations on real
quantum devices. This study showed for the first time that HQML algorithms were able to run stably with 100
random fixed data samples for several weeks on Azure Quantum Providers Rigetti, Quantinuum, and IonQ
together with the library Qiskit. It is the first time these tools were combined. We achieved this by code hardening
throughout the entire data flow process from the Jupyter Notebook to the real quantum devices, including all
communications and algorithm-specific implementations of APIs per real quantum device. However, future
research needs to build upon our progress in order to make the quantum computations on real devices stable
for a much larger portion than 100 random fixed data samples, being just a very small fraction of the entire IEEE
Botnet DGA Dataset. The enlargement of stability may also be pursued in the case of quantum simulations, as
we only used a random fixed sample size of 1000 in the usual HQBC case and a random fixed sample size in the
QHTC case when conducting real-device-based simulations.

Moreover, we left the implementation of additional coding routines in order to enforce all specific real
quantum devices or real-device-based simulators in the case of the quantum-enhanced version as well as the
original version of the Hoeffding tree algorithm for future investigations. In addition, the determination of a
distance metric for QHTC that allows reordering of feature columns is left for future research. Our focus of
this study in this regard was to show the excellent properties of these HQBCs for the DGA botnet classification
problem in which we succeeded.

For future research, we also suggest investing more into PegasosQSVC because if we combine quantum
supervised learning with rewarding and quantum reinforcement learning, we may have groundbreaking

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:1732 | https://doi.org/10.1038/s41598-024-51941-8

www.nature.com/scientificreports/

cybersecurity tools. Because current NISQ and hybrid models can support up to 5600 qubits, perhaps we don’t
have a 5600 network feature in cyber data. Resulting from that, even in this NISQ period, we can probably make
strong cyber use cases for existing quantum computers and HQML.

Furthermore, it is an open question as to what practical problem of which scientific fields the same approach
of quantum-enhanced Hoeffding tree algorithms might apply as well. The UMUDGA dataset may be a next
suitable choice for the DGA botnet detection field. We elaborated on a number of features of the IEEE Botnet
DGA Dataset in order to give researchers from other fields a good starting point for their investigations.

Data availability
The datasets analyzed in this study are available in the Botnet DGA Dataset repository: https:// doi. org/ 10. 21227/
rg6z- z622.

Received: 11 August 2023; Accepted: 11 January 2024

References
 1. Hussain, A., Mohamed, A. & Razali, S. A review on cybersecurity: Challenges & emerging threats. In Proc. 3rd International

Conference on Networking, Information Systems & Security 1–7 (2020).
 2. Martínez Torres, J., Iglesias Comesaña, C. & García-Nieto, P. J. Machine learning techniques applied to cybersecurity. Int. J. Mach.

Learn. Cybern. 10, 2823–2836 (2019).
 3. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (2010).
 4. Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).
 5. Xing, Y., Shu, H., Zhao, H., Li, D. & Guo, L. Survey on botnet detection techniques: Classification, methods, and evaluation. Math.

Probl. Eng. https:// doi. org/ 10. 1155/ 2021/ 66404 99 (2021).
 6. Verma, R. M. & Marchette, D. J. Cybersecurity Analytics (CRC Press, 2020).
 7. Mongeau, S. & Hajdasinski, A. Cybersecurity Data Science: Best Practices in an Emerging Profession (Springer, 2021).
 8. Parisi, A. Hands-On Artificial Intelligence for Cybersecurity (Packt Publishing, 2019).
 9. Das, R. Practical AI for Cybersecurity (CRC Press, 2021).
 10. Tsukerman, E. Machine Learning for Cybersecurity Cookbook (Packt Publishing, 2019).
 11. Muallem, A., Shetty, S., Pan, J. W., Zhao, J. & Biswal, B. Hoeffding tree algorithms for anomaly detection in streaming datasets: A

survey. J. Inf. Secur. 8, 4 (2017).
 12. Suryotrisongko, H. & Musashi, Y. Hybrid quantum deep learning and variational quantum classifier-based model for botnet DGA

attack detection. Int. J. Intell. Eng. Syst. 15, 215–224. https:// doi. org/ 10. 22266/ ijies 2022. 0630. 18 (2022).
 13. Tehrani, M. G. et al. Source Code: Enabling Quantum Cybersecurity Analytics in Botnet Detection: Stable Architecture and Speed-Up

Through Tree Algorithms. https:// github. com/ Sulta now/ quant um- botnet- detec tion (2023).
 14. Suryotrisongko, H. Botnet DGA Dataset. https:// ieee- datap ort. org/ open- access/ botnet- dga- datas et, https:// doi. org/ 10. 21227/ rg6z-

z622 (2020).
 15. Quantinuum H1-2. https:// www. quant inuum. com/ (Accessed 20 May 31) (2023).
 16. Quantinuum H1-2 Emulator. https:// www. quant inuum. com/ (Accessed 20 Mar–31 May 2023).
 17. Suryotrisongko, H. Botnet DGA detection. IEEE Code Ocean (2021).
 18. Zago, M., Pérez, M. G. & Pérez, G. M. UMUDGA: A dataset for profiling algorithmically generated domain names in botnet

detection. Data Brief. 30, 105400 (2020).
 19. Amir, I., Koren, T. & Livni, R. SGD generalizes better than GD (and regularization doesn’t help). In Proceedings of Thirty Fourth

Conference on Learning Theory, Proceedings of Machine Learning Research (eds Belkin, M. & Kpotufe, S.) 63–92 (PMLR, 2021).
 20. Domingos, P. & Hulten, G. Mining high-speed data streams. In Proc. Sixth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining 71–80 (2000).
 21. Hoeffding, W. Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963).
 22. Maron, O. & Moore, A. W. Hoeffding races: Accelerating model selection search for classification and function approximation. In

Advances in Neural Information Processing Systems Vol. 6 (eds Cowan, J. D. et al.) 59–66 (Morgan Kaufmann Publishers, 1994).
 23. Montiel, J., Read, J., Bifet, A. & Abdessalem, T. Scikit-multiflow: A multi-output streaming framework. J. Mach. Learn. Res. 19,

1–5 (2018).

Acknowledgements
The authors acknowledge support from Microsoft’s Azure Quantum for providing credits and access to the IonQ,
Quantinuum and Rigetti systems used in this paper.

Author contributions
M.T. and M.H. conceived the main ideas. M.T. and M.H. created the new software used in the work. M.T., W.B.
and M.H. analyzed the data. E.S., W.B., M.A., A.J. and R.C. discussed the results. M.T., E.S., W.B., M.A., A.J. and
M.L. wrote the manuscript text. M.T., E.S., M.A. and A.J. prepared figures and tables. M.T., E.S., W.B., M.A. and
M.L. consulted in writing the manuscript. E.S., W.B., M.A., A.J., R.C. and M.L. reviewed the manuscript. E.S.,
W.B., M.A., A.J., R.C. and M.L. helped shape the research, analysis and manuscript. E.S., A.J., R.C. and M.L.
helped supervise the project.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to W.J.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.21227/rg6z-z622
https://doi.org/10.21227/rg6z-z622
https://doi.org/10.1155/2021/6640499
https://doi.org/10.22266/ijies2022.0630.18
https://github.com/Sultanow/quantum-botnet-detection
https://ieee-dataport.org/open-access/botnet-dga-dataset
https://doi.org/10.21227/rg6z-z622
https://doi.org/10.21227/rg6z-z622
https://www.quantinuum.com/
https://www.quantinuum.com/
www.nature.com/reprints

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:1732 | https://doi.org/10.1038/s41598-024-51941-8

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by/4.0/

	Stabilized quantum-enhanced SIEM architecture and speed-up through Hoeffding tree algorithms enable quantum cybersecurity analytics in botnet detection
	Methods
	Selected platforms
	Description of the dataset

	Stable architecture for long-running experiments
	Reasons for instability
	Stabilized architecture
	Quantum-enhanced Hoeffding tree classifier (QHTC)

	Experimental results
	Execution time and accuracy
	Performance metrics of QHTC

	Conclusion and future work
	References
	Acknowledgements

