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Stabilized quantum‑enhanced 
SIEM architecture and speed‑up 
through Hoeffding tree algorithms 
enable quantum cybersecurity 
analytics in botnet detection
Madjid G. Tehrani 1, Eldar Sultanow 2, William J. Buchanan 3*, Malik Amir 4, 
Anja Jeschke 2, Mahkame Houmani 1, Raymond Chow 1 & Mouad Lemoudden 3

For the first time, we enable the execution of hybrid quantum machine learning (HQML) methods 
on real quantum computers with 100 data samples and real‑device‑based simulations with 5000 
data samples, thereby outperforming the current state of research of Suryotrisongko and Musashi 
from 2022 who were dealing with 1000 data samples and quantum simulators (pure software‑based 
emulators) only. Additionally, we beat their reported accuracy of 76.8% by an average accuracy of 
91.2%, all within a total execution time of 1687 s. We achieve this significant progress through two‑
step strategy: Firstly, we establish a stable quantum architecture that enables us to execute HQML 
algorithms on real quantum devices. Secondly, we introduce new hybrid quantum binary classifiers 
(HQBCs) based on Hoeffding decision tree algorithms. These algorithms speed up the process via 
batch‑wise execution, reducing the number of shots required on real quantum devices compared to 
conventional loop‑based optimizers. Their incremental nature serves the purpose of online large‑
scale data streaming for domain generation algorithm (DGA) botnet detection, and allows us to apply 
HQML to the field of cybersecurity analytics. We conduct our experiments using the Qiskit library with 
the Aer quantum simulator, and on three different real quantum devices from Azure Quantum: IonQ, 
Rigetti, and Quantinuum. This is the first time these tools are combined in this manner.

In the rapidly evolving digital landscape where cyber threats are growing both in sophistication and perva-
siveness, maintaining robust cybersecurity measures has taken center stage. While traditional cybersecurity 
approaches remain effective to a degree, they often struggle to keep up with the constant flood of cyber  attacks1. 
In recent years, machine learning has proven to be valuable in various cybersecurity applications. It’s been effec-
tive in tasks such as intrusion detection, malware classification, and anomaly detection by harnessing automated 
data analysis and pattern recognition  capabilities2. Now, the rise of quantum computing is paving the way for 
even further improvements in cybersecurity analytics.

Quantum computing, renowned for its ability to perform intricate computations at a speed exponentially 
faster than traditional  computers3, shows promising potential to revolutionize cybersecurity. Quantum machine 
learning, which has emerged as the intersection of quantum computing and machine learning, leverages the 
distinctive properties of quantum systems to devise innovative algorithms with the potential to outperform their 
classical  counterparts4. In this paper, we explore the domain of quantum-enhanced cybersecurity analytics, with a 
special focus on employing quantum machine learning algorithms for botnet detection—a pressing cybersecurity 
issue with significant implications for network  security5. By utilizing the power of quantum computing, we aim 
to establish a stable architecture and capitalize on the prospective speed enhancement offered by tree algorithms, 
thereby strengthening the effectiveness and efficiency of botnet detection methods.

The term Cybersecurity  Analytics6,7 refers to the application of data analysis techniques to cybersecurity. 
Much of the literature on this subject takes a practical approach, offering tangible examples and implementable 
code for cybersecurity  solutions8–10. However, a term that encapsulates cybersecurity analytics within the context 
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of a quantum system is yet to be fully coined. This is a goal of our present work. In this paper, we introduce 
Quantum Cybersecurity Analytics (QCA) as a field that employs quantum technology, particularly quantum 
machine learning, to devise cybersecurity solutions.

We address the challenges and computational demands inherent to quantum machine learning algorithms 
through the creation of a stable architecture and the adaptation of the Hoeffding tree algorithm for incremental 
 learning11. The current state of the art defined in Ref.12 shows the classification with a hybrid approach of 1000 
data samples on a quantum simulator from a botnet dataset with an accuracy of 76.8%, whereas the total execu-
tion time is not reported. In their study, no signs of any real-device-based simulations or even computations on 
real quantum devices is shown. We outperform these achievements in the following ways: 

1. We have extended the maximum sample size from 1000 to 5000 data samples in a quantum machine learn-
ing method, using real-device-based simulation through the quantum-enhanced Hoeffding Tree Classifier 
(QHTC) algorithm. Our method achieves an average accuracy of 91.2% and a final-round accuracy of 100%, 
all within a total computation time of 1687 s, which is on par with the total execution time observed in locally 
deployed quantum simulations.

2. Furthermore, and for the first time, we implemented various HQBCs on actual quantum devices. We man-
aged to process a maximum of 100 randomly fixed data samples, achieving a top accuracy of 59.0%.

In addition, our work makes the following additional contributions: 

1. We overcome the pitfalls due to the instabilities of long-running code on three different Azure Quantum 
Providers by code hardening.

2. We apply the batch-wise Hoeffding Tree algorithm instead of the usual loop-wise algorithms relying on 
gradient descent.

3. We compare a diverse set of binary classifiers on real devices, on real-device-based simulations as well as 
quantum simulators. All experiments are conducted consistently using the IEEE Botnet DGA dataset.

4. Quantum Cybersecurity Analytics is made possible.

The source code implementation is publicly available on  GitHub13.

Methods
This section emphasizes the experimental decisions made in this research. The first subsection covers the selec-
tion of quantum devices, real-device-based simulators, and quantum simulators utilized for conducting the 
experiments. The second subsection provides an explanation for the selection of the IEEE Botnet DGA Dataset, 
justifying its suitability for the analysis conducted in this research.

Selected platforms
For this research, we opted to use a combination of real quantum devices, real-device-based simulators, and quan-
tum simulators (pure software-based emulators) to reproduce the results reported in the study by Suryotrisongko 
et al.14, which focused exclusively on quantum simulators. Additionally, our experiments were conducted on 
three Azure Quantum Providers to expand the research scope beyond the utilization of IBM  Quantum14. The 
real quantum devices we selected for our experiments were IonQ, Rigetti, and Quantinuum. To perform quan-
tum simulations, we relied on the Qiskit SDK, utilizing Aer for simulations and real-device-based simulations.

The quantum computing configurations used in our experiments are presented in Table 1. The first column 
introduces a naming convention for referencing the platforms, facilitating better comprehension of the experi-
mental results presented. Platforms functioning as real quantum devices are denoted by their respective names 
followed by the letter R. Platforms that combine real quantum devices with simulations, thereby serving as real-
device-based simulators, are denoted by their names followed by the letter S.

Table 1.  Naming conventions for selected platforms shown with their machine name and their device mode 
(quantum simulator, real-device-based simulator, or real quantum device).

Naming convention Machine name Device mode

Aer Qiskit Quantum simulator

IonQ-R IonQ Aria Real quantum device

IonQ-R IonQ quantum simulator Real-device-based simulator

Rigetti-R Rigetti Aspen-M-3 with Qiskit Real quantum device

Rigetti-S Rigetti QVM Real-device-based simulator

Quantinuum-R Quantinuum H1-215 Real quantum device

Quantinuum-S Quantinuum H1-2  emulator16 Real-device-based simulator
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Description of the dataset
In this study, we evaluated our findings on DGA botnets using two datasets: the IEEE Botnet DGA  Dataset14,17 
and the UMUDGA  dataset18. The UMUDGA dataset consists of 50 malware samples and is suitable for multiple 
classifications using HQBCs. However, for the purpose of comparing our results  to12, we focused solely on the 
IEEE Botnet DGA Dataset in the current experiments. Nonetheless, the UMUDGA dataset may be considered 
for future investigations.

The IEEE Botnet DGA Dataset comprises a total of 1,803,333 data records. For our experiments, we randomly 
selected data samples from this dataset. Specifically, we used 1000 fixed random data samples for quantum 
simulators, following the approach  in12, and real-device-based simulators. Additionally, we utilized 100 fixed 
random data samples for real quantum devices, and a separate set of 5000 fixed random data samples to test the 
new algorithm on real-device-based simulators.

As described in Ref.12, we extracted seven features from the analyzed domain names in the dataset. These 
features include: 

1. CharLength The character length of the domain name.
2. EntropyValue The entropy value calculated using Shannon’s function with the probability distribution of 

characters in the domain name.
3. RelativeEntropy The distance or similarity of a domain name to the character probability distributions of 

either Alexa or DGA domain names, measured using the Kullback–Leibler divergence function.
4. MinREBotnets The minimum relative entropy with the domain names of DGA botnets.
5. InformationRadius The similarity or distance of a domain name to the domains of the ten botnet DGA 

families, calculated using the Jensen-Shannon divergence function.
6. TreeNewFeature A feature generated by a decision tree algorithm that combines the features Entropy, 

REAlexa, MinREBotnets, and CharLength to train a predictive model.
7. Reputation Provides information about the popularity and credibility of the website.

The summarized statistics for these features, including the mean, standard deviation, minimum, median, 
maximum, skewness, and kurtosis values, are presented in Table 2.

Stable architecture for long‑running experiments
This section discusses the issues encountered during long-running experiments and presents a stabilized 
architecture to address these problems. It includes the introduction of a new binary classifier and highlights 
relevant implementation issues.

Reasons for instability
The current versions of Qiskit ML classifiers (qiskit-0.41.1 and qiskit-machine-learning-0.5.0), specifically 
Quantum Support Vector Classifier (QSVC), Primal Estimated sub-Gradient Solver for Support Vector Machines 
(Pegasos) QSVC, Variational Quantum Classifier (VQC), and Quantum Neural Network (QNN), have not been 
tested for compatibility with Azure Quantum Providers such as IonQ, Rigetti, and Quantinuum. Additionally, 
graceful exception handling has not been implemented. As a result, during the experimentation phase, we 
frequently experienced instability, including unexpected aborts and missing error messages in long-running 
notebook sessions. Code hardening revealed the following reasons for instability during experiments on real 
quantum devices: 

List 1: Reasons for instability

1. Issues on the real quantum devices 

Table 2.  Selected descriptive statistics of the IEEE Botnet DGA  Dataset14 for the seven features according to 
the Anderson-Darling normality test.

Feature Mean StDev Min. Median Max. Skewness Kurtosis

CharLength 17.20 6.82 4.00 16.00 73.00 0.81 0.02

EntropyValue 3.02 0.53 0.00 3.04 4.78 − 0.40 0.83

RelativeEntropy 1.66 0.82 0.20 1.55 10.10 1.63 6.91

MinREBotnets 1.28 0.57 0.00 1.23 5.99 0.84 1.24

InformationRadius 0.65 0.11 0.24 0.65 1.17 0.34 0.12

TreeNewFeature 0.45 0.34 0.00 0.35 0.99 0.38 − 1.52

Reputation 81.66 54.12 0.00 64.51 436.31 0.99 0.21
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(a) Failure of a single circuit run causing a cascade effect regardless of progress.
(b) Prioritization and scheduling bugs in the task queue.
(c) Maintenance downtime.
(d) Inability to deploy the quantum cloud architecture on a small scale due to insufficient or outdated 

documentation.

2. Issues with the hosted Jupyter notebooks in Azure Quantum workspace 

(a) Kernel failure.
(b) Low memory.
(c) Insufficient number of virtual CPUs.
(d) Lack of visibility on progress and log processing.

3. Issues in the communication between real quantum devices and notebooks 
(a) Authentication and session failures.

4. Issues with the Jupyter Notebook on the client side 
(a) Termination after a maximum of 24 h, regardless of CPU or RAM power.

5. Issues related to different real devices 
(a) Deprecated application programming interfaces (API)s of Qiskit.

6. Issues stemming from the nature of the algorithm 

(a) Excessive number of loops.
(b) Lack of code portability.
(c) Inadequate exception handling.

We discovered that the stability of computing and network elements within the architecture is the primary 
limitation of cloud-based quantum computer delivery. However, none of our experiments on real quantum 
devices could last longer than three weeks. We were unable to establish a stable Transport Layer Security (TLS) 
connection and authentication for a 1000 random fixed data sample, leading us to select a reduced sample size of 
100 random fixed data points for real quantum devices. The next subsection will present an architecture design 
that addresses points (1)–(5) in List 1 of instability reasons, followed by a subsection that will discuss necessary 
algorithmic changes to tackle point (6) in List 1. It is important to note that our experiments running on quantum 
simulators did not exhibit any instability.

Stabilized architecture
Our enhanced architecture design addresses the instability reasons (1)–(5) in List 1. The original architecture that 
led to instabilities consisted of an Azure real quantum device and an Azure component that involves an Azure 
Job Management, a storage account and an authentification component. The updated architectures introduce 
additional components to solve the instability issues mentioned in List 1. Experiments except QHTC are build 
on the architecture displayed in Fig. 1 and QHTC experiments apply the architecture in Fig. 2. Table 3 shows a 
series of steps that were executed to amend the instabilities.

The architecture for experiments except QHTC includes a preceding step in a Google Cloud instance, where 
a Jupyter and Google Colab Notebook can be deployed on dedicated virtual machines to enable longer runtimes 
beyond the 24-h limit. The additional Jupyter Notebook facilitates the implementation of Qiskit code changes 
for exception handling specific to the algorithm and real quantum device. The Google Colab Pro+ Notebook 
provides stable runs for more than 1000 random fixed data samples. Additionally, a monitoring instance of a 
Google Cloud Platform (GCP) virtual machine with diverse logging capabilities aids in identifying, tracking, 
and resolving errors, including authentication and session failures.

Table 3.  Steps taken to address the instabilities and the resulting influence on the instability number as 
displayed in List 1.

Action step Instability that was reduced

Applying the save-load-continuous training (SLCT) technique frequently. 1a, 1c, 3a

Using tree-based algorithms instead of those requiring an optimizer. 6a

Selecting PyQuil (Rigetti) for container-based deployment to evaluate HQTC. 1d

Downsizing the sample size to 100. 1b, 6a

Using Colab Pro+ deployed on a dedicated Virtual Machine (VM). 2a, 2b, 2c, 4a

Implementing incremental learning. 6a

Utilizing logging and progress monitoring. 2d

Monitoring the session token and handling token refreshment. 3a

Continuous code review (paper code) and keeping API migration up-to-date frequently. 5a, 6b

Conducting code review (Qiskit code) and implementing exception handling. 1a, 1b, 6b, 6c



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1732  | https://doi.org/10.1038/s41598-024-51941-8

www.nature.com/scientificreports/

HQML opens the door to a new generation of Security Information and Event Management (SIEM) systems 
known as quantum-enhanced SIEM (QSIEM). To illustrate the functioning of QSIEM, we present the first use 
case: defending against DGA botnet attacks for Distributed Denial of Service (DDoS) at the application layer 
using QSIEM. The integration of HQML with a robust SIEM like Azure Sentinel becomes highly beneficial at 
OSI-layer 7 (application layer), where HTTP and DNS traffic occur. This integration enables the detection of 
malicious domain names generated by DGA-Botnets for command-and-control servers, which are crucial for 
coordinating DDoS attacks. By identifying and blocking traffic associated with these domains, botnets can be 
prevented from receiving commands or initiating attack traffic.

Our stabilized architecture aligns with the concept of a QSIEM solution. The steps in Fig. 3 are explained 
in List 2. Steps (2)–(9) are specific to training the HQML algorithm, while the productive algorithm utilizes 
telemetry input data to generate a classification using Quantum SIEM and Azure Sentinel, which is then displayed 
on the dashboard. 

List 2: Steps in the solution architecture

 (1) Gather and preprocess the telemetry data required for the algorithm described in the next subsection.
 (2) Perform classic feature engineering as described in “Methods” section.
 (3) Deploy the algorithm for production use on Azure Quantum service.
 (4)–(7) Execute the entire circuit to and from the real quantum devices using the classical loop.
 (8) Collect all the results and accumulate the final output.
 (9) Save and update the classification algorithm.
 (10) Integrate the classification algorithm with Azure Sentinel.

Figure 1.  Stabilized architecture of experiments on real quantum devices comprising of three components 
Google Cloud, Azure and Azure Quantum Providers.

Figure 2.  Stabilized architecture for QHTC experiments on quantum simulators Aer and Rigetti-S. The 
difference in implementation originates from differences in library functionalities available on Aer and Rigetti-S.
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 (11) Display the results of the classification algorithm to the user.

Quantum‑enhanced Hoeffding tree classifier (QHTC)
This subsection first describes the historical development of our scientific advances in the direction of the 
solution, followed by an explanation of the QHTC.

A realistic QCA solution, i.e., the QSIEM in the previous subsection, needs to be able to process online big 
data streaming. Hence, we sought an incremental approach to be applied to already known HQBCs. The most 
promising algorithmic candidate to reduce execution time and improve accuracy when executed on real-device-
based simulators was the PegasosQSVC, in our opinion. Due to its stochastic gradient descent (SGD) optimizer, 
the PegasosQSVC performs fewer calculations by iterations and results in better generalization properties of the 
trained model than conventional gradient  descent19. Instead of making the PegasosQSVC truly incremental, we 
applied a batch-wise strategy as an intermediate step between algorithms that need to process the entire training 
or test data samples at once and incremental algorithms.

The performance of PegasosQSVC with respect to accuracy development over time is displayed in Fig. 4 for 
batch sizes of 1000 as well as 100 random fixed data samples on the quantum simulator Aer. The PegasosQSVC 
shows good behavior in terms of accuracy increase with the number of batches if a batch size of 1000 data samples 
per batch is applied. But the real quantum devices are not able to handle 1000 data samples, but only 100 data 
samples per batch, as the results in Table 4 will show. In contrast, a batch size of 100 samples will not exhibit 
the appropriate increase in accuracy on real-device-based simulators or real quantum devices. Smaller batch 
sizes in the range of 100 data samples require a higher number (one magnitude) of circuits to be sent to the real 
quantum device, which will extend the execution time to an inappropriate level. This is the dilemma of limited 
data volumes in the Noisy Intermediate-Scale Quantum (NISQ) era.

Therefore, we decided to transition to a truly incremental algorithm and apply it batch-wise to reduce the 
number of shots sent to the real quantum device. The accuracy of a truly incremental algorithm will not suffer 
in this way. This was the breakthrough in terms of the algorithm’s accuracy and execution time on real-device-
based simulators.

We found the algorithmic solution in a quantum-modified version of an incremental decision tree approach 
called the Hoeffding tree  algorithm20. It is a generation algorithm for incremental decision trees that applies the 
Hoeffding  bound21,22. The standard non-incremental version of the decision tree takes all data samples per leaf at 
once to compute a decision criterion per leaf. In contrast, the incremental version of a decision tree can process 
one data sample after another. The main advantage of this generation algorithm is that it guarantees, under 
realistic assumptions, the generation of an asymptotically arbitrarily similar incremental version of a decision 
tree compared to the same non-incremental version of the decision tree. Simultaneously, it maintains efficient 
computation speed. Additionally, the Hoeffding bound is independent of the probability distribution of the data 
samples. However, this implies the disadvantage that the Hoeffding bound, compared to distribution-dependent 
bounds, requires more data samples to reach the same level of similarity between the incremental version and 
non-incremental version of the decision tree.

We introduce the abbreviation HTC (Hoeffding tree classifier) for the original Hoeffding tree. Our quantum-
modified version is called the quantum-enhanced Hoeffding Tree Classifier (QHTC), as presented in algorithm 3 
and described below. QHTC is a batch-wise learning procedure that applies HTC with modified input data. We 
apply the HTC in an equivalent version following the HTC implementation of Ref.23 that is shown in Algorithms 1 
and 2. The first step of QHTC is the mapping of the classical features of the input data to the quantum feature 
space using ZFeatureMap, although other mappings are also possible. Each feature column entry in the feature 
row represents a data point in quantum space (qubit) on the Bloch sphere and we want to measure the length of 
the cycle connecting all qubits per feature row. The reason is that the distance between two qubits represents a 
measure of how distinguishable they are. This cycle length is referred to as a ’quantum walk’ in the code.

The measurement of the cycle length relies on measuring the distance between two qubits on the Bloch sphere. 
For that, each qubit is converted via wave functions to its density matrix. These density matrices are listed in the 

Figure 3.  Quantum-enhanced SIEM: The individual steps are marked with numbers in red circles and are 
explained in List 2.
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Figure 4.  PegasosQSVC’s accuracy on quantum simulator AER with (a) a batch size of 100 data samples does 
not improve its accuracy with an increased number of batches, unlike with (b) a batch size of 1000 data samples.

Table 4.  Performance results in terms of accuracy and total execution time Ttotal of real quantum devices, 
using 100 data samples for all runs. For each algorithm and platform, the choice of the optimizer is also shown. 
The choice of feature map is ZFeatureMap for all experiments.

Algorithm and platform Optimizer

Number 
of data 
samples Accuracy (%) Ttotal (s)

VQC-IonQ-R COBLYA 100 50 1,325,133

VQC-Rigetti-R COBLYA 100 43 1,176,879

VQC-Quantinuum-R COBLYA 100 44 972,732

PegasosQSVC-IonQ-R SGD 100 41 156,156

PegasosQSVC–Quantinuum-R SGD 100 44 972,732

PegasosQSVC-Rigetti-R SGD 100 48 355,509

QSVC-IonQ-R COBLYA 100 53 283,325

QSVC-Quantinuum-R COBLYA 100 45 472,847

QSVC-Rigetti-R COBLYA 100 39 385,153

SamplerQNN-IonQ-R COBLYA 100 56 956,540

SamplerQNN-Quantinuum-R COBLYA 100 46 1,087,789

SamplerQNN-Rigetti-R COBLYA 100 53 1,601,895

EstimatorQNN-IonQ-R COBLYA 100 59 1,165,819

EstimatorQNN-Quantinuum-R COBLYA 100 50 1,167,143

EstimatorQNN-Rigetti-R COBLYA 100 51 1,437,085
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same order as the classical feature columns and the trace distance of two density matrices is applied to measure 
the distance between two qubits that are neighbors on the cycle. The cycle length is determined by the order 
of data points in quantum space and, hence, by the order of the classical features given in the original data set. 
The determination of a distance metric that allows reordering of feature columns is left for future research. The 
initialization of HTC is performed accordingly.

The batch-wise computation of an incremental decision tree reduces the number of shots sent to the real 
quantum device drastically compared to usual loop-based optimizers, while not compromising its accuracy. 
This provides a solution to the instability reason (6a) mentioned in List 1. It allows us to deal with the realistic 
behavior of today’s real quantum devices that are prone to instability due to the noise problem inherent in today’s 
NISQ devices. The execution times and the accuracy benefit accordingly, as the results in the next section show 
in more detail.

Algorithm 1.  The HoeffdingTreeClassifier (HTC) following  implementation23.
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Algorithm 2.  TreeNode (as part of Algorithm 1).
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Algorithm 3.  Batch-wise Learning with QHTC.

Experimental results
The experimental results for different algorithms and quantum devices are presented in the following subsections, 
focusing on execution time, accuracy, and additional performance metrics for the QHTC algorithm.

Execution time and accuracy
In this section, we present the experimental results for five different binary classifiers in terms of accuracy and 
execution time on quantum simulators, real-device-based simulators, and real quantum devices. The binary 
classifiers are VQC, PegasosQSVC, QSVC, Sampler Circuit of a QNN (SamplerQNN) and Estimator Circuit of 
a QNN (EstimatorQNN). Tables 4 and 5 showcase the accuracy, total computation time Ttotal , chosen feature 
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map, and optimizer for various combinations of platforms and algorithms. The optimizer inherent in Pegas-
osQSVC is the SDG, all other algorithms used the optimizer Constrained Optimization by Linear Approximation 
(COBYLA). The experiments on quantum simulators and real-device-based simulators were conducted with at 
least 1000 random fixed data samples, while the experiments on real quantum devices used 100 data samples due 
to computational limitations and instabilities. The source code implementation is publicly available on  GitHub13 
including a readme file showing the software library versions for all experiments.

On real quantum devices, it is the first time that HQML algorithms run stable with 100 data samples. The 
PegasosQSVC performs well in terms of execution time due to its SGD optimizer which tends to converge a little 
faster than non stochastic optimizers. The PegasosQSVC stands out as the superior binary classifier. However, 
the algorithms in Table 4 don’t offer any quantum advantage over NISQ algorithms, whether in terms of time 
or cost improvement. The data samples size of 100 is an achievement on real devices, but this is not enough for 
the solution of real-life machine learning tasks of course. As the APIs of feature maps of Qiskit (see for example 
https:// qiskit. org/ docum entat ion/ stubs/ qiskit. circu it. libra ry. ZFeat ureMap. html) have no endpoint to change 
the quantum real device, specific implementations are needed for each algorithm. Hence, we didn’t intend to 
compare QHTC over different quantum real devices. We left the implementation of additional coding routines 
in order to enforce specific real quantum devices and real-device-based simulators for future investigations.

Table 5.  Performance results in terms of accuracy and total execution time Ttotal of quantum simulator and 
real-device-based simulator experiments, using 5000 data samples for QHTC, and 1000 data samples for all 
other algorithms. For each algorithm and platform, the choice of the optimizer is also shown. The choice of 
feature map is ZFeatureMap for all experiments. The QHTC achieves the accuracy result already after three out 
of five batches.

Algorithm and platform Optimizer
Number of 
data samples Accuracy (%) Ttotal (s)

QHTC-Rigetti-S n.a. 5000 100 1687

VQC-Aer  by12 COBLYA 1000 76.8 Not reported

VQC-Aer  by12 RawFeatureVector 1000 84.4 Not reported

VQC-Aer COBLYA 1000 54 4240

VQC-IonQ-S COBYLA 1000 51 957,755

VQC-Quantinuum-S COBYLA 1000 45 806,626

VQC-Rigetti-S COBYLA 1000 46 889,708

PegasosQSVC-Aer SGD 1000 90 45

PegasosQSVC-IonQ-S SGD 1000 49 113,950

PegasosQSVC-Quantinuum-S SGD 1000 49 174,416

PegasosQSVC-Rigetti-S SGD 1000 55 206,729

QSVC-Aer COBYLA 1000 87 3091

QSVC-IonQ-S COBYLA 1000 50 178,529

QSVC-Quantinuum-S COBYLA 1000 49 197,871

QSVC-Rigetti-S COBYLA 1000 45 205,877

SamplerQNN-Aer COBYLA 1000 76 374

SamplerQNN-IonQ-S COBYLA 1000 59 746,992

SamplerQNN-Quantinuum-S COBYLA 1000 48 852,774

SamplerQNN-Rigetti-S COBYLA 1000 58 656,629

EstimatorQNN-Aer COBYLA 1000 84 410

EstimatorQNN-IonQ-S COBYLA 1000 63 780,480

EstimatorQNN-Quantinuum-S COBYLA 1000 53 716,581

EstimatorQNN-Rigetti-S COBYLA 1000 54 955,654

Table 6.  Metric results in terms of accuracy, F1-score and AUC for algorithm QHTC, displayed for five 
batches with 1000 data samples each and their average.

Batch Accuracy (%) F1-score (%) AUC (%)

1 57.1 4.5 51.1

2 99.0 98.8 98.9

3 100.0 100.0 100.0

4 100.0 100.0 100.0

5 100.0 100.0 100.0

Average 91.2 80.7 90.0

https://qiskit.org/documentation/stubs/qiskit.circuit.library.ZFeatureMap.html
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On real-device-based simulators of quantum devices, it is the first time that a HQML algorithm run stable 
with 5000 data samples. All experiments reported by Ref.12 are conducted with the VQC algorithm and on the 
platform Aer. Among them, we show the one with the optimizer COBLYA, because we applied the same here, 
and with an optimizer (RawFeatureVector) that resulted in the maximal accuracy. Both experiments applied the 
variational form RealAmplitudes as we did in this study, where applicable. The PegasosQSVC on Aer exceeds 
the experimental results of Ref.12 in accuracy (90%) and in addition, it yields very good execution time (45 s). 
However, the QHTC algorithm outperforms all other binary classifiers in terms of accuracy, achieving perfect 
accuracy of 100% already after three out of five batches. The accuracy is discussed in more detail in the next 
subsection. Furthermore, QHTC exhibits significantly reduced total execution time (1687 s) of two orders of 
magnitude compared to other algorithms on real-devise-based simulators. QHTC make the cost of the second 
batch of 1000 data samples manageable. In contrast, other algorithms struggle to achieve the second batch. These 
algorithms would still require much longer calculation time if all conditions remain stable.

The experiments conducted on real-device-based simulators and real quantum devices are considered as a 
first step, and further improvements and specific implementations for each algorithm on different devices can be 
explored in future research. Overall, these results demonstrate that it is possible to construct superior algorithms 
for cloud-based NISQ deployments on real-device-based simulator Rigetti, achieving comparable execution 
times to quantum simulators while exceeding in terms of accuracy.

Performance metrics of QHTC
We show the results of our QHTC (see algorithm 3) which is configured to run with five batches containing 
1000 random fixed data samples each. We apply the feature map ZFeatureMap provided by Qiskit. Table 6 
demonstrates achievements in terms of accuracy improvement. The increase in accuracy with the number of 
batches meets our expectations. We obtained an average accuracy of 91.2% and a final-round accuracy of 100% 
for QHTC already after three out of five batches. We used the same features and the same dataset as Ref.12 to 
be able to compare our results with theirs. These features are the same features that are available in the entire 
dataset itself. This may be the reason for such high accuracy. In future research, we can further improve the 
metric computation to avoid over-fitting and to make it more realistic by applying a PCA analysis as well as 
using a k-fold cross-validation per batch, with k = 10 for example. In addition, the features EntropyValue and 
RelativeEntropy possess strong predictor properties for the entire dataset. Hence, the same issue will probably 
not happen to other datasets that don’t possess very strong predictor features.

Conclusion and future work
Cybersecurity Analytics involves the collection of data to gather evidence, construct timelines, and analyze 
threats, thereby enabling the design and execution of a proactive cybersecurity strategy that detects, analyzes, 
and mitigates cyber threats. The next-generation Quantum Cybersecurity Analytics utilizes HQML to monitor 
network activity, promptly identify resource use or network traffic changes, and address threats. This advancement 
paves the way for a new generation of SIEM systems called quantum-enhanced SIEM (QSIEM). To illustrate 
how QSIEM operates, we presented the first use case of defending against DGA botnet attacks for DDoS at the 
application layer using quantum-enhanced SIEM.

As cybersecurity is built upon the analysis of amounts of big data, today’s NISQ era poses an obstacle for 
QSIEM for cybersecurity due to its inherent instabilities that enlarge with repeated and prolonged computations. 
This study found a way to overcome parts of the problem by proposing a new form of HQBCs that lead to 
significant improvements in the result’s accuracy as well as the algorithm’s execution times with real-device-based 
simulations compared to previous algorithms. The breakthrough was the application of a quantum-enhanced 
version of the incremental Hoeffding tree algorithm in a batch-wise version in order to take account of large 
amounts of incoming online stream data in addition to responding to the need for a reduced number of shots to 
the real quantum device. In addition to the improved accuracy, the experimental run times in real-device-based 
simulations were reduced drastically by three orders of magnitude to be in the same order as with the previous 
algorithms on the quantum simulator Aer that is deployed locally.

In general, the world of quantum simulators is much more beautiful than the world of computations on real 
quantum devices. This study showed for the first time that HQML algorithms were able to run stably with 100 
random fixed data samples for several weeks on Azure Quantum Providers Rigetti, Quantinuum, and IonQ 
together with the library Qiskit. It is the first time these tools were combined. We achieved this by code hardening 
throughout the entire data flow process from the Jupyter Notebook to the real quantum devices, including all 
communications and algorithm-specific implementations of APIs per real quantum device. However, future 
research needs to build upon our progress in order to make the quantum computations on real devices stable 
for a much larger portion than 100 random fixed data samples, being just a very small fraction of the entire IEEE 
Botnet DGA Dataset. The enlargement of stability may also be pursued in the case of quantum simulations, as 
we only used a random fixed sample size of 1000 in the usual HQBC case and a random fixed sample size in the 
QHTC case when conducting real-device-based simulations.

Moreover, we left the implementation of additional coding routines in order to enforce all specific real 
quantum devices or real-device-based simulators in the case of the quantum-enhanced version as well as the 
original version of the Hoeffding tree algorithm for future investigations. In addition, the determination of a 
distance metric for QHTC that allows reordering of feature columns is left for future research. Our focus of 
this study in this regard was to show the excellent properties of these HQBCs for the DGA botnet classification 
problem in which we succeeded.

For future research, we also suggest investing more into PegasosQSVC because if we combine quantum 
supervised learning with rewarding and quantum reinforcement learning, we may have groundbreaking 
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cybersecurity tools. Because current NISQ and hybrid models can support up to 5600 qubits, perhaps we don’t 
have a 5600 network feature in cyber data. Resulting from that, even in this NISQ period, we can probably make 
strong cyber use cases for existing quantum computers and HQML.

Furthermore, it is an open question as to what practical problem of which scientific fields the same approach 
of quantum-enhanced Hoeffding tree algorithms might apply as well. The UMUDGA dataset may be a next 
suitable choice for the DGA botnet detection field. We elaborated on a number of features of the IEEE Botnet 
DGA Dataset in order to give researchers from other fields a good starting point for their investigations.

Data availability
The datasets analyzed in this study are available in the Botnet DGA Dataset repository: https:// doi. org/ 10. 21227/ 
rg6z- z622.
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