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Novel Category Discovery Without Forgetting for
Automatic Target Recognition

Heqing Huang , Fei Gao , Jinping Sun , Member, IEEE, Jun Wang , Amir Hussain , and Huiyu Zhou

Abstract—In this article, we explore a cutting-edge concept
known as class incremental learning (CIL) in novel category discov-
ery for synthetic aperture radar (SAR) targets (CNTs). This innova-
tive task involves the challenge of identifying categories within un-
labeled datasets by utilizing a provided labeled dataset as reference.
In contrast to the conventional category discover approaches, our
method introduces novel categories without relying on old labeled
classes and effectively mitigates the issue of catastrophic forgetting.
Specifically, to reduce the bias of the established categories toward
unknown ones, CNT extracts representational information via self-
supervised learning, gleaned directly from the SAR data itself to
facilitate generalization. To retain the model’s competence in clas-
sifying previously acquired knowledge, we employ a dual strategy
incorporating the rehearsal of base category feature prototypes
and the application of knowledge distillation. Our methodology
integrates multiview and pseudolabeling strategies. In addition,
we introduce a novel approach that focuses on enhancing the dis-
cernibility of class spaces. This strategy primarily ensures distinct
separation of the unlabeled classes from base class prototypes, and
imposes stringent constraints on the internal relationships among
individual samples and their corresponding perspectives. To the
best of our knowledge, this is the first study on category discovery
in the CIL scenario. The experimental results show that our method
significantly improves the performance on SAR images compared
to the previous optimal method, which indicates the effectiveness
of our method.

Index Terms—Automatic target recognition, class incremental
learning (CIL), novel category discovery, synthetic aperture radar
(SAR).

I. INTRODUCTION

IN RECENT years, deep learning [1] has made significant
progress in synthetic aperture radar (SAR) automatic target

recognition [2], [3], [4], [5], [6], [7], assisting human in Earth
observation and military surveillance. Nevertheless, this task
typically necessitates the availability of substantial annotated
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training data. In practical scenarios, obtaining annotations for
each target category is only occasionally feasible. For instance,
when movable military targets in SAR imagery undergo techno-
logical upgrades, such as the addition of turrets to tanks or the
replacement of aircraft chassis and wing structures, these mod-
ifications often result in the emergence of new strategic target
categories. However, annotating all these variants proves to be
a costly endeavor. Hence, when a batch of new, unlabeled data
from the same domain arrives, it becomes valuable to explore
methods for utilizing existing data to facilitate the discovery of
new classes.

Novel category discovery (NCD) [8] operates under the as-
sumption that the model is initially provided with a set of labeled
images, allowing it to facilitate the clustering of unlabeled
images by sharing correspondence representation information.
This task shares some similarities with zero-shot learning, as
it demands the model to accurately predict classes that were
not present during training. However, in zero-shot learning [9],
the identification of these unknown categories necessitates prior
knowledge of the additional semantic properties associated with
the unlabeled classes, which the NCD task does not require.
NCD has garnered considerable attention in recent years owing
to its practicality and diverse applications across various real-
world scenarios. As demonstrated by Han et al. [10], significant
improvements have been observed when the labeled class data
are jointly trained with labeled class images in the case of NCD.
NCD task typically involves a two-phase training approach. In
the first phase, pretraining is conducted using existing datasets,
through metric learning. The second phase involves the utiliza-
tion of clustering methods to fine tune the model on the unlabeled
data. Notably, this fine-tuning process incorporates both labeled
data from old classes and unlabeled data from new classes [see
Fig. 1(a)]. Considering the sensitivity and privacy issues in SAR
images, labeled data that are provided cannot always be readily
used. Therefore, learning new categories without reusing the
labeled data makes SAR target recognition more meaningful.
Specifically, in the context of new category discovery, when
we have a batch of labeled data and a batch of unlabeled data
available, the first stage permits flexible usage of both types
of data. Then, only the unlabeled data corresponding to the
new categories is utilized, and ensure that the model learns the
new categories without forgetting old knowledge [see Fig. 1(c)].
However, the training mode suffers from a severe catastrophic
forgetting problem [11]. This problem will require rapid adjust-
ment of model weights to accommodate new data, often resulting
in the unintentional erasure of previously acquired knowledge. It
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Fig. 1. (a) New category discovery, which identifies new classes through joint
training, with a testing emphasis on the accuracy of these newly introduced
classes. (b) CIL, staged training with testing covering new and previous classes.
(c) CNT, a strategy avoiding base category data for discovering new classes,
providing a comprehensive evaluation during testing across both the labeled
and unlabeled classes.

is worth noting that the concept of not reusing previous data has
been explored in incremental learning (IL) [12], [13]. During the
training phase, the model is trained on the initial categories to
acquire basic feature representation and classification capabili-
ties. Subsequently, new categories are introduced to the model,
and the model is adjusted to accommodate the new labeled data.
In the testing phase, the model can be evaluated on data from
both the old and new categories [see Fig. 1(b)]. A novel category
discovered in incremental scenarios is grounded in the domain of
relaxing certain assumptions underlying NCD, a task that proves
to be more challenging than NCD/IL due to the unavailability
of old class data and the labels of new classes in the incremental
phase.

The majority of research in the domain involving old and
new class recognition in SAR images has centered around class
incremental learning (CIL). For instance, Dang et al. [14] pro-
pose a novel approach, which involves a class-boundary-based
data reconstruction method. This method is designed to update
the exemplars that stores old samples, thereby preserving the
model’s previous recognition capabilities. Li et al. [15] design
new anchored class centers to aggregate the corresponding new
class features. These methods improve future learning while
attempting to retain what has been learned. Recently, there have
been few studies that have examined the problems found in new
categories of SAR images. Dai et al. [16] employ semisuper-
vised learning and open-set detection techniques to estimate
and identify unknown categories of data. Another study on
the discovery of new classes of SAR images is [17], where
they propose AutoMix to extend the neighborhood distribu-
tion and continuously motivate the discrete sample space. In
addition to the majority of general NCD methods, there are
studies that have delved into the discovery of optical image
classes in IL scenarios. NCDwf [18] for instance, employs a
mutually informative regularizer to enhance the unsupervised
discovery of new classes using latent representations, aiming to
mitigate forgetting. Another approach, ResTune [19] focuses on
performing residual fine tuning on unlabeled data to preserve
the model’s ability to identify known classes while clustering
new ones. However, it is crucial to highlight that applying these
methods directly to SAR target discovery can be challenging
due to differences in imaging methods and properties between

optical and SAR images. Notably, the utilization of certain
data enhancement strategies, such as color jittering and feature
normalization, has a detrimental impact on the performance.
Addressing the relatively underresearched problem of NCD
tasks in SAR target recognition, we present a novel approach
designed for SAR images in incremental scenarios. Our method
diverges from the traditional NCD setup by excluding base class
during the new category discovery phase, while focusing on
the performance of all categories in the test. In the first stage,
we work with a batch of labeled and unlabeled categories. The
primary goal is to leverage the labeled categories to learn the
unlabeled ones, ultimately forming a new set of clusters. We
employ self-supervised learning (SSL) [20], [21], [22] to pre-
train all available image representations, spanning both labeled
and unlabeled datasets. Specifically, the model learns features
like the texture structure inherent in the SAR image data, which,
as highlighted by Han et al. [10], exhibit remarkable transfer
capabilities. As new classes emerge, we anticipate that the model
will have a minimal inductive bias toward previously known
classes. In the second stage, we refrain from using data of the
base class. Instead, we employ the prototype from the previous
task’s base class as exemplars to mitigate catastrophic forgetting.
Sampling of features and labels from these prototypes is done
through a defined normal distribution, followed by knowledge
distillation conducted at the feature level. Finally, to ensure
the performance of new category discovery, we use multiview
and overclustering methods [23]. Overclustering encourages the
categorization head to produce more refined feature regions,
thereby enhancing the quality of unlabeled data representa-
tions. Building on this, we introduce a multiview consistency
strategy and an enhanced category separability approach. The
category separability loss is employed to increase the separation
between prototypes and features from unlabeled classes, while
consistency across multiple views is achieved by constraining
covariance and mean square error (MSE) between samples. In
conclusion, the contributions of this work are set out as follows.

1) We propose an efficient solution for the task of the SAR
novel category discovery within class increment scenarios.

2) We create self-supervised learning tasks aimed at cap-
turing the inherent information within SAR images. Fur-
thermore, we leverage feature prototypes, which can be
replayed as examples, to safeguard the model against
catastrophic forgetting.

3) We introduce a multiview consistency and enhanced sep-
arability strategy to improve the performance of new
category discovery. Our approach efficiently leverages the
consistency of samples across multiple augmented views
and emphasizes the distinctions between prototypical and
novel class features.

II. RELATED WORK

A. Self-Supervised Learning

Self-supervised learning [24], [25], [26] is a method for
acquiring task-agnostic data representations. It involves devis-
ing self-supervised tasks specific to the domain and utilizing
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abundant unlabeled data for model training, resulting in the ex-
traction of high-level representations well-suited for subsequent
tasks. Costa et al. [27] have seamlessly integrated most existing
SSL method libraries. In this study, we adopted a contrastive-
based SSL methodology [28] to facilitate model training via
the comparison of semantically identical inputs. This method
primarily involves distinguishing multiple views of a sample,
generated through diverse data augmentations, thereby project-
ing them into the representation space. In the field of SAR image
interpretation, Molini et al. [29] introduced a self-supervised
Bayesian denoising approach, demonstrating the effectiveness
of using only noisy SAR images for training. Wang et al. [30]
introduced a pseudolabeled few-shot SAR image classification
method, employing a dual network and cross-training strategy.
Xu et al. [31] introduced adversarial self-supervised learning to
SAR target recognition to maximize the similarity between SAR
images enhanced by data and their adversarial examples. These
studies collectively illustrate the feasibility of SSL techniques
in the domain of SAR target recognition.

B. Novel Category Discover (NCD)

Novel category discovery is a new research setup proposed by
Han et al. [32]. Unlike weakly supervised learning and few-shot
learning [33], [34], it involves transferring knowledge from a
set of distinct but similarly labeled category data to facilitate
learning and discovery on new, unlabeled data. There are two
main types of existing NCD work. One type [35], [36] is learned
by cross-task migration, first focusing only on labeled target
datasets, and then, exploring new classes. The other kind [10],
[37], [38] deals with labeled and unlabeled data simultaneously.
NCL as introduced in [39], brings forth two enhanced contrast
learning terms and formulates the creation of “hard negatives”
from similar samples belonging to different categories. This
approach significantly improves the learning process. UNO [23]
introduced a unified cross-entropy loss function tailored for a
novel class of discovery tasks. It is worth highlighting that this
method is a joint unified new class discovery framework that
combines joint training with labeled and unlabeled data. Our
approach does not use labeled data in the new class discovery
phase but guarantees the performance of the labeled classes as
well. Another obvious difference is that our method exploits the
features of SAR images themselves brought by unsupervised
learning. At the same time, we propose separable strategies to en-
hance the distance between old and new classes in feature space.
None of these aforementioned approaches consider the problem
of forgetting old classes in incremental scenarios. There have
also been studies of the incremental category discovery. Class-
iNCD [40] trained joint classifiers for both basic and new cat-
egories and incorporated feature-level knowledge distillation to
retain valuable information from prior knowledge. NCDwF [18]
employed the generation of pseudopotential representations as
a substitute for labeled data, whereas we utilized prototypes
derived from labeled class data while preserving an old model for
knowledge distillation. For the discovery of unlabeled classes,
NCDwf employed a regularizer based on mutual information
to enhance the unsupervised identification of new classes. In

contrast, our approach differed by utilizing a multiperspective
pseudolabeling strategy embedded within the network structure
for the discovery of new classes. ResTune [19] was specifically
designed for the category discovery performance, a setup distinct
from our study, which took a broader focus on performance
across all categories. In ResTune, distillation loss was employed
to ensure the similarity of knowledge learned from both old
and new categories, facilitating the migration of knowledge
from the old model to the new one. Unlike them, our study
employed distillation to ensure sustained performance in the
old categories. Grow and Merge [41] introduced a multistage
category increment and applied it to various incremental discov-
ery settings. This method trained a dynamic network for NCD,
where newly discovered categories were subsequently merged
with previously known categories into a single model.

C. Class IL (CIL)

CIL is a paradigm where a model is continuously updated
to acquire knowledge about new classes while preserving its
performance on the classes it has already learned. This approach
can be categorized into three main methods: parameter regular-
ization based, replay based, and network structure based. Pa-
rameter regularization-based methods, such as those described
in [42] and [43], aim to prevent excessive bias in the learning of
new categories by imposing constraints on crucial parameters
within the model. Replay-based methods [12], [44] enable the
model to retain a small portion of information from old classes.
This information can be actual data [45], generated data [46],
features [47], or other forms. The network-structure-based ap-
proach [48] dynamically extends the network structure during
IL, demonstrating excellent performance. In recent years, there
has been a surge in methods focusing on IL for SAR targets.
Ma et al. [49] employed an autoencoder enhanced with multi-
scale structural similarity analysis to handle unknown classes
of targets. Wang et al. [50] developed an adaptive few-shot
CIL framework. This approach utilized hierarchical embedding
networks and pseudoincremental strategies for effective model
training.

III. METHOD

The study’s overarching framework is illustrated in Fig. 2.
The first step is self-supervised learning, using both labeled
and unlabeled categories to obtain implicit abstract features.
The second step is supervised learning on the labeled dataset
to provide the necessary guidance for clustering. The final step
is new category learning, a phase that uses only unlabeled data to
help discover new categories multiview consistency loss Lconsis

and interclass separability loss Lsepara. To mitigate forgetting
and preserve previously acquired knowledge, the framework
incorporates prototype replay and knowledge distillation tech-
niques specifically for old categories. Together, these compo-
nents demonstrate how our approach can effectively reduce the
risk of forgetting while enabling new categories of discovery.

Problem Statement: In the context of the provided informa-
tion, a labeled dataset Dl is defined as a collection of data in
the form of {(xl

i, y
l
i)}, where i ranges from 0 to N , and N
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Fig. 2. Illustration of the proposed methodological framework. “Aug” for augmented data portfolio, “Encoder” represents the feature extractor in VICReg [28],
and “Old Model” represents ResNet-18 [51] feature extractor.

represents the number of categories within this labeled dataset.
In addition, there is an unlabeled dataset Du consisting of
data in the form of {(xu

i )}, where each data are associated
with a category label yu that varies from 0 to M , with M
being the number of categories in the unlabeled dataset, yu is
not provided in training. It is important to highlight that the
labeled dataset Dl and the unlabeled datasets Du do not share
any common categories, meaning Dl ∩ Du = ∅. The primary
objective of NCD is to merge the information from Dl and Du

to categorize Du into M clusters. In this particular context of
new category discovery without forgetting, special emphasis is
placed on maintaining the accuracy of the labeled dataset Dl.
This represents a notable departure from traditional NCD tasks
where preserving the accuracy of existing categories is often not
a primary concern.

A. Self-Supervised Learning and Supervised Learning

The dataset used in this study comprises SAR images obtained
from various orientation angles. In contrast to optical images,
the slices within this dataset display significant uniformity con-
cerning their location, color, and texture. As a result, the model
needs to focus more on the specific details of the target within
the SAR images. Due to the similarity and consistency in back-
ground characteristics across these SAR images, the model must
emphasize the unique and distinct features of the actual target
itself for accurate identification and classification. During the
pretraining phase, when only supervised information is provided
for the labeled dataset Dl, it can become challenging to achieve
superior clustering results for new categories. Experiments have
shown that the model has a strong bias toward the labeled data
in Dl, which makes it challenging for the model to generalize
effectively to new, unlabeled categories. This inductive bias
introduced by the labeling of the data in Dl can hinder the
model’s ability to adapt and learn to categorize new data points
in the desired manner.

Fig. 3. Combination of data enhancements selected in the self-supervised
learning task. (a) Original. (b) ColorJitter. (c) CoarseDropout. (d) ElasticTrans-
form. (e) ShiftScaleRotate. (f) Resize. (g) Rotate. (h) Normalize.

Specifically, we use VICReg [28] as our self-supervised learn-
ing model and train it on the concurrent sets onDl andDu. In this
self-supervised learning task, the image batch is systematically
generated by initially inputting a collection of images, which
are subsequently subjected to a series of augmentations aimed
at diversifying their perspectives. To enhance the richness of
these image views, we incorporate eight distinct forms of data
augmentation techniques using the albumentations library [52],
implementing them with stochasticity based on predetermined
human-defined probabilities, as illustrated in Fig. 3. These
augmented image batches are subsequently channeled through
an encoder, with the objective of deriving the corresponding
embedding features. The overarching training loss, fundamental
to our approach, can be succinctly formulated as follows:

l (Z,Z ′) = λs (Z,Z ′) + μ [v(Z) + v (Z ′)] + ν [c(Z) + c (Z ′)]
(1)

where λ, μ, and ν are the weighting factors. Z and Z ′ are the
different viewpoints of the image after enhancement. s is to
compute the mean of the L2 paradigm between the vectors, v
computes the variance of the features, and c is used to constrain
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the expression of the mean of the diagonal elements of the
matrix.

The utilization of supervised learning in new category dis-
covery tasks ensures the availability of high-level semantic
information, thereby enhancing the distinctiveness of the clus-
tering outcomes. In our methodology, we employ the ResNet18
architecture [51] and fine tune the final layer of the network to
execute the computation of cross-entropy loss on the dataset Dl

as

Lce = − 1

N

N∑
i=1

log ηlyi

(
zli
)

(2)

where zli is the features of the input image and η is the supervised
classifier. Constraints through the labels help the new class to
produce unique clustering results.

B. Prototype Replay to Alleviate Catastrophic Forgetting

Once the pertinent representation necessary for clustering is
acquired, the subsequent phase involves amalgamating the data
fromDu into a new set of categories. It is important to note that in
this context, only data fromDu are employed, representing an IL
scenario. Notably, we do not impose any constraints by freezing
any network structures, thus facilitating the seamless adaptation
and learning of new classes. To sustain the performance of
identifying old classes without relying on the historical class
data, we draw inspiration from the work of iCaRL [12]. In our
approach, we employ the concept of exemplars, which serve
as repositories for retaining past knowledge, thus ensuring the
preservation of the model’s proficiency in recognizing categories
that have been encountered previously. This mechanism allows
us to maintain the performance of the previously seen categories
even in the absence of their original data. Based on this, we
extract features by performing feature extraction on the classes
of Dl and save prototypes of the features. Subsequently, when
acquiring new classes, we employ a statistical approach by
defining a normal distribution, utilizing the mean and variance
parameters of the existing class prototypes. The formulation for
this normal distribution can be described as follows:

f(x) =
1√
2πσ

exp

(
− (x− μ)2

2σ2

)
(3)

where μ and σ are the mean and variance of each type of
prototypes. We randomly collect 20 samples from each category
prototype as input to the network to get the prototype features,
and compute the loss of the features to the sampled labels.

The phenomenon of catastrophic forgetting in models poses a
substantial challenge, and relying solely on prototype playback
may not be sufficient to mitigate this issue. Notably, when
gradient backtracking occurs, the learning of new categories
tends to dominate the model’s behavior. To address this, we
incorporate knowledge distillation as a means to enhance the
performance on the previously learned classes. This approach
involves a continual penalization of the model’s output using
logits derived from the initial model trained on the old classes.
The knowledge distillation loss function is formally defined as

follows:

Lkd =

N∑
k=1

πold
k (x) log πnew

k (x) (4)

where πold
k are logits of the old copy mode, and N is the head

count of the network

πold
k =

eok(x)/T∑N
l=1 e

ol(x)/T
(5)

where T can help solve the problem of too high a probability of
being in the right category.

In network design, the strategy involves the use of multiclassi-
fication heads. The incorporation of a multiclassification head is
pivotal, working in tandem with backpropagation techniques.
This synergy serves to mitigate the abrupt impact of newly
introduced class learning on the overall model. Furthermore,
an essential aspect of our methodology involves the imposition
of knowledge distillation on each of these output headers. This
measure ensures that the wealth of knowledge previously ac-
quired is effectively utilized to constrain the model’s learning
process.

C. SAR Novel Category Discover

To facilitate the acquisition of knowledge about new cate-
gories, we adopt the strategy proposed by Fini et al. [23]. In
our approach, we employ the ResNet18 feature extractor and
create two distinct classification heads for handling labeled and
unlabeled classes separately. Initially, a batch of images is input
into the network, allowing it to extract feature vectors from the
data. These feature vectors serve as the basis for subsequent clas-
sification tasks. To encourage the network to generate consistent
predictions, we introduce the exchange of predictions from mul-
tiple perspectives or views. This approach compels the network
to produce consistent predictions by leveraging diverse views
of the same target to facilitate the exchange of pseudolabels.
Notably, our approach diverges from prior methods in that we
exclusively rely on unlabeled data. We do not utilize labeled data
but, instead, focus our loss calculations on the logits generated
from the unlabeled data.

Overclustering allows the model to better capture small differ-
ences in the data, improving its performance and generalization
over new categories. We use overclustering to aid in the learning
of new categories. The purpose of this overclustering header
is to extend the output of the clustering neurons by a factor
of N , where N represents a scaling factor that amplifies the
clustering output. In this study, N = 2. By amplifying the
output of the clustering neurons through overclustering, our
model becomes more sensitive to nuanced variations in the data.
This increased sensitivity allows the model to better capture
the finer details and intricacies present in the data, resulting
in improved overall performance and a heightened capacity to
generalize effectively when faced with new categories or data
points. Both clustering and overclustering are constrained using
the cross-entropy loss function, the pseudolabel is provided by
the Sinkhorn-Knopp algorithm [53]. In our baseline approach,
we incorporate a multiview strategy to generate pseudolabels
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for images that have undergone different enhancement effects.
This strategy allows us to leverage multiple views of the same
image to generate pseudolabels for unlabeled data. However,
the baseline approach lacks constraints on the consistency of
classification results within these multiviews. To address this
limitation and further enhance the model’s performance, we
introduce a consistency loss. The consistency loss plays a critical
role in improving the compactness within a class and, in turn, en-
hances the model’s performance in discovering new classes. This
loss ensures that the classification results of different enhanced
images, representing the same target within the unlabeled data,
are consistent with each other. By imposing such consistency
constraints, the model is encouraged to produce coherent and
reliable predictions across the various views of the same image.
For enforcing this consistency constraint, our study utilizes the
MSE as the loss function. The MSE measures the squared differ-
ence between the predicted outputs for different enhanced views
of the same image, thereby encouraging the network to produce
consistent predictions within the multiview setting. This, in turn,
promotes better compactness within classes, which is particu-
larly beneficial for discovering and correctly classifying new
categories within the data

Lconsis =
1

M

M∑
i=1

(zui − zui )
2 (6)

where z and z are the representations of different augmented
views, respectively.

During the training phase, each batch exclusively comprises
unlabeled images, devoid of any class annotations. The in-
formation of labeled class images is obtained through normal
distribution prototype features. Generally, the inherent similarity
between the distributions of these two components is attributed
to their shared domain provenance. Indeed, in order to enhance
the effectiveness of new category discovery, it is imperative
that the representations of these categories within the feature
space exhibit a more pronounced dissimilarity. The extent of
dissimilarity between two probability distributions sharing the
same feature space can be quantified using the Kullback–Leibler
(KL) divergence distance, which is computed as follows:

D(P‖Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
. (7)

When two probability distributions exhibit similarity, their KL
distance tends toward 0. Consequently, a logical approach is to
maximize the value of the KL distance. To achieve this, we have
formulated a separability-enhancing strategy explicitly aimed
at expanding the distance between newly introduced categories
and the reenacted feature prototypes. This strategy is designed
to accentuate the divergence between the representations of new
categories and the prototypes from previously features

Dall =
1

2

(
D

(
pl
i‖pu

j

)
+D

(
pu
j ‖pl

i

))
. (8)

Among them, puj represents the prototype probability distribu-
tion of the example set, and pil denotes the probability distribu-
tion derived from unlabeled samples. Let N be the batch size.

TABLE I
SUMMARY OF THE MSTAR DATASETS

The category separation loss is defined as follows:

Lsepara = − 1

N

N∑
i=1

Dall. (9)

The comprehensive loss function for the CNT is expressed as
follows:

Ltotal = Lce + Lkd + Lsepara + Lconsis. (10)

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Datasets Setup: The datasets employed in this study have
been sourced from the MSTAR database [54]. An example
of an image in the dataset is shown in Fig. 4. The images
contained within the MSTAR database are a result of high-
azimuth resolution multibeam SAR acquisitions, utilizing the
horizontal-to-horizontal (HH) polarization mode. The images
were taken at two different pitch angles (17◦, 15◦), with the
number of images in each class ranging from 190 to 300. We
use the instances with a pitch angle of 17◦ in the database as the
training set and the instances with a pitch angle of 15◦ as the test
set. In the dataset comprising ten distinct categories, the labels
were applied to five of these categories, while the remaining five
categories were left unlabeled. A comprehensive depiction of the
dataset’s particulars and distribution is presented in the ensuing
Table I. For the experiments on the MSTAR dataset, we utilize
a controlled proportion of unlabeled data. Initially, the training
dataset is constructed by dividing the categories into 50% old
categories as the labeled dataset and 50% novel categories as
the unlabeled dataset. Subsequently, we adjust the proportions
to evaluate validity at different CNTs, specifically 40%, 60%,
and 70%, 30%, respectively.

2) Training Details: All experiments in this study were con-
ducted using an Ubuntu operating system environment run-
ning on a GeForce RTX 4090 graphics card. The experiments
were carried out within a virtual environment configured with
Python 3.8, Torch 1.9.0, and PyTorch-Lighting 1.8.0. The self-
supervised model was trained on the solo-learn [27] framework.
We configured the experiments with the batch size of 128 and the
learning rate of 0.3. It is important to mention that Vicreg is not
the exclusive method employed in this context, as there are other
self-supervised techniques [24], [25] that can yield comparable
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Fig. 4. (Top) Optical images and (bottom) their corresponding SAR images. These images are arranged in the following order: ZIL131, D7, ZSU234, BTR70,
T72, BMP2, BRDM2, T62, and BTR60, 2S1. These images are commonly used in research and training applications related to remote sensing, radar, and target
recognition.

results on the MSTAR dataset. In the supervised learning phase,
the learning rate is initialized at 0.01 and gradually reduced to a
minimum of 0.001. The learning rate optimization strategy em-
ployed is a combination of linear warmup and cosine annealing.
The batch size for this phase is set to 12, and the self-supervised
learning model is fine tuned over the course of 200 epochs.
During the new class discovery phase, we utilize a learning rate
of 0.01 with a larger batch size of 128. This phase is focused
on the exploration and discovery of unlabeled classes within
the dataset. In order to construct different perspectives to learn
new classes, we use a combination of data enhancement using
random flip, random crop, and random translate with reflect.

3) Evaluation Metric: To evaluate NCD methods in class in-
cremental scenarios, it is imperative to evaluate the performance
of metrics pertaining to the existing classes not only on the Du

but also on the entire dataset. Agglomerative clustering accuracy
(ACC) [55] is a primary method for evaluating NCD tasks. It
quantifies the accuracy of the clustering process by measuring
the percentage of samples that are correctly assigned to their
respective clusters out of the total number of samples in the
clustering result. In certain situations, the number of the clusters
generated by a model may not correspond directly to the number
of the actual categories, and as a result, there is a need to map
the predicted labels to the actual labels in an optimal way. The
Hungarian algorithm [56] can be used for this mapping task. It is
employed to find an optimal assignment or mapping between the
predicted clusters and actual categories. The formula for ACC
is as follows:

ACC =
1

M

M∑
i=1

1 [yui = map (ŷui )] . (11)

Among them, M is the total number of test samples, and
map is the specific mapping method. In addition, we incorporate
two additional settings, namely task aware and task agnostic, to
evaluate the model. Task aware involves utilizing task-specific
information to differentiate outputs unrelated to the current sam-
ple. For instance, outputs with labeled categories are exclusively
considered for labeled classifiers, and for images with unlabeled
categories, only the outputs of unlabeled classifiers are taken
into account. Typically, in practical applications, task agnostic
provides a more accurate reflection of the model’s performance.
In this evaluation setup, the model cannot differentiate the rela-
tionship between labeled and unlabeled categories but integrates
them to generate the final output.

B. Comparison to the State-of-the-Art

Other researches have not explored the implementation in-
volving within the SAR novel category discovery task, specifi-
cally under conditions where the class incremental scenario. In
this section, we commence by conducting novel class discovery
using solely unlabeled data in the frameworks of the state-of-
the-art NCD task. We set up three experimental conditions for
comparison in the MSTAR dataset: 40% known categories, 60%
novel categories (40%K / 60%N), 50% known categories, 50%
novel categories (50%K / 50%N), 70% known categories, and
30% novel categories (70%K / 30%N). Subsequently, we apply
these methods in the same setting on the dataset used in this
study and compared it.

In this experiment, both UNO and AutoNovel were pretrained
without utilizing any labeled data. The settings for FRoST and
ResTune remained consistent with the configuration used in the
study. Lwf [11] is an incremental learning algorithm designed
to regulate model parameters. To ensure a fair comparison
within the NCD setting, we align the new class identification
method in the incremental phase with the approach used in
AutoNovel. The Lwf + proto variant incorporates a rehearsal
strategy in addition to this alignment. The experimental results
can be found in the Table II. At the 50%K / 50%N setting, the
AutoNovel recognizes old classes with an accuracy of 11.2%. In
the specific implementation of AutoNovel, the self-supervised
algorithm employed is Rotnet [25]. However, SAR images from
different azimuthal variations that may not effectively recognize
simple rotation transformations. The complexity of SAR image
data, stemming from differences in acquisition conditions, can
make it challenging for a model trained on rotation-based self-
supervised tasks to generalize well to new classes. It is notable
that UNO manages to achieve a clustering accuracy of 53.0%
even after discarding the labeled samples. This indicates that
UNO is effective at clustering unlabeled data. In this context,
it might be beneficial to consider complementary modifications
to UNO that enhance its ability to adapt to new classes. FRoST
exhibits a degree of efficacy in alleviating the phenomenon of
catastrophic forgetting, as evidenced by the achieved accuracy of
74.9% for the previously learned class. The utilization of similar
feature comparison learning methodologies fails to effectively
segregate dissimilar samples within the context of SAR images.
The contrast in accuracy between our approach and ResTune
is notable, with our method displaying a superiority of 8.8%
in performance (92.2% compared to 83.4%). The observation
reveals a substantial inclination in the model’s predictions
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TABLE II
COMPARATIVE EXPERIMENTS BETWEEN THIS STUDY AND OTHER NCD METHODS

Fig. 5. Results of UMAP visualization on MSTAR train sets. (a) FRoST. (b) ResTune. (c) CNT.

toward the old categories. We hypothesize that this bias may
stem from the supervised learning framework, consequently
impeding the model’s capacity to effectively assimilate and learn
new classes. Our method also achieves the best performance in
the 40%K / 60%N and 70%K / 30%N settings. We show feature
visualization [57] images of the two comparison methods and
the CNT on the training dataset to visualize the performance of
these comparison methods, as shown in Fig. 5. It can be seen
that our method has better category differentiation.

C. Ablation Study

1) Effectiveness of Self-Supervised Learning: Primarily, the
analysis of self-supervised learning’s significance merits at-
tention. SAR images characterized by a uniform background
and pervasive speckle noise. This distinct trait often results
in the model’s predisposition to encapsulate noise rather than
fundamental target attributes. The generalization ability of self-
supervised learning improves the model’s focus on the target.
Our aim is to evaluate the performance of the MSTAR dataset
within the baseline framework. We endeavor to assess the in-
fluence of self-supervised learning on the discovery of new
classes in SAR images. Our investigative approach adheres to
the benchmark set forth by UNO, where both newly labeled
and unlabeled classes are jointly considered. The results in
Table III show that the accuracy of the old class was reduced
by 1.4% when using self-supervised learning for pretraining,
but the performance of discovering new classes improved by
14.5%. To provide a visual representation of this effect, Fig. 6
illustrates the combined training of both methods using labeled
and unlabeled data, visualized through uniform manifold ap-
proximation and projection (UMAP) [57] visualization. The

TABLE III
EXPERIMENTS ON THE WITH OR WITHOUT OF SELF-SUPERVISED PRETRAINING

Fig. 6. Experiments with and without self-supervised learning, with visual-
ization effects on all test data. In this experiment, labeled data are available when
novel classes are discovered. (a) Baseline without self-supervised pretraining.
(b) Baseline including self-supervised pretraining.

discernible enhancement in the model’s capacity to identify
new classes underscores the potent representational capabilities
of self-supervised learning. Consequently, we have deemed it
to integrate these techniques into our forthcoming research
endeavors. The experiment in CNT also demonstrated the ef-
fectiveness of using self-supervised learning for pretraining.
The experiment conducted within the context of CNT serves as
additional evidence of the efficacy of self-supervised learning
as a pretraining strategy. As indicated in Table III, the CNT
model, when pretrained with self-supervised learning, achieved
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TABLE IV
EFFECTS OF DIFFERENT COMPONENTS ON THE CNT

95.1% ACC, with an 14.4% increase compared to the method
that omitted the self-supervised pretraining step.

2) Validity of Model Components: We will delve into an
analysis of the notable improvements achieved by the CNT
model. Specifically, we observe old labeled class precision in the
task-aware setting, transitioning from an initial 35.9% to 92.2%.
Furthermore, the precision for new class discoveries rise from
53.0% to 95.1%. These compelling advancements underscore
the effectiveness of the CNT model’s capabilities in both labeled
classes and novel categories. The results of the ablation test are
shown in Table IV. In the task-agnostic setting, it can be seen that
there is a 54.3% and 41.9% improvement in the accuracy of the
old class and the new class compared to the original baseline.
Next, we will analyze the experiments specifically under the
task-aware setting.

At the very beginning, we learn new classes in an CIL
scenario. The accuracy of the labeled classes decreases rapidly
after running a few epochs. This can be visually confirmed by
referencing the green curve in Fig. 7(a). Consistent with our
expectation, the model suffers from catastrophic forgetting. Fur-
thermore, the accuracy of recognizing the novel classes is also at
a relatively low level. This phenomenon can be attributed to the
fact that both old and new classes are subjected to a uniform loss
objective during training. This uniform loss objective may not
effectively differentiate between the requirements of old and new
class recognition, which can impact the accuracy of both class
types. The application of prototype replay to yield favorable
results in the CIL scenario. By employing this technique, the
accuracy of the model for recognizing the old class experiences
a substantial increase, reaching 78.7%. This improvement in
old class accuracy signifies the positive impact of prototype
replay on the model’s ability to better recall and distinguish
the characteristics of classes.

Following the enhancement achieved with prototype replay,
the new model’s weight output for the old class is constrained
using knowledge distillation loss. The distillation process does
not appear to have detrimental effects on the model’s capability
to discover new classes. Instead, it results in a further increase
in old class accuracy by 7.4%.

By incorporating a loss function focused on ensuring con-
sistency across multiple views, this approach strengthens the
relationships and compactness between different classes. As a
result, the model’s accuracy increase by 13.2%percentage points
on the entire test set (78.6% versus 91.8%).

Fig. 7. Accuracy change curves for labeled and unlabeled data as training
progresses. (a) Progression of accuracy for labeled data. (b) Trends for unlabeled
data. The green curve is the result of the model without using labeled data for
new class discovery. The pink and purple curves are with prototype playback
and knowledge distillation loss added, respectively. The blue curve is the model
with consistency loss added. Finally, the red curve encapsulates the ultimate
iteration of the CNT model, consolidating all improvements and enhancements.

Following the enhanced separable strategy enhancement, the
CNT model achieves accuracy of 92.2% for labeled classes
and 95.1% for the unlabeled classes, underscoring its ability
to successfully recognize and classify previously novel classes.

Finally, Fig. 8 illustrates the visual representation of the model
across various versions using UMAP, providing an overview of
the model’s evolution and the impact of different strategies and
enhancements on its performance. In Fig. 8(a), we present a
visualization of the dataset distribution utilizing the ResNet18
pretrained model. Fig. 8(b) showcases the results obtained using
the new class discovery method provided by UNO, without
involving labeled classes at this stage. The feature space is
obtained through unsupervised learning and pretraining weights.
Fig. 8(c) and (d) depicts the results after introducing the old
class prototype and distillation loss, respectively. It is evident
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Fig. 8. Results of UMAP visualization on all test sets. (a) Initial feature space. (b) Baseline. (c) Baseline with prototype replay. (d) Baseline with prototype replay
and knowledge distillation. (e) Add loss of consistency. (f) CNT.

TABLE V
SUMMARY OF THE FUSAR-SHIP DATASETS

that some categories are distinguished, but a certain level of
ambiguity persists in most category features. Fig. 8(e) shows
that the incorporation of multiattempt consistency brings about
performance improvement, representing a more compact feature
space for the majority of categories. Finally, Fig. 8(f) introduces
a separable strategy on top of the aforementioned approaches,
and the visualized images demonstrate the effectiveness of this
strategy.

D. Discovery of Different Domain Categories

We also delve into cross-domain category discovery, ex-
amining the migration of MSTAR data to the FUSAR-ship
dataset [58] to assess the impact of discover novel SAR ob-
jectives from diverse domains and under varying imaging
conditions. The FUSAR-ship dataset comprises GF-3 satellite-
acquired high-resolution AIS data for ship detection and iden-
tification. For our experiment, we selected four subclasses of
targets (BulkCarrier, Fishing, Tanker, and CargoShip). Details
regarding the specific training set and the number of test sets are
presented in the Table V.

In this experiment, we compare our model with three state-
of-the-art new category discovery methods. The experimental
results are shown in Table VI. Specifically, our model attains a
new category discovery accuracy of 70.1%, surpassing ResTune
by 45.1%. In addition, our accuracy on the ship test set is higher
than that of FRoST by 14.0%. This further validates the notable

TABLE VI
COMPARATIVE EXPERIMENTS BETWEEN THIS STUDY

AND OTHER NCD METHODS

TABLE VII
IMPLICATIONS OF DIFFERENT NETWORK ARCHITECTURES

(IN 50%K / 50%N SCENARIOS)

advantages of the method proposed in this article in terms of
effectiveness and generalization ability.

E. Experiments With Different Network Structures

To further examine the impact of the algorithm presented in
this article, various network structures undergo analysis within
the same experimental framework. Table VII displays the test
outcomes of the ResNet18 model alongside other neural network
models (ResNet50, ResNet101, and DenseNet121), revealing
the superior clustering accuracy of ResNet18. The comparison
results indicate that employing a deeper network structure does
not yield better outcomes on the MSTAR dataset. This analysis
suggests that an increased number of parameters might introduce
redundancy within the model, potentially causing overfitting
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and inhibiting the model’s ability to accurately capture the
true data distribution. Consequently, this could hinder the deep
network’s capacity for effective new category discovery due to
poor generalization.

V. DISCUSSION

Our method demonstrates significant performance enhance-
ments in SAR images compared to the state-of-the-art method.
This indicates that our proposed CNT is more effective in
addressing the challenge of discovering novel categories in
incremental learning scenarios. We observe that the performance
improvement primarily stems from the following factors: self-
supervised learning enabling access to data for insightful repre-
sentational information; ensuring a distinct separation between
unlabeled categories and base category prototypes by enhancing
the discriminate of the category space; and restricting internal re-
lationships between individual samples and their corresponding
perspectives. Although the CNT approach achieves commend-
able results in this task, there are still noteworthy limitations.

1) Novel Category Discovery for Different Domains/
Datasets: In our current experiments, we noticed unsatisfac-
tory results in the FUSAR-ship dataset when using MSTAR
as the labeled category. Despite both belonging to SAR im-
ages, variations in acquisition methods, imaging techniques,
and resolutions result in a limited generalization ability. In our
future research, we intend to delve deeper into domain disparities
among diverse datasets and explore better ways to transfer shared
information between them.

2) Unified Framework: This study devised a multistage ap-
proach, however, addressing the resulting complexity requires
future efforts toward creating simpler and more efficient unified
frameworks with fewer loss functions and hyperparameters for
optimal performance.

VI. CONCLUSION

In this study, we focused on SAR image category discovery
within incremental learning, aiming to identify new classes
while retaining knowledge of existing ones in situations where
not all old classes are available. We employed self-supervised
learning for representational information, supervised learning
for annotation uniqueness in labeled class samples, and a pro-
totype replay method with knowledge distillation to preserve
discriminative power in labeled classes. CNT incorporated mul-
tiview consistency loss and separability strategies to enhance
recognition accuracy for both old and new classes. Our goal was
to advance research on new class discovery in SAR images.
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