
On the Utility of Probing Trajectories for
Algorithm-Selection

Quentin Renau1[0000−0002−2487−981X] and Emma Hart1[0000−0002−5405−4413]

Edinburgh Napier University, Edinburgh, Scotland, UK
{q.renau,e.hart}@napier.ac.uk

Abstract. Machine-learning approaches to algorithm-selection typi-
cally take data describing an instance as input. Input data can take the
form of features derived from the instance description or fitness land-
scape, or can be a direct representation of the instance itself, i.e. an
image or textual description. Regardless of the choice of input, there is
an implicit assumption that instances that are similar will elicit simi-
lar performance from algorithm, and that a model is capable of learn-
ing this relationship. We argue that viewing algorithm-selection purely
from an instance perspective can be misleading as it fails to account
for how an algorithm ‘views’ similarity between instances. We propose
a novel ‘algorithm-centric’ method for describing instances that can be
used to train models for algorithm-selection: specifically, we use short
probing trajectories calculated by applying a solver to an instance for a
very short period of time. The approach is demonstrated to be promis-
ing, providing comparable or better results to computationally expensive
landscape-based feature-based approaches. Furthermore, projecting the
trajectories into a 2-dimensional space illustrates that functions that are
similar from an algorithm-perspective do not necessarily correspond to
the accepted categorisation of these functions from a human perspective.

Keywords: Algorithm Selection · Black-Box Optimisation · Algorithm
Trajectory.

1 Introduction

We are motivated by the future goal of designing optimisation systems that are
capable of learning from past experience. For example, algorithm-selection (AS)
methods such as machine-learning based classifiers [35] learn by being trained
on results obtained from solving a large set of instances, while transfer-learning
methods [3, 39] reuse information extracted from one instance in solving a new
instance (e.g. warm-starting with a previous solution). In both of these scenarios,
there is an implicit assumption that if two instances are similar to each other,
then they might elicit similar performance from the same solver or that infor-
mation can be transferred from one instance to another, for example to seed or
warm-start an optimiser [20].

Typical approaches to AS train a machine-learning (ML) model to predict
either algorithm-performance or best-solver based on a description of an instance

2 Q. Renau and E. Hart

as input to the model in some form. There have been many advances made in
recent AS literature regarding the choice of model and in defining appropriate
model inputs [16, 1]. In particular, a lot of attention has been directed towards
defining features to train a model. Human-designed features can be used, but
have the potential disadvantage of being domain-specific and often costly to
compute [21], while it has also been noted that instances that are close in human-
designed feature-spaces are not necessarily close in the performance space of
a given algorithm [33]. Defining features via Exploratory Landscape Analysis
(ELA) [22] has become a popular alternative, particularly in the continuous
optimisation domain, creating a feature-vector describing the fitness landscape
of an instance. However, there is significant overhead cost induced by the ELA
feature computation: furthermore, the sample points used to compute features
are usually discarded, hence wasting computational budget. More recent ‘feature-
free’ methods avoid calculating features altogether by directly using a description
of the instance as input, e.g. using text-based descriptions [2, 35] or images [32].
However, we argue that all of the above approaches are potentially flawed in that
the model is trained on data that takes only an ‘instance perspective’ of the data
(through human-designed features, landscape features or a description of the
instance data directly): instances are described by features that are calculated
independently of the execution data obtained by any algorithm.

Some recent research [19, 14, 13] has begun to address this, training selection
models whose input data includes information derived from running a solver, in
addition to (or instead of) using purely instance-centric data. We continue to
push in this direction in proposing a novel method for training a selector that
uses only time-series information obtained from a probing-trajectory. A probing
trajectory is defined by either the best or current performance of a meta-heuristic
solver over its first n function evaluations on an instance, where n is deliberately
very short. We propose that an algorithm that produces similar trajectories on
two instances ‘sees’ some commonality between those instances (and vice versa).
Each trajectory (a time-series) can be used as input to an AS classification
method, either directly or using time-series features derived from the trajectory.
This use of probing-trajectories has the following benefits:

– It completely removes the need to either define or calculate features of any
type in order to create training data.

– The trajectory provides an ‘algorithm-perspective’ of an instance, in contrast
to feature-based approaches which only describe the instance (or its associ-
ated landscape) in isolation from any solver. We hypothesise that taking the
‘algorithm perspective’ might make it easier for an AS approach to learn as
the trajectory is a very close proxy to true algorithm behaviour.

– The probing-trajectory used to get a prediction from the model can be re-
used to warm-start a selected solver, hence saving budget.

We evaluate the approach using the BBOB functions [9] as a test-bed.
We show that trajectory-based algorithm-selection can outperform the classical
landscape-aware approach in continuous optimisation. In this scenario we also
show that for sampling budgets where a landscape-aware approach cannot be

On the Utility of Probing Trajectories for Algorithm-Selection 3

applied (i.e., when sampling budgets are too small), trajectory-based algorithm-
selection still performs well, making it a good low-budget alternative to ELA
features.

The outline of this paper is as follows. Section 2 gives an overview of the
background and related work. Section 3 describes the data used, the methods
for obtaining probing-trajectories, and describes the experiments conducted in
this paper. Section 4 describes the results obtained with the probing-trajectories
on an algorithm selection task. Section 5 provides insights into trajectory similar-
ities, while Section 6 exposes the pros and cons of using the probing-trajectories
Finally, Section 7 highlights concluding remarks and future work.

2 Background and Related Work

The majority of previous work in algorithm selection is performed using infor-
mation describing an instance, for example extracting features at the instance
level; extracting features depicting the landscape of the objective function at
hand; using feature-free Deep Learning techniques. The use of Instance features
is most common in combinatorial optimisation domains. They rely intrinsically
on the problem domain and are usually manually designed [12], differing from
one domain to the other, i.e., Travelling Salesperson Problem (TSP) features
and Knapsack features cannot be interchanged. However, the main drawback of
instance features is that they often do not correlate well with algorithm perfor-
mance data. For instance, Sim et. al. [33] demonstrate in the TSP domain that
instances that are close in the feature-space can be very distant in the perfor-
mance space (i.e., the Euclidean distance between their feature-vectors is small
while the distance between the performance of two algorithms on the instances
is very large). Furthermore, they can also be computationally expensive [21].

On the other hand, the use of landscape-features is common in numerical
black-box optimisation, typically via Exploratory Landscape Analysis (ELA) [22]
which calculates landscape features. ELA has grown over the years with a gradual
introduction of new features [23, 17, 8]. Features are numerical values obtained
by sampling m points, x1, . . . , xm ∈ Rd in a d-dimensional search space, and
computing the associated objective function f(x1), . . . , f(xm). The features are
then approximated given the pairs (x1, f(x1)), . . . , (xn, f(xm)). ELA has been
successfully applied to both algorithm configuration [4] and algorithm selec-
tion [16] on benchmark data as well as real-world optimisation problems [29]. A
definition of the most used features and their properties can be found in [27].
The main drawback of ELA however is the overhead cost induced by the feature
computation as the sample points that are usually used to compute features
are then discarded. Other work provides evidence in some domains that ELA
features need be used with care [27].

Feature free techniques avoid the problem of human-designed features by re-
lying on Deep Learning to extract patterns and be able to perform algorithm
selection. Feature free approaches have been successfully applied both in combi-
natorial optimisation [1] using the instance definition as input and in continuous

4 Q. Renau and E. Hart

optimisation [32] using sample points in the search space. While the latter re-
moves the human bias from the design of features, the overhead cost of sampling
the search space on top of running the algorithm is still present. Moreover, Deep
Learning approaches reduce the understanding of the instance space and make
it difficult to truly understand algorithm behaviour.

All of the approaches just described take an instance-centric view: that is,
the input to a selector is independent of the execution of any algorithm. We
suggest this is problematic, given that previous work has suggested that there is
not necessarily a strong correlation between the distance of two instances in a
feature-space and the distance in the performance space according to a chosen
portfolio of solvers [33]. Some recent work has begun to address this, using infor-
mation derived from running a solver as input to a selector. For example, recent
work from Jankovic et. al. [14, 13] proposes extracting ELA features from the
search trajectory of an algorithm. In [13], they obtain a trajectory by using half
the available budget to run an algorithm (250 function evaluations, correspond-
ing to the ELA features recommended budget [18]) and combine this with the
state variables of the algorithm to predict the algorithm performance.Overall,
their approach gave encouraging results but was outperformed by classical ELA
features computed on the full search space. In [14], they use trajectories of 30d
points to compute ELA features to train a performance predictor in order to
choose which algorithm to warm-start. They successfully compute features dur-
ing the search of one algorithm to select the appropriate algorithm to switch to
finish the run. This 30d points budget is slightly lower than the recommended
ELA features budget of 50d points.

The work of [7] also obtain algorithm trajectories but then construct time-
series based on concatenation of statistics derived from the population and fitness
values (mean, standard deviation, minimum, maximum) at each generation to
use as input to a classifier that predicts which of the 24 BBOB function the
trajectory belongs to. The length of the trajectories obtained is 900 points on
functions of dimension d = 3. This budget is very large as it is 6 times more
than the recommended ELA features budget of 50d = 150. Their approach suc-
cessfully outperforms ELA features extracted from algorithm trajectories but is
not compared to ELA features extracted from sample points in the full search
space. Another approach combines ELA features with time-series features ex-
tracted from state variables of CMA-ES [19] to perform a per-run algorithm
selection with warm-starting. The results of this work shows performance on
par with ELA features on the per-run algorithm selection task. Although not
specifically concerned with algorithm-selection, the work of [26] is also worthy of
mention in taking an algorithm perspective by utilising information incorporated
in CMA-ES state variables to train a surrogate model to predict performance.

We build on the nascent line of work in also proposing a trajectory-based
approach to algorithm-selection. Specifically, we attempt to use short trajectories
that only consume a small fraction of the available computational budget, and
that can be re-used to warm-start an algorithm predicted by a selector. Unlike

On the Utility of Probing Trajectories for Algorithm-Selection 5

the work described in [13], we do not compute landscape features from search-
trajectories and make use of the probing trajectories both directly and indirectly.

3 Methods

3.1 Data

We consider the first 5 instances of the 24 noiseless Black-Box Optimisation
Benchmark (BBOB) functions from the COCO platform [10] as a test-bed. In
BBOB, instances are transformations of the original function such as rotations,
translations or scaling.

For each instance, we collect data from running three algorithms: CMA-
ES [11], Particle Swarm Optimisation (PSO) [15], and Differential Evolution
(DE) [36]. Each algorithm is run 5 times per instance. Thus, we have 24×5×5 =
600 trajectories. Our data is obtained directly from [37] which records search-
trajectories per run. Note that some automated algorithm configuration was
performed by the authors before they collected this data and that population
sizes are different for each algorithm, see [38] for further details.

We use data obtained from [30] on the BBOB suite to calculate ELA features.
For each feature, 100 independent values are available per function instance. The
sampling strategy used to sample points is the Soboĺ low-discrepancy sequence.
However, we use only a fraction of the available data, i.e., 10-dimensional func-
tions, a feature computation budget of 30d and the general recommendation for
feature computation 50d [18]. We tried to compute ELA features at budgets
lower than 30d but as the budget decreases, Nearest Better Clustering features
start to output Not a Number values and some Dispersion features are not com-
puted. We select 10 cheap features based on their expressiveness and invariance
to transformations. The 10 features selected are the same as in [28].

3.2 Algorithm Selection Inputs

Using the data collected in Section 3.1, we create three types of inputs for the
algorithm selection procedure: raw-trajectories, features extracted from the time-
series formed by the raw-trajectories and ELA features.

Raw Probing-Trajectories A probing-trajectory consists of a time-series of values
o obtained from the first n iterations of an algorithm, where o is either the current
best fitness (coined ‘current’ in the rest of the paper) or the best-so-far fitness
values (coined ‘best’ in the rest of the paper). Points are added to the trajectory
in the order in which they are sampled1.

We evaluate three approaches to using raw probing-trajectories as input to
an algorithm-selector: (1) using two different types of probing-trajectory (best-
so-far, current); (2) using concatenated probing-trajectories from multiple algo-
rithms as input, i.e., concatenate trajectories from two or more algorithms; (3)

1 We evaluate the effect of this choice later in Section 4.3

6 Q. Renau and E. Hart

input trajectories of different lengths. Hence, the input of the algorithm selection
procedure is a time-series with its length depending on the number of concate-
nated algorithms and its number of generations, representing one run on one
function instance.

We test the impact of the length of the trajectories on the ability to select
the best algorithm using two settings for the number of generations g ∈ {2, 7}.
The former enables us to evaluate really short trajectories obtained using only 2
generations, while the latter results in trajectories using a similar computational
budget to that used to obtain ELA features (only one setting described below
requires more evaluations than ELA features). The function evaluations budget
depends on the population size of the algorithm according to the dataset used,
i.e., 10 for CMA-ES, 30 for DE, and 40 for PSO. For a single trajectory input this
results in a budget of 20, 60, 80 for CMA-ES, DE, PSO respectively at generations
= 2, and 70, 210, 280 at generations = 7. Note that all these budgets are less than
the minimum budget of 300 at which it is feasible to compute ELA features. For
concatenated trajectories, the maximum budget is 560 when three trajectories
are joined (7 × (10 + 30 + 40)), therefore comparable to the higher 50d budget
used to compute ELA features.

Time-series Features We extract time-series features from the probing-
trajectories described above as in [24], including tuning the process by using
a feature selection technique. The time-series features are extracted on the
probing-trajectories using the tsfresh Python package (version 0.20.1), while the
feature selection is performed using the Boruta Python package (version 0.3).

Time-series features are extracted on the same settings as probing-
trajectories, i.e., on the ‘current’ or ‘best’ trajectories for a single or concatenated
trajectory given 2 or 7 generations. The input of the algorithm selection proce-
dure is thus a vector of features where the dimension depends on the number of
features extracted or selected, representing one run on one function instance.

ELA Features As mentioned above (in Section 3.1), 100 10−dimensional feature
vectors are available for each BBOB instance. These features are computed with
30d = 300 and 50d = 500 sample points. In order to have a fair comparison
between ELA and probing-trajectories, we randomly sample 5 feature vectors
out of 100 to match the number of available trajectories by instances, i.e, 5 runs
by instances.

The input of the algorithm selection procedure is a 10−dimensional vector
of features, representing one function instance.

3.3 Algorithm Selection Methods

The algorithm selection is treated as a classification task, i.e, given an input
representing an instance, the output is the algorithm to use on that particular
instance. To train the classification models, both the trajectories and feature-
vectors are labelled with the best performing algorithm, defined as the one having
the best median target value after 100,000 function evaluations. Note that no

On the Utility of Probing Trajectories for Algorithm-Selection 7

single algorithm outperforms the others on all 24 functions: CMA-ES is the best
performing algorithm for 11 functions, DE for 7, and PSO for 6.

In Section 3.2, we described two types of input (trajectories and feature
vectors), hence two types of classifiers are used depending on the data type.

Classification with Features Features inputs can be derived from calculating ei-
ther ELA features or time-series features extracted from the probing-trajectories.
As used in [5, 29], we train a default Random Forests [6] from the scikit-learn
package [25] (version 1.1.3). Separate models are trained using different input
type, i.e., models using ELA features and time-series features are different.

Classification with Raw Trajectories The raw probing trajectories form a time-
series. For this type of input, a specialised time-series classifier is used, specifi-
cally the default Rotation Forests [31] from the sktime package (version 0.16.1).
This choice of classifier is motivated by its closeness to the classifier used for fea-
tures while accounting for the data being time-series. We train classifiers using
single or concatenated trajectories to predict which algorithm of the portfolio
to use, e.g., a classifier trained with ‘CMA-ES’ trajectories can predict which of
the three algorithms from the portfolio to use.

Validation Procedure Both type of inputs have the same validation procedure. As
performed in [19], we perform a leave-one-instance-out (LOIO) cross-validation
and we compute the overall accuracy. Classifiers are trained using data from all
runs of the 24 functions on all except one instance. The data of the left out
instance is used as the validation set, i.e, all the runs from the 24 functions on
the ID of the left out instance. Overall, 480 inputs are used to train the model
while the remaining 120 inputs are used for validation.

4 Results

In this section, we first present the results obtained with single trajectories (Sec-
tion 4.1), followed by results obtained from using input to a classifier that is
formed by concatenating trajectories from multiple algorithms (Section 4.2). In
each case, we compare the classification results using three types of input: the
raw-trajectory; a feature-vector derived from the time-series; an ELA feature-
vector. We discuss the results in Section 4.3.

4.1 ELA Features vs Single Trajectories

In this section, we compare algorithm-selection performed using ELA features
as input to trajectory-based inputs obtained from running a single algorithm.
For the latter, we experiment with using inputs from (1) the raw trajectory data
and (2) time-series features derived from the trajectory. We train three separate
classifiers, using trajectories from each of the algorithms in turn2.

2 A classifier trained only on e.g. CMA-ES trajectories can predict any of the three
solvers, etc.

8 Q. Renau and E. Hart

Algorithm trajectories are computed for 2 and 7 generations. As explained
previously, the minimum budget is 20 function evaluations for CMA-ES (2 *
population size 10) and the largest is 280 function evaluations for PSO (7 *
population size 40). As mentioned in Section 3.1, ELA features are extracted
using 30d = 300 and 50d = 500 points to provide fair comparisons.

We observe that models trained with best-so-far trajectories outperforms
models trained with current trajectories with 2 generations and vice versa with 7
generations. Due to space limitations, we will only present best-so-far trajectories
for 2 generations and current trajectories for 7 generations. The other plots can
be found in the supplementary materials.

Figure 1 compares the classification accuracy of the classifiers trained using
probing-trajectories, time series features extracted from three trajectories and
time series feature selection.

Classifiers trained using only 2 generations (using a maximum budget of 80
evaluations) exhibit a poor accuracy (Figure 1a). Classifiers trained on ELA
features perform better but recall that these require a minimum budget of 300
evaluations, almost 4 times the budget for the trajectories. Even with this ad-
ditional budget, the median accuracy reached is relatively poor: 90% and 90.8%
for 300 and 500 function evaluations respectively. This is not unexpected and
consistent with previous literature, given that is known that ELA features are
not all invariant to function transformations [27, 34]. One of the trajectory-based
classifier models exceeds the performance of the ELA trained classifier at a bud-
get of 300 samples and matches the ELA trained classifier with 500 samples,
demonstrating 90.8% median accuracy: PSO with raw probing-trajectories. In
this context, the use of a PSO probing-trajectory is clearly an asset as it re-
quires less than a sixth of ELA features budget to achieve the same level of
performance.

When the number of generations increases to 7 (Figure 1b), all but one of
the classifiers trained on input obtained from a trajectory outperform both the
ELA trained classifiers (budget 300, 500). A considerable increase in performance
accuracy is obtained in most cases. Once again, the PSO trajectories reach the
best performances with a peak for raw probing-trajectories at a median accuracy
of 100%. In this case, almost perfect classification is achieved with substantially
less function evaluations than needed to compute ELA features.

PSO trajectories may be more informative than other algorithms trajectories
because PSO has the largest population size and evaluates more points. As a
comparison, CMA-ES has the smallest population size and is in most cases the
algorithm providing the worse accuracies. Hence, the information contained in
the trajectories may be a matter of the number of generations and the number
of points evaluated.

4.2 ELA Features vs Multiple Trajectories

In this section, we compare algorithm-selection performed with ELA and time
series features with classifiers using a concatenation of trajectories as input (i.e.,
the trajectories obtained from more than one algorithm are joined and used as

On the Utility of Probing Trajectories for Algorithm-Selection 9

CMA-ES PSO DE
Algorithm Best Trajectories

0.70

0.75

0.80

0.85

0.90

a
cc

u
ra

cy

ELA_500

ELA_300

Type

Trajectory

TS features

TS feature selection

(a) Best trajectory for 2 generations

CMA-ES PSO DE
Algorithm Current Trajectories

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

a
cc

u
ra

cy ELA_500

ELA_300

Type

Trajectory

TS features

TS feature selection

(b) Current trajectory for 7 generations

Fig. 1: Accuracy of classification on the LOIO cross-validation for best-so-far and
current probing-trajectories, time series features and time series feature selection
for 2 and 7 generations. Median ELA feature accuracy is represented by lines
for 300 and 500 function evaluations.

input to the classifier to predict the best algorithm). By concatenating trajec-
tories, we train four models named: C − P (for the concatenation of CMA-ES
and PSO trajectories), C −D (for CMA-ES and DE), D−P (for DE and PSO)
and, ALL (for the concatenation of the three algorithms). These models are also
trained for 2 or 7 generations.

As in Section 4.1, we observe that models trained with best-so-far trajectories
outperforms models trained with current trajectories with 2 generations and vice
versa with 7 generations. Due to space limitations, we will only present best-so-
far trajectories for 2 generations and current trajectories for 7 generations. The
other plots can be found in the supplementary materials.

Figure 2 compares the classification accuracy of the concatenation of tra-
jectories on the LOIO cross-validation. As observed previously in Section 4.1,
classifiers trained using the raw trajectories outperform those trained using the
time-series features and ELA feature selection.

At 2 generations (Figure 2a), classifiers trained on raw trajectories outper-
form those trained on ELA features except in a single case (C−D). The classifiers
trained with time-series features are all outperformed by classifiers trained on
ELA features when using this low budget of 2 generations.

When the number of generations increases to 7 (Figure 2b), the picture
changes dramatically. Classification accuracies increase and all trajectory-based
classifiers outperform classifiers using ELA features. Recall that the maximum
budget for the trajectory based input here is 560 (ALL) and the minimum 280
(C − P) compared to the ELA budgets of (300, 500). While accuracies of time
series-based classifiers are comparable, the median accuracy of raw trajectories
increases to 100% (with one run around 90% for all classifiers).

10 Q. Renau and E. Hart

C-P C-D D-P ALL
Algorithm Best Trajectories

0.70

0.75

0.80

0.85

0.90

0.95

a
cc

u
ra

cy

ELA_500

ELA_300

Type

Trajectory

TS features

TS feature selection

(a) Best trajectory for 2 generations

C-P C-D D-P ALL
Algorithm Current Trajectories

0.90

0.92

0.94

0.96

0.98

1.00

a
cc

u
ra

cy

ELA_500

ELA_300

Type

Trajectory

TS features

TS feature selection

(b) Current trajectory for 7 generations

Fig. 2: Accuracy of classification on the LOIO cross-validation for best-so-far and
current probing-trajectories, time series features and time series feature selection
for 2 and 7 generations. Median ELA feature accuracy is represented by lines
for 300 and 500 function evaluations.

4.3 Additional Insights into Trajectory Performance

Randomness in the ‘current’ trajectory As noted in Section 3.2, the ‘current’ tra-
jectory is obtained by adding each point sampled by an algorithm to a trajectory
in the order in which they are evaluated. However, it should be clear that for
a generational algorithm, the order that solutions are evaluated in is irrelevant.
Therefore to satisfy ourselves that the particular ordering used had no influence
of the results, we perform an additional experiment in which the points within
each trajectory are randomly shuffled within a generation to obtain a new tra-
jectory. We consider trajectories of 7 generations for the three algorithms in the
portfolio. This process is repeated 5 times.

We repeat previous experiments using the raw trajectory, and time-series
features as input to a classifier. We performed a Kolmogorov-Smirnov statistical
test between the initial run and the 5 shuffled trajectories. The p-values for the
five tests performed are between 0.84 and 1. These values do not enable the null
hypothesis to be rejected at a confidence level of 0.05, thus we conclude that the
order the points are evaluated in the ‘current’ trajectories does not impact the
classification accuracy.

Order in the ALL trajectory In the same manner, the concatenated ALL trajec-
tories used in the experiments used a fixed ordering to obtain the concatenation,
i.e., CMA-ES, PSO, and DE (C − P − D). Therefore, we also investigate the
impact of the order used to construct the ALL trajectory to determine if it has
an impact on the classification accuracy. We evaluate the classification accuracy
of the six possible combinations for the ALL trajectory. We use the raw trajec-
tory, compute time series features and perform feature selection on the LOIO
cross-validation using the ‘current’ trajectory on 7 generations as before. We
performed a Kolmogorov-Smirnov statistical test between the combination used

On the Utility of Probing Trajectories for Algorithm-Selection 11

in previous sections (C−P−D) and all other combinations. The p-values for the
five tests performed are between 0.87 and 1. These values do not enable the null
hypothesis to be rejected at a confidence level of 0.05, thus we can conclude that
the order used to create the ALL trajectory does not impact the classification
accuracy.

Best-so-far vs current trajectories We mention in Section 4.1 and Section 4.2,
that the ‘current’ trajectory outperforms the ‘best’ for larger number of genera-
tion and vice versa. In Figure 3, we display accuracy of classification of the ALL
trajectories for different generations from 2 to 7.

We observe that the crossing point between the ‘best’ and ‘current’ trajec-
tories happens with 4 generations. With fewer generations, the ‘best’ trajectory
outperform the ‘current’ until they reach similar accuracies with 4 generations.
Interestingly, we observe that only 3 generations are necessary for the ALLbest

to reach a median accuracy of 99.8% (with one run at 89.2%) which is 9% better
than ELA features for half their computation budget.

An explanation of the difference in performance of the two trajectories resides
in the fact that the ‘best’ trajectories can be seen as elitist (i.e, keeping only the
best value) and ‘current’ trajectories can be seen as non elitist (i.e., accepting
lower fitness values). It has been seen that elitist algorithms are outperforming
non elitist ones for small budgets and vice versa when the budget increases
(an example of this behavior can be found in [29]). Hence the ‘best’ trajectory
may contain more useful information when the budget is low whereas more
generations may be needed for the ‘current’ trajectory to reach the same level
of information.

2 3 4 5 6 7
generations

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

u
ra

cy

Trajectory

best

current

Fig. 3: Boxplot of accuracy of classification of the ‘best’ and ‘current’ trajectory-
based classifiers on ALL trajectories from 2 to 7 generations on LOIO cross-
validations.

12 Q. Renau and E. Hart

5 Insights into Trajectory Similarity

To understand whether similarity between trajectories correlates with similarity
in terms of solver performance, we project the time-series obtained into 2 di-
mensions using UMAP from the umap-learn Python library (version 0.5.3) with
default parameters in an unsupervised setting.

10 5 0 5 10 15
x

5

0

5

10

y

Algo_names

CMA-ES

DE

PSO

(a) Algorithms

10 5 0 5 10 15

5

0

5

10

1

6

10

15

20

24

1

2

3

3,18,22

45,8,9

6

7

10

11

12

13

14,19,20

15,17

16

21

23,24

(b) BBOB functions

Fig. 4: UMAP 2d projection of the ALLcurrent time series of runs on function
instances for 7 generations for each algorithm and BBOB functions (560 function
evaluations).

Figure 4 presents projections for the ALLcurrent time series using a budget of
560 function evaluations to create the trajectories, i.e. 7 generations. Each point
represents a trajectory for one run on an instance. Colour labels in Figure 4a
represent the best algorithm for the function the trajectory was obtained from,
i.e., the label used during classification for a given trajectory as in Section 3.3.

For a given algorithm, multiple clusters can be seen throughout the space.
This may imply that for a given algorithm, distinct types of trajectories lead to
the same choice of algorithm. However, we also observe some clusters of points
where several algorithms are grouped in the same cluster. This may affect the
accuracy of classification: in particular the figure suggests it may induce errors
between CMA-ES and DE, and between PSO and DE.

The number of clusters is lower than the number of BBOB functions, im-
plying that from the algorithm perspective, different functions may be similar.
In order to verify the similarity of functions from the algorithm perspective, we
coloured the instance runs by function. The result is shown in Figure 4b. From
the algorithm perspective, there are clear groups of functions won by the same
algorithm. Trajectories from only one function (F3) are found in different groups.
F3 belongs to two groups that are close in the space and hence may actually be
one larger group.

On the Utility of Probing Trajectories for Algorithm-Selection 13

From a trajectory perspective, ten functions have their own group (F1, F2,
F4, F6, F10, F11, F12, F13, F16, and F21) while the others are distributed
in groups of at least two functions. The largest groups are composed of three
functions that are similar from a trajectory point of view. For two of these
groups, all functions are won by the same algorithm: DE for F3, F18, and F22
and CMA-ES for F5, F8, and F9. Interestingly, these functions belong to different
categories (BBOB functions are divided into five categories representing function
properties) in the BBOB test-bed [10]: three different categories for F3, F18,
and F22 and two for 5, F8, and F9. Recall that these categories are human-
designed: however, the results imply that the properties of the functions that
are observable by a human do not completely reflect the algorithm perspective.
This reinforces the point made in Section 1 that determining instance similarity
from an algorithm perspective might prove useful in future attempts to build
optimisation systems that are capable of learning across instance sets.

6 Pros and Cons of Trajectories

The results in the previous sections show that trajectory-based algorithm selec-
tion is a good low-budget counterpart to classical approaches that tend to use
ELA features. At very low budget (2 generations, 80 evaluations), a classifier
trained on raw PSO trajectories performs on par with a classifier based on ELA
features obtained using 500 samples. Three classifiers trained with concatenated
trajectories (C−P,D−P,ALL) obtained from 2 generations with total budgets
of 100, 140, 160 respectively also outperform the ELA classifiers. Using a larger
number of generations (7), 8 out of 9 classifiers trained on single raw trajectories
or information derived from the trajectory outperforms the ELA based classifier
using 500 samples. Using concatenated trajectories from 7 generations, all classi-
fiers outperform the ELA classifiers, with the classifiers trained on concatenated
raw, ‘current’ trajectories obtaining 100% median accuracy (with a maximum
budget of 560 evaluations).

Given that computation of ELA features usually requires approximately 30d
samples and that the computation is known to fail for some features at budgets
less than this, using trajectories to train selectors is a promising way forward,
providing reasonable results even at very low budget. In addition, the trajectory
obtained to provide input to the selector can also be re-used in some cases: for
example, if a classifier trained on ‘CMA-ES’ trajectories predicts CMA-ES for
an instance, then the run can simply be continued from where it was stopped.
Furthermore, if using the ALL trajectory which contains partial runs of all
algorithms in the portfolio, then the budget is ‘virtually’ reduced by a third as
any selected algorithm can simply continue its run from the already computed
trajectory.

Comparing the results of the ALL classifiers that use three concatenated
trajectories with results from trajectories formed from pairs of classifiers raises
the question of how the method might scale with the number of algorithms
in the portfolio. For example, for a portfolio of N solvers, it is possible that

14 Q. Renau and E. Hart

only a subset of trajectories is sufficient to train a classifier. This necessitates
consideration of how to select the most appropriate combination of trajectories,
i.e., M < N . As the fixed evaluation budget b must be divided between N
trajectories (such that each trajectory is allocated o = b/N function evaluations),
then the influence of settings of o and N for a fixed value b should also be
studied further. Finally, further investigation of how the approach scales as the
N increases is also required.

7 Conclusion

The paper address the issue of algorithm-selection in a continuous optimisation,
specifically in a setting whether there is a fixed budget of evaluations that must
be shared between any computation required to derive input to an algorithm-
selector and in running the selected algorithm. The goal is to find a form of
input to a classifier that requires minimal computational budget, delivers high
accuracy, and views similarity from an algorithm perspective. We hypothesised
that short probing-trajectories obtained by running an algorithm for a small
number of generations could be used to train a classifier, with the added benefit
that the run used to obtain the trajectory could simply be continued for the
chosen algorithm.

We demonstrated that a time-series classifier trained on raw trajectories and
classifiers trained on features extracted from the trajectories can outperform
classifiers trained on ELA features at considerably lower budget, in the best case
using six times fewer sample points. Moreover, unlike using ELA features where
sample points used for feature computation are often discarded, points from
trajectories can be re-used if the algorithm that a trajectory belongs to is selected
or points can be re-used for warm-starting another optimisation algorithm.

Obvious next steps include testing the approach on a more complicated task
with larger algorithm portfolios as well as on different data-sets. A more thorough
evaluation of state-of-the-art time-series classifiers (and tuning of their hyper-
parameters) is also likely to improve results. Another key question lies in the
scaling of the ALL concatenation of trajectories approach: does the number of
trajectories needed depend linearly on the size of the portfolio or can judicious
selection of specific trajectories suffice? Another interesting direction for future
work is to use evaluate the use of the approach in combinatorial optimisation
domains where there is much less work in defining appropriate ELA features and
where calculation of domain-specific features is often expensive (particularly in
TSP). Furthermore, in some combinatorial domains, hand-designed features have
also been criticised for not correlating well with performance [33]. A trajectory-
based approach could therefore be a promising avenue for research.

Acknowledgements

The authors are funded by the EPSRC ‘Keep-Learning’ project: EP/V026534/1
and EP/V027182/1

On the Utility of Probing Trajectories for Algorithm-Selection 15

References

1. Alissa, M., Sim, K., Hart, E.: Automated algorithm selection: from
feature-based to feature-free approaches. J. Heuristics 29(1), 1–38 (2023).
https://doi.org/10.1007/s10732-022-09505-4

2. Alissa, M., Sim, K., Hart, E.: Algorithm selection using deep learning without
feature extraction. In: Proceedings of the Genetic and Evolutionary Computation
Conference. pp. 198–206 (2019)

3. Ardeh, M., Mei, Y., Zhang, M.: Genetic programming hyper-heuristics with prob-
abilistic prototype tree knowledge transfer for uncertain capacitated arc routing
problems. In: 2020 IEEE Congress on Evolutionary Computation (CEC). pp. 1–8
(2020). https://doi.org/10.1109/CEC48606.2020.9185714

4. Belkhir, N.: Per Instance Algorithm Configuration for Continuous Black Box Op-
timization. phdthesis, Université Paris-Saclay (Nov 2017), https://hal.inria.fr/tel-
01669527/document

5. Belkhir, N., Dréo, J., Savéant, P., Schoenauer, M.: Per instance algorithm con-
figuration of CMA-ES with limited budget. In: Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’17. pp. 681–688. ACM (2017).
https://doi.org/10.1145/3071178.3071343

6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001).
https://doi.org/10.1023/A:1010933404324

7. Cenikj, G., Petelin, G., Doerr, C., Korosec, P., Eftimov, T.: Dynamorep:
Trajectory-based population dynamics for classification of black-box optimization
problems. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, GECCO 2023, Lisbon, Portugal, July 15-19, 2023. pp. 813–821. ACM (2023).
https://doi.org/10.1145/3583131.3590401

8. Derbel, B., Liefooghe, A., Vérel, S., Aguirre, H., Tanaka, K.: New features for
continuous exploratory landscape analysis based on the SOO tree. In: Proceed-
ings of Foundations of Genetic Algorithms (FOGA) ’19. pp. 72–86. ACM (2019).
https://doi.org/10.1145/3299904.3340308

9. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-Parameter Black-Box Op-
timization Benchmarking 2010: Presentation of the Noiseless Functions.
http://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf
(2010)

10. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tusar, T., Brockhoff,
D.: COCO: a platform for comparing continuous optimizers in a black-
box setting. Optimization Methods and Software 36(1), 114–144 (2021).
https://doi.org/10.1080/10556788.2020.1808977

11. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation
in evolution strategies. Evolutionary Computation 9(2), 159–195 (2001).
https://doi.org/10.1162/106365601750190398

12. Heins, J., Bossek, J., Pohl, J., Seiler, M., Trautmann, H., Kerschke,
P.: A study on the effects of normalized TSP features for automated
algorithm selection. Theor. Comput. Sci. 940(Part), 123–145 (2023).
https://doi.org/10.1016/j.tcs.2022.10.019

13. Jankovic, A., Eftimov, T., Doerr, C.: Towards feature-based performance regres-
sion using trajectory data. In: Applications of Evolutionary Computation - 24th
International Conference, EvoApplications 2021, Held as Part of EvoStar 2021,
Proceedings. Lecture Notes in Computer Science, vol. 12694, pp. 601–617. Springer
(2021). https://doi.org/10.1007/978-3-030-72699-7 38

16 Q. Renau and E. Hart

14. Jankovic, A., Vermetten, D., Kostovska, A., de Nobel, J., Eftimov, T., Doerr, C.:
Trajectory-based algorithm selection with warm-starting. In: IEEE Congress on
Evolutionary Computation, CEC 2022, Padua, Italy, July 18-23, 2022. pp. 1–8.
IEEE (2022). https://doi.org/10.1109/CEC55065.2022.9870222

15. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of
ICNN’95 - International Conference on Neural Networks. vol. 4, pp. 1942–1948
vol.4 (1995). https://doi.org/10.1109/ICNN.1995.488968

16. Kerschke, P., Hoos, H., Neumann, F., Trautmann, H.: Automated Algorithm Selec-
tion: Survey and Perspectives. Evolutionary Computation 27(1), 3–45 (Mar 2019)

17. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Detecting Fun-
nel Structures by Means of Exploratory Landscape Analysis. In: Proceed-
ings of the Genetic and Evolutionary Computation Conference, GECCO
’15. pp. 265–272. ACM (2015). https://doi.org/10.1145/2739480.2754642,
http://dl.acm.org/citation.cfm?doid=2739480.2754642

18. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Low-Budget Exploratory
Landscape Analysis on Multiple Peaks Models. In: Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’16. pp. 229–236. ACM (2016).
https://doi.org/10.1145/2908812.2908845

19. Kostovska, A., Jankovic, A., Vermetten, D., de Nobel, J., Wang, H., Eftimov, T.,
Doerr, C.: Per-run algorithm selection with warm-starting using trajectory-based
features. In: Parallel Problem Solving from Nature - PPSN XVII - 17th Inter-
national Conference, PPSN 2022, Dortmund, Germany, September 10-14, 2022,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 13398, pp. 46–60.
Springer (2022). https://doi.org/10.1007/978-3-031-14714-2 4

20. Kostovska, A., Jankovic, A., Vermetten, D., de Nobel, J., Wang, H., Eftimov, T.,
Doerr, C.: Per-run algorithm selection with warm-starting using trajectory-based
features. In: International Conference on Parallel Problem Solving from Nature.
pp. 46–60. Springer (2022)

21. Kotthoff, L., Kerschke, P., Hoos, H., Trautmann, H.: Improving the state of the
art in inexact TSP solving using per-instance algorithm selection. In: Learning
and Intelligent Optimization - 9th International Conference, LION 9, Lille, France,
January 12-15, 2015. Revised Selected Papers. Lecture Notes in Computer Science,
vol. 8994, pp. 202–217. Springer (2015). https://doi.org/10.1007/978-3-319-19084-
6 18

22. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph,
G.: Exploratory Landscape Analysis. In: Proceedings of the Genetic and Evo-
lutionary Computation Conference, GECCO ’11. pp. 829–836. ACM (2011).
https://doi.org/10.1145/2001576.2001690

23. Muñoz, M., Kirley, M., Halgamuge, S.: Exploratory Landscape Analysis
of Continuous Space Optimization Problems Using Information Content.
IEEE Transactions on Evolutionary Computation 19(1), 74–87 (Feb 2015).
https://doi.org/10.1109/TEVC.2014.2302006

24. de Nobel, J., Wang, H., Bäck, T.: Explorative data analysis of time series based
algorithm features of CMA-ES variants. In: GECCO ’21: Genetic and Evolution-
ary Computation Conference, Lille, France, July 10-14, 2021. pp. 510–518. ACM
(2021). https://doi.org/10.1145/3449639.3459399

25. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

On the Utility of Probing Trajectories for Algorithm-Selection 17

26. Pitra, Z., Repický, J., Holena, M.: Landscape analysis of Gaussian process surro-
gates for the covariance matrix adaptation evolution strategy. In: Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO ’19. pp. 691–699
(2019). https://doi.org/10.1145/3321707.3321861

27. Renau, Q.: Landscape-Aware Selection of Metaheuristics for the Optimization of
Radar Networks. Ph.D. thesis, Polytechnic Institute of Paris, Palaiseau, France
(2022), https://tel.archives-ouvertes.fr/tel-03593606

28. Renau, Q., Dréo, J., Doerr, C., Doerr, B.: Towards explainable exploratory land-
scape analysis: Extreme feature selection for classifying BBOB functions. In: Appli-
cations of Evolutionary Computation - 24th International Conference, EvoApplica-
tions 2021, Held as Part of EvoStar 2021, Proceedings. Lecture Notes in Computer
Science, vol. 12694, pp. 17–33. Springer (2021). https://doi.org/10.1007/978-3-030-
72699-7 2

29. Renau, Q., Dréo, J., Peres, A., Semet, Y., Doerr, C., Doerr, B.: Au-
tomated algorithm selection for radar network configuration. In: Field-
send, J.E., Wagner, M. (eds.) Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO ’22. pp. 1263–1271. ACM (2022).
https://doi.org/10.1145/3512290.3528825

30. Renau, Q., Dreo, J., Doerr, C., Doerr, B.: Exploratory Landscape
Analysis Feature Values for the 24 Noiseless BBOB Functions (2021).
https://doi.org/10.5281/zenodo.4449934

31. Rodŕıguez, J., Kuncheva, L., Alonso, C.: Rotation forest: A new classifier ensem-
ble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006).
https://doi.org/10.1109/TPAMI.2006.211

32. Seiler, M.V., Prager, R.P., Kerschke, P., Trautmann, H.: A collection of deep
learning-based feature-free approaches for characterizing single-objective contin-
uous fitness landscapes. In: GECCO ’22: Genetic and Evolutionary Computation
Conference, Boston, Massachusetts, USA, July 9 - 13, 2022. pp. 657–665. ACM
(2022). https://doi.org/10.1145/3512290.3528834

33. Sim, K., Hart, E.: Evolutionary approaches to improving the layouts of instance-
spaces. In: Parallel Problem Solving from Nature - PPSN XVII - 17th International
Conference, PPSN 2022, Dortmund, Germany, September 10-14, 2022, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 13398, pp. 207–219. Springer
(2022). https://doi.org/10.1007/978-3-031-14714-2 15

34. Skvorc, U., Eftimov, T., Korosec, P.: A comprehensive analysis of the invariance
of exploratory landscape analysis features to function transformations. In: IEEE
Congress on Evolutionary Computation, CEC 2022, Padua, Italy, July 18-23, 2022.
pp. 1–8. IEEE (2022). https://doi.org/10.1109/CEC55065.2022.9870313

35. Song, Y., Bliek, L., Zhang, Y.: Revisit the algorithm selection problem for tsp with
spatial information enhanced graph neural networks (2023)

36. Storn, R., Price, K.: Differential evolution - A simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization 11(4),
341–359 (1997). https://doi.org/10.1023/A:1008202821328

37. Vermetten, D., Hao, W., Sim, K., Hart, E.: To Switch or not to Switch: Predict-
ing the Benefit of Switching between Algorithms based on Trajectory Features -
Dataset (2022). https://doi.org/10.5281/zenodo.7249389

38. Vermetten, D., Wang, H., Sim, K., Hart, E.: To switch or not to switch: Predicting
the benefit of switching between algorithms based on trajectory features. In: Appli-
cations of Evolutionary Computation. pp. 335–350. Springer Nature Switzerland,
Cham (2023)

18 Q. Renau and E. Hart

39. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q.: A
comprehensive survey on transfer learning. Proceedings of the IEEE 109(1), 43–
76 (2021). https://doi.org/10.1109/JPROC.2020.3004555

