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Abstract

The automated comparison of visual content is a contemporary solution to scale the detection of illegal
media and extremist material, both for detection on individual devices and in the cloud. However,
the problem is difficult, and perceptual similarity algorithms often have weaknesses and anomalous
edge cases that may not be clearly documented. Additionally, it is a complex task to perform an
evaluation of such tools in order to best utilise them. To address this, we present PHASER, a still-image
perceptual hashing framework enabling forensics specialists and scientists to conduct experiments on
bespoke datasets for their individual deployment scenarios. The framework utilises a modular approach,
allowing users to specify and define a perceptual hash/image transform/ distance metric triplet, which
can be explored to better understand their behaviour and interactions. PHASER is open-source and we
demonstrate its utility via case studies which briefly explore setting an appropriate dataset size and
the potential to optimise the performance of existing algorithms by utilising learned weight vectors for
comparing hashes.
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1. Introduction

Much like other cyber security disciplines, the
field of digital forensics is faced with constant ex-
ternal pressure to adapt to new developments,
whether they are societal or technological. De-
spite this rapid change, digital artefacts need to
adhere to solid scientific principles in order to be
robust enough to rely on in court, as this is the
fundamental purpose of the discipline. To this
end, there have been initiatives to perform robust
testing of forensics tools [1], open-sourcing stan-
dardised datasets to facilitate experimental test-
ing and tool evaluation [2], and more recently to
formalise the process of forensic experimentation
itself [3]. However, there still appears to be a
disconnect between digital forensics as a practice
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and as a science [4], with a reliance on the output
of tools without an accompanying robust under-
standing of their accuracy or stability [5].

To compound the problem, Law Enforcement
Agency (LEA) caseloads and evidence volumes
have been a problem for nearly two decades [6],
unavoidably placing further emphasis on automa-
tion [7]. As such, evaluating and understanding
tooling has never been more important, partic-
ularly as the field moves towards further use of
Artificial Intelligence technologies, which require
large datasets to properly evaluate [8].

One such use case for automation in digital
forensics is that of identifying known files, which
traditionally was served by cryptographic hash-
ing for exact binary matching [9], but now also
constitutes approximate, similarity-based, match-
ing schemes [10]. The performance of such algo-
rithms is important, particularly in use cases such
as the detection of Child Sexual Abuse Material
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(CSAM), the scale of which has been increasing
in recent years [11]. Perceptual (similarity) Hash-
ing has been deployed on the cloud, largely via
Microsoft’s PhotoDNA [12], for some time, with
LEA tools such as Magnet AXIOM offering plu-
gin support. At the same time, Facebook [13]
and Apple [14] also have their solutions. How-
ever, despite much interest in the area, the field
lacks a common evaluation framework for percep-
tual hashing, despite their being counterparts for
binary-based approximate matching [15, 16].

To address this gap and to further facilitate
a culture of scientific evaluation for automated
forensics artefact processing, we introduce PHASER
(Perceptual Hashing Algorithms Evaluation and
Results), a perceptual hashing evaluation frame-
work. Inspired by FRASHER [16], an evaluation
framework for binary similarity hashing, PHASER
is built on modern scientific Python libraries (e.g.
Pandas, SciPy), with a modular approach to fa-
cilitate various evaluation conditions.

In the remainder of this paper, we describe the
background, related work and problem space in
Section 2, followed by a description of PHASER

and its use cases in Section 3. We then present
short indicative experiments using the framework
in Section 4, with conclusions in Section 5.

2. Background and Related Work

2.1. Content-Based Image Retrieval and Forensic
perceptual hashing

The field of Content-Based Image Retrieval
(CBIR) is the progenitor of perceptual hashing,
tracing its extensive body of work back as early
as the 1970s [17]. The problem of retrieving simi-
lar images for a given query is a difficult one, and
new methods are still being developed and bench-
marked/evaluated in dedicated conferences, such
as ACM’s ICMR. The field is mature, and there
is a clear understanding of the pipeline for pre-
processing, feature extraction, image representa-
tion, and similarity matching. Perceptual hash-
ing, particularly in the digital forensics context,
is less well understood [18], particularly as there
are additional constraints on the process.

The general task in CBIR is to retrieve a list
of relevant images, such as images of trees for a
query picture of a tree. Metrics used to evaluate
the performance of these systems, such as Preci-
sion, Recall, and the F1-measure, reflect the re-
trieval of a group of relevant images for a query
image, though this idea of relevance may be some-
what fluid and difficult to capture [19]. Modern
systems may also use multiple indices of features,
as well as feedback loops, to refine results [17].

The retrieval task in a digital forensics con-
text is quite different, however, and rather than
a loose sense of topic or object relevance the sce-
nario is largely the retrieval of duplicates, or near-
duplicates, of an image [10].This shifts the eval-
uation criteria from one based on relevance to a
biometric style evaluation, where True/False Pos-
itives/Negatives are assessed in a confusion ma-
trix. Essentially, perceptual hashes are treated as
a natural extension of traditional cryptographic
good/bad lists, looking for ‘hits’, with the caveat
that non-exact hash matching necessitates some
similarity metric and corresponding threshold to
consider an observation a ‘hit’ or match.

However, this decision threshold introduces a
tension between the ability to discriminate be-
tween unrelated images and robustness to attacks
or modified images [10], as measured by inter-
and intra-image analysis [20], respectively. If
the threshold for a ‘hit’ is set too loosely, im-
ages which are unrelated may be matched, cre-
ating additional false positives. Conversely, set-
ting the threshold too restrictively will miss au-
thentic matches, introducing false negatives. In a
forensics use case, to avoid overwhelming a foren-
sic practitioner at scale, prior work has suggested
that a false positive rate of 1% is excessive, but
that it may be acceptable to have a false negative
rate of 1% [21]. However, a lack of understanding
of these trade-offs, or how to achieve them, is not
ideal for practitioners when utilising tools [22].

While comparisons between feature vectors in
CBIR can use a wide number of distance met-
rics [17], perceptual hashes are almost exclusively
compared using the normalised Hamming dis-
tance between two hashes. As with traditional
cryptographic hashing, and particularly impor-
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tant in the CSAM use case, perceptual hashes
are intended to be irreversible and not leak in-
formation about the image content in the hash1,
such that more direct feature comparisons are es-
chewed in favour of these criteria. While this
does limit the possibilities, there is arguably some
room for innovation here, particularly as Ham-
ming distance is essentially a global measure and
does not capture the locality of bit differences,
which may lose useful information. Similarly, al-
gorithmic properties may mean that not all bits
contribute equally when matching images, with
bit weight optimisation being explored in prior
work [21, 26].

2.2. Evaluating perceptual hashing

Aside from the widespread use of a shared dis-
tance metric (Hamming distance), approaches to
evaluating perceptual hashes are much more var-
ied and inconsistent than those used in CBIR.
Exploratory distance-based analyses have been
used to understand the distributions of distance
scores [10, 27, 28, 29]. Threshold analysis can
then be conducted to establish a distance cut-
off, used to decide what constitutes a match,
at which point CBIR evaluation metrics (Preci-
sion, Recall, F1, Precision@n) are often used [27,
30, 31, 32, 33]. Other approaches make use of
raw False Acceptance/Rejection rates and confu-
sion matrices [10, 20, 34], with Receiver Operat-
ing Characteristics (ROC) curves sometimes be-
ing used to visualise these trade-offs across the
spectrum of possible thresholds [20, 35]. There
does not appear to be a consensus on dataset
size or number of pairwise observations, with test
datasets ranging from tens [10, 20], to approxi-
mately one-thousand [27, 36], and tens of thou-
sands or more [28, 29, 31, 33].
There have been works that seek to create a uni-

form framework for assessing perceptual hashes.
However, the most recent we could find is de-
signed for reverse image search [31], and Zauner’s
original framework, Rihamark (2010) [20] did not
appear completely functional when we tested it.

1Though this is not necessarily the case in practice [23,
24, 25].

As such, it seems prudent to provide the commu-
nity with a modern toolkit to facilitate evaluation
with a low barrier to entry.

3. PHASER

3.1. Design Goals

There were several main aims when designing
PHASER: i) It should be open-source with modular
components. In this case, the modular elements
correspond to the Perceptual Hashing Algorithm,
Image Transform (manipulation), and Distance
Algorithm. ii) It should be plug-and-play with a
provided dataset with minimal configuration, al-
lowing experienced developers to build on it. iii)
Generated hashes and distance scores should be
portable, allowing for external analysis.

We achieve i) by providing separate modules to
define each element, making it straightforward to
import additional algorithms or provide a func-
tion to implement a new approach. For ii), we
provide a Jupyter notebook to facilitate process-
ing a specified dataset and simplify the algorithm
selection and analysis stages. For iii), we ensure
that intermediate hashes and distance scores are
saved to disk in CSV format while enabling trans-
formed images to be saved to disk (with tempo-
rary memory-only storage by default).

3.2. Overview and Processing Pipeline

Here, we provide an overview of the layout and
processing steps in PHASER. We choose to explic-
itly separate the analysis of inter-distances, which
assume image content independence, and intra-
distances, which are measured between original
and transformed images, as with Zauner’s orig-
inal framework [20]. PHASER is implemented in
Python 3, and efforts have been made to leverage
the power of modern data science libraries, such
as NumPy, SciPy, and SciKit-Learn. PHASER is
an open-source contribution and is available on
GitHub2.
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Figure 1: Tree Structure of the PHASER Library

3.2.1. Step 1 - Hashing and Transformation

The tree structure of the library is depicted in
Figure 1, with processing stages in Figure 2. In
Step 1 (2a) the specified folder of original images
is ingested by ComputeHash, which wraps calls to
Python’s Joblib to parallelise hashing and trans-
formation. The process is roughly: i) Load each
image into an object from the Python PIL library.
ii) Generate hash digests for each specified algo-
rithm, with definitions located in phaser.hashing.
iii) Generate each image transform (with defini-
tions in phaser.transformers), deriving hash di-
gests in the same way as the original images. To
conserve RAM and disk space, the DataFrame,
which stores hashes, encodes filenames, algorithm
names, and transforms names into integers (La-
belEncoders.bzip2 in Figure 2). Hashes can also
be generated externally and imported into Stage
2 with an appropriately formatted CSV file.
As noted previously, transforms are handled in-

2DOI: https://zenodo.org/doi/10.5281/zenodo.
10363150. GitHub: https://GitHub.com/AabyWan/PHA
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(a) Ingest dataset, apply transforms, and calculate hashes. Generates
integer labels (LabelEncoders.bz2) for filenames, hash algorithms,
and transforms to reduce CSV and DataFrame size.

(b) Calculate inter- and intra-distance scores. Intra-scores compar-
isons are 1:1 original to transformed, while inter-scores are sampled
to match the total number of intra-distance observations. Distance
metric labels are also encoded.

(c) Calculate statistics and plots. Distance distribution his-
tograms/KDE plots, EER analysis for distance thresholds, ROC
curves and confusion matrices are provided as a baseline.

Figure 2: Stages of processing in the PHASER Library

memory, but can optionally be written to per-
sistent media. Additionally, transforms can be
loaded from the disk if they already exist. This
is particularly useful in cases where they cannot
be constructed easily in the framework (for exam-
ple, importing thumbnails generated by Operat-
ing System caches [32]). For existing perceptual
hashes, registering them in PHASER involves writ-
ing a wrapper class to format the hash digest as
a string of bits, formatting which is facilitated by
phaser.utils. Transforms also need to extend the
base Transformer class and return a PIL object
but can generate the image via any means. In
both cases, classes must be exported outside the
module by updating the corresponding module’s
init .py file.

We do not formally benchmark the computa-
tional performance of PHASER. However, anecdo-
tally, a Ryzen 5900X test system, reading the
Flickr 1 million [37] dataset from a SATA SSD, ex-
tracts hashes at ≈155 files per second (<2 hours)
for three hashes and five transforms.
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3.2.2. Step 2 - Pairwise Distance Calculations

The labels and DataFrame/CSV of hashes from
Step 1 are re-used or loaded from the disk,
prior to calculating pairwise distances in Step
2 (2b). Distance metrics can be defined in
phaser.similarities, and exported in a similar man-
ner to transforms and hashing algorithms. The
main difference here is that algorithms included
in scipy.spatial.distance can be included by sim-
ply specifying the string associated with the al-
gorithm, avoiding the need to pass a reference to
the function directly. This is because inter- and
intra-distances are calculated using SciPy’s pdist
and cdist functions, respectively, which facili-
tates easy re-use of its built-in distance metrics.
Built-in metrics also support a weights vector ar-
gument, which will be relevant to our discussion
in Section 4.2.

PHASER explicitly splits out inter- and intra-
distance classes, which are marked in the
DataFrame as class 0 and 1, respectively.
Inter-distances correspond to the behaviour of
an algorithm/transform/distance metric triplet
when considering unrelated images, while Intra-
distances correspond to images that should
match. These intra-distances are calculated on
a 1:1 basis between the original image and the
hash algorithm/transform/distance triplet, mean-
ing that for a dataset of 1,000 images, with two
perceptual hash algorithms, five transforms, and
two distance metrics, the overall number of intra-
distance observations would be 1, 000×2×5×2 =
20, 000.

As inter-distance pairwise comparisons scale
with the square of the number of images, inter-
score observations are sampled, such that each
image is compared with n randomly selected im-
ages in the DataFrame for each triplet. n is auto-
matically calculated to balance both classes, and
while this balancing is usually inexact it can be
compensated for in the evaluation stage. This eq-
uity in scale allows for metrics and plots to be
meaningfully compared on the same axes (oth-
erwise, probability density distributions become
unbalanced, for example). The DataFrame for all
pairwise observations is saved to a bz2 compressed
csv, with metric label encodings being present in

the existing encoding file, or added at this stage.
It should be noted that while the underlying

metrics are often measuring the distance between
hashes, some evaluation approaches are preferable
to be viewed in terms of similarity. As both values
are normalised between 0 and 1, the point of view
is inverted by simply calculating 1−x, where x is
either similarity or distance.

3.2.3. Step 3 - Evaluation and Plotting

As discussed in Section 2.2, there are sev-
eral ways to evaluate the behaviour of perceptual
hashing algorithms. We assume that the match-
ing task in digital forensics is essentially a clas-
sification task for some decision threshold t, with
an emphasis on associated metrics such as FP/FN
assessment, which is in line with Rihamark [20].
PHASER facilitates three types of evaluation: i)
Exploratory Analysis, ii) Classification Efficacy,
and iii) Performance Optimisation. Each is dis-
cussed in turn below.
Exploratory Analysis: Gaining an initial un-

derstanding of the behaviour of a hashing algo-
rithm/transform/distance triplet can be a use-
ful beginning. For this reason, we provide fea-
tures to calculate and plot distance/similarity his-
tograms for inter- and intra-comparisons, as in
prior work [27, 28]. Kernel Density Estimation
(KDE) plots can also be used to visualise the
separation or overlap of these inter- and intra-
distance behaviours. We expand on this idea in
Section 3.3.
Classification Efficacy: KDE plots help un-

derstand the general trade-offs; however, actual
classification performance can be viewed at the
macro-level, across all thresholds, with a ROC
(Receiver Operating Characteristic) curve and
corresponding Area Under the Curve (AUC), or
at the micro-level for individual thresholds with a
Confusion Matrix. We also facilitate Equal Error
Rate (EER) plots to visualise the trade-offs dif-
ferently from the KDE plot. However, we don’t
expect that the EER is particularly useful in and
of itself in a forensics use case, as it is more likely
that a false negative rate would be calculated for
a target false positive rate.
Performance Optimisation: When conduct-

5



ing the above evaluation steps, there is an option
to do a bit-level analysis of hash vectors to un-
derstand if patterns are generated when measur-
ing distance scores for a given algorithm and dis-
tance pair across transform types. This data can
then be used to ‘learn’ weights for each bit in the
hash corresponding to how effective it is across
all transform classes, ideally optimising perfor-
mance in a similar vein to Steinebach [38]. This
requires that the distance metric accepts a weight
vector parameter equal in length to the chosen
hash length. In SciPy, the weights are passed in
as the w parameter. This step is optional, and we
experimentally explore its potential in Section 4.2.

In terms of implementation, as depicted in
Figure 1, evaluation statistics/metrics are sepa-
rated from the plotting aspect. The MetricMaker
class generates the statistics described above for
a given triplet, with the ComputeMetrics class
acting as a wrapper class for doing this across
all triplets. Adding new statistical derivations
to the MetricMaker.fit function would allow
them to be easily processed and aggregated.
The BitAnalyzer class can optionally generate
the bit-analysis and optimisation weightings de-
scribed above. The Plotting module provides
wrappers to relevant Python libraries to easily vi-
sualise triplet information in a Histogram, KDE,
EER, or ROC plot or as a Confusion Matrix.

To verify that the results produced by PHASER

were correct, we ran the same dataset as prior
work [28] , using TransformFromDisk to load ex-
isting transforms, and compared statistics for per-
ceptual hashes in Python’s ImageHash library. No
code base was shared, however, results were iden-
tical.

3.3. Visualising Performance - An Example

To demonstrate typical performance classes and
aid in interpreting the visualisations generated
by PHASER, Figure 3 depicts a collection of KDE
and EER plots for ColorHash [39], PDQ [13], and
pHash [39]. Plots were generated from a small test
set for the Border transform (red border around
image, width 30 pixels) as it neatly separates out
behaviour types.

(a) KDE plots for Border Transformation (30 pixels, red)

(b) EER plots for Border Transformation (30 pixels, red)

Figure 3: Comparison KDE and EER plots for different
algorithms on the Border transform for a small test set.
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In Figure 3a, ColorHash does not separate the
similarity distributions of unrelated images, the
inter-class, from those that should match intra-
class, when comparing originals to transforms.
The overlap is considerable, such that any sim-
ilarity threshold would result in many false pos-
itives, with the rate of this trade-off being visu-
alised in the EER plot in Figure 3b. In this case,
setting a threshold of 0.9 to balance the False
Positive Rate (FPR) and False Negative Rate
(FNR) rate results in both being around 70%,
which is very poor. PDQ, on the other hand,
neatly separates out both distributions, such that
a suitable threshold can be found while minimis-
ing both FPR and FNR. For pHash, the distri-
butions overlap somewhat, such that a trade-off
must be made between a desired FPR and FNR
rate for any threshold. While this example is
specific, it is indicative of the three types of be-
haviour which may be present for a given algo-
rithm/transform/distance metric triplet.

3.4. Suggested Avenues of Exploration in Percep-
tual Hashing

As PHASER facilitates the exploration of algo-
rithm/transform/distance triplets, it should now
be much more straightforward to identify algo-
rithmic weaknesses. Identifying such issues then
allows for the development of approaches to mak-
ing the hash more robust without fundamentally
altering the underlying mechanisms. This could
be achieved in a variety of ways, such as by explor-
ing pre-processing normalisation approaches [38].
Similarly, as is more common in CBIR, multi-
index approaches, with multiple hashes, may be
used to compensate for the weaknesses of each
algorithm or to form a pipeline, such as those
used in spam detection [40]. Building on this,
a more nuanced understanding of global vs. lo-
cal features, as in CBIR, would be beneficial. For
example, in testing PHASER we noted that diffi-
cult transforms such as Rotate [10, 38] and Mir-
roring [10, 28] had no detrimental effect on Col-
orHash, as its global colour histograms are unaf-
fected by the structure of these pixels, while other
algorithms struggle greatly with x-axis mirroring.

The distance metric space also does not ap-
pear to have been adequately explored. CBIR
neatly separates the ideas of representation (fea-
ture vectors, hash) and comparisons, while the
comparison of features has considerably less at-
tention paid to it in the perceptual hashing litera-
ture. Exploring different distance metrics, metric
weightings, or combinations of distance metrics,
perhaps together with multi-hash indices, may be
beneficial. Indeed, we explore one aspect of this
in the next section. Understanding structural as-
pects [41] of hashes generated by perceptual hash-
ing algorithms may also be useful, as, beyond
weightings, there may be recurring patterns or
information leakage [23]. Such insights may also
be of use when considering hash comparisons and
global vs. local changes in the hash. For instance,
Hamming distance is a global difference measure,
but perhaps it would be worth exploring if lo-
cal, clustered, changes in hash vectors should be
weighted differently (to, say, downplay the impact
of a copy-move object in a corner of the image).

4. Experiments

To demonstrate the utility of PHASER, we
present two short experiments in this section,
which explore open questions directly in the
framework. The code used for these experiments
serve as exemplars on the PHASER GitHub page.

4.1. How Many Images?: Convergence of Mea-
sures at Various Dataset Sizes

It was noted in Section 2.2 that the dataset
of original images used to evaluate Perceptual
Hashes varies considerably. When considering the
use case of PHASER, it became necessary to estab-
lish how large the dataset must be to obtain re-
liable results. This information was not readily
available in the literature, so an experiment was
conducted to understand sampling variability.
The Flickr 1 Million dataset [37] was used due

to its large scale, and all images were hashed us-
ing PDQ and Wavehash for the Flip Horizontal
(mirror on x-axis), Rescale (96×96px) and Wa-
termark (40px min, target 10% image height, bot-
tom right-corner) transforms. Prior work [28] has

7



shown that the inter-image distributions for PDQ
and Wavehash vary considerably (narrow and
wide distributions, respectively), making them
complementary choices. For similar reasons, the
transforms were chosen to represent an easy case
(Rescale), a slightly more difficult case (Water-
mark), and a very difficult case (Flip Horizontal),
again based on prior work [28]. For the sake of
simplicity, we only considered Hamming distance
here, as it is the most widely used.
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(a) EER Decision Threshold for PDQ over different dataset sample
sizes.
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(b) EER Decision Threshold for Wavehash over different dataset
sample sizes.

Figure 4: Metric convergence for EER thresholds for three
transforms. Note that the plots do not share the y-axis.

To simulate differing dataset scales, the
DataFrame of all hashes was sampled for 1,000;

10,000; 100,000; and 250,000 images before calcu-
lating distance scores. Inter- and intra-distances
and their corresponding evaluation metrics, were
then calculated for each sample size, repeating
the process 250 times for each. PHASER balances
the number of inter- and intra-distance observa-
tions such that the number of observations for
each inter- and intra-distance triplet is the same
as the sample size. As this is a necessary step for
some analysis approaches to be representative, we
expect these results to hold for experiments con-
ducted outside of PHASER, too.

To capture the variability of both inter- and
intra-distance comparisons, we plot the EER De-
cision Threshold, i.e. the similarity value where
both the FPR and FNR are equal, as it cap-
tures the relationship between inter- and intra-
score distributions. The assumption is made that
all original images in the dataset are unrelated for
the sake of FPR/FNR calculation. The boxen-
plots for each algorithm are depicted in Figure 4.

The EER threshold for PDQ-Rescale (4a)
shows considerable change from the smallest sam-
ple size, 1000, to the next order of magnitude,
with the range shrinking from 0.59–0.83 to 0.61–
0.68. This suggests that there are cases where
there is a clear benefit to samples on the larger
side of the literature, even for the least-difficult
transform. The more difficult Watermark case has
very similar behaviour, however, the difficult Flip
transform does not change the EER threshold
much at all, largely because PDQ is very poor at
handling this transform, producing distances that
correspond to unrelated images. Similar trends
are found with Wavehash, though the absolute
values vary considerably for the EER threshold,
with a smaller maximum range.

Overall, the variance between iterations drops
substantially as the dataset increases from 1,000
to 100,000 images. Table 1 depicts standard de-
viation values for the Rescale transform, as it
seems to vary the most despite being a rela-
tively trivial transformation. We note an order
of magnitude difference between values at 1,000
and 100,000 samples, and there is still improve-
ment to be had at 250,000. We would suggest
that larger datasets may produce more consis-
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Rescale(96, 96)
EER Threshold

STDEV

Sample Size PDQ Wavehash

1,000 0.0634 0.0212
10,000 0.0125 0.0134
100,000 0.0023 0.0076
250,000 0.0015 0.0047

Table 1: Standard deviations of EER-thresholds for the
Rescale transform across dataset sizes. 250 iterations at
each sample size.

tent results, though there could be diminishing re-
turns beyond 100,000 on heterogeneous datasets.
This point may occur much earlier for more con-
strained datasets, where images are relatively ho-
mogeneous.

4.2. Optimising for weaknesses: Assigning Hash
Bit-Vector Weights

Perceptual hashing algorithms can be separated
into heuristic approaches and machine learning-
based approaches, which derive features or their
respective weights directly from image datasets.
However, aside from Steinebach’s [38] weighting
scheme for ForBild, data-driven optimisation of
heuristic hashes does not appear to have been pur-
sued. We explored this possibility by leveraging
functionality in both PHASER and SciPy.

250,000 images were sampled from the Flickr
1 Million dataset, processing them with PDQ,
pHash and Wavehash for a range of transforms:
Border (30px), Crop (5% all sides), Flip (x-axis),
Rescale(96x96), Rotate (anti-clockwise 5◦), and
Watermark. All three transforms are heuristic ap-
proaches and derive features in the frequency do-
main. These have been tested previously in prior
work [10, 28, 36], with the x-axis mirroring prov-
ing to be the main point of difficulty.

Distance scores were then calculated for all
triplets, with bit-analysis enabled when comput-
ing metrics. Each bit in the hash vector (vary-
ing in length for each algorithm) was analysed for
its relative contribution to rejecting and accepting
an image match correctly at the EER threshold.
Median values are then used to generate a bit-
weight vector using aggregated information across

Before Bit-weighting (All Transforms)

Algorithm
Distance
Metric

AUC EER
mean std mean std

PDQ
Hamming 0.918 0.197 0.090 0.199
Cosine 0.918 0.197 0.090 0.199

pHash
Hamming 0.905 0.203 0.112 0.203
Cosine 0.905 0.203 0.112 0.203

Wavehash
Hamming 0.817 0.335 0.188 0.310
Cosine 0.817 0.335 0.188 0.310

After Bit-weighting (All Transforms)

PDQ
Hamming 0.969 0.072 0.047 0.096
Cosine 0.969 0.071 0.047 0.094

pHash
Hamming 0.931 0.129 0.090 0.143
Cosine 0.932 0.128 0.088 0.140

Wavehash
Hamming 0.820 0.329 0.185 0.306
Cosine 0.820 0.330 0.185 0.307

Table 2: A comparison of classification performance across
aggregated transforms for various hashes. Measuring Area
Under the ROC Curve (AUC), and Equal Error Rate
(EER).

all transforms, ideally improving overall perfor-
mance. Cosine distance was included in this anal-
ysis to determine whether potential benefits ex-
tend beyond Hamming distance.

An aggregated performance summary across all
transforms, before and after applying optimised
weights, is provided in Table 2. Generally, all
algorithms improve for distance and evaluation
metrics, though the change is limited for Wave-
hash, while both PDQ and pHash see a larger
benefit. Cosine distance values track Hamming
closely for these hash types.

To determine if the aggregated benefit is de-
rived from an overall improvement or, in diffi-
cult cases, the difference in AUC values between
pre- and post-optimisation are plotted in Figure 5.
The uplift in PDQ and pHash performance can
be attributed to improving the difficult Flip case,
while Wavehash seems to benefit slightly from the
Border transform instead. On the other hand,
pHash loses ground slightly in the Border case,
though it still benefits significantly in the aggre-
gated metrics.

To dive deeper, we plot the bit-analysis gener-
ated by PHASER for the pHash algorithm for the
specific improvement case, Flip, and the aggre-
gated rates across all transforms. Darker bars
show when the bit more accurately matches the
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ideal outcome, but a 50/50 chance is expected for
inter-image comparisons.
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Figure 5: Differences in the AUC metric before and after
applying bit-weights for each algorithm/transform for the
normalised Hamming distance.
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(a) Individual hash vector bit frequency rates in the
pHash/Flip Horizontal/Hamming triplet. Split by FN/TP/FP/TN.
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(b) The aggregated (median) bit success rates for pHash across all
transforms and success/failure classes. This is a visualisation of the
calculated bit-weight vector.

Figure 6: Representations of the ‘success rate’ for each bit
in the 64-bit pHash hash vector. A higher frequency means
the bit matched more consistently with expectation, i.e.,
a difference for the inter-class and a match for the intra-
class. The same patterns are present for PDQ, though it
is easier to see with fewer bits.

Interestingly, a piano-like pattern is found in
Figure 6a for the intra-image cases (TP/FN),
where alternating bits switch between very high
and very low degrees of accuracy. We suggest that
this is an artefact of how these hashes derive the
bits in their hash from the Discrete Cosine Trans-
form (DCT) coefficient matrices. The upshot is

that every second bit strongly matches the origi-
nal and Flip transform. As such, re-balancing the
weights to favour these, there is a large perfor-
mance change for the Flip case. The part of the
confusion matrix derived from inter-image com-
parisons is roughly as expected, though, at a rate
of around 0.5.
The overall bit-weight applied to pHash for all

comparisons is visualised in Figure 6b. the piano-
like pattern to compensate for Flip is visible but is
softened somewhat when median values from all
transforms and success/failure classes are applied.
This result was quite unexpected, though it

clearly demonstrates that algorithmic nuances
may have unexpected interactions with particu-
lar transform classes. These insights can then
provide wider knowledge for improving the algo-
rithms or, in this case, for mitigating some of their
weaknesses. It is also worth noting that there was
almost no detrimental impact on performance for
any given transform using the bit-weights, though
a wider set of hashes and transform classes should
be tested.

5. Conclusion and Future Work

This work described PHASER, a new open-
sourced perceptual hashing evaluation frame-
work, primarily targeting the digital forensics and
content-detection use case. We then applied the
framework to the Flick1m dataset to answer two
open questions that need to be covered directly
in the literature. Firstly, we observe that large
datasets with >100k original images may provide
more accurate results, and secondly, comparing
perceptual hashes using learned weights may be
useful. In particular, we discovered that the DCT-
based transforms we tested have a peculiar be-
haviour on mirrored images, with half of the bits
in the hash being strongly correlated with accu-
rate classification and the other half strongly neg-
atively correlated.
By open-sourcing and releasing PHASER, we

hope to facilitate other researchers with the dis-
covery of such anomalies and mitigations for
them, either by forensics practitioners or scien-
tists. Visual similarity matching is a difficult

10



task, but it is possible that existing elements of
Content-Based Image Retrieval (CBIR) can be
leveraged for this use case, for example, in multi-
hash indices or via the development of more nu-
anced hash comparison techniques. Ultimately,
there still appear to be multiple avenues to ex-
plore that may better scale detection in-line with
demand.
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