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Abstract—Recently, deep learning methods have been widely
adopted for ship detection in synthetic aperture radar (SAR)
images. However, many of the existing methods miss adjacent
ship instances when detecting densely arranged ship targets in
inshore scenes. Besides, they suffer from the lack of precision in
the instance indication information and the confusion of multiple
instances by a single mask head. In this paper, we propose a
novel center point prediction algorithm, which detects the center
points by finding a long distance variation relationship between
two points. The whole prediction process is anchor-free and does
not require additional bounding box (BBox) predictions for non-
maximum suppression (NMS). Therefore, our algorithm is BBox-
free and NMS-free, solving the problem of low recall rate when
conducting NMS for densely arranged targets. Furthermore,
to tackle the deficiency of position indication information in
localization tasks, we introduce a feature fusion module with
feature decoupling (FD). This module uses classification branch
to provide guidance information for localization branch, while
suppressing the influence of the gradient flow mixing, effectively
improving the algorithm’s segmentation performance of ship
contours. Finally, through principal component analysis (PCA)
of the Gaussian distribution covariance matrix, we propose a
loss function based on the distance between centroids and the
difference of angle, called centroid and angle constraint (CAC).
CAC guides the network in learning the criterion that a single dy-
namic mask head is only valid for a single instance. Experiments
conducted on polygon segmentation SAR ship detection dataset
(PSeg-SSDD) and high resolution SAR images dataset (HRSID)
demonstrate the effectiveness and robustness of our method.

Index Terms—BBox-free, feature decoupling (FD), instance
segmentation, ship detection, synthetic aperture radar (SAR).

I. INTRODUCTION

ITH the advantage of all-weather, all-day imaging,
Wsynthetic aperture radar (SAR) plays a key role in
water traffic surveillance, fisheries monitoring, marine vessel
management and intelligence acquisition [1]-[3]. As the fun-
damental application of SAR image, SAR ship target detection
has received extensive attention in recent years.

Traditional SAR ship detection methods include constant
false alarm rate (CFAR) [4], generalised likelihood ratio test

This work was supported in part by the National Natural Science Foundation
of China under Grant 62371022.

Fei Gao, Fengjun Zhong and lJinping Sun are with the School
of Electronic and Information Engineering, Beihang University, Beijing
100191, China (e-mail: feigao2000@ 163.com; 18231033 @buaa.edu.cn; sun-
jinping@buaa.edu.cn).

Amir Hussain is with the Cyber and Big Data Research Labora-
tory, Edinburgh Napier University, EHI11 4BN Edinburgh, UK. (e-mail:
A.Hussain@napier.ac.uk).

Huiyu Zhou is with the Department of Informatics, University of Leicester,
Leicester LE1 7RH, U.K. (e-mail: hz143 @leicester.ac.uk).

&

(b)

Fig. 1. Illustrative results. (a) BBox detection. (b) RBox detection. (c) Instance
segmentation.

(GLRT) [5], and visual significance [6]. Typically, these meth-
ods involve four stages: terrestrial masking, pre-processing,
pre-screening and target identification [7]. Due to the complex-
ity of the detection steps and the reliance on a priori statistical
properties of the image, these methods are not robust enough
when faced with changes in imaging radar or the imaging
scene. In addition, the parameters of these methods need to be
adjusted accordingly before the detection and their detection
speed dissatisfies with demands of practical application [8].

In recent years, with the development of deep learning
technology, algorithms based on deep convolutional neural
network (DCNN) have achieved great success in the field of
optical target detection. Compared with traditional algorithms,
DCNN has greatly improved in terms of detection accuracy,
detection speed and robustness. This novel technology is also
becoming widely adopted in the field of SAR ship target
detection [9]-[16].

Ship target detection in SAR images encompasses three
distinct levels of detection tasks: vertical bounding box (BBox)
detection, rotated bounding box (RBox) detection, and in-
stance segmentation. Fig. 1 visualizes the detection results
of three task levels. The BBox contains massive background
pixels, and adjacent targets exhibit significant overlap when
densely arranged. The RBox detection predicts the angle of
bounding box for refined detection. However, it still con-
tains background pixels and faces problems of boundary
discontinuity and angle periodicity [17]. Instance segmentation
performs pixel-level segmentation for each target, and can
completely suppress background pixels. As the demand for
detection accuracy continues to rise, instance segmentation
has garnered increasing attention within the field of SAR ship
target detection.

The current mainstream instance segmentation algorithms
can be categorized into anchor-based and anchor-free algo-
rithms. The majority of anchor-based algorithms operate as
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two-stage algorithms, involving the proposal of regions of
interest (ROI) and subsequent ROI alignment [18]-[20]. In the
ROI proposal phase, there is a balance maintained between
positive and negative samples, leading to these algorithms
achieving superior detection accuracy compared to anchor-free
algorithms [21]. Anchor-free algorithms, in contrast, do not
require the configuration of anchor hyperparameters, and the
network structure can be entirely composed of convolution
operations [22], [23]. Consequently, these algorithms offer a
simpler and more flexible network structure, resulting in faster
inference.

The most fundamental and important step in target de-
tection is the distinction of multiple targets within a single
image. Regardless of whether it is anchor-based or anchor-free
algorithms, these algorithms use non-maximum suppression
(NMS) to eliminate redundancy in the detected BBoxes, taking
the center points of remaining BBoxes as the object center
points [24]-[26]. During NMS, the choice of an appropriate
intersection over union (IoU) threshold is of paramount im-
portance. Given the proximity of ships in densely arranged
scenarios, the IoU between the BBoxes of adjacent ships tends
to be high. A low IoU threshold can lead to the identification
of adjacent ships as a single target, while a high IoU threshold
may result in the labeling of a single ship as multiple targets.
Detecting densely arranged ships poses a significant challenge
in the realm of SAR ship instance segmentation.

Apart from the challenges of densely arranged ship de-
tection, existing instance segmentation algorithms face the
problem of unable to perceive the relative position relationship
between pixels and targets during mask segmentation. The
instance segmentation network consists of two parallel task
branches, namely classification branch and localization branch.
Tian et al. [22] propose to generate a relative distance feature
map from the classification branch to guide the localization
branch. In the field of SAR ship instance segmentation, ship
targets exhibit significant variations in scale, aspect ratio and
angle [8]. Learning an absolute distance to determine whether
a pixel belongs to the target is infeasible. Furthermore, the
spatial attention positions of the classification and localization
branches are misaligned, resulting in a shift in the location of
network attention. This, in turn, complicates the exchange of
information between the two branches [27], [28].

In addition to the two challenges mentioned above, Dice
Loss [29], the most widely used mask segmentation loss
function, cannot provide more refined guidance for network
training. Most of the existing instance segmentation methods
use Dice Loss as the mask segmentation loss function [18],
[22], [23], [26], [30]. However, Dice Loss only focuses on the
intersection ratio between the predicted mask and the ground
truth. During training process, mask segmentation errors can
occur at any position but have the same IoU with ground truth.
The same intersection ratio means same loss value for Dice
Loss, which prevents the network from learning finer mask
segmentation. As a result, the network is unable to distinguish
between the case where a single mask head makes an error in
splitting a single instance and the case where a single mask
head takes effect on multiple instances.

Gaussian heatmap contains rich semantic information and

has been widely used in the field of target detection [25], [26],
[31], [32]. All these methods use the local peak points of the
Gaussian heatmap for center point proposal and combine it
with NMS for center point de-redundancy. The branches of
their networks are parallel to each other. They fail to fully
utilise the trends in heat values and instance features embed-
ded in the Gaussian heatmap. Their application of Gaussian
heatmaps is limited to center point proposal, where they simply
employ the Gaussian peak points as the center point proposals
and subsequently combine them with BBox-based NMS for
de-redundancy. In contrast, we make a comprehensive uti-
lization of Gaussian features. During center point detection,
different from BBox-based NMS, we achieve center point de-
redundancy without BBox and NMS based on Gaussian distri-
bution long-range variation rule. During mask segmentation,
different from their parallel network structure of branches,
we fuse localization branch features with classification branch
features and introduce feature decoupling module to solve the
problem of spatial location mismatch between two tasks. As a
result, instance indication information with instance attributes
is introduced to the localization branch. During training stage,
different from commonly used Dice Loss, we introduce CAC
to mask segmentation based on Gaussian distribution, guiding
the network to learn the criterion that a single mask head only
takes effect on a single instance. Our contributions can effec-
tively improve the performance of instance segmentation from
the perspective of center point detection, mask segmentation,
and training loss function.

To address the challenge of detecting densely arranged ship
targets, our method encodes each ship target as an elliptical
Gaussian heatmap and regresses the heatmap by classification
branch. Subsequently, by leveraging the mathematical char-
acteristic that heat values decrease as pixels move farther
from the target, we design a center point extraction and de-
redundancy algorithm. The entire algorithm flow is anchor-
free, BBox-free and NMS-free, improving the ability of the
network to detect densely arranged targets.

To address the problem that the localization branch is unable
to perceive the relative distance between the pixel and the
target, we propose to fuse the feature map of classification
branch into the localization branch. By feature fusion, the
ship features and the relative distance information from clas-
sification branch can guide the mask segmentation process.
Further, to solve the problem of spatial mismatch between two
task branches, we propose a feature decoupling (FD) module
to separate the gradient flow of different task branches. By
applying FD to the feature fusion process, the gradient flow
from the localization branch will be suppressed to prevent the
spatial attention position of the network from swinging.

In order to address the problem that Dice Loss cannot
perform a more refined evaluation of the predicted mask, we
conduct principal component analysis (PCA) on the covariance
matrix of the Gaussian distribution to obtain the orientation
vector. Combining the centroid position and orientation vector,
we design the centroid and angle constraint (CAC), which
guides the network to learn the criterion that a single dynamic
mask head is only valid for a single instance.

The main contributions of our research are summarized as
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follows.

1) The center point detection algorithm based on the el-
liptical Gaussian distribution is proposed. The center
point detection process relies entirely on the mathematical
characteristics of the elliptical Gaussian distribution. The
entire detection process is anchor-free, BBox-free, NMS-
free, and exhibits a robust detection performance, partic-
ularly in scenes involving densely adjacent ship targets.

2) The spatial decoupled feature fusion method is proposed.
We design FD module to achieve spatial decoupling
between different branches with conflicting spatial loca-
tions. With FD, the classification branch is no longer
influenced by the gradient flow from the localization
branch, which causes the problem of task reversal. The
classification branch can directly provide guidance infor-
mation for the localization branch, helping it to perceive
the relative position relationship between pixels and tar-
gets.

3) The CAC is designed based on the principle of PCA. This
constraint addresses the limitation of the Dice Loss in
assessing disparities in centroid location and orientation
between masks. It serves to instruct the network to learn
the criterion that a single dynamic mask head is only
valid for a single instance.

The rest of this paper is divided into four parts. Section II
describes the related work. Section III details the methodology
of this paper. Section IV describes the experiments conducted
on the polygon segmentation SAR ship detection dataset
(PSeg-SSDD) [8] and high resolution SAR images dataset
(HRSID) [33]. Section V concludes this paper.

II. RELATED WORK
A. Anchor-Based Instance Segmentation Algorithms

Anchor-based instance segmentation algorithms use anchors
as the target samples, requiring pre-setting hyperparameters
such as the size and aspect ratio of the anchor.

The two-stage algorithm Mask R-CNN [18] is the most
classic anchor-based instance segmentation algorithm. It ex-
tends the BBox detection algorithm to instance segmentation
field by additionally designing a mask prediction branch based
on Faster R-CNN [30]. Later researchers propose a series of
R-CNN networks based on Mask R-CNN as the baseline.
Cascade R-CNN [19] solves the problems of overfitting and
inference-time quality mismatch between detector and test
hypotheses by cascading several detection networks with dif-
ferent IoU thresholds. Mask Scoring R-CNN [20] designs an
additional mask IoU branch to correct the deviation between
mask quality and mask Score. Hybrid Task Cascade for
Instance Segmentation [34] cascades multi-task information
flow of different stages to improve network’s performance.
PointRend [35] optimizes the segmentation of object edges
through point prediction. Instances as Queries [36] introduces
Query into the instance segmentation field, achieving the flow
of effective information through continuous cascading.

In the field of SAR ship target detection, Wu et al. [10]
improve the instance segmentation accuracy through the inter-
action of target detection branch and instance segmentation

branch. Su et al. propose HQ-ISNet [11] to improve the
resolution of feature maps through a high-resolution feature
pyramid network. Sun et al. [37] propose a multi-scale fea-
ture pyramid network (MS-FPN) to achieve the simultaneous
detection and instance segmentation of marine ships in SAR
images. Zhang et al. [38] propose a full-level context squeeze-
and-excitation ROI extractor to extract feature subsets for the
single level of feature. Zhang et al. [39] find existing models
do not achieve mask interaction or offer limited interaction
performance and propose a mask attention interaction and
scale enhancement network (MAISE-Net). In addition to these,
based on ROI [40]-[44], the researchers have proposed a
series of improved algorithms from the perspectives of context
compression, situational information interaction, etc., which
contribute to the field of SAR ship instance segmentation.

Since the anchor-based algorithm can easily achieve a
balance of positive and negative samples during ROI proposal
process, this type of algorithm generally leads in segmenta-
tion accuracy. However, the cumbersome setting of anchor’s
hyperparameters and time-consuming ROI extraction make it
weaker than anchor-free algorithms in generality and real-time
performance.

B. Anchor-Free Instance Segmentation Algorithms

Compared with anchor-based instance segmentation algo-
rithms, anchor-free instance segmentation algorithms do not
require additional operations such as ROI extraction and can
be designed as a fully convolutional one-stage algorithms with
faster inference speed. Since the proposal of Focal Loss by He
et al. [21], which solves the problem of the imbalance between
positive and negative samples in training for anchor-free one-
stage algorithms, the anchor-free one-stage algorithms start
to match the detection accuracy of anchor-based two-stage
algorithms.

Unlike anchor-based algorithms that use anchors for object
localization, anchor-free algorithms usually use an additional
network branch to predict the center points to achieve object
localization. The fully convolutional FCOS [24] is the most
widely used center point prediction algorithm, which encodes
the center-ness of the instance target based on the distance
of the pixel from the BBox border. A series of instance
segmentation algorithms are proposed using FCOS as the
baseline. Polar Mask proposed by Xie et al. [45] describes the
distance between the sampled points on the contour and the
center point in polar coordinates, generating masks through
the connectivity of the sampled points. EmbedMask [46]
learns semantic segmentation and pixel embedding, assigning
semantic segmentation results to different instances based on
the embedding distance between pixels and candidate boxes.
CenterMask [47] designes a SAG-Mask branch and uses
the spatial attention feature maps to predict masks on each
detected BBox. CondlInst [22] proposes the conditional convo-
lution method, which encodes each instance in the parameters
of the convolution head, making the mask head flexible and
lightweight. Based on Yolov7, Yasir et al. [48] redesigned the
structure of the one-stage fast detection network to improve
high resolution SAR image segmentation one-stage detection.
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In addition to using FCOS as baseline, some researchers
use CenterNet [25] for center point prediction. For example,
Gao et al. [26] use a standard Gaussian heatmap combined
with BBox for center point prediction. In order to suppress
redundant center points of the same instance, both center-ness
based and Gaussian heatmap based algorithms need to perform
NMS with BBox as the basic unit. The BBox-based NMS
suffers from low recall rate when facing scenes with dense
arrangement of instances.

Apart from center point, grid can also be used for instance
localization. For example, the SOLO series [49], [50] assigns
each instance to different grids, and the corresponding grid is
responsible for segmenting this instance. Grid-based instance
localization does not require additional BBox prediction, but
the size of the grid determines the network’s ability to discrim-
inate the smallest targets. Single grid may contain multiple
targets, leading to target omission.

C. Mismatch of Spatial Locations between Different Task
Branches

In the field of target detection, the mismatch between the
classification task and the localization task in terms of spatial
location is a well known problem [27], [28], [51]. Most
algorithms therefore use decoupled detection heads [18], [19],
[22]. However, decoupled heads share the same feature maps,
which can hinder the propagation of features and still have the
problem of inconsistent targets during training [27].

Based on the attention mechanism, Gao et al. [26] and
Yang et al. [52] propose feature decoupling networks to assign
separate feature maps for different task branches, achieve the
triage of different branch gradients. But their method can only
assign features of different channels, which cannot achieve
feature assignment of different spatial locations compared with
the state-of-the-art attention mechanism [53]-[55].

The problem of spatial location mismatch between classifi-
cation and localization tasks not only exists in the process
of acquiring feature maps for different task branches, but
also exists in multi-task feature fusion. Most of the existing
feature fusion methods directly fuse and convolve feature maps
from different task branches [56]-[58]. This way of feature
fusion without any selection will cause the gradient streams of
different task branches to flow into each other and suffer from
the problem of inconsistent training objectives. Therefore, the
spatial decoupling of the feature maps from different branches
is also required in the process of feature fusion.

D. The Loss Function of Instance Segmentation

In contrast to semantic segmentation, instance segmentation
requires distinguishing between different instances of the same
category. During the mask segmentation of a single instance,
instance segmentation, like semantic segmentation, classifies
each pixel into two categories: foreground (positive samples)
and background (negative samples). Thus, instance segmenta-
tion can be seen as a binary classification problem.

Binary cross-entropy (BCE) [59], [60] is the most common
binary loss function that measures the information about the
variability between two probability distributions. When the

number of negative samples is much larger than the number
of positive samples, the negative samples dominate, making
the model tend to classify pixel points as negative samples
[59], [61]. Therefore, BCE needs to weight the positive and
negative samples to balance the difference in the number of
positive and negative categories [21], [62], [63].

To deal with the problem of positive and negative sample
imbalance, Milletari et al. propose the Dice Loss [29] to
assess the similarity of two samples in the form of IoU.
Due to the regional relevance of Dice Loss using IoU, which
can well solve the problem of positive and negative sample
imbalance, Dice Loss has become the most commonly used
loss function for instance segmentation. To further alleviate
the difference in the number of difficult and easy samples
during training, Zhao et al. [64] and Prencipe et al. [65]
propose weighting the difficult and easy samples. Wang et al.
[66] concern that the background region also contains a large
amount of information, and propose a weighted soft dice loss
to mine the information in the background region. Gao et al.
[26] concern that Dice Loss cannot effectively distinguish the
position relationship between ships with the same degree of
overlap, and propose centroid-distance-based loss to evaluate
the difference of masks in the center-of-mass distance and
centre region.

In the field of SAR ship detection, the directionality of the
ship mask is an important ship feature. None of the above loss
functions can evaluate the orientation difference of the mask,
which is the focus of the proposed CAC in this paper.

III. METHODOLOGY

In this section, we first introduce the overall structure of
our method. After this, three important parts of our method
are detailed, namely, center point prediction method, FD and
CAC. Finally, we detail the loss function of our method.

A. Network Structure

Fig. 2 illustrates the overall architecture of the proposed
method in this article. The whole network consists of three
parts.

1) Feature Extractor: In order to obtain feature maps
of high resolution and high semantic information, we use
DLA-34 [67] as feature extractor. DLA-34 extracts semantic
information through the fusion of feature maps at different
stages and scales. DLA network architecture includes two
feature fusion methods, iterative deep aggregation (IDA) and
hierarchal deep aggregation (HDA). IDA performs cross stage
fusion, fusing feature maps under different stages. HDA fuses
the features of multiple blocks within a stage through a
tree like network structure. Through tree hierarchical fusion,
DLA-34 can generate a single-scale feature map Four with a
downsampling rate of 4.

2) Classification Branch: The learning of Gaussian distri-
bution is a regression problem. The more sample points the
network has, the better the network learns the distribution.
Therefore, the classification branch first upsamples the feature
map Fout by a factor of 2 to obtain a feature map with
a downsampling rate of 2. In order to accomplish both the
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Fig. 2. Overall architecture of our method. The network structure can be divided into three parts: the feature extractor, the classification branch and the
localization branch. Cond Conv means conditional convolution. Map G, M, S are the Gaussian map, mask map and semantic map. The training loss supervises
G, M, S to learn the ground truth in the training process. The center point extractor combines the characteristics of Gaussian distribution to predict the center

point on Map G.

Gaussian regression task (focusing on the central location of
the instance) and the feature fusion task (focusing on the edge
location of the instance) for spatial location conflicts, we use
the FD module to obtain two sets of feature maps, Fout, and
Fout,- Fout, focuses on the centre of the ship and is used
to generate the Gaussian heatmap G. Center point extractor
performs center point prediction on map G to provide center
point location for conditional convolution. Fyyt, focuses on
the edges of the ship, and provides the relative distance and
edge information of the ship to the localization branch.

3) Localization Branch: The localization branch focuses on
the edge position of ships and performs mask segmentation of
different ship instances. The localization branch can be divided
into three sub networks: mask feature generator, conditional
convolution parameter generator and semantic regressor. The
mask feature generator merges Fout, into Fmask in the form of
channel-wise addition. To ensure consistency of scale, Fout,
needs to be downsampled by a factor of 2. After feature
fusion, conditional convolution, guided by center point loca-
tion information, is performed to obtain instance segmentation
result, namely mask map M. During conditional convolution,
the conditional convolution parameter generator generates pa-
rameters for the mask head. The mask head consists of two
1x1 8-channel convolution cores and one 1x1 single-channel
convolution core, so it contains a total of 169 parameters [22],
and Fparam is a 169-channel feature map. During network
training, the semantic regressor serves as an auxiliary role to
help localization branch to learn edge features of ships by
regressing semantic map S.

B. Gaussian Heatmap Center Point Prediction Method

1) Elliptical Gaussian heatmap encode method: Ship tar-
gets can be encoded as elliptical Gaussian distributions ac-

cording to the ship BBox annotations. The empirical formula
of Gaussian distribution is

1
2j
where  is the two-dimensional covariance matrix, X is the
coordinate vector (X;y) and u is the center point coordinate
(X;y). To normalize the heat value of center point to 1, the
Gaussian distribution formula is modified to
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Maximum likelihood estimation of the ship mask is per-
formed to obtain the mean and covariance matrix of the
elliptical Gaussian distribution. The specific formulas are
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where Masksnip is the set of ship mask’s coordinates and gx;y
denotes the value of the image at (X;Yy).

2) Center point extraction method: The current mainstream
one-stage target detection methods use BBox-based NMS for
dense detection. The center point probability is predicted on a
C channels feature map, and K points with highest probability
are found as candidate center points in a top K manner. NMS is
then performed based on the overlap ratio of BBox to remove
redundancy. This approach links the accuracy of instance
segmentation to the accuracy of BBox detection, which is the
upper limit of the accuracy of instance segmentation.






