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BBox-Free SAR Ship Instance Segmentation
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Abstract—Recently, deep learning methods have been widely
adopted for ship detection in synthetic aperture radar (SAR)
images. However, many of the existing methods miss adjacent
ship instances when detecting densely arranged ship targets in
inshore scenes. Besides, they suffer from the lack of precision in
the instance indication information and the confusion of multiple
instances by a single mask head. In this paper, we propose a
novel center point prediction algorithm, which detects the center
points by finding a long distance variation relationship between
two points. The whole prediction process is anchor-free and does
not require additional bounding box (BBox) predictions for non-
maximum suppression (NMS). Therefore, our algorithm is BBox-
free and NMS-free, solving the problem of low recall rate when
conducting NMS for densely arranged targets. Furthermore,
to tackle the deficiency of position indication information in
localization tasks, we introduce a feature fusion module with
feature decoupling (FD). This module uses classification branch
to provide guidance information for localization branch, while
suppressing the influence of the gradient flow mixing, effectively
improving the algorithm’s segmentation performance of ship
contours. Finally, through principal component analysis (PCA)
of the Gaussian distribution covariance matrix, we propose a
loss function based on the distance between centroids and the
difference of angle, called centroid and angle constraint (CAC).
CAC guides the network in learning the criterion that a single dy-
namic mask head is only valid for a single instance. Experiments
conducted on polygon segmentation SAR ship detection dataset
(PSeg-SSDD) and high resolution SAR images dataset (HRSID)
demonstrate the effectiveness and robustness of our method.

Index Terms—BBox-free, feature decoupling (FD), instance
segmentation, ship detection, synthetic aperture radar (SAR).

I. INTRODUCTION

W ITH the advantage of all-weather, all-day imaging,
synthetic aperture radar (SAR) plays a key role in

water traffic surveillance, fisheries monitoring, marine vessel
management and intelligence acquisition [1]–[3]. As the fun-
damental application of SAR image, SAR ship target detection
has received extensive attention in recent years.

Traditional SAR ship detection methods include constant
false alarm rate (CFAR) [4], generalised likelihood ratio test
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(a) (b) (c)
Fig. 1. Illustrative results. (a) BBox detection. (b) RBox detection. (c) Instance
segmentation.

(GLRT) [5], and visual significance [6]. Typically, these meth-
ods involve four stages: terrestrial masking, pre-processing,
pre-screening and target identification [7]. Due to the complex-
ity of the detection steps and the reliance on a priori statistical
properties of the image, these methods are not robust enough
when faced with changes in imaging radar or the imaging
scene. In addition, the parameters of these methods need to be
adjusted accordingly before the detection and their detection
speed dissatisfies with demands of practical application [8].

In recent years, with the development of deep learning
technology, algorithms based on deep convolutional neural
network (DCNN) have achieved great success in the field of
optical target detection. Compared with traditional algorithms,
DCNN has greatly improved in terms of detection accuracy,
detection speed and robustness. This novel technology is also
becoming widely adopted in the field of SAR ship target
detection [9]–[16].

Ship target detection in SAR images encompasses three
distinct levels of detection tasks: vertical bounding box (BBox)
detection, rotated bounding box (RBox) detection, and in-
stance segmentation. Fig. 1 visualizes the detection results
of three task levels. The BBox contains massive background
pixels, and adjacent targets exhibit significant overlap when
densely arranged. The RBox detection predicts the angle of
bounding box for refined detection. However, it still con-
tains background pixels and faces problems of boundary
discontinuity and angle periodicity [17]. Instance segmentation
performs pixel-level segmentation for each target, and can
completely suppress background pixels. As the demand for
detection accuracy continues to rise, instance segmentation
has garnered increasing attention within the field of SAR ship
target detection.

The current mainstream instance segmentation algorithms
can be categorized into anchor-based and anchor-free algo-
rithms. The majority of anchor-based algorithms operate as
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two-stage algorithms, involving the proposal of regions of
interest (ROI) and subsequent ROI alignment [18]–[20]. In the
ROI proposal phase, there is a balance maintained between
positive and negative samples, leading to these algorithms
achieving superior detection accuracy compared to anchor-free
algorithms [21]. Anchor-free algorithms, in contrast, do not
require the configuration of anchor hyperparameters, and the
network structure can be entirely composed of convolution
operations [22], [23]. Consequently, these algorithms offer a
simpler and more flexible network structure, resulting in faster
inference.

The most fundamental and important step in target de-
tection is the distinction of multiple targets within a single
image. Regardless of whether it is anchor-based or anchor-free
algorithms, these algorithms use non-maximum suppression
(NMS) to eliminate redundancy in the detected BBoxes, taking
the center points of remaining BBoxes as the object center
points [24]–[26]. During NMS, the choice of an appropriate
intersection over union (IoU) threshold is of paramount im-
portance. Given the proximity of ships in densely arranged
scenarios, the IoU between the BBoxes of adjacent ships tends
to be high. A low IoU threshold can lead to the identification
of adjacent ships as a single target, while a high IoU threshold
may result in the labeling of a single ship as multiple targets.
Detecting densely arranged ships poses a significant challenge
in the realm of SAR ship instance segmentation.

Apart from the challenges of densely arranged ship de-
tection, existing instance segmentation algorithms face the
problem of unable to perceive the relative position relationship
between pixels and targets during mask segmentation. The
instance segmentation network consists of two parallel task
branches, namely classification branch and localization branch.
Tian et al. [22] propose to generate a relative distance feature
map from the classification branch to guide the localization
branch. In the field of SAR ship instance segmentation, ship
targets exhibit significant variations in scale, aspect ratio and
angle [8]. Learning an absolute distance to determine whether
a pixel belongs to the target is infeasible. Furthermore, the
spatial attention positions of the classification and localization
branches are misaligned, resulting in a shift in the location of
network attention. This, in turn, complicates the exchange of
information between the two branches [27], [28].

In addition to the two challenges mentioned above, Dice
Loss [29], the most widely used mask segmentation loss
function, cannot provide more refined guidance for network
training. Most of the existing instance segmentation methods
use Dice Loss as the mask segmentation loss function [18],
[22], [23], [26], [30]. However, Dice Loss only focuses on the
intersection ratio between the predicted mask and the ground
truth. During training process, mask segmentation errors can
occur at any position but have the same IoU with ground truth.
The same intersection ratio means same loss value for Dice
Loss, which prevents the network from learning finer mask
segmentation. As a result, the network is unable to distinguish
between the case where a single mask head makes an error in
splitting a single instance and the case where a single mask
head takes effect on multiple instances.

Gaussian heatmap contains rich semantic information and

has been widely used in the field of target detection [25], [26],
[31], [32]. All these methods use the local peak points of the
Gaussian heatmap for center point proposal and combine it
with NMS for center point de-redundancy. The branches of
their networks are parallel to each other. They fail to fully
utilise the trends in heat values and instance features embed-
ded in the Gaussian heatmap. Their application of Gaussian
heatmaps is limited to center point proposal, where they simply
employ the Gaussian peak points as the center point proposals
and subsequently combine them with BBox-based NMS for
de-redundancy. In contrast, we make a comprehensive uti-
lization of Gaussian features. During center point detection,
different from BBox-based NMS, we achieve center point de-
redundancy without BBox and NMS based on Gaussian distri-
bution long-range variation rule. During mask segmentation,
different from their parallel network structure of branches,
we fuse localization branch features with classification branch
features and introduce feature decoupling module to solve the
problem of spatial location mismatch between two tasks. As a
result, instance indication information with instance attributes
is introduced to the localization branch. During training stage,
different from commonly used Dice Loss, we introduce CAC
to mask segmentation based on Gaussian distribution, guiding
the network to learn the criterion that a single mask head only
takes effect on a single instance. Our contributions can effec-
tively improve the performance of instance segmentation from
the perspective of center point detection, mask segmentation,
and training loss function.

To address the challenge of detecting densely arranged ship
targets, our method encodes each ship target as an elliptical
Gaussian heatmap and regresses the heatmap by classification
branch. Subsequently, by leveraging the mathematical char-
acteristic that heat values decrease as pixels move farther
from the target, we design a center point extraction and de-
redundancy algorithm. The entire algorithm flow is anchor-
free, BBox-free and NMS-free, improving the ability of the
network to detect densely arranged targets.

To address the problem that the localization branch is unable
to perceive the relative distance between the pixel and the
target, we propose to fuse the feature map of classification
branch into the localization branch. By feature fusion, the
ship features and the relative distance information from clas-
sification branch can guide the mask segmentation process.
Further, to solve the problem of spatial mismatch between two
task branches, we propose a feature decoupling (FD) module
to separate the gradient flow of different task branches. By
applying FD to the feature fusion process, the gradient flow
from the localization branch will be suppressed to prevent the
spatial attention position of the network from swinging.

In order to address the problem that Dice Loss cannot
perform a more refined evaluation of the predicted mask, we
conduct principal component analysis (PCA) on the covariance
matrix of the Gaussian distribution to obtain the orientation
vector. Combining the centroid position and orientation vector,
we design the centroid and angle constraint (CAC), which
guides the network to learn the criterion that a single dynamic
mask head is only valid for a single instance.

The main contributions of our research are summarized as
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follows.
1) The center point detection algorithm based on the el-

liptical Gaussian distribution is proposed. The center
point detection process relies entirely on the mathematical
characteristics of the elliptical Gaussian distribution. The
entire detection process is anchor-free, BBox-free, NMS-
free, and exhibits a robust detection performance, partic-
ularly in scenes involving densely adjacent ship targets.

2) The spatial decoupled feature fusion method is proposed.
We design FD module to achieve spatial decoupling
between different branches with conflicting spatial loca-
tions. With FD, the classification branch is no longer
influenced by the gradient flow from the localization
branch, which causes the problem of task reversal. The
classification branch can directly provide guidance infor-
mation for the localization branch, helping it to perceive
the relative position relationship between pixels and tar-
gets.

3) The CAC is designed based on the principle of PCA. This
constraint addresses the limitation of the Dice Loss in
assessing disparities in centroid location and orientation
between masks. It serves to instruct the network to learn
the criterion that a single dynamic mask head is only
valid for a single instance.

The rest of this paper is divided into four parts. Section II
describes the related work. Section III details the methodology
of this paper. Section IV describes the experiments conducted
on the polygon segmentation SAR ship detection dataset
(PSeg-SSDD) [8] and high resolution SAR images dataset
(HRSID) [33]. Section V concludes this paper.

II. RELATED WORK

A. Anchor-Based Instance Segmentation Algorithms

Anchor-based instance segmentation algorithms use anchors
as the target samples, requiring pre-setting hyperparameters
such as the size and aspect ratio of the anchor.

The two-stage algorithm Mask R-CNN [18] is the most
classic anchor-based instance segmentation algorithm. It ex-
tends the BBox detection algorithm to instance segmentation
field by additionally designing a mask prediction branch based
on Faster R-CNN [30]. Later researchers propose a series of
R-CNN networks based on Mask R-CNN as the baseline.
Cascade R-CNN [19] solves the problems of overfitting and
inference-time quality mismatch between detector and test
hypotheses by cascading several detection networks with dif-
ferent IoU thresholds. Mask Scoring R-CNN [20] designs an
additional mask IoU branch to correct the deviation between
mask quality and mask Score. Hybrid Task Cascade for
Instance Segmentation [34] cascades multi-task information
flow of different stages to improve network’s performance.
PointRend [35] optimizes the segmentation of object edges
through point prediction. Instances as Queries [36] introduces
Query into the instance segmentation field, achieving the flow
of effective information through continuous cascading.

In the field of SAR ship target detection, Wu et al. [10]
improve the instance segmentation accuracy through the inter-
action of target detection branch and instance segmentation

branch. Su et al. propose HQ-ISNet [11] to improve the
resolution of feature maps through a high-resolution feature
pyramid network. Sun et al. [37] propose a multi-scale fea-
ture pyramid network (MS-FPN) to achieve the simultaneous
detection and instance segmentation of marine ships in SAR
images. Zhang et al. [38] propose a full-level context squeeze-
and-excitation ROI extractor to extract feature subsets for the
single level of feature. Zhang et al. [39] find existing models
do not achieve mask interaction or offer limited interaction
performance and propose a mask attention interaction and
scale enhancement network (MAISE-Net). In addition to these,
based on ROI [40]–[44], the researchers have proposed a
series of improved algorithms from the perspectives of context
compression, situational information interaction, etc., which
contribute to the field of SAR ship instance segmentation.

Since the anchor-based algorithm can easily achieve a
balance of positive and negative samples during ROI proposal
process, this type of algorithm generally leads in segmenta-
tion accuracy. However, the cumbersome setting of anchor’s
hyperparameters and time-consuming ROI extraction make it
weaker than anchor-free algorithms in generality and real-time
performance.

B. Anchor-Free Instance Segmentation Algorithms

Compared with anchor-based instance segmentation algo-
rithms, anchor-free instance segmentation algorithms do not
require additional operations such as ROI extraction and can
be designed as a fully convolutional one-stage algorithms with
faster inference speed. Since the proposal of Focal Loss by He
et al. [21], which solves the problem of the imbalance between
positive and negative samples in training for anchor-free one-
stage algorithms, the anchor-free one-stage algorithms start
to match the detection accuracy of anchor-based two-stage
algorithms.

Unlike anchor-based algorithms that use anchors for object
localization, anchor-free algorithms usually use an additional
network branch to predict the center points to achieve object
localization. The fully convolutional FCOS [24] is the most
widely used center point prediction algorithm, which encodes
the center-ness of the instance target based on the distance
of the pixel from the BBox border. A series of instance
segmentation algorithms are proposed using FCOS as the
baseline. Polar Mask proposed by Xie et al. [45] describes the
distance between the sampled points on the contour and the
center point in polar coordinates, generating masks through
the connectivity of the sampled points. EmbedMask [46]
learns semantic segmentation and pixel embedding, assigning
semantic segmentation results to different instances based on
the embedding distance between pixels and candidate boxes.
CenterMask [47] designes a SAG-Mask branch and uses
the spatial attention feature maps to predict masks on each
detected BBox. CondInst [22] proposes the conditional convo-
lution method, which encodes each instance in the parameters
of the convolution head, making the mask head flexible and
lightweight. Based on Yolov7, Yasir et al. [48] redesigned the
structure of the one-stage fast detection network to improve
high resolution SAR image segmentation one-stage detection.
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In addition to using FCOS as baseline, some researchers
use CenterNet [25] for center point prediction. For example,
Gao et al. [26] use a standard Gaussian heatmap combined
with BBox for center point prediction. In order to suppress
redundant center points of the same instance, both center-ness
based and Gaussian heatmap based algorithms need to perform
NMS with BBox as the basic unit. The BBox-based NMS
suffers from low recall rate when facing scenes with dense
arrangement of instances.

Apart from center point, grid can also be used for instance
localization. For example, the SOLO series [49], [50] assigns
each instance to different grids, and the corresponding grid is
responsible for segmenting this instance. Grid-based instance
localization does not require additional BBox prediction, but
the size of the grid determines the network’s ability to discrim-
inate the smallest targets. Single grid may contain multiple
targets, leading to target omission.

C. Mismatch of Spatial Locations between Different Task
Branches

In the field of target detection, the mismatch between the
classification task and the localization task in terms of spatial
location is a well known problem [27], [28], [51]. Most
algorithms therefore use decoupled detection heads [18], [19],
[22]. However, decoupled heads share the same feature maps,
which can hinder the propagation of features and still have the
problem of inconsistent targets during training [27].

Based on the attention mechanism, Gao et al. [26] and
Yang et al. [52] propose feature decoupling networks to assign
separate feature maps for different task branches, achieve the
triage of different branch gradients. But their method can only
assign features of different channels, which cannot achieve
feature assignment of different spatial locations compared with
the state-of-the-art attention mechanism [53]–[55].

The problem of spatial location mismatch between classifi-
cation and localization tasks not only exists in the process
of acquiring feature maps for different task branches, but
also exists in multi-task feature fusion. Most of the existing
feature fusion methods directly fuse and convolve feature maps
from different task branches [56]–[58]. This way of feature
fusion without any selection will cause the gradient streams of
different task branches to flow into each other and suffer from
the problem of inconsistent training objectives. Therefore, the
spatial decoupling of the feature maps from different branches
is also required in the process of feature fusion.

D. The Loss Function of Instance Segmentation

In contrast to semantic segmentation, instance segmentation
requires distinguishing between different instances of the same
category. During the mask segmentation of a single instance,
instance segmentation, like semantic segmentation, classifies
each pixel into two categories: foreground (positive samples)
and background (negative samples). Thus, instance segmenta-
tion can be seen as a binary classification problem.

Binary cross-entropy (BCE) [59], [60] is the most common
binary loss function that measures the information about the
variability between two probability distributions. When the

number of negative samples is much larger than the number
of positive samples, the negative samples dominate, making
the model tend to classify pixel points as negative samples
[59], [61]. Therefore, BCE needs to weight the positive and
negative samples to balance the difference in the number of
positive and negative categories [21], [62], [63].

To deal with the problem of positive and negative sample
imbalance, Milletari et al. propose the Dice Loss [29] to
assess the similarity of two samples in the form of IoU.
Due to the regional relevance of Dice Loss using IoU, which
can well solve the problem of positive and negative sample
imbalance, Dice Loss has become the most commonly used
loss function for instance segmentation. To further alleviate
the difference in the number of difficult and easy samples
during training, Zhao et al. [64] and Prencipe et al. [65]
propose weighting the difficult and easy samples. Wang et al.
[66] concern that the background region also contains a large
amount of information, and propose a weighted soft dice loss
to mine the information in the background region. Gao et al.
[26] concern that Dice Loss cannot effectively distinguish the
position relationship between ships with the same degree of
overlap, and propose centroid-distance-based loss to evaluate
the difference of masks in the center-of-mass distance and
centre region.

In the field of SAR ship detection, the directionality of the
ship mask is an important ship feature. None of the above loss
functions can evaluate the orientation difference of the mask,
which is the focus of the proposed CAC in this paper.

III. METHODOLOGY

In this section, we first introduce the overall structure of
our method. After this, three important parts of our method
are detailed, namely, center point prediction method, FD and
CAC. Finally, we detail the loss function of our method.

A. Network Structure

Fig. 2 illustrates the overall architecture of the proposed
method in this article. The whole network consists of three
parts.

1) Feature Extractor: In order to obtain feature maps
of high resolution and high semantic information, we use
DLA-34 [67] as feature extractor. DLA-34 extracts semantic
information through the fusion of feature maps at different
stages and scales. DLA network architecture includes two
feature fusion methods, iterative deep aggregation (IDA) and
hierarchal deep aggregation (HDA). IDA performs cross stage
fusion, fusing feature maps under different stages. HDA fuses
the features of multiple blocks within a stage through a
tree like network structure. Through tree hierarchical fusion,
DLA-34 can generate a single-scale feature map Fout with a
downsampling rate of 4.

2) Classification Branch: The learning of Gaussian distri-
bution is a regression problem. The more sample points the
network has, the better the network learns the distribution.
Therefore, the classification branch first upsamples the feature
map Fout by a factor of 2 to obtain a feature map with
a downsampling rate of 2. In order to accomplish both the
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Fig. 2. Overall architecture of our method. The network structure can be divided into three parts: the feature extractor, the classification branch and the
localization branch. Cond Conv means conditional convolution. Map G, M, S are the Gaussian map, mask map and semantic map. The training loss supervises
G, M, S to learn the ground truth in the training process. The center point extractor combines the characteristics of Gaussian distribution to predict the center
point on Map G.

Gaussian regression task (focusing on the central location of
the instance) and the feature fusion task (focusing on the edge
location of the instance) for spatial location conflicts, we use
the FD module to obtain two sets of feature maps, Fout1 and
Fout2 . Fout1 focuses on the centre of the ship and is used
to generate the Gaussian heatmap G. Center point extractor
performs center point prediction on map G to provide center
point location for conditional convolution. Fout2 focuses on
the edges of the ship, and provides the relative distance and
edge information of the ship to the localization branch.

3) Localization Branch: The localization branch focuses on
the edge position of ships and performs mask segmentation of
different ship instances. The localization branch can be divided
into three sub networks: mask feature generator, conditional
convolution parameter generator and semantic regressor. The
mask feature generator merges Fout2 into Fmask in the form of
channel-wise addition. To ensure consistency of scale, Fout2

needs to be downsampled by a factor of 2. After feature
fusion, conditional convolution, guided by center point loca-
tion information, is performed to obtain instance segmentation
result, namely mask map M. During conditional convolution,
the conditional convolution parameter generator generates pa-
rameters for the mask head. The mask head consists of two
1x1 8-channel convolution cores and one 1x1 single-channel
convolution core, so it contains a total of 169 parameters [22],
and Fparam is a 169-channel feature map. During network
training, the semantic regressor serves as an auxiliary role to
help localization branch to learn edge features of ships by
regressing semantic map S.

B. Gaussian Heatmap Center Point Prediction Method

1) Elliptical Gaussian heatmap encode method: Ship tar-
gets can be encoded as elliptical Gaussian distributions ac-

cording to the ship BBox annotations. The empirical formula
of Gaussian distribution is

f(X) =
1

2π|Σ|1/2
exp

(
−1

2
(X − u)

T
Σ−1 (X − u)

)
(1)

where Σ is the two-dimensional covariance matrix, X is the
coordinate vector (x, y) and u is the center point coordinate
(x̄, ȳ). To normalize the heat value of center point to 1, the
Gaussian distribution formula is modified to

G(X) = exp

(
−1

2
(X − u)

T
Σ−1 (X − u)

)
(2)

Maximum likelihood estimation of the ship mask is per-
formed to obtain the mean and covariance matrix of the
elliptical Gaussian distribution. The specific formulas are

gx,y =

{
1, (x, y) ∈Maskship

0, (x, y) /∈Maskship
(3)

u =

∑
x,y (gx,y ·X)∑

x,y gx,y
(4)

Σ =

∑
x,y g

2
x,y (X − u) (X − u)

T∑
x,y g

2
x,y

(5)

where Maskship is the set of ship mask’s coordinates and gx,y
denotes the value of the image at (x, y).

2) Center point extraction method: The current mainstream
one-stage target detection methods use BBox-based NMS for
dense detection. The center point probability is predicted on a
C channels feature map, and K points with highest probability
are found as candidate center points in a top K manner. NMS is
then performed based on the overlap ratio of BBox to remove
redundancy. This approach links the accuracy of instance
segmentation to the accuracy of BBox detection, which is the
upper limit of the accuracy of instance segmentation.
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(a)

(b)
Fig. 3. Visualization of the process from center point detection to instance segmentation of different methods. (a) NMS-based method. (b) Our method. Due
to the inherently high IoU of BBox from neighboring ships, it is difficult for NMS-based methods to detect neighboring ships. In contrast, our method is able
to localize neighboring ships well based on the trend of Gaussian variation over long distances.

However, BBox detection is the lowest task level in the tar-
get detection domain [8], and its annotation contains massive
background pixels. Therefore, the NMS process will lead to
the detection of adjacent targets as a single instance due to
the high degree of overlap within the BBox, as exemplified in
Fig. 3(a). To solve this problem, this paper designs a Gaussian
center point extraction algorithm based on the mathematical
properties of Gaussian distribution. By looking for patterns
of Gaussian variation over long distances between two center
points, our method is able to ascertain whether these two
center points originate from the same instance. As illustrated
in Fig. 3(b), our method can suppress redundant center points
from the same instance while preserving the center points of
adjacent instances.

Center point extraction is performed on the Gaussian
heatmap G of 1× H

2 ×
W
2 . The peak points are first found as

candidate center points in the following steps.
1) Set a threshold T and filter out points with heat values

less than T to obtain a heatmap G̃.
2) A MaxPool with 3× 3 kernel is used to obtain the peak

map Gpeak by traversing over the Gaussian heatmap G̃
in stride of 1.

3) Find the coordinate point where the heatmap G̃ and the
peak map Gpeak have the same heat value. Use these
coordinate points as candidate center points.

The above steps can be expressed by the following formula:

G̃(x, y) =

{
G(x, y) , G(x, y) ≥ T

0 , G(x, y) < T
(6)

Gpeak(x, y) = MaxPool
(
G̃(x, y)

)
(7)

CandPoints =
{
(x, y)|G̃(x, y) == Gpeak(x, y)

}
(8)

where G(x, y) is the heat value at (x,y) and CandPoints
denotes the set of candidate points.

In the Gaussian heatmap obtained by network regression,
there may be more than one peak point on single Gaussian
target. So we need to discriminate whether the candidate center
points originate from the same Gaussian target and carry out
de-redundancy. The specific algorithm process is described in
Algorithm 1.

Algorithm 1 Candidate points de-duplication.
//Input candidate peak points set
input Candidate Point Set X = {x1, x2, · · · , xn}

//Sorting X from largest to smallest
X ′ ← Sort from largest to smallest X
//The first in X ′ defaults to the ship’s center point
Y ← x′

1

//De-duplication
for i = 2 : n do

if not from the same target (x′
i,Y) then

Y ← x′
i

end if
end for

output Center Point Set Y

To discriminate whether x′
i and Y come from the same

Gaussian target, we combine the mathematical properties of
Gaussian distribution and match the similarity between the
candidate center point x′

i and each center point in the set of
Y according to the change pattern of heat value. The specific
judgment criteria are as follows.

1) If there is a point with a heat value of 0 on the line
segment between two points, then the two points belong
to different targets.
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2) If the difference between the heat value of candidate point
and the minimum heat value on the line segment is less
than M, then the two points belong to the same target.

3) If the average heat value of points on the line segment
is greater than the heat value of candidate point, then the
two points belong to the same target.

4) If none of the above three conditions are satisfied, then
the two points belong to different targets.

Our method executes the above four criteria in sequence to
discriminate whether the candidate point and the confirmed
center point belong to the same Gaussian target. The first
criterion states that if there is a point with a heat value of
0 between two points, then they belong to different targets.
This is because any point with a heat value less than T is set
to 0, so there must be a point with a heat value of 0 between
two non-adjacent targets. The second criterion states that the
heat value of candidate point from a different target should
be at least M greater than the minimum heat value between
two points. This is because a local peak is a small fluctuation
that occurs during the transition from 1 to 0 in heat value,
while the peak of different Gaussian targets is a long-distance
transition from 1 to 0 and from 0 to 1, and its peak heat
value should be significantly higher than the valley. The third
criterion states that the heat value of the candidate point from a
different target should be greater than the average heat value of
points on the line segment. This is a supplement to the second
criterion, requiring a long-distance gradient descent and ascent
relationship between two points. Finally, a candidate point that
dissatisfy the first three criteria is defaulted to come from a
different Gaussian target.

It should be emphasized that the threshold M in the second
criterion has a fundamental difference from the IoU threshold
in NMS. The IoU threshold in NMS requires that the overlap
ratio between two BBoxes must be less than the IoU threshold,
which has an inherent limitation for detecting adjacent targets.
In contrast, the threshold M in this article is based on the long-
distance relationship between two different Gaussian targets.
For adjacent targets, it requires that the heat value of the
center point must be higher than a certain threshold above the
valley, essentially requiring the network to divide two different
targets with sufficient confidence, which is a requirement for
the network’s object detection ability.

In summary, our approach has the following advantages.
1) Our center point detection method operates independently

of BBox and NMS, eliminating the necessity for de-
signing supplementary BBox regression branches within
the instance segmentation network. Therefore, the BBox
annotation is not required.

2) Our method relies on the long-range variation pattern of
Gaussian distribution, enabling effective discrimination
between neighboring targets.

3) Our method decouples the accuracy of instance segmen-
tation from the detection accuracy of BBox and is able
to exceed the upper limit of detection accuracy of BBox.

C. Feature Decoupling Module
The instance segmentation consists of multiple sub-tasks,

typically including classification and localization. Song et al.

(a) (b) (c)
Fig. 4. Visualization of spatial attention positions for different tasks. (a)
Original image. (b) Attention positions for classification task. (c) Attention
positions for localization task.

[27] find that there is a spatial mismatch between the classi-
fication and localization tasks. The former is more concerned
with the center of the object and the latter is more concerned
with the object edges. To demonstrate the spatial mismatch
between the two tasks in SAR ship instance segmentation, we
extract the classification branch feature maps (Fout1 in Fig.
2) and the localization branch feature maps (Fmask in Fig.
2). The most representative feature maps of two branches are
selected by top-1 and then superimposed onto the SAR image
by weighted addition. Fig. 4 visualizes the spatial positions
that the classification and localization tasks focus on. Fig. 4(a)
is the original image, Fig. 4(b) is the heatmap of the spatial
positions that the classification task focuses on, where the red
color indicates that the classification task is highly concerned
with the center of the ship. Fig. 4(c) is the heatmap of the
spatial positions that the localization task focuses on, where
the yellow or green color indicates that the localization task
is highly concerned with the edges of the ship.

Combining features from different tasks is an effective way
to improve network’s performance. By feature fusion, single
branch can not only utilize its own features but also incorporate
useful information from other task branches. In this article,
we just use channel-wise addition to achieve feature fusion.
And what we focus on is to resolve spatial location mismatch
when fusing features from different tasks. We propose a FD
module with an encoder-decoder structure, which is designed
to achieve task-aware spatial decoupling. Fig. 5 illustrates the
structure of the FD module.

The FD module consists of an encoder-decoder branch and
a residual branch. The encoder-decoder branch is composed
of an encoder and two decoders. The encoder first performs
channel-wise mean and adaptive average pooling on the fea-
ture map to obtain its global information in the height, width,
and channel dimensions. The specific process can be described
as follows,

FHzip = AdaptiveAvgPool2d (Mean (Fin)) (9)
FWzip = AdaptiveAvgPool2d (Mean (Fin)) (10)
FCzip = AdaptiveAvgPool2d (Fin) (11)

where AdaptiveAvgPool2d and Mean denote the adaptive
average pooling and channel-wise mean, respectively. Fin ∈
RC×H×W denotes the input feature. FHzip

∈ R1×H×1,
FWzip ∈ R1×1×W and FCzip ∈ RC×1×1 denote the feature
information in the height, width and channel dimensions.

By adaptive average pooling, the encoder can obtain long-
range dependencies in the three-dimensional directions. Then,
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Fig. 5. Overall architecture of FD module. Fin is the high-resolution feature map after 2× upsampling. Fout1 and Fout2 are feature maps suitable for the
classification and localization tasks, respectively, after feature decoupling.

the information of three dimensions is concatenated and inter-
acted with each other through convolution so that the encoder
can obtain global information. To suppress useless features
during encoding and make full use of useful information,
the global information is compressed and encoded during
convolution. In this paper, we set the compression ratio r
to 2 [26], [52] to prevent the loss of useful features during
the compression process. This process can be illustrated as
follows,

Fzip = Concact
(
FHzip , FWzip , FCzip

)
(12)

Fencoder = Relu (Conv (Fzip)) (13)

where Concact represents channel-wise concatenate operation.
Fzip ∈ R(C+H+W )×1×1 denotes the global feature vector,
and Fencoder ∈ R

C+H+W
r ×1×1 denotes the feature vector after

compression. The spatial weights and channel weights of the
two tasks are obtained through two decoders. The decoding
process begins with a convolutional operation to recover the
dimensionality of the feature map, which is then split into
three-dimensional weights according to the length of C, H and
W. These weights are refined through convolution and then
passed through the activation function tanh to scale the value
domain to (−1, 1). Finally, the residual branch is introduced
so that the weight value domain is transformed to (0, 2). Thus,
the FD is able to attenuate useless features while highlighting
features of interest for different tasks. This process can be
expressed as follows,

Fdecoder = Conv (Fencoder) (14)
FH , FW , FC = tanh (Conv (Split (Fdecoder))) (15)

Fout = Fin + Fin × FH × FW × FC (16)

D. Centroid and Angle Constraint Loss Function
In the mask segmentation training process, Dice Loss is

used as the loss function, and the formula of Dice Loss is as

Fig. 6. The blue mask represents the ground truth of the ship instance, and
the red mask represents errors made during the segmentation process. The
blue dots represent the centroid of ground truth and the red dots represent
centroid of predicted mask. The blue arrow represents the direction of the
long axis of the ground truth, the red arrow represents the direction of the
long axis of predicted mask.

follows:

DiceLoss = 1− 2 |Maskgt ∩Maskpred|
|Maskgt|+ |Maskpred|

(17)

where Maskgt represents the ground truth of the mask and
Maskpred represents the predicted mask. ∩ denotes the inter-
section of two sets and | • | denotes the size of the set.

It can be seen that when Dice Loss is used as the loss
function for mask segmentation, it only focuses on the IoU
between the segmentation result and the ground truth. In cases
where the IoU is the same, we would prefer the predicted mask
to have the same orientation and a closer centroid distance to
the ground truth. This is not reflected by the Dice Loss.

Fig. 6 illustrates two instance segmentation scenarios. The
blue mask represents the ground truth, while the red mask
symbolizes errors in the segmentation process. In Pred1, the
red mask is attached to the blue mask, indicating that a
single mask head effectively covers a single instance, but over-
segmentation occurs. In Pred2, the red mask is distant from
the blue mask, signifying that a single mask head takes effect
on multiple instances. For a dynamic segmentation network, a
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key criterion is that a single mask head should exclusively take
effect for the corresponding instance. Thus, the segmentation
quality of Pred1 should surpass that of Pred2. As both cases
share the same IoUs, Dice Loss is incapable of quantitatively
distinguishing between them. To enable the network to discern
these differences, we propose the centroid and angle constraint
(CAC).

CAC consists of centroid constraint and angle constraint.
Based on the elliptical Gaussian distribution encoding method,
we can obtain the centroid position and covariance matrix of
the mask. Assuming the predicted centroid position of the
mask is (xpred, ypred) and the ground truth centroid position
is (xgt, ygt), the relative distance between them is calculated
as follows:

distance =

√
(xgt − xpred)

2
+ (ygt − ypred)

2

max (H,W )
(18)

where H, W represent the height and width of the feature map.
The range of the calculated relative distance is (0,

√
2), which

is used as the exponent of the natural constant e to obtain the
centroid weight:

wcentroid = exp (distance) (19)

By performing principal component analysis (PCA) on the
covariance matrix of the Gaussian distribution, the long axis
direction of the Gaussian distribution can be obtained [68],
which is basically consistent with the long axis direction of
the ship. Therefore, CAC uses the long axis direction of
the Gaussian distribution as the direction of the ship. We
first perform singular value decomposition on the covariance
matrix Σ, as shown in the following equation:

Σ = QAV T (20)

where Q and V represent two orthogonal matrices and A is
the diagonal matrix. Based on equation (5) we decompose the
second order matrix formula as follows:

Σ =

∑
x,y g

2
x,y (X − u) (X − u)

T∑
x,y g

2
x,y

=

∑
x,y g

2
x,y

[
∆x
∆y

] [
∆x∆y

]
∑

x,y g
2
x,y

=

∑
x,y g

2
x,y

[
∆x2 ∆x∆y
∆x∆y ∆y2

]
∑

x,y g
2
x,y

=

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

]
(21)

where Σi,j =
∑

x,y

(
g2x,y∆x4−i−j∆yi+j−2

)
/
∑

x,y g
2
x,y ,

{i, j} = {1, 2} and X−u = (∆x,∆y). The covariance matrix
Σ is a real matrix as the variables in the above formula are
all real. According to the above equation, Σ1,2 and Σ2,1 are
equal, so Σ is a real symmetric matrix and can be diagonalised
orthogonally:

Σ = QAQ−1 (22)

The diagonal elements of the diagonal matrix A are the
eigenvalues of the covariance matrix Σ, and each row of
the orthogonal matrix Q corresponds to the corresponding
eigenvector. The eigenvector corresponding to the minimum
eigenvalue is the direction of the major axis of the Gaussian
distribution.

Through the above steps, we can obtain the unit directional
vectors vpred and vgt for the predicted mask and the ground
truth mask, respectively. And we can obtain the cosine value
of the angle between the two vectors by performing vector
multiplication. Using this cosine value as the exponent of the
natural constant e to obtain the weight of the angle constraint:

wangle = exp (1− vpred · vgt) (23)

Combining the centroid distance weight with the angle
weight, we obtain the CAC weight. And the final mask
prediction loss is obtained by weighting the Dice Loss with
the CAC:

wCAC = wcentroid × wangle (24)
Lossmask = wCAC ×DiceLoss (25)

E. Loss Function

Our method consists of three sub-tasks, namely Gaussian
heatmap regression task (classification task), mask segmenta-
tion task (localization task) and auxiliary semantic segmenta-
tion task. The loss function is designed for each of these three
tasks in this paper.

We use mean square error (MSE) as the loss function for the
Gaussian heatmap regression task, and the MSE is weighted
by the Gaussian and boarder weight (GBW). The Gaussian
weight is used to balance the positive and negative sample,
and the boundary weight is used to enhance the supervision
of the boundary regression for dense neighbouring ship targets.
GBW can be described as follows:

wborder(x, y) = exp

(
− (d1(x, y) + d2(x, y))

2

2

)
(26)

GBW x,y = 1 + β1wgauss(x, y) + β2wborder(x, y) (27)

where d1(x, y) and d2(x, y) represent the distance to the
two ships closest to the coordinate (x, y). wgauss(x, y) is the
Gaussian heat value at (x, y) obtained from equation (2). The
formula adds 1 to the weight is to ensure that the weight of
the other region is not zero. β1 and β2 are the weights of
wgauss and wborder, which are set to 10 and 1 in this paper.
Weighting MSE with GBW, Lossgauss can be described as
follows:

Lossgauss =
1

HW

∑
x,y

GBW x,y

(
Gx,y − Ḡx,y

)2
(28)
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where H and W are the height and width of the feature map,
Gx,y and Ḡx,y are the predicted and ground truth values of
the Gaussian distribution at the coordinate (x, y).

The mask segmentation uses the CAC designed in this
paper, and the semantic segmentation uses Focal Loss as
the loss function. The loss functions of the three tasks are
multiplied with the corresponding weights and summed to
obtain the overall loss function:

Loss = α1Lossgauss+α2Lossmask+α3Losssemantic (29)

where α1, α2 and α3 are the weights of each of the three
tasks. In this paper, we set these three weights to 1000, 1 and
1 respectively.

IV. EXPERIMENTS

This section presents the detailed results of experiments
conducted on PSeg-SSDD and HRSID. First, the datasets and
evaluation metrics used in the experiments are introduced.
Then, We compare our method with other mainstream seg-
mentation methods to verify the effectiveness and robustness
of the proposed method. Subsequently, ablation experiments
are conducted to verify the effectiveness of each module.
Finally, we conduct the visualization experiments of center
point prediction, FD and CAC.

A. Dataset Description and Experimental Settings

In this experiment, the performance and robustness of our
method are evaluated on two representative SAR ship datasets,
PSeg-SSDD [8] and HRSID [33]. PSeg-SSDD contains 1160
SAR ship images with multiple resolutions, polarizations,
and sea conditions, including 2456 ship targets. The image
resolution ranges from 1m to 15m, ensuring the robustness
of the network to different scales of ships. According to the
official partition method, 928 images are used as the training
samples and 232 images as the testing samples. Among the
testing set, 186 images belong to the offshore scene and
46 images belong to the inshore scene, with an offshore-to-
inshore image ratio of 8:2. The distribution of the training set
is also similar, and this imbalance in the number of offshore
and inshore images further increases the difficulty of the
network in learning inshore scene. HRSID contains 5604 SAR
ship images and 16951 ship targets. The images in HRSID
are cropped out into 800 × 800 pixels, and these cropped
images are divided into the training set and testing set with
the proportion of 13:7. Among the testing set, 1593 images
belong to the offshore scene and 369 images belong to the
inshore scene. There is still an imbalance between the number
of images of inshore and offshore scenes.

During training, we used parameters pre-trained on Ima-
geNet to initialise DLA-34 and used random initialisation for
each subsequent branch of the network. Adam was used as the
training optimization algorithm, with the initial learning rate
set to 0.0001 and the learning rate reduced by a factor of 10
at epoch 80 and 120, for a total of 140 training epochs. The
experimental part of the code in this paper is implemented
using the Pytorch framework [69], and the MMdetection

TABLE I
MS COCO METRICS

Metrics Meaning
AP IoU=0.50:0.05:0.95

AP50 IoU=0.50
AP75 IoU=0.75
APS AP of small objects: area < 322

APM AP of medium objects: 322 < area < 642

APL AP of large objects: area > 642

[70] framework and the AdelaiDet framework [71] are used
for comparison experiments. The experimental platform is
configured with Ubuntu 20.04 system, 32G RAM, and 3080ti
is used for training and inference.

B. Evaluation Metrics

Microsoft Common Objects in Context (MS COCO) evalu-
ation metric [72] is the most common performance evaluation
metric in the field of instance segmentation. The core of the
MS COCO is the intersection ratio of the mask prediction
to the mask ground truth. Based on the IoU threshold, the
precision and recall of the target can be calculated:

precision =
TP

TP + FP
(30)

recall =
TP

TP + FN
(31)

where TP is the number of true positives, FP is the number
of false positives and FN is the number of false negatives.
According to precision and recall, average precision (AP) can
be calculated as follows:

AP =

∫ 1

0

p(r)dr (32)

where r represents the recall rate and p(r) represents the
precision when recall rate is r. Mean average precision (mAP)
represents the average precision of multiple categories. In the
field of SAR ship detection, only existing one category, which
is ship, so AP and mAP are equal.

According to different IoU thresholds and object pixel areas,
MS COCO has various evaluation metrics to comprehensively
evaluate the accuracy of object detection. Table I lists these
evaluation metrics.

Floating-point operations (Flops) and parameters (Params)
are the prevailing evaluation metrics for assessing the compu-
tational and parametric aspects of a model. Flops represent the
count of floating-point computations, with each multiplication
or addition counted as one Flop. This metric allows us to
gauge the computational time complexity of a network model.
Params, on the other hand, represent the overall number of
trainable parameters in the model. It serves as a measure of
the model’s size.
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C. Comparison With Other Methods

To verify the effectiveness and robustness of our method,
we implement experiments on two datasets of PSeg-SSDD
and HRSID. AP, AP50, AP75, APS , APM and APL are used
to evaluate the performance of different methods, i.e., Mask R-
CNN, Cascade Mask R-CNN, Mask Scoring R-CNN, Yolact
[73], CondInst, SparseInst [74], HQ-ISNet, Anchor-Free SAR
Ship Instance Segmentation With Centroid-Distance Based
Loss (AFSS-Inst) and RTMDet. Flops and Params are used
to evaluate the computational and parametric quantities of the
model. We conduct our experiments according to the division
of inshore and offshore scenes. Table II demonstrates the
quantitative performance of different methods. An analysis of
the experimental results is provided below.

1) Comparison of Flops and Params: The computational
consumption of our method is only second to Yolact and
AFSS-Inst and the parameters of our method is second
only to AFSS-Inst, which are benefited from the BBox-
free and single-scale architecture. Our method does not
have branches for BBox regression and all inference is
done at a single scale. In contrast, AFSS-Inst uses the
lightweight GhostNet [75] as the feature extraction net-
work, which greatly reduces the consumption of network
computation and the number of parameters.

2) Comparison of inshore scene: As evidenced by our
experimental results on PSeg-SSDD, our method has
a competitive performance. As shown in Table II, our
method achieves improvements of 7.9%, 4.7%, 7.3%,
14.5%, 7.7%, 18.5%, 8.3%, 4.3%, 4.3% and 5.6% over
Mask R-CNN, Cascade Mask R-CNN, Mask Scoring R-
CNN, Yolact, CondInst, SparseInst, RTMDet, HQ-ISNet,
AFSS-Inst and SRNet on AP, respectively. HRSID has a
more complex background clutter and a large number of
small ships, making it more challenging. Similarly, our
method outperforms other compared methods of 8.5%,
6.9%, 15.3%, 10.5%, 2.1%, 2.9%, 14.3% and 3.0% over
Mask R-CNN, Cascade Mask R-CNN, Yolact, CondInst,
RTMDet, HQ-ISNet, AFSS-Inst and SRNet on AP, re-
spectively. This is mainly because our proposed Gaussian
center point localization method can suppress scattering
noise and locate neighboring ship instances from complex
scenes based on Gaussian long-range trends. At the
same time, feature fusion with FD enables the network
to extract sharper ship edge features from decoupled
features and CAC guides the mask head to focus only on
the corresponding ship instance. Our method dramatically
improves the segmentation accuracy of inshore ships and
has the highest AP50 on both datasets. Only the AP75

on HRSID is second to HQ-ISNet and SRNet, which
use the complex network structure and has the highest
computational consumption.

3) Comparison of offshore scene: Compared to inshore
scene, offshore scene is easier to segment ships due to the
lack of interference from inshore harbours and islands. It
can be observed from Table II that our method achieve
increment of AP by ranging from 0.5% to 15.3% on
PSeg-SSDD and ranging from 0.1% to 9.4% on HRSID.

(a) (b)

(c) (d)
Fig. 7. PR curves of different methods on PSeg-SSDD and HRSID in inshore
and offshore scenes. (a) PR curves for inshore scene on PSeg-SSDD. (b) PR
curves for offshore scene on PSeg-SSDD. (c) PR curves for inshore scene on
HRSID. (d) PR curves for offshore scene on HRSID.

Besides, our method has the highest AP50 and the AP75

of our method is only second to HQ-ISNet and SRNet,
which indicates the superiority of our method. Based on
long-range Gaussian trends, our Gaussian center point
localization method is able to accurately localize ships
from scattering noise from ships and the sea surface. As
a result of decoupling features by FD, the classification
feature maps provide more fine-grained ship positioning
features for the localization feature maps. Furthermore,
CAC guides the mask head to eliminate interference
from other instances. As a result, our method is able to
segment smoother masks while achieving more accurate
ship localization.

The PR curves are illustrated in Fig. 7 to comprehensively
show the instance segmentation performance of different meth-
ods on PSeg-SSDD and HRSID in inshore and offshore scenes.
The PR curves are presented in Fig. 7 to provide a comprehen-
sive illustration of the instance segmentation performance of
different methods on PSeg-SSDD and HRSID in inshore and
offshore scenes. Fig. 7(a) and (b) illustrate the PR curves on
PSeg-SSDD. Fig. 7(a) reveals that when the recall is between
0.3 and 0.8, the precision of Yolact and SparseInst decreases
rapidly. In contrast, our method, CondInst, and RTMDet main-
tain the highest precision within this range. Additionally, when
the recall exceeds 0.8, our method consistently ensures higher
precision compared to the others. Fig. 7(b) indicates that when
the recall surpasses 0.7, the precision of the comparative
methods starts to exhibit significant differences. SparseInst
experiences the fastest decrease in its PR curve, whereas our
method’s PR curve consistently remains in the upper right
corner, demonstrating that our method offers optimal instance
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TABLE II
INSTANCE SEGMENTATION PERFORMANCE OF DIFFERENT METHODS ON PSEG-SSDD AND HRSID

Dataset Model Flops(G) Params(M) Scene AP AP50 AP75 APS APM APL

PSeg-SSDD [8]

Mask R-CNN [18] 114.73 43.97
inshore 0.419 0.688 0.474 0.474 0.298 0.142
offshore 0.644 0.979 0.786 0.647 0.645 0.700

Cascade Mask R-CNN [19] 245.49 76.80
inshore 0.451 0.739 0.522 0.495 0.353 0.500
offshore 0.646 0.985 0.791 0.643 0.668 0.700

Mask Scoring R-CNN [20] 153.77 60.01
inshore 0.425 0.696 0.482 0.484 0.295 0.217
offshore 0.652 0.976 0.810 0.649 0.661 0.600

Yolact [73] 47.67 34.73
inshore 0.353 0.610 0.404 0.399 0.258 0.041
offshore 0.614 0.958 0.752 0.616 0.624 0.700

CondInst [22] 209.66 33.98
inshore 0.421 0.830 0.365 0.392 0.490 0.900
offshore 0.580 0.973 0.682 0.542 0.720 0.600

SparseInst [74] 91.39 31.64
inshore 0.313 0.598 0.332 0.339 0.251 0.800
offshore 0.582 0.882 0.731 0.528 0.765 0.600

RTMDet [23] 106.63 57.31
inshore 0.415 0.830 0.360 0.342 0.603 0.400
offshore 0.603 0.981 0.738 0.571 0.717 0.700

HQ-ISNet [11] 273.15 82.98
inshore 0.455 0.759 0.529 0.453 0.474 0.400
offshore 0.666 0.986 0.820 0.655 0.705 0.283

AFSS-Inst [26] 16.15 8.2
inshore 0.455 0.815 0.477 0.452 0.477 0.367
offshore 0.659 0.986 0.827 0.634 0.751 0.600

SRNet [76] 162.80 45.44
inshore 0.442 0.766 0.477 0.440 0.453 0.600
offshore 0.661 0.979 0.828 0.640 0.737 0.700

Ours 54.24 21.48
inshore 0.498 0.830 0.536 0.452 0.664 0.900
offshore 0.671 0.987 0.843 0.656 0.764 0.600

HRSID [33]

Mask R-CNN [18] 262.42 43.97
inshore 0.340 0.565 0.383 0.310 0.549 0.334
offshore 0.653 0.958 0.834 0.645 0.725 0.500

Cascade Mask R-CNN [19] 398.54 76.80
inshore 0.356 0.591 0.401 0.326 0.556 0.336
offshore 0.674 0.968 0.857 0.667 0.743 0.413

Yolact [73] 208.47 34.73
inshore 0.272 0.618 0.187 0.258 0.419 0.096
offshore 0.586 0.956 0.710 0.580 0.683 0.356

CondInst [22] 342.36 33.98
inshore 0.320 0.716 0.242 0.300 0.503 0.135
offshore 0.607 0.976 0.748 0.597 0.703 0.613

RTMDet [23] 272.97 57.31
inshore 0.404 0.759 0.387 0.393 0.530 0.101
offshore 0.674 0.977 0.837 0.668 0.749 0.336

HQ-ISNet [11] 481.36 82.98
inshore 0.396 0.725 0.410 0.390 0.497 0.095
offshore 0.679 0.975 0.871 0.665 0.738 0.468

AFSS-Inst [26] 64.58 8.2
inshore 0.282 0.518 0.280 0.280 0.335 0.031
offshore 0.652 0.964 0.834 0.673 0.611 0.103

SRNet [76] 651.20 45.44
inshore 0.395 0.716 0.406 0.386 0.529 0.082
offshore 0.677 0.969 0.860 0.676 0.747 0.223

Ours 263.21 23.15
inshore 0.425 0.791 0.399 0.410 0.563 0.201
offshore 0.680 0.977 0.851 0.674 0.751 0.479

Bold items denote the optimal offshore values in the columns, the underlined items represent the optimal inshore values in the columns.

segmentation accuracy. The PR curves on HRSID are depicted
in Fig. 7(c) and (d). Similarly, the PR curves of our method are
situated in the upper right corner in both inshore and offshore
scenes, signifying that our method maintains higher precision
at the same recall levels. In summary, these results confirm
the superior performance of our method.

Fig. 8 and Fig. 9 demonstrate the visualization results of
instance segmentation by different methods on PSeg-SSDD
and HRSID. As shown in the first and second rows of
Fig. 8 and third row of Fig.9, our method is superior to
compared method for densely arranged ship detection under

complex background interference. It intuitively illustrates the
effectiveness of the Gaussian center point extraction method.
Moreover, the masks segmented by our method are smoother,
and under- and over-segmentation occur less frequently, which
illustrates the effectiveness of CAC and feature fusion method
with FD. The third row in Fig.8 and first row in Fig.9 show the
segmentation results for small ships under interference from
inshore objects. Compared with other methods, our method do
not occur false alarm and can accurately locate and segment
ships under strong interference conditions. The visualization
results fully demonstrate the advantages of our method.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)
Fig. 8. Instance segmentation results of different methods on PSeg-SSDD. (a) Ground truth. (b) Our method. (c) Mask R-CNN. (d) Cascade Mask R-CNN.
(e) Mask Scoring R-CNN. (f) Yolact. (g) CondInst. (h)SparseInst. (i) RTMDet. (j) HQ-ISNet. (k) AFSS-Inst. (l) SRNet.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Fig. 9. Instance segmentation results of different methods on HRSID. (a) Ground truth. (b) Our method. (c) Mask R-CNN. (d) Cascade Mask R-CNN. (e)
Yolact. (f) CondInst. (g) RTMDet. (h) HQ-ISNet. (i) AFSS-Inst. (j) SRNet.

In order to more thoroughly verify the effectiveness of our
method, we further conduct instance segmentation experiments
on large-scene image ALOS-2 from HRSID [33], which
contains 18001×14804 pixels. Six representative regions, in-
cluding inshore (slices 1, 2, 3 and 4) and offshore (slices 5
and 6) scenes, are chosen from the large-scene image ALOS-2.
Fig. 10 illustrates the instance segmentation results, including
where the slices are cropped. It can be seen from the visualiza-
tion results that our method can effectively detect multi-scale
targets in both inshore and offshore scenes although there are
still some false alarms in complex inshore scene (pink mask in
slice 2). In general, our method demonstrate excellent instance
segmentation performance and effectiveness for the case of
both the slice of the two datasets mentioned above and the
large-scene image from HRSID.

D. Ablation Experiments

To illustrate the effectiveness of each part proposed in this
paper, and quantitatively judge their improvement, we conduce
ablation experiments on PSeg-SSDD for the Gaussian center
point prediction method, the FD module and the CAC loss.

Table III shows the results of Gaussian center point pre-
diction method ablation experiment. We use CondInst as the
baseline, and then use FCOS and Gaussian heatmap for center
point prediction. By comparing the model parameters, the
computation complexity and instance segmentation accuracy,
we can get the following conclusions.

1) The single-scale Gaussian center point prediction method
can greatly reduce the model computation and parameters
compared with the multi-scale FCOS, which are 76.95%
and 38.46% lower, respectively.

2) The Gaussian center point prediction method is able to
improve the accuracy of instance segmentation. Com-
pared to FCOS, the AP metrics of inshore and offshore
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Fig. 10. Instance segmentation results on the large-scene image.

scenes have been improved by 9.03% and 11.55%, re-
spectively.

3) At a high IoU threshold of 0.75, the Gaussian center
point prediction method has higher segmentation accu-
racy compared to FCOS. It indicates that the method of
encoding ship targets as elliptical Gaussian distributions
is consistent with the physical properties of the ship and
reduces the learning difficulty of the network.

Table IV shows the ablation experimental results of the FD.
From this table, we can draw the following conclusions.

1) FD only brings a computational and parameter cost of
0.01 GFlops and 0.51 MParams, which is a lightweight
network structure.

2) The adoption of FD bring about an improvement in
instance segmentation accuracy of 5.51% for inshore
scenes and 0.60% for offshore scenes.

3) FD has the most significant improvement in segmentation
accuracy for inshore scenes. This indicates that FD effec-
tively disperses the gradient flow of the classification and
localization tasks and helps the feature maps generated
by both tasks to better achieve the focus on the regions
of interest for the task.

Table V shows the results of the CAC ablation experiment.
Using our method, Mask R-CNN and RTMDet as baselines,
we compare the accuracy of instance segmentation with and
without CAC. According to the experimental results, we can
get the following conclusions.

1) CAC can improve the segmentation accuracy in inshore
and offshore scenes. Under the guidance of CAC, our

TABLE III
ABLATION EXPERIMENT ON GAUSSIAN CENTER POINT PREDICTION METHOD

Method Flops(G) Params(M) Scene AP AP50 AP75 APS APM APL

FCOS 209.66 33.93
inshore 0.421 0.830 0.365 0.392 0.490 0.900
offshore 0.580 0.973 0.682 0.542 0.720 0.600

Gaussian 48.32 20.88
inshore 0.459 0.849 0.462 0.452 0.543 0.900
offshore 0.647 0.967 0.804 0.626 0.744 0.600

Bold items denote the optimal offshore values in the columns, the underlined items represent the optimal inshore values in the columns.

TABLE IV
ABLATION EXPERIMENT ON FD

FD Flops(G) Params(M) Scene AP AP50 AP75 APS APM APL

54.23 20.97
inshore 0.472 0.826 0.491 0.442 0.592 0.495
offshore 0.667 0.980 0.827 0.647 0.773 0.500

✓ 54.24 21.48
inshore 0.498 0.830 0.536 0.452 0.664 0.900
offshore 0.671 0.987 0.843 0.656 0.764 0.600

Bold items denote the optimal offshore values in the columns, the underlined items represent the optimal inshore values in the columns.

TABLE V
ABLATION EXPERIMENT ON CAC

Method CAC Scene AP AP50 AP75 APS APM APL

Ours

inshore 0.459 0.840 0.468 0.447 0.567 0.900
offshore 0.668 0.987 0.822 0.644 0.778 0.600

✓
inshore 0.498 0.830 0.536 0.452 0.664 0.900
offshore 0.671 0.987 0.843 0.656 0.764 0.600

Mask R-CNN

inshore 0.400 0.711 0.417 0.356 0.504 0.600
offshore 0.630 0.909 0.807 0.597 0.752 0.700

✓
inshore 0.438 0.754 0.469 0.386 0.539 0.400
offshore 0.639 0.919 0.820 0.609 0.758 0.700

RTMDet

inshore 0.406 0.791 0.365 0.361 0.525 0.350
offshore 0.603 0.988 0.738 0.571 0.717 0.700

✓
inshore 0.415 0.830 0.360 0.342 0.603 0.400
offshore 0.619 0.985 0.773 0.588 0.720 0.712

Bold items denote the optimal offshore values in the columns, the underlined items represent the optimal inshore values in
the columns.

method, Mask R-CNN and RTMDet improve the AP of
both scenes by up to 3.8% and 1.6% respectively.

2) At an IoU threshold of 0.75, the instance segmentation
accuracy of three methods has greatly improved. This
indicates that CAC can help the network to sense the
differences in the centroid location and the orientation of
the mask during training, which makes the mask smoother
and more consistent with the direction of the ship.

3) CAC is effective for both the two-stage algorithm Mask
R-CNN and the single-stage algorithm RTMDet, proving
the robustness of CAC.

E. Loss function Weights Selection

The method proposed in our article contains three branches,
each of which have a corresponding loss function. The over-
all loss function contains three corresponding loss function
weights, i.e., α1, α2 and α3. α3 defaults to 1. In order to
determine the values of α1 and α2, we carry out loss function
weights selection experiment. We vary the weights in steps
of multiples of 10 and choose four different sets of weights
to compare the performance of our method under different
weights. Table VI shows the results of the loss function weight
comparison experiment, from which we can get the following
conclusions.

1) When α1 is 10 and α2 is 1, our method has the best
segmentation accuracy in the inshore and offshore scenes,
with APs of 0.498 and 0.671, respectively, which is higher
than the results of other comparison experiments.

2) When the ratio of α1 to α2 rises or falls from 10, both
cause the segmentation accuracy to deteriorate.
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TABLE VI
INSTANCE SEGMENTATION PERFORMANCE UNDER DIFFERENT LOSS FUNCTION WEIGHT

α1 α2 Scene AP AP50 AP75 APS APM APL

1 10 inshore 0.451 0.816 0.459 0.445 0.524 0.595
offshore 0.670 0.977 0.851 0.651 0.771 0.600

1 1 inshore 0.452 0.819 0.461 0.459 0.515 0.900
offshore 0.668 0.984 0.842 0.651 0.764 0.600

10 1 inshore 0.498 0.830 0.536 0.452 0.664 0.900
offshore 0.671 0.987 0.843 0.656 0.764 0.600

100 1 inshore 0.458 0.821 0.467 0.451 0.550 0.560
offshore 0.666 0.984 0.841 0.653 0.763 0.600

Bold items denote the optimal offshore values in the columns, the underlined items represent the optimal
inshore values in the columns.

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 11. Visualization of center point prediction. The images from left to
right are ground truth, Gaussian heatmap, center point proposal, and center
point prediction result, respectively. The red dots in (c), (d), (g), (h) represent
the center points.

From the experimental results in Table VI, we can determine
that setting α1 and α2 to 10 and 1, respectively, ensures the
best segmentation accuracy of our method.

F. Visualization Experiments

To verify the effectiveness of our method, this experiment
visualises the three methods proposed in this paper and anal-
yses their contribution to instance segmentation.

Fig. 11 visualizes the center point prediction process.
The images from left to right are ground truth, Gaussian
heatmap, center point proposal, and center point prediction
result, respectively. The images in the first row represent the
offshore scene with scattered interference. As can be seen
from Fig. 11(b), encoding ship instances as elliptic Gaussian
distributions can effectively suppress scattering interference.
By finding the local peak points in Fig. 11(b), the center point
proposal in Fig. 11(c) is obtained. Since the Gaussian distri-
bution of network learning is not smooth, there are multiple
local peak points on a single instance. Through the Gaussian
center point de-redundancy method proposed in this paper, the
similarity between center points can be effectively assessed.
As shown in Fig. 11 (d), our method retains the center point
with highest heat value while suppressing the redundant center
points. The images in the second row represent the inshore
scene with dense arrangement of ships. As shown in Fig. 11(h),
our method is able to discriminate between the center points
of the same instance and those of different instances. Even

(a) (b) (c)

(d) (e) (f)
Fig. 12. Visualization of feature fusion in classification and localization
branches without and after FD, respectively. (a), (b), (c) are classification
branch feature map, localization branch feature map and mask feature map
obtained by feature fusion without FD. Most of the ship edge features
are derived from (a), illustrating the reversal of the primary and secondary
relationships in the feature fusion process. (d), (e), (f) are feature maps after
FD corresponding to (a), (b), (c). Ship edge features are mostly derived from
(e), illustrating that the localization branch takes a dominant role in feature
fusion, the problem of reversing the tasks of the classification and localization
branches is solved.

when multiple instances are in close proximity to each other,
our method is able to efficiently distinguish the center points
of adjacent instances and suppress redundant center points.

Fig. 12 visualizes the feature fusion process. Without FD,
Fig. 12(a), (b), (c) visualize the feature fusion process between
the classification branch and the localization branch. Fig. 12(a)
shows the feature map of classification branch, which contains
massive information about ship’s contour. Fig. 12(b) visualizes
the feature map of localization branch, which provides less
contour information compared with classification branch. Fig.
12(c) illustrates the mask feature map obtained by feature fu-
sion, which is the sum of Fig. 12(a) and Fig. 12(b). From first
row of Fig. 12, it can be seen that the contour information of
the mask feature map is mostly provided by the classification
branch, and the localization branch plays an auxiliary role,
which is a reversal of the primary and secondary relationship.

According to the task definition of the branch, the localiza-
tion branch completes the mask segmentation, and focuses on
edge positions of ships. The classification branch completes
the target center point prediction, and focuses on central po-
sitions. The visualization in Fig. 12 first row shows that there
is a deviation in the tasks learned by different branches. The
classification branch is more concerned about the edge position
than localization branch, which results in the classification
branch being unable to focus on its own task. This deviation
must be corrected.

Fig. 12(d), (e), (f) illustrate the feature fusion process after
FD. As can be seen in Fig. 12(d), the visualization color at
the ship edges is blue, indicating that the classification branch
feature map contains a few contour information. Fig. 12(e)
shows the localization branch feature map, which contains
more ship contour information compared with Fig. 12(d). Fig.
12(f) is the mask feature map, containing complete contour
information of ships. According to the second row of Fig. 12,
most of the ship contour information comes from localization



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 16

(a) (b) (c)

(d) (e) (f)
Fig. 13. Visualization of localization branch without CAC and with CAC,
respectively. (a), (b), (c) are localization branch feature maps without CAC.
(d), (e), (f) are localization branch feature maps with CAC. Compared to the
first row, the feature maps in the second row have a more pronounced ship
outline feature.

branch, which is consistent with the task definition of the
branch.

Through above analysis, we can know that in the feature
fusion process, classification branch can provide guidance
information for localization branch. However, the mixing of
gradient flows between different tasks branches will prevent
the task branch from focusing on its native task, which causes
the task branch to deviate from the learning direction. Accord-
ing to the structural design of our network, the classification
branch should play an auxiliary role during the feature fusion
process. This design not only conforms to the task definition
of the branch, but also conforms to the principle of gradient
backpropagation. During gradient backpropagation, smaller
activation values mean smaller gradient flows. To reduce the
effect of mixing of different branch gradient flows, classifi-
cation branch as an auxiliary role is necessary during feature
fusion. The FD module selects feature point from different
spatial positions and channels for different task branches.
When the corresponding weight of a feature point tends
towards 0, it can suppress the gradient in backpropagation,
while it tends towards 2, it can strengthen the gradient in
backpropagation. The effectiveness of FD is verified through
the visualization in Fig. 12.

Fig. 13 illustrates feature maps of localization branch with-
out and with CAC guiding network training. The first row
illustrates the feature maps without CAC guidance, from which
it can be seen that the edges of the ship in feature maps are
blurred. The second row illustrates the feature map with CAC
guidance, which has clearer ship edge features compared to
the feature map in the first row. Under the guidance of CAC,
the network is able to perceive the boundaries of different
instances more clearly, so that the dynamic mask head focuses
on the corresponding instance.

V. CONCLUSION

In this article, we propose a BBox-free SAR ship instance
segmentation method based on Gaussian heatmap. To tackle
the issue of BBox-based NMS often omitting ships in densely

arranged scenes, we introduce a center point prediction ap-
proach grounded in the mathematical properties of Gaussian
distribution. This approach significantly enhances the accuracy
of center point detection. To establish the relative positional re-
lationship between pixels and target objects for the localization
branch, we have devised a feature fusion module incorporating
FD. FD effectively addresses the spatial location discrepancies
in gradient flows during feature fusion. In order to guide the
network in learning finer mask segmentation during training,
we introduce the CAC. This addresses the limitation of the
Dice Loss, which cannot perceive where the mask error occurs
during instance segmentation. Our experiments, conducted
on PSeg-SSDD and HRSID, demonstrate that our method
proficiently extracts ship center points and precisely segments
the ships. Ablation experiments underline the effectiveness of
each component introduced in this paper. In the future, we plan
to delve deeper into SAR ship instance segmentation algo-
rithms to achieve higher accuracy while minimizing resource
consumption.
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