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Abstract: The mass of a direct-drive generator is often defined by the requirements for structural
stiffness to meet the magnetic stiffness between the rotor and stator surfaces. This paper analyses
this magnetic stiffness and estimates the structural stiffness of direct-drive generators for different
modes of deflection. The magnetic stiffness modelling is based on an analytical model of the airgap
closing forces. The final models are verified using finite element analysis and developed for both
permanent magnet and wound rotor generators. It shows that wound rotor machines have higher
stiffness requirements than permanent magnet machines. The structural stiffness of the generator
rotor and stator is evaluated for different modes by applying spatially varying forces and finding
the associated deflections. Structural stiffnesses for the rotor, stator and bearing are then combined.
Finally, the magnetic and structural stiffnesses are combined and a stiffness margin can be found.
This method is applied to a relatively stiff and a relatively compliant set of generator structures in a
case study. The analytical model presented in this paper is useful for structural optimisation purposes
or as part of an online structural health monitoring system as it could assess the integrity of the
machines in real time.

Keywords: direct drive; radial flux permanent magnet generator; structural and magnetic; stiffness;
analytical and FEA; structural health monitoring; real-time integrity assessment

1. Introduction

Direct-drive electrical generators are low-speed high-torque machines whose robust
and stiff supporting structures are designed to withstand the significant loads present
during the assembly and operation stages. From the active material viewpoint, detailed
analyses were performed and validated. An experimental evaluation of a five-phase
permanent magnet synchronous generator for wind energy purposes and an accurate
model of the airgap dynamic reluctance was developed by Kumar in [1]. The model, which
considers leakage flux paths, is suitable for the design and optimisation of the generator’s
active material. This validation was carried out through an experimental investigation
that retrieved results showing good agreement with the data obtained making use of finite
element methods. With the same aim, Modelica language, and in particular the wind
turbine modelling package, was employed in different studies to simplify and reduce time
in the modelling process [2]. A comprehensive overview of the different methods and their
applicability to model wind turbine electrical generators for power system stability was
given by He in [3].

Less investigation has been made paying attention to the structural material, also
known as inactive material. In [4], Polinder et al. presented an overview of the design of
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different types of wind turbine powertrains for a 3 MW wind turbine, evaluating losses and
costs for the wind turbine generator, power converter and gearbox (if used). Costs for the
active material were calculated, but generator non-active materials were estimated. In [5],
Bywaters et al. identified the outer diameter and cooling method as critical parameters to
estimate the total cost of permanent magnet machines. Grauers [6] introduced an analytical
cost estimation for these generator structural materials based on dimensional similarity,
but it did not take into account the different magnitude of loads from one design to another.
In [7], Versteegh provided a detailed description of the design of a low-speed direct-drive
permanent magnet generator for the Zephyros Z72 wind turbine where the influence
of the loads on the generator design is analysed. The key load to be considered when
designing this type of device is a large force across the airgap which is because of the
normal component of the Maxwell stress.

Several approaches were described by McDonald in [8] for estimating the mass of
machine structures dealing with uniformly distributed force and deflection, also known as
Mode 0. By assuming that the rotor and the stator structures were made up of disc and
arm sub-structures, the authors linked the electromagnetic and mechanical design to model
radial, tangential and axial deformations in radial flux machines. A set of simplified rotor
and stator structural configurations that can be used to model the electrical generator are
introduced by Stander in [9] and analysed in detail by Jaen-Sola [10]. Klinger showed how
different wind turbine designers take different approaches to the design of the structural
elements of the direct-drive generator in [11]. Making use of an analytical and finite element
analysis optimisation method, Zavvos tried to minimise the structural mass of a permanent
magnet direct-drive generator in [12]. Three different iron-cored generator configurations
rated at 5 MW were optimised, concluding that a specific transverse flux direct-drive
topology is the most suitable as its electromagnetic layout helps the structural design.

In [13], Tavner and Spooner introduced a method which describes the challenge in
terms of stiffness, focusing the attention on Mode 1 deflection of the rotor and stator
structures. Following that path, Jaen-Sola presented in [10] an electromagnetic analytical
model that can be utilised to calculate the required airgap stiffness for multiple modes. In
this paper, the authors go a step beyond by coupling this model with a structural model of
the inactive material, which was produced using finite element methods.

The analytical parametric model first assumes a deflection value that is distributed
along the outer surface of the rotor and the inner surface of the stator in order to calculate the
ultimate airgap closing force for deflection modes ranging from 0 to 4. Using the deflection
and the resultant force, the airgap stiffness is estimated. Finite element analysis of a two-
pole model is used afterwards to validate the analytical models for airgap closing force and
stiffness. With the analytical models corroborated, a structural finite element model of the
electrical machine is generated. Making use of the airgap closing force computed with the
analytical approach, a deflection is obtained and used to calculate the structural stiffness
that will be compared to the already-known magnetic stiffness so that the designer can
understand if the airgap of the proposed structure will remain stable and what the margin
of deformation is. See Figure 1.

Figure 1. Coupling of magnetic and structural models.
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By knowing the margin of deformation, the designer can change the structural design,
e.g., reducing the mass of the sub-structures forming the rotor and stator by modifying
their thicknesses.

2. Introduction to the Stiffness Concept
2.1. Mechanical Stiffness

In general terms, stiffness is a measure of the resistance offered by an elastic body to a
force deforming the body. The stiffness is defined as k = F/δ, where F is the force and δ is
the displacement and it can be used to relate any F and δ, whereas a finite element model
of a structure only gives δ for one set of F. This concept of stiffness can be expressed in
terms of stress (the force per unit area, σ = F/A), strain (the change in length divided by the
original length, ε = δ/l) and major dimensions of the body, thus,

k =
F
δ
=

σA
εl

. (1)

Normally, one is interested in the strain response to the application of stress. A
positive value of stiffness means that as a positive force is applied, the change in length
is also positive. Occasionally, the stress itself depends on the strain. This is the case for
the magnetic forces in the airgap. Here, as the airgap clearance reduces in size (i.e., δ is
negative), the magnitude of the forces becomes larger. Conversely, as the airgap clearance
increases in size, the magnitude of the force trying to close the airgap reduces. In this case,
the stiffness is negative.

In the steady state and with no external forces applied, stability is achieved, and a
system is “stiff enough” when the sum of all the values of stiffness is equal to 0. More
stiffness is needed when other forces are introduced.

Most systems are made up of multiple bodies, each with its own value of stiffness.
Two bodies with stiffness kA and kB can be combined into an equivalent stiffness depending on
whether they are in series (and hence experience the same force but have different displacements),

keq =
kAkB

kA + kB
(2)

or in parallel (and hence experience the same displacement but different applied forces),

keq = kA + kB (3)

or in a mixture of these two cases.
A cross section of a generator structure with a simplified structure for a direct-drive wind

turbine is shown in Figure 2a,b. A radial flux generator is formed by four main components
that in terms of stiffness are as follows: the bearing kb, the structure of the rotor ks,r, the
magnetic airgap stiffness kM, and the structure of the stator ks,s. Combining the bearing and
the rotor structure in series gives an equivalent stiffness,

keq,r =
ks,rkb

ks,r + kb
(4)

The magnetic attracting force acting on the rotor and stator surface also acts to deform
the rotor and stator structures. These structures have values of stiffness, which are constant
for elastic materials below the elastic limit. Equation (5a,b) express the common force in
terms of stiffness and deflection,

Fc = keq,rδr (5a)

Fc = ks,sδs (5b)
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Figure 2. (a) Generator structure; (b) shown as stiffness [10]; (c) magnetic stress vs. Theta for
different deflection modes; (d) rotor and stator disc structure models showing loading conditions
and constraints [8–10].

As they are connected to one another at the generator mounting point, and as they have
the same force applied to them both, one can consider them as two bodies with stiffness in
series, and so they can be expressed as an equivalent structural stiffness, ks =

keq,rks,s
keq,r+ks,s

. At
one end of this composite structure, the force leads to rotor deflection into the airgap, and
at the other end, the force leads to stator deflection,

F = ks(δs + δr) (6)
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2.2. Magnetic Stiffness

With a force F, caused by the normal component of the Maxwell stress, acting on the ro-
tor and stator outer and inner surfaces, respectively, the airgap tends to close. See Figure 2c
for the loading conditions applied to the simplified structure presented in Figure 2d. The
results from the static structural finite element analysis performed on the inactive material
of the generator rotor are shown in Figure 3. For the simulation study, the structure was
constrained at the shaft. A convergence test retrieved a high-quality linear tetrahedral
mesh with 7682 elements and 15,640 nodes. The element size was 148.5 mm. The airgap
closing force ‘Fc’, can be expressed in terms of a magnetic stiffness ‘kM’, an assumed ‘δ’ and
a variable deflection ‘δ∆’, which changes with angle ‘θ’, that alters the airgap clearance;

Fc = kM
(
δ + δ∆sin(nθ)

)
, (7)

where n corresponds to the deflection mode and θ to the pitch angle.

Figure 3. Rotor disc structure models highlighting deflection for (a) Mode 0 (uniform deflection) and
(b) Mode 1 (eccentricity).

The area of the rim is apportioned into 36 parts. The force for each span of β = 10 degrees
is applied as shown in Figure 2d. Table 1 illustrates the characteristics of the machine used
in the analysis. It is based on the direct-drive permanent magnet machine in [10].

Table 1. Case study generator data.

Generator Data

Axial length, ‘ls’ (m) 1.2
Rotor radius, ‘R’ (m) 2.5
Design airgap size, ‘g’ (m) 0.005
Rotor yoke height, ‘hry’ (m) 0.05
Aspect ratio
(proportional relationship between width and height) 0.6

Magnet height, ‘hm’ (m) 0.01
Magnet width, ‘wm’ (m) 0.15
Number of pole pairs, ‘p’ 88
Pole pitch, ‘τp’ (m) 0.18

The force caused by the normal component of Maxwell stress will be calculated
analytically in Section 3.2. So as to develop this model, it was considered the effective
magnetic airgap clearance. This means that the changes in stiffness are correlated to the
alterations in the size of the airgap. Therefore, expressions describing the airgap behaviour
of electrically excited wound rotor machines and permanent magnet generators needed
to be produced. Equation (8) is suitable for computing the airgap stiffness for electrically
excited generators,

kWR =
F

g − δ
, (8)
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where g is the airgap size, whereas Equation (9) should be used in the case of having a
permanent magnet machine (with surface-mounted magnets),

kPM =
F

g + hm
µr

− δ
, (9)

where hm is the height of the magnet and µr is the relative permeability of the magnetic
material. By introducing these two parameters into the equation, the fact of having surface-
mounted permanent magnets can be considered. To evaluate the stiffness of both types
of machines for different deflection modes, δ can be substituted by δ + δ∆sin(nθ), which
would give us the following:

kWR =
F

g − δ − δ∆sin(nθ)

kPM =
F

g + hm
µr

− δ − δ∆sin(nθ)

2.3. Overall Stiffness

As said, in order to keep the integrity of the electrical machine, the airgap must remain
open and stable. For this, it is necessary that the magnetic force ‘FM’ and the structural
force ‘Fs’ equal and opposite. If Equation (7) is manipulated, in Equation (11) it can be seen
that the equivalent structural stiffness of the system must be equal (and opposite in sign) to
the airgap magnetic stiffness:

FM + Fs = 0 → k M(δs + δr) + ks(δs + δr) = 0, (10)

ks = −kM, (11)

where the structural stiffness ‘ks’, will be calculated using finite element techniques.

3. Magnetic Airgap Stiffness

The concept of magnetic airgap stiffness was introduced in Section 2.2. The need for
a versatile and quick model that can accurately predict the required magnetic stiffness
in several dimensions for different types of machines has led the authors to create a 2-
dimensional parametric model that can be used for optimisation purposes. Equations will
be developed here for the airgap closing force per unit area as a function of deflection and
angle for both wound rotor and surface-mounted permanent magnet machines. Finally, the
formulations for the magnetic airgap stiffness will be developed.

Deflection can be different at distinct zones of the rotor and stator [13]. Airgap collapse
can take place due to the following:

Mode 0: Radial expansion of the rotor or radial compression of the stator.
Mode 1: Rotor eccentricity (localised deflection).
Mode 2: Distortion of either or both of the circular surfaces into ellipses.
Mode 3: Distortion with ripples around the circumferences.

The magnetic airgap stiffness expressions for both the wound rotor and the surface-mounted
permanent magnet machines will be derived, attempting to address all of these scenarios.

3.1. Airgap Closing Force per Unit Area

Magnetic airgap stiffness arises because of the influence of the airgap clearance on the
airgap permeance and hence airgap flux density. This, in turn, affects the airgap closing
force. In the case of the airgap closing, the flux density increases and the force per unit area
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increases. This airgap closing force can be found from the normal component of Maxwell
stress σ with Equation (12), where B is the airgap flux density,

σ =
B2

2µ0
, (12)

and µ0 is the permeability of free space.
The flux density distribution, B, in the airgap can be found as follows:

B(θ) = F (θ)
P(θ)

A
, (13)

where F (θ) is the MMF set up by the rotor field (winding or magnets) and armature
windings current and P(θ)/A is the magnetic permeance per unit area. This flux density
distribution can be found for a generic machine. Having a pole number of 2p, the main
airgap MMF is assumed to be sinusoidally distributed,

F (θ) = F̂cos(pθ − φ) (14)

Although the airgap flux density distribution for a surface-mounted permanent mag-
net machine is often more akin to a square or quasi-square wave, Equation (14) is normally
a good approximation with F̂PM = Brhm

µ0µr
4
π sin

(
π
2

wm
τp

)
, where hm is the magnet height, wm

is the magnet height, τp is the pole pitch and µr is relative permeability. It should be
noted that because the surface-mounted permanent magnet machine has a larger airgap
permeance than conventional salient pole synchronous machines, the MMF per pole will be
higher to produce the same flux density (assuming the same number of poles, rating and
airgap geometry). Indeed, Equation (13) suggests that for the same airgap flux density, the

ratio of MMFs approximates to F̂PM
F̂

≈ P
PPM

. This is because the final part of Equation (13) is
the magnetic permeance of the airgap. This can be defined in general terms as

P
A

=
µ0

l
, (15)

where A and l are the cross-sectional area and length of the region in question. Assuming
that the iron in the magnetic circuit is infinitely permeable and ignoring slots, then the
magnetic permeance reduces to the permeance of the airgap and l = g. Before any deflection
occurs, the ratio of magnetic permeance of the airgap of the two machines would be
PPM

P ≈ g
g+ hm

µr

.

As the deflection occurs, the local airgap changes with the circumferential angle, θ,
according to

g(θ) = g − δ(θ) = g − δ − δ∆sin(nθ − φ), (16a)

geff,PM(θ) = g +
hm

µr
− δ(θ) = g +

hm

µr
− δ − δ∆ sin(nθ − φ), (16b)

where g and geff,PM are the nominal airgap clearance. The permeance per unit area can be
approximated as

P(θ)
A

≈ P + P∆sin(nθ − φ), (17)

where P is the mean value of airgap permeance per unit area and P∆ is the amplitude of
variation of the airgap permeance per unit area. If δ∆

2 terms are neglected, then P ≈ µ0
g−δ

and P∆ ≈ µ0

(g−δ)
2 δ∆. For a surface-mounted permanent magnet machine, the magnetic

airgap and airgap clearance are no longer one and the same; the mean and amplitude
permeance per unit area terms become P ≈ µ0

g+ hm
µr −δ

and P∆ ≈ µ0(
g+ hm

µr −δ
)2 δ∆.
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Figure 4 shows a comparison between the outcomes achieved for the magnetic perme-
ance per unit area calculated using Equations (15) and (17) for a permanent magnet machine.

Figure 4. Magnetic permeance per unit area comparison. Magnetic permeance per unit area vs.
magnetic permeance per unit area approximation, assuming infinite permeability for the back iron
and ignoring slots.

So as to evaluate the goodness of fit of the magnetic permeance approximation to the
magnetic permeance, the normalised root-mean-square error was computed, revealing a
value of 1.13% of residual variance. Thus, the permeance approximation calculated using
Equation (17) was treated as valid.

Substituting Equations (14) and (17) into (13) and assuming that φ is changed so that
peak deflection is at θ = π/2, then it is found that

B(θ) = F̂cos(pθ)(P + P∆sin(nθ)) (18a)

Equation (18b) is the corresponding equation but for the permanent magnet machine,

B(θ) = F̂PMcos(pθ)(P + P∆sin(nθ)) (18b)

Here, there are two spatial frequencies: a high frequency, p, corresponding to the
pole pairs and a lower frequency, n, corresponding to the mode of deflection. By sub-
stituting (18a) into (12) and rearranging and noting that in the case of many pole pairs,
the variation in force distribution due to poles (i.e., the compared cos(pθ)), becomes less
significant for structural deflections, then the mean value of cos2(pθ) is ½ and so the stress
distribution can be simplified as

σ
(
θ, δ, δ∆

)
= F̂2cos2(pθ)µ0

2(g−δ)
2

[
1 + 2δ∆sin(nθ)

g−δ
+

δ2
∆sin2(nθ)

(g−δ)
2

]
≈ F̂2µ0

4(g−δ)
2

[
1 + 2δ∆sin(nθ)

g−δ
+

δ2
∆sin2(nθ)

(g−δ)
2

] (19a)

For Mode 0 (n = 0), Equation (19a) becomes (19b),

σn=0
(
θ, δ

)
=

F̂ 2cos2(pθ)µ0

2
(

g − δ
)2 ≈ F̂ 2µ0

4
(

g − δ
)2 (19b)
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For a surface-mounted permanent magnet machine, the equivalent of Equation (19a)
becomes (20a), whereas (19b) becomes (20b) for Mode 0,

σPM
(
θ, δ, δ∆

)
=

F̂2
PMcos2(pθ)µ0

2
(

g+ hm
µr −δ

)2

[
1 + 2δ∆sin(nθ)

g+ hm
µr −δ

+
δ2

∆sin2(nθ)(
g+ hm

µr −δ
)2

]

≈ F̂2
PM

4
(

g+ hm
µr −δ

)2

[
1 + 2δ∆sin(nθ)

g+ hm
µr −δ

+
δ2

∆sin2(nθ)(
g+ hm

µr −δ
)2

] (20a)

σPM
(
θ, δ, δ∆

)
=

F̂ 2
PMcos2(pθ)µ0

2
(

g + hm
µr

− δ
)2 ≈

F̂ 2
PM

1
2 µ0

2
(

g + hm
µr

− δ
)2 =

F̂ 2
PMµ0

4
(

g + hm
µr

− δ
)2 (20b)

Figure 2c illustrates how the magnetic stress varies with angle for different deflection
modes in a permanent magnet electrical machine.

To find the force on the rotor or stator surface closing the airgap, Equation (19a) can
be integrated over the axial length of the machine, ls, and over any angle, ‘β’. To find the
force over an angle β, we can integrate half an angle on either side of the value of θ. For a
wound rotor machine, the radial force on an arc of span β centred at angle θ for Modes 1, 2,
3 and 4 is as follows:

FWR = lsR
∫ θ+

β
2

θ− β
2

σ
(
θ, δ, δ∆, β

)
dθ =

F̂ 2
WRlsRµ0

4
(

g − δ
)4 αWR (21a)

with αWR equal to
αWR = 1

n [2δ∆(g−δ − δ∆
4 sin( n

2 (β

−2θ)))cos
( n

2 (β − 2θ)
)

−2δ∆

(
g − δ + δ∆

4 sin
( n

2 (β + 2θ)
))

cos( n
2 (β

+2θ)) + βn
(

δ2
∆
2 + g − δ

)2
]

.

(21b)

While for Mode 0 it is

FWR =
F̂ 2

WRlsRµ0

4
(

g − δ
)2 β (21c)

For a surface-mounted PM machine, the radial force on an arc of span β centred at
angle θ for Modes 1, 2, 3 and 4 is

F = lsR
∫ θ+

β
2

θ− β
2

σ
(
θ, δ, δ∆, β

)
dθ

=
F̂2

PMlsRµ0

4
(

g+ hm
µr −δ

)2

∫ θ+
β
2

θ− β
2

[
1 + 2δ∆sin(nθ)

g+ hm
µr −δ

+
δ2

∆ sin2(nθ)(
g+ hm

µr −δ
)2

]
dθ

=
F̂2

PMlsRµ0

4
(

g+ hm
µr −δ

)4 αPM

(22a)

with αPM being

αPM = 1
n [2δ∆(g + hm

µr
− δ − δ∆

4 sin
( n

2 (β − 2θ)
))

cos
( n

2 (β − 2θ)
)

−2δ∆

(
g + hm

µr
− δ + δ∆

4 sin
( n

2 (β + 2θ)
))

cos
( n

2 (β + 2θ)
)

+βn
(

δ2
∆
2 +

)(
g + hm

µr
− δ

)2
].

(22b)
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Whereas for Mode 0 it is

F = lsR
∫ θ+

β
2

θ− β
2

F̂ 2
PMµ0

4
(

g + hm
µr

− δ
)2 dθ =

 F̂ 2
PMlsRµ0

4
(

g + hm
µr

− δ
)2 θ


θ+

β
2

θ− β
2

=
F̂ 2

PMlsRµ0

4
(

g + hm
µr

− δ
)2 β (22c)

The magnetic stiffness of the same arc for Modes 1, 2, 3 and 4 of a wound rotor machine
can be calculated using the following equation:

kWR =
F

δ + δ∆sin(nθ)
=

F̂ 2
WRlsRµ0

4
(

g − δ
)4(

δ + δ∆sin(nθ)
)αWR. (23a)

For Mode 0, the stiffness would be computed using Equation (23b)

kWR =
F
δ
=

F̂ 2
WRlsRµ0β

4
(

g − δ
)3 (23b)

The magnetic stiffness of the said arc is for Modes 1, 2, 3 and 4 of a PM machine
equal to

kPM =
F

δ + δ∆sin(nθ)
=

F̂ 2
PMlsRµ0

4
(

g + hm
µr

− δ
)4(

δ + δ∆sin(nθ)
)αPM (24a)

whereas for Mode 0 it is

kPM =
F
δ
=

F̂ 2
PMlsRµ0β

4
(

g + hm
µr

− δ
)3

.
(24b)

3.2. Validation Using Finite Element Code

Finite element analysis of a two-pole model was used to validate the analytical models
for airgap closing force and stiffness.

This was carried out using the 2D code FEMM [14], meaning that any variations in
the third (axial) dimension are neglected. This matches the analytical model where the
axial dimension is also neglected. Generally speaking, a 3D model would show a reduction
in radial airgap flux density at the ends of the machine as some flux leaks into the axial
direction. This is likely to mean that the airgap closing forces predicted by 2D finite element
analysis are likely to be slightly higher than for the 3D code and a real machine. These
differences are likely to be small when the axial length is large (here, ls = 1.2 m). The choice
of 2D code also means that any variations in the axial deflection are neglected. This is
consistent with all the models presented here in this paper.

To make the model more versatile, the two-pole model has been geometrically lin-
earised so that radial lines and arcs are mapped onto vertical and horizontal lines, respec-
tively. By changing the airgap clearance by a deflection δ, a number of magnetostatic runs
were processed, and the results were interrogated to find the airgap closing force. Using
a force via a weighted stress tensor approach, the obtained results are shown in Figure 5,
where the force is plotted against deflection δ.

There are three FE cases: (i) where the materials are assumed to have linear BH curves
and the stator has no slots (similar to the analytical model); (ii) where slotting is introduced
but the materials have linear BH curves and (iii) where slotting is present and non-linear
BH curves are used.
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Figure 5. Magnetic airgap stiffness for a pole pair of a PM generator for a direct-drive wind turbine,
based on [13]. Airgap closing force on one pole pair vs. airgap clearance.

Also, in Figure 5 one can see the analytical solutions for the same dimensions and
materials using Equation (22a) for δ∆ = 0 and δ = δ and one pole pair (i.e., β = 2π

p ).
The analytical model clearly underestimated the force; this can be seen when com-

paring the results with those of the idealised FE model (i). This suggests that only using
the fundamental MMF as an input to the analytical solution is incorrect as it leads to the
model neglecting higher-order airgap flux density spatial harmonics and the resulting force
contributions. The MMF of a surface-mounted permanent magnet of width wm can be
written as follows:

Fm(θh) =
∞

∑
m=1,2,3,...

Brhm

µ0µr

4
m2π

sin
(

mπ

2
wm

τp

)
sin(mθh) (25)

where m is the harmonic order. Including m = 1 and m = 3 in Equations (21) and (22) leads
to the amended force equation of

F ≈
(̂F

2
1+F̂ 2

3 )lsRµ0

4
(

g + hm
µr

− δ
)2 αPM. (26)

This has been plotted in Figure 5. This shows better agreement with the idealised
FE results (i). When slotting is introduced (FE models (ii) and (iii)) there is a noticeable
reduction in force. The analytical model ignores the reduction in permeance due to slotting.
This can be taken into account by applying the Carter factor kcr to the effective magnetic
airgap, in other words,

F ≈
(̂F

2
1+F̂ 2

3 )lsRµ0

4k2
cr

(
g + hm

µr
− δ

)2 αPM. (27)

The results for Equation (27) are plotted in Figure 5 and show good agreement with the
FE models (ii) and (iii). The difference between linear and non-linear materials is relatively
modest if the magnetic circuit is designed to avoid saturation in the default state.

4. Case Study Generator

Magnetic stiffness and structural stiffness are brought together in this section in order
to study a 3 MW wind turbine generator. By assuming a deflection, the closing force acting
on the airgap can be estimated making use of the magnetic model and utilised to calculate
the structural deflection through a structural model. The characteristics of the electrical
machine used in this analysis are displayed in Table 1 located in Section 2.2.
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As explained, the required stiffness for the generator structure can be computed in
different ways. In this case, a structural finite element model of the generator was created
in SolidWorks.

For the FE model, the rotor and the stator structures were loaded with radial stresses
which were calculated as explained in the previous subsection using the data presented in
Table 1 and a mean deflection, ‘δ’, of 1 mm and variable deflection, ‘δ∆’, of 0.5 mm. The
cylindrical sub-structures of both the rotor and the stator were apportioned into 36 parts so
that the appropriate forces corresponding to Modes 0, 1, 2, 3 and 4 could be applied. With
this, the deflection experienced by the structure was found, allowing the structural stiffness
of the generator to be evaluated.

The structural radial deflection of each 10-degree part was measured making use of
deflection sensors located on the outer face of each part in the case of the rotor and on the
inner face in the case of the stator.

So as to know if the structure will be able to resist the load, the absolute value of
the magnetic stiffness estimated using the analytical model must be equal to or smaller
than the structural stiffness calculated with the finite element study. This means that
ks(θ) ≥ |kM(θ)|. Combining the stiffnesses of the bearing, the rotor and the stator in series,
the total stiffness of the generator structure is assessed. The bearing stiffness is assumed to
be constant with a value of 3 × 109 N/m. In order to calculate the equivalent stiffness for
each 10-degree part, the bearing has been modelled as a finite number of radial stiffnesses
set in parallel as shown in Figure 6a, where kr corresponds to the radial stiffness, γ is the
angle between stiffnesses and N is the total number of radial stiffnesses, in our case 36.

Paying special attention to Mode 1, where a force F is applied to the top of the structure
generating a deflection δ, which gives a stiffness kb = F/δ, the bearing has been split into a
top structure and a bottom structure as depicted in Figure 6b,c. The total stiffness of the
top structure kT, can be calculated using Equation (28a), where the vertical components of
all the radial stiffnesses in the top structure, in this case 18, are added up. Similarly, the
stiffness of the bottom structure kB can be estimated by making use of Equation (28b). It is
assumed that under Mode 1 deflection, the top bearing structure is under tension, whereas
the bottom part works under compression.

kT =
i= N

2

∑
i=1

krsin(iγ) (28a)

kB =
i=N

∑
i= N

2 +1

krsin(iγ− π) (28b)

Thus, the total stiffness ‘kb’, can be computed as follows:

kb= kT − kB =
i=N/2

∑
i=1

krsin(iγ)−
i=N

∑
i= N

2 +1

krsin(iγ− π) (29)

From the relation

sin(iγ− π) = −sin(−iγ+ π) = −sin(−iγ) = −sin(iγ) (30)

then

kb= kT − (−kB) ==
i= N

2

∑
i=1

krsin(iγ) +
i=N

∑
i= N

2 +1

krsin(iγ− π) = = kr

i=N

∑
i=1

sin(iγ) (31)
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Figure 6. (a) Bearing model showed as stiffness. Bearing structure split into top and bottom parts:
(b) top part; (c) bottom part.

Finally, considering the identity

i=N

∑
i=1

sin(iγ) =
cos

(γ
2
)
− cos

((
N + 1

2

)
γ
)

2sin
(γ

2
) (32)

and rearranging Equation (31), it can be obtained that the stiffness for each 10-degree
section is

kr =
kbsin

(
π
N
)

cos
(

π
N
)
− cos

((
N+1

N

)
π
) (33)

In this case, with N equal to 36, kr shows the value of 1.31 × 108 N/m. Figure 7a–d
present the results acquired for the rotor and stator structures utilising the FE model, the results
of combining the structures in series and the magnetic stiffness on each beta degree section.
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Figure 7. Cont.
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Figure 7. (a) Rotor structural stiffness for deflection modes ranging from 0 to 4 vs. Theta; (b) stator
structural stiffness vs. Theta; (c) generator structural stiffness vs. Theta; (d) magnetic stiffness on beta
degree section.

Figure 7c gives the results of combining the structures in series as mentioned. As seen,
Mode 4 shows the worst performance with a minimum stiffness of 8.27 × 107 N/m. Mode
4 also presented the worst results for the compliant structure with a minimum generator
stiffness of 6.94 × 107 N/m. If these data are compared to those achieved for the necessary
magnetic stiffness introduced in Figure 7d, it can be seen that the structural stiffness is
higher than the magnetic stiffness, with the results achieved for the stiff generator structural
stiffness varying about 8.7 × 107 N/m, and about 7.4 × 107 N/m for the compliant structure,
and the stiffness for each 10-degree β section around −2 × 107 N/m.

In Figure 8a, the combination of magnetic stiffness and structural stiffness is plotted
against the angle for each deflection mode. Four distinct scenarios have been analysed in
order to identify the mode giving the lowest value. With δ going from 1 mm up to 4 mm
in steps of 1 mm and δ∆ taking 0.5 mm, 0.75 mm and 1 mm values, all the options have
been addressed. See Table 2. Since the structural geometry and material are the same, it
was assumed that the generator structural stiffness should be invariant with angle, ‘θ’, and
mode, ‘n’, for all scenarios. Mode 4 showed the most unstable behaviour with the lowest
stiffness at 4.73 × 108 N/m, as can be observed in Table 2, where the lowest stiffnesses
acquired for each mode and case are illustrated.

If cases 1 and 3 are compared, it can be seen that an increment of 1 mm in variable
deflection δ∆ corresponds to a drop in the minimum stiffness of about 16%. If cases 2 and 4
are contrasted, it can be observed that an increase of 3 mm in mean deflection represents a
decrease in the minimum stiffness of about 5%. This demonstrates that both deflections
exert an influence of different weights over the stiffness of the generator structure.

By looking at Figure 8a, one can appreciate that for the worst-case scenario, which
corresponds to the collapse of the airgap with the stator structure physically touching the
magnets, the mode presenting the worst performance is Mode 4, having the lowest stiffness
value at 5.79 × 107 N/m.

Table 2. Minimum structural stiffness per case and mode.

Case 1 Case 2 Case 3 Case 4

Mode δ = 1 mm δ∆ = 0.5 mm δ = 1 mm δ∆ = 1 mm δ = 1 mm δ∆ = 1.5 mm δ = 4 mm δ∆ = 1 mm

1 5.92 × 108 N/m 5.65 × 108 N/m 5.43 × 108 N/m 5.52 × 108 N/m
2 5.82 × 108 N/m 5.49 × 108 N/m 5.21 × 108 N/m 5.32 × 108 N/m
3 5.7 × 108 N/m 5.28 × 108 N/m 4.95 × 108 N/m 5.09 × 108 N/m
4 5.58 × 108 N/m 5.1 × 108 N/m 4.73 × 108 N/m 4.87 × 108 N/m
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Figure 8. Overall stiffnesses comparison: (a) stiff structure; (b) compliant structure.

It was observed that the structure selected for the study was very stiff and it is rather
difficult to appreciate the overall impact of the magnetic stiffness even in the worst-case
scenario. By carrying out a considerable reduction in the thickness of both disc and rim
sub-structures of the rotor and the stator, a more compliant structure was generated for
its study. With higher magnetic stiffnesses, lower overall stiffnesses are achieved and it is
expected to see that at some point the total stiffness reaches zero values. The thicknesses
used for both analyses are given in mm in Table 3.

A drop in the rotor and the stator masses of 27% and 31%, respectively, was obtained.
This corresponds to a total mass loss of 30%, which corresponds in this case to an overall
stiffness reduction of 21%. The equivalent rotor stiffness average for this structure was
about 4.6 × 108 N/m, whereas the stator stiffness was around 2.6 × 108 N/m.

In Figure 8a,b, a comparison between the stiffnesses for each mode and for each
structure is displayed. As observed, a drop in the minimum value of the overall stiffness
of more than 1 × 107 N/m is achieved. The reduction in thickness of each sub-structure
forming the machine revealed a substantial drop in stiffness for this permanent magnet
generator. This shows the effect of compliant (lighter) structures and how the approach can
be used in the design process.

With both structures fully described and analysed for the PM machine, the stiff
structure was studied under the demanding loading conditions of a wound rotor machine.
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Since the effective airgap size of a wound rotor machine is smaller than that of a PM
generator due to the lack of magnets attached to the rotor surface, the forces are one order
of magnitude larger in all cases and for all the modes. As predicted, the effect of the large
increase in magnetic stiffness produced a very significant drop in the overall stiffness, as
seen in Figure 9b.

Table 3. Thicknesses for stiff and compliant structures.

Stiff Structure Compliant Structure

Rotor Stator Rotor Stator

Cylinder
Thickness

(mm)

Disc
Thickness

(mm)

Cylinder
Thickness

(mm)

Disc
Thickness

(mm)

Cylinder
Thickness

(mm)

Disc
Thickness

(mm)

Cylinder
Thickness

(mm)

Disc
Thickness

(mm)

40 56 25 56 30 40 15 40

Figure 9. Magnetic stiffness + structural stiffness vs. Theta; (a) permanent magnet generator; (b) wound
rotor generator.
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The negative values for the minimum stiffness mean that the structure is not stiff
enough to resist the loads and the airgap would close.

5. Discussion

Various approaches exist in order to design a supporting structure for a wind turbine
electrical generator capable of withstanding the loads. A stiffness model joining the
magnetic and the mechanical designs has been developed. The 2D magnetic model assumes
a uniform radial deflection, ‘δ’, and a variable deflection, ‘δ∆’, that changes with angle, to
estimate the resulting airgap closing force under different modes of deflection. The assumed
deflection and the obtained force are then utilised to calculate the airgap stiffness. At this
point, a structural model was created and making use of the computed loads, a set of finite
element analyses was run for a 3 MW machine with a simplified steel structure made with
discs. With the deflection, the structural stiffness of the machine could be approximated.
A comparison was undertaken between the airgap stiffness from the magnetic model, the
structural stiffness and what the stiffness margin was.

The magnetic model for the airgap closing force and stiffness of a PM machine was
validated using a 2D finite element code. A two-pole model with periodic boundaries,
neglecting axial effects and geometrically linearised so that radial lines and arcs are mapped
onto vertical and horizontal lines, was produced to carry out the task. Three finite element
cases were generated: (i) the stator has no slots and the materials have a linear BH behaviour;
(ii) the stator has slots and the materials have linear BH curves and (iii) the stator has slots
and the materials have no linear BH curves. Comparing the analytical model with the
idealised FE model (i), it could be observed how the analytical model underestimated the
force. It was proven that the use of the fundamental MMF only leads to neglecting higher-
order airgap flux density spatial harmonics and the resulting force contributions. With that,
the analytical model was amended to incorporate the 3rd harmonic, achieving better results.
Nevertheless, the model did not take into consideration the slotting that, according to the
FE models (ii) and (iii), significantly reduced the forces. So as to replicate this behaviour, the
Carter factor was introduced into the analytical model. A good agreement was achieved;
hence, the magnetic model was considered valid.

Two distinct types of generators were analysed: a permanent magnet machine and a
wound rotor machine. It was found that a stiffer and more robust structure is necessary for a
wound rotor machine, which in turn leads us to have a heavier generator. It is also necessary
to highlight the fact that the magnetic design of a PM machine can be designed to avoid
saturation in the default state, while when a wound rotor machine airgap closes, the iron
parts of the magnetic circuit go deep into saturation, bringing about significant reluctance.

As mentioned, the magnetic study of both machines was completed first assuming a
uniform radial deflection and variable deflection which changes with angle, ‘θ’. Looking
at the results obtained for both cases, their effects on the magnetic, structural and overall
stiffnesses can be understood. The increase in δ supposes a noticeable decrease in the
absolute values of the maximum and minimum magnetic stiffness, whereas the increment
in force as the airgap closes causes a substantial reduction in the structural stiffness that
puts down the overall stiffness. If δ∆ is augmented, the absolute value of the maximum
magnetic stiffness increases while the minimum stays at the same level. The structural
stiffness diminishes, and the overall stiffness affected by the increase in the magnetic
stiffness and the drop in the structural stiffness goes down although it never reaches a zero
value, which means that the structure is eventually very stiff, and it would easily support
the imposed loading conditions. A more compliant structure was also looked at. A total
reduction in mass of 30% was accomplished. That meant a decrease of 27% in rotor mass
and 31% in stator mass. After the analysis, it could be observed that the drop in mass
corresponded to a decrease in the overall stiffness of 21%. This gives a clear picture of the
trade-off process that should be made during an optimisation study.
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Mode number was another factor that had a significant impact on the distinct stiff-
nesses. In the case of the magnetic stiffness, it could be seen that despite having different
spatial frequencies, all the modes but Mode 0 shared the same maximum value. Mode 0
appeared as a straight line (due to its constant uniform load applied), coinciding with the
inflexion points of the curves corresponding to the rest of the modes. Similar behaviour
was noticed for the structural and overall stiffnesses, although in the case of the structural
stiffness, Mode 4 stood out, showing the worst performance with the minimum stiffness at
8.27 × 107 N/m for the stiff structure and 6.94 × 107 N/m for the compliant structure. It
is not clear whether this is a general result or rather an artefact of the discretisation of the
structures into 36 regions. It is also worth noting that in real machines, the initial airgap
deflections are usually of lower orders, e.g., Mode 0, 1 and 2 [10].

In terms of use, this model can be utilised during the design stage but also after
manufacturing and during operation as part of an online airgap condition monitoring
system. Post-manufacturing measurements can be used to determine which modes of
airgap deformation will be problematic. The model would be able to predict the airgap
behaviour and its suitability for operation. As part of a condition monitoring system, the
model would be capable of evaluating the time-varying output data and assessing the
structural integrity of the machine.

6. Conclusions

A stiffness model coupling the electromagnetic and mechanical designs of electrical
machines has been developed. The results of the validation with the FE model showed
the usefulness and accuracy of the magnetic analytical tool. In addition, the parametric
nature of this analytical model makes it easy to use, helping the designer carry out quick
estimations for any deformation mode and magnitude, in the early stages of the design
or after the manufacturing process. It could also be useful for optimisation purposes,
leading to more sustainable designs or as part of an online condition monitoring system as
it could assess the structural integrity of the machine at any time. The model is ready and
validated through finite element means. Due to its simplicity, the authors believe that its
implementation in an existing system will not require a significant effort.

The major insight from the magnetic stiffness model is that the inherent reluctance of
the permanent magnet reduces the magnitude of the stiffness that the structure must fulfil.
In terms of airgap closing, wound rotor machines need to be stiffer than permanent magnet
machines—and subject to the same mechanical design approach and materials—therefore,
heavier. The analysis shows that the modes of deflection higher than Mode 0 (uniform
deflection) lead to more severe stiffness requirements for the structure. This implies that
these modes should be used in any structural analysis, in addition to or instead of Mode 0.

Regarding the mechanical model, the results show that higher modes of deflection
can lead to stiffness varying circumferentially. It is the coincidence of the extremes in
the magnetic and structural stiffness profiles that can lead to a small or negative stiffness
margin, as opposed to the average magnetic and structural stiffness values.

Further steps to develop this approach include extending the magnetic analytical mod-
elling into the third, i.e., axial dimension, thereby allowing axis tilt and bowing/sagging
modes of deflection to be considered. The discretised structural approach here introduces
some uncertainty into the modelling of structural stiffness profiles, particularly for higher
modes. This could be addressed through analytical approaches or by using a larger number
of discrete zones in the finite element model.
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Nomenclature

A Area, m2

B Magnetic flux density, Wb/m2

Bg Peak flux density in the airgap, T
F Force caused by the normal component of the Maxwell stress, N
Fc Airgap closing force, N
FPM PM machine radial magnetic force, N
FWR Wound rotor machine radial magnetic force, N
F Magnetomotive force, At
F̂ Peak magnetomotive force, At
F̂1 Peak magnetomotive force calculated with analytical model, At
F̂3 Peak magnetomotive force calculated with analytical model including third harmonic, At
F̂PM Peak magnetomotive force for a permanent magnet machine, At
kA Stiffness of component A, N/m
kB Stiffness of component B, N/m
kb Bearing stiffness, N/m
kcr Carter factor
keq Equivalent stiffness, N/m
keq,r Equivalent rotor stiffness, N/m
kM Magnetic stiffness, N/m
kPM PM generator magnetic stiffness, N/m
ks Generator structure stiffness, N/m
ks,r Rotor structure stiffness, N/m
ks,s Stator structure stiffness, N/m
kT Total stiffness of the top structure, N/m
kWR WR generator magnetic stiffness, N/m
l Axial length of machine, m
N Total number of bearing radial stiffnesses
n Deflection mode
P Mean value of airgap permeance per unit area, H/m2

P∆ Amplitude of variation of the airgap permeance per unit area, H/m2

p Number of pole pairs
αPM Variable used to simplify Equation (21b)
αWR Variable used to simplify Equation (22b)
β Span angle, degrees
γ Angle between bearing radial stiffnesses, degrees
δ Deflection, m
δr Rotor deflection, m
δs Stator deflection, m
δStructural Structural deflection, m
δ Mean deflection, m
δ∆ Deflection change respect to the mean, m
ε Mechanical strain
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θ Pitch or circumferential angle, degrees
µ0 Permeability of free space, 4 × 10−7 H/m
µr Relative permeability
σ Structural stress, Pa
σPM Stress during operation in permanent magnet machine, Pa
σWR Stress during operation in wound rotor machine, Pa
φ Phase angle, degrees
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