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Object Detection Using Sim2Real Domain
Randomization for Robotic Applications

Dániel Horváth , Gábor Erdős , Zoltán Istenes , Tomáš Horváth , and Sándor Földi

Abstract—Robots working in unstructured environments must
be capable of sensing and interpreting their surroundings. One
of the main obstacles of deep-learning-based models in the field
of robotics is the lack of domain-specific labeled data for different
industrial applications. In this article, we propose a sim2real trans-
fer learning method based on domain randomization for object
detection with which labeled synthetic datasets of arbitrary size
and object types can be automatically generated. Subsequently, a
state-of-the-art convolutional neural network, YOLOv4, is trained
to detect the different types of industrial objects. With the proposed
domain randomization method, we could shrink the reality gap to
a satisfactory level, achieving 86.32% and 97.38% mAP50 scores,
respectively, in the case of zero-shot and one-shot transfers, on
our manually annotated dataset containing 190 real images. Our
solution fits for industrial use as the data generation process takes
less than 0.5 s per image and the training lasts only around 12 h,
on a GeForce RTX 2080 Ti GPU. Furthermore, it can reliably
differentiate similar classes of objects by having access to only one
real image for training. To our best knowledge, this is the only work
thus far satisfying these constraints.
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I. INTRODUCTION

N EW-GENERATION intelligent manufacturing (NGIM)
is a recent trend embodying the in-depth integration

of new-generation artificial intelligence (AI) with advanced
manufacturing technology such as robotics. It became the driv-
ing force of the fourth industrial revolution and it belongs to
the human–cyber-physical system 2.0 (HCPS 2.0) framework.
Contrary to traditional manufacturing where robots work in
structured environments and perform high-accuracy, repetitive
tasks with minimal sensory input, an NGIM system is designed
to be flexible and to take over as much intellectual and manual
labor as possible. Thus, human workforce can concentrate on
more valuable creative work. [1]

Consequently, the main interest has been shifting toward
adaptive robotic applications that can cost-efficiently handle
low-quantity customized products and integrate human oper-
ators with different skills and abilities. Computer vision plays
an essential role here—the highly researched field has already
proven useful in pick-and-place, bin picking, grasping, naviga-
tion, or quality assurance tasks. As two examples, Zeng et al. [2]
created a vision-based model that can predict parameters of
motion primitives through trial and error for robotic grasping
and throwing, and Alonso et al. [3] designed a model for real-
time semantic segmentation of RGB images for a mobile robot
application.

In a computer vision context, deep convolutional neural
networks (DCNNs) have been performing incredibly well on
large public datasets such as ImageNet [4] or MS COCO [5].
Having reached human-level performance in classification, the
main focus of computer vision research has shifted to object
detection and led to networks such as the faster R-CNN [6],
single shot multibox detector (SSD) [7], and YOLOv4 [8].
Even though these networks are outperforming the traditional
machine-vision-based methods by a significant margin, their
application in robotic systems has its difficulties. One of the
main obstacles in applying deep-learning-based models is that
they need to be trained on a sufficiently large, domain-specific,
and expertly labeled dataset.

Levine et al. [9] conducted two experiments, in order to
create a dataset of real images for their DCNN model predicting
the success of robotic grasp attempts, as well as to control
these attempts. Yielding records of more than 1.7 million grasp
attempts with the simultaneous use of 6–14 robots, the process
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took months to complete. This example shows that, in general,
collecting a dataset from the real world not only requires an
immense amount of resources but is a time-consuming process
as well.

The main motivation behind transfer learning is to overcome
the aforementioned obstacle by transferring knowledge between
tasks or domains [10], [11]. Sim2real transfer is a special case
of transfer learning, where the source domain is the virtual
simulation of the real world, while the target domain is the
physical reality itself [12]. With sim2real knowledge transfer, the
model can be trained in a virtual simulation, having the necessary
amount of labeled synthetic data. In the case of computer vision,
the images are rendered, and the labels, too, can be generated
for them in a self-supervised way. Thus, the time-consuming
process of data collection and labeling can be omitted. As the
domains of training and test datasets are inherently different,
ceteris paribus, the learned model will perform poorly in the
target domain. The phenomenon of performance loss from the
simulation to the real domain is called reality gap. Domain
adaptation [13] and domain randomization [14], [15] are two
ways of shrinking this gap.

The contributions of this article are as follows.
1) A sim2real domain randomization method for object de-

tection which describes a data generation process with our
domain randomization methods, a model training phase,
and an evaluation phase.

2) A real-world dataset of 190 manually annotated images
(RGB and depth) containing 920 objects of ten classes that
address the problem of high class similarity to validate our
method. The dataset is publicly available alongside our
code and can serve as a benchmark for object detection
algorithms.

3) For evaluation, we introduced an altered type of confusion
matrix fit to object detection. It proved to be extremely
useful for detecting and quantifying misclassifications
which is the primary cause of performance loss in the
case of similar classes.

4) A real-world robotic implementation of the method as a
proof of concept containing an ROS-based robot control
system.

5) Our implementations of our sim2real data generation and
training module, and our robot control framework that
are available at1,2. Both can be used as out-of-the-box
software modules for industrial robotic applications.

Results of the article are as follows.
1) We achieved 86.32% mAP50 and 97.38% mAP50 scores

in zero-shot and one-shot transfers that show the usability
of our methods even in the case of an industrial application
where high reliability is crucial.

2) Our experiments show that having even only one sample
image from the target domain significantly improves the
model’s performance for similar classes.

3) A thorough ablation study focusing on finding the key
factors of the data generation process.

1[Online]. Available: https://git.sztaki.hu/emi/sim2real-object-detection
2[Online]. Available: https://git.sztaki.hu/emi/robot_control_framework

The industrial benefit of our work is a freely available tool
streamlining the training of CNN-based models for object detec-
tion. Our built-in sim2real domain randomization method spares
the user the effort of collecting and annotating a large dataset,
as it automatically generates training data from 3-D models.
Optionally, one annotated image with all relevant objects can be
added for improved performance. With training being automated
as well, the entire workflow from 3-D models to trained CNN
takes only around 13 h.

The rest of this article is organized as follows. Sec-
tions II and III present the problem statement and related work.
In Sections IV and V, our method is outlined with the evaluation
metrics. In Sections VI and VII, our dataset and our results
are shown. Additionally, in Section VIII, a thorough ablation
study of our method is presented. Section IX shows a real-world
robotic implementation of our method. Finally, Section X con-
cludes this article.

II. PROBLEM STATEMENT

The main problem we tackle is how to transfer knowledge
efficiently from simulation to the real world in the case of object
detection. In the common computer vision problem of detecting
objects, the model is given an image in which it finds center
points and dimensions of bounding boxes around objects and
classifies the latter. Knowledge transfer, which is the primary
focus of our article, belongs to the field of transfer learning.
Additional challenges arise from the following circumstances.

1) Having no or only one image from the real world.
2) Having industrial objects that share similar features, thus,

making it more challenging to properly classify them.
In the following, we give a brief overview of transfer learning

which is the main field of this article.
Pan et al. [10] and Weiss et al. [11] define transfer learning in

their surveys. A domainD is defined with a feature spaceX and a
probability distribution P (X), where X = x1, x2, x3, . . ., xn ∈
X , while a task T is defined with a label spaceY and a predictive
function f(·). From a probabilistic point of view, f(·) can be seen
as P (Y | X). Thus, a domain D = {X , P (X)} and a task T =
{Y, P (Y | X)}. Given a specific source domain and task pair
{DS , TS} and a specific target domain and task pair {DT , TT },
transfer learning can be defined as the process of increasing
the performance of the target predictive function fT (·) with the
help of knowledge gained from {DS , TS}, where DS �= DT or
TS �= TT .

An example of TS �= TT is when an image classifier, trained
on a large public dataset, is reused and altered to perform object
detection on the same domain (DS = DT ). In this case, the
label spaces are different, and consequently, the conditional
probability distributions of the inputs and the outputs P (Y | X)
are disparate as well. Nevertheless, the marginal distributions of
the inputs P (X) are equivalent.

The other case of transfer learning is when TS = TT , but
DS �= DT , i.e., the tasks are the same, yet, the domains are
different. Thus, the marginal probability distributionsP (X) and,
possibly, the conditional probability distributionsP (Y | X) dif-
fer in the source and target domains. These phenomena are the

https://git.sztaki.hu/emi/sim2real-object-detection
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Fig. 1. Different phases of knowledge transfer. The picture of the Boston bull
on the bottom left corner of the figure is from ImageNet [4].

frequency feature bias, and the context feature bias, respectively.
In order to improve fT (·), our aim is to extract the relevant (not
domain-specific) knowledge from {DS , TS}. Thus, the model
will perform well on the target domain (DT ). If DS and DT are
not related enough, negative transfer can occur, and knowledge
transfer does not improve the performance of fT (·), or even
decreases it.

Sim2real object detection is a special case of transfer learning:
instead of real images obtained from the target domain, the
model is trained on synthetic data, thus DS �= DT . On the other
hand, it performs the same task, namely object detection (on the
same classes of objects), therefore TS = TT . Nevertheless, the
model trained on synthetic data, ceteris paribus, does not work
on real images as the domains are disparate. This phenomenon
is referred to as the reality gap, and the main goal of sim2real
transfer is to bridge this gap. In our case, the sim2real transfer
is the second phase of the knowledge transfer, shown in Fig. 1.

Domain adaptation (DA) is an approach to diminish the reality
gap. It attempts to transform one domain into the other domain
or transform both domains into a common domain. In the case
of sim2real object detection, it usually consists in generating
photo-realistic images for the training dataset. The more the
generated images resemble the real ones, the more the difference
between domains is reduced, and thus, the performance with real
images is improved. Typical data generation models for domain
adaptation are based on variational autoencoders (VAE) [16] or
generative adversarial networks (GAN) [17].

Domain randomization (DR), on the other hand, introduces
variability by adding artificial noise to the synthetic training
images. The idea is that the added noise makes the model robust
to different domains, as it does not overfit on the domain-specific
characteristics, but learns the domain-independent underlying
data representation. Another possible interpretation is to regard

the different domains as perturbed versions of one common
domain. The general idea of introducing variance to simulation
was first presented by Jacobi [18].

Other important concepts of transfer learning are the zero-shot
and the one-shot transfers. In the context of object detection,
zero-shot transfer means that not even one image is used from
the target domain for training. In the case of one-shot transfer,
only one or a few images are used from the target domain. A
way to do one-shot transfer is to train the model on synthetic data
and then fine-tune it on some examples from the target domain.
In our one-shot transfer case, only one real image was used for
training. Moreover, we did not separate the process into training
and fine-tuning, as we mixed the copies of the real image and
the synthetic images.

III. RELATED WORK

In this section, the related work in sim2real knowledge trans-
fer is presented in Section III-A. Furthermore, the different types
of object detection models are presented in Section III-B.

A. Domain Randomization and Domain Adaptation

Tobin et al. [14] trained a modified version of VGG-16 [19]
deep neural network architecture for object localization. They
generated nonrealistic synthetic RGB images randomizing the
number and shape of the distractor objects, the position and
texture of all objects, the texture of the background, the position,
orientation and the field of view of the camera, the number of
lights in the scene, the position, orientation, and specular charac-
teristics of the lights, and the type and amount of random noise
added to images. The random textures were either a random
single color, a gradient between two colors, or a checker pattern
of two random colors. The following nonindustrial objects were
used: cones, cubes, cylinders, hexagonal prisms, pyramids, rect-
angular prisms, tetrahedrons, and triangular prisms. The images
were rendered with the built-in renderer of the MuJoCo Physics
Engine [20], and no real images were used for training the
model. They achieved around 1.5 cm accuracy in the real-world
environment. Tobin et al. [21] conducted further research, where
they trained a deep neural network for grasp planning using only
synthetic images and domain randomization, and achieved an
80% success rate in a real-world environment.

Borrego et al. [22] presented a plug-in for the Gazebo simula-
tor [23]. Introducing variation reduced the reality gap between
simulated and real-world data. In the case study, three types
of objects were detected—box (cube), cylinder, and sphere.
The simulated scenes contained a ground plate and a single
light source. The objects were placed on a grid to prevent
collusion, but they were rotated randomly. (In this regard, we
found that introducing some disturbance to object placement
significantly increases the performance, see in Section VIII-D.)
Then, the camera and the light source were moved to random
positions. Four different types of textures were used, namely,
flat, gradient, checkerboard, and Perlin noise [24]. For training,
the SSD [7], and separately, the faster R-CNN [6] networks
were used. With the two networks, 70% and 88% mAP50

were achieved, respectively, using 121 real images. Training
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the same networks with 9000 simulated images yielded 64%
and 82% mAP50, respectively. Interestingly, the hybrid ap-
proach (using real and synthetic images) accomplished 62%
and 83% mAP50, respectively. For all experiments, IOU 0.5
threshold (50 in mAP50) was used, and the test results were
validated on 121 real images (different from the 121 images
used for the training). A follow-up ablation study [15] revealed
that Perlin noise has a crucial influence on the performance
of the model. Furthermore, data generation process was fur-
ther accelerated to 9000 full-HD images in roughly 1.5 h
(around 0.6 s per image).

Pashevich et al. [12] trained manipulation policies in a sim-
ulation environment with an object localization proxy task.
Depth images for training were simulated in PyBullet [25]
and gathered with a Kinect-1 camera from the real world. For
finding the best data augmentation transformation and their
order, Monte Carlo Tree Search (MCTS) [26] was used. The
transformations were selected from the Python Image Library
(PIL). The transformations were evaluated individually and as a
sequence as well. From all transformations examined, the cutout
transformation [27] performed best on real images (although in
our experiments this was not the case for RGB images, see in
Section VIII-E), and the best sequence of transformations was:
cutout, erasing an object, white noise, edge noise, scale, salt
noise, posterize, and sharpness, in this order. With the aforemen-
tioned sequence, 1.09 ± 0.73 cm position error was achieved in
the real environment, for cubes of 4.7 cm edge length.

James et al. [28] trained an end-to-end robotic controller on
synthetic data with domain randomization. The inputs of the
deep-neural-network-based model were an image and the joint
angles of the robot, while its output were motor velocities. The
task was an abstract tidying manipulation, namely, putting a
cube into a basket. Similarly to [22], Perlin noise was used as a
perturbation. The model was examined in dynamically changing
illumination settings, in the presence of distractors, including
human presence, new cube size in test time, and with a moving
basket. Experiments yielded at least a 75% success rate in all
conditions, except for a spotlight and a smaller cube in test time.
In these cases, the model had a 56% and a 41% success rate,
respectively.

Devo et al. [29] used domain randomization to train a target-
driven visual navigation model. The goal was to find a specific
object in a maze. Maze wall heights, maze wall textures, maze
floor textures, light color and intensity, and the light source
angle were subject to randomization. For simulation, the Un-
real Engine 4 [30] was used. An average of 72% success rate
was achieved in simulation, and 46% in the real world. The
experiments showed that direct sim2real transfer is possible for
this kind of problem as well.

Chen et al. [31] created the domain adaptive faster R-CNN
model for cross-domain object detection. Domain shift stem-
ming from image-level and instance-level shifts were tackled
with an approach based on H-divergence theory and adversarial
training. The study focuses on street images for self-driving cars
where the domains are disparate due to different camera types
and setups, different cities and diverse appearance of objects,
or the particular weather conditions. Some experiments were
also carried out with sim2real knowledge transfer, as the model

was trained on SIM 10k [32] and evaluated on the Cityscapes
dataset [33]. Their method improved the performance of the
faster R-CNN model from 30.12 AP50 to 38.97 AP50 in the
case of the car class.

Focusing on street scenarios, Sankaranarayanan et al. [34]
proposed an unsupervised domain adaptation approach based on
generative adversarial networks for semantic segmentation prob-
lems. For the synthetic source domain, the SYNTHIA [35] and
the GTA V [36] datasets, and for the target domain, Cityscapes
dataset [33] were used. The approach achieved 36.1 and 37.1
mIOU scores transferring knowledge from SYNTHIA and GTA
V, respectively. Without domain adaptation, the method scored
26.8 and 29.6 mIOU.

Tremblay et al. [37] generated synthetic images with domain
randomization techniques to perform object detection of cars
in street scenarios. 100 K images were generated with maxi-
mum 14 cars each, selected randomly from 36 car models. The
models were evaluated on the KITTI dataset [38]. Three DCNN
architectures were trained (faster R-CNN [6], R-FCN [39], and
SSD [7]), scoring 78.1, 71.5, and 46.3 AP50, respectively, on
the single-class object detection problem. Interestingly, better
results were obtained than by training the same architectures
on the virtual KITTI dataset [40] which has a high correlation
to the KITTI dataset. The performance could be improved by
fine-tuning the models on real images. With 6000 real images,
the performance of the faster R-CNN model reached 98.5AP50.

Hinterstoisser et al. [41] inserted 3-D models of objects in real
images, using OpenGL with Phong shading [42] for rendering.
Small perturbation were permitted in the ambient, diffuse, and
specular parameters, and the light color. Gaussian noise and a
blur with Gaussian kernel were added to better integrate the
objects with the background. A faster R-CNN model was pri-
marily used for training, with freezing the weights of the feature
extractor. The latter significantly improved the performance of
the model (although, Tremblay et al. [37] later reported the
opposite effect in their case).

Zhang et al. [43] propose an adversarial discriminative
sim2real approach to transfer visuo-motor policies. The method
was demonstrated in a table-top object-reaching task. A blue
cuboid object had to be reached with a velocity-controlled 7-DoF
robot arm. The method could reduce the real data requirement
by 50%, while 97.8% success rate and 1.8 cm control accuracy
were achieved.

Clever et al. [44], [45] proposed a method to predict human
position (resting on a bed) and contact pressure from depth data
and gender information. The method achieved 3.837 MSE(kPa2)
trained on 97 K synthetic images. In comparison, the same
method reached 3.151 MSE(kPa2) trained on 11 K real images
and 2.849 MSE(kPa2) trained on both real and synthetic images
(108 K). For evaluation, the SLP dataset [46] was used.

Gomes et al. [47] proposed a simulated model for the
GelSight tactile sensor. Having computed the height map of
the elastomer, the internal illumination of the elastomer is
calculated. The usefulness of the model was also demonstrated
with a sim2real classification task. For the study, 12 texture maps
resembling real objects were created and randomly perturbed
on the captured synthetic data, improving the classification
accuracy from 43.76% to 76.19%.
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TABLE I
SUMMARY OF RELATED WORKS

The above works are diverse in terms of the problem itself,
the input type, the domain of the application, and the amount
of synthetic and real images used to train the model, making
a complete comparison a challenge. Nevertheless, a general
overview organized by selected characteristics is presented for
reference in Table I. In general, certain limitations of the above
works relate closely to our work (solving object detection).

1) The classification part of the problem is less challenging
as the works use easy shapes such as cubes, spheres, and
cones, or even have one class only.

2) The works rely on considerably more synthetic and real
images for training.

Even though the cited works use transfer learning (domain
adaptation or domain randomization) to reduce the reality gap,
they do not solve the same machine learning problem, and may
use different models as well. All of this needs to be taken into
consideration if an in-depth comparison is desired.

B. Object Detection

A comprehensive overview of object detection models and the
history of the field is not in the scope of this article, therefore, we
limit this section to a selection of sources relevant to our work.

For further detail, we refer the reader to standard surveys such
as the work of Zou et al. [53].

DCNN architectures can be categorized into two groups: two-
stage detectors and one-stage detectors. Two-stage detectors
have a proposal detection stage where a set of bounding box
candidates is generated, and a verification stage where these
bounding boxes are separately evaluated whether they contain
an object of a specific class. Examples of these networks are
R-CNN [54], SPPNet [55], fast R-CNN [56], faster R-CNN [6].

In the case of one-stage detectors, on the other hand, a single
neural network is applied to the full image that predicts the
bounding boxes straight away. The slow detection time, which
is the biggest disadvantage of the two-stage detectors, can be
overcome with the one-stage approach. Detection time is crucial
for many applications, especially but not exclusively in the field
of robotics or self-driving cars. Redmon et al. proposed the first
one-stage detector YOLO in 2015 [57], being the first real-time
object detector. Subsequent updates introduced its second [58]
and third versions [59]. Single shot multibox detector (SSD) [7]
and RetinaNet [60] are two other popular one-stage detectors.

Bochkovskiy et al. [8] created the fourth version of
YOLO aiming to improve the accuracy of the model while
still keeping an optimal accuracy–speed tradeoff. With the
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Fig. 2. Flowchart diagram of our data generation, training, and evaluation process. The blue and orange boxes depict the data generating and data gathering steps.
The purple boxes represent the steps of training and evaluation.

CSPDarknet-53 [8] backbone, 65.7%mAP50 could be achieved
for the MS COCO dataset [5] and around 65 FPS speed on a Tesla
V100. In comparison, on the same dataset, SSD with VGG-
16 [19] backbone performed 48.5% mAP50 and RetinaNet with
ResNet-101 [61] backbone achieved 57.5% mAP50.

IV. METHOD

This section presents our method in detail—namely, the pro-
posed sim2real knowledge transfer in Section IV-A, the data
generation module in Section IV-B, and the training module in
Section IV-C. The implementation is freely available at3.

A. Sim2Real Knowledge Transfer

The flowchart diagram of our data generation, training, and
evaluation process is depicted in Fig. 2. It can be broken down
into functionally separable tasks. The data generation process
creates randomized and postprocessed synthetic images of given
objects. It also automatically generates the annotations for the
images. Thus, the output of the data generation process is a set
of images paired with their labels grouped into a training and a
validation dataset.

In order to train the model (with the set of hyperparameters),
only the images from the training dataset are used. As the initial
layers of the neural network perform low-level image processing
tasks such as detecting contours, lines, or edges, we utilized a
pretrained image classifier model as a feature extractor of our
object detector. This is the first phase of our knowledge transfer,
depicted on the left side of Fig. 1. The knowledge transfer goes
from{DG,TG}, whereDG is the domain of the dataset of general
public images and TG is classification, to {DS , TS}, whereDS is
the domain of synthetic images (source domain of the sim2real
knowledge transfer), and TS is object detection. Here, DG �=
DS , and TG �= TS . The second phase of knowledge transfer is
the sim2real transfer which goes from {DS , TS} to {DT , TT },
where DT is the domain of our industrial environment (target

3[Online]. Available: https://git.sztaki.hu/emi/sim2real-object-detection

domain), and TT is object detection. Here, DS �= DT but TS =
TT . Although the pretrained network does possess some learned
knowledge from the domain of a given general public dataset
(DG), it does not have direct knowledge of the target objects.
Consequently, DG �= DS �= DT . Even though DG �= DT , the
characteristics of the domains are similar. Thus, in Figs. 1 and 2,
the domains of general public images and the task-specific real
images are marked with different shades of orange.

B. Data Generation

The data generation process is responsible for the creation of
synthetic images paired with accurate automatic ground-truth
annotations. In several stages of this process, artificial random
perturbations are applied as domain randomization techniques.

1) Framework: For data generation, the PyBullet [25]
physics simulator was utilized since it has an easy-to-use, in-
tuitive API, including an image renderer tool, and an integrated
physics simulator where the gravitational force can be simulated
easily.

The duration of dataset generation is a relevant aspect of the
method, as in the industry, on many occasions, it is not feasible
to wait long hours or even days to start the training, which can be
a time-consuming process itself. One of the biggest advantages
of domain randomization over domain adaptation is that it is
generally faster as images do not need to be photo-realistic. In
our case, for data generation, we could achieve less than 0.5 s
per image on a GeForce RTX 2080 Ti GPU. With 4000 images,
this amounts to around 33 min. If one image is rendered in 1 min
instead of the 33 min (which is plausible in the case of photo-
realistic images), the aforementioned 4000 images would take
more than 66 h. Having generated the dataset, the training lasts
around 12 h, thus, a complete generation and training process
can be executed automatically in around 13 h.

2) Object Generation: The framework is capable of placing
any type of object into the simulation if its 3-D description file
is given. In the case of industrial applications, which is the aim
of this research, these 3-D models are easily accessible.

https://git.sztaki.hu/emi/sim2real-object-detection
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TABLE II
MOST RELEVANT INPUT PARAMETERS OF THE DATA GENERATOR MODULE IN

TERMS OF OBJECT GENERATION

The most relevant input parameters of the object generation
process are summarized in Table II and the process works as
follows.
� A horizontal plane is placed at the vertical z = 0 position.
� According to the grid size (n) and the grid spacing (d)

parameters, the x and y coordinates of the grid points are
set.

� The vertical z > 0 coordinates of the grid points are set by
zpos .

� The objects are not placed exactly at the grid points. The
x, y, and z coordinates of the objects are obtained from a
uniform distribution in which the center point is a given
grid point and the limits of the distribution are set by εpos .

� Once object selection has been performed, the appropri-
ate 3-D model of the object is loaded into the specific
coordinates. Predefined weights describe the probability
of selecting a specific object. Furthermore, a distracting
cuboid object (which is not in any of the classes) or a
void object (leaving that grid point empty) can be selected.
The sizes of the distracting objects are also individually
randomized. The aforementioned probabilities are set by
Pobjects .

� The objects are also randomly rotated around the x, y, and
z axes, described by a uniform distribution whose limits
are set by εrot .

� The objects and the ground plane are given some random
textures drawn from three public datasets [62], [63], [64],
with the probability of Ptexture . Some examples of the
textures are shown in Fig. 3. Random RGB colors are
assigned to the objects (or to the ground plane) which do
not receive any texture.

� Before rendering the image, the objects are dropped down
from z > 0 to the ground plane. Thus, the objects are
captured in a natural stable position. The simulation of the
free fall takes around 0.05–0.1 s per scenario (with every
step included, the generation of an image with its label is
around 0.45–0.5 s).

Fig. 3. Some examples of the textures used [62], [63], [64].

TABLE III
MOST RELEVANT INPUT PARAMETERS OF THE DATA GENERATOR MODULE IN

TERMS OF IMAGE RENDERING

3) Image Rendering: For rendering an image, the camera
pose, its inner parameters, and additional parameters must be
set. The most relevant parameters of the image rendering are
presented in Table III. The algorithm works as follows.
� The camera is placed in a randomized position pointing to

a random point around the center of the grid defined by
Cpos and Tpos . The randomization is constrained to ensure
that the center points of all objects appear on the rendered
image.

� The camera field-of-view (FOV) and its additional intrinsic
parameters are set. Image width and height are obtained
from a uniform distribution defined byRwidth andRheight .

� The RGB, D (depth), or RGB-D images are taken, defined
by Itype . RGB-D images are created by concatenating the
RGB and the D images. For one layout (object generation),
only one image is taken.

4) Label Generation: Having generated the objects and ren-
dered the image, the ground-truth bounding box (BB) parameters
must be computed. For different CNNs, the format is different,
but it is generally true that the bounding box parameters describe
all the objects in an image as follows.
� The center point (x and y) of the object.
� The width and the height of the bounding box.
� The class of the object.
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Fig. 4. Postprocess transformation on a blank image.

The aforementioned ground-truth generation is an automatic
process involving a coordinate transformation from the simula-
tion 3-D world coordinate system to the image 2-D coordinate
system.

The 4×4 transformation matrix is the matrix product of the
view matrix and projection matrix of the camera, respectively. In
order to transform a point from the world coordinate system to
the image space, it must be multiplied with this transformation
matrix and then scaled back by its fourth coordinate to get the
true projection. For a detailed explanation of the projection, we
refer the reader to [65].

In the framework, we implemented two ways of computing
the bounding boxes. The two approaches differ in the number of
points that are transformed into the image space. One approach
transfers only the eight points (per object) of the world 3-D
axis-aligned bounding boxes (AABB), which is available in
the PyBullet simulator, whereas the other transforms all the
points of the objects to the image space. Henceforward, we
refer to the former approach as the eight-point method and
the latter as the all-point approach. Having obtained the trans-
formed points, the second part of the algorithm is the same
in both cases: the minimum and maximum values in x and
y directions are selected to define the limits of the BBs. The
center point can be computed as the arithmetic means of the
minimum and maximum values. As a result, the latter method
gives tighter, more accurate bounding boxes at the cost of
extra calculations.

5) Postprocessing: The technique of domain randomization
was performed in multiple steps of the previously defined syn-
thetic image generation process. In the postprocessing phase, as
a domain randomization technique, additional artificial noise is
introduced to alter the images. The images are perturbed with
a randomized multicolor pepper-and-salt noise and a Gaussian
blur. Furthermore, as Pashevich et al. [12] found the rectangle
cutouts useful for depth images, experiments were made with
rectangle cutouts, and additional circle, as well as line cutouts in
our RGB images. The noise types are shown in Fig. 4, described
in Table IV, and were applied in the following order:

1) rectangle cutout;
2) circle cutout;
3) line cutout;
4) multicolor pepper-and-salt;
5) Gaussian blur.

TABLE IV
TYPES OF NOISES IN POSTPROCESSING

TABLE V
MOST RELEVANT ADVANCED DATA AUGMENTATION TOOLS IN THE TRAINING

PROCESS

The goal of postprocessing is to force the model not to learn
the synthetic domain-specific characteristics, but to try to learn
the domain-independent underlying data representation. The
ablation study on our experiments, described in Section VIII,
shows that having the postprocessing module undoubtedly im-
proves the performance of the models with the test dataset.
Nevertheless, it also reveals that the added cutout noises did
not improve the performance compared to the default Gaussian
blur and multicolor pepper-and-salt noise.

C. Training

Even though the method would work with any given CNNs,
we have chosen the YOLOv4 [8] architecture for this research
for the following reasons.

1) It has the best speed and accuracy tradeoff which makes it
a good fit for robotic applications. It also has a tiny version,
allowing it to run in real-time even on a microcomputer
such as a Raspberry Pi or NVIDIA Jetson Nano.

2) Its training framework contains additional advanced data
augmentation tools. For more information, we refer the
reader to [8]. These tools help to introduce further pertur-
bation to the system.

For the training, a model pretrained on ImageNet [4] is
used. The most relevant hyperparameters for the advanced data
augmentation tools are shown in Table V, keeping the original
names of the parameters.

In Section VIII-F, we present the results of our method only
changing the object detection model from YOLOv4 to faster
R-CNN.



HORVÁTH et al.: OBJECT DETECTION USING SIM2REAL DOMAIN RANDOMIZATION FOR ROBOTIC APPLICATIONS 1233

V. EVALUATION

In this section, we outline the metrics used to evaluate our
models. First, we define how we measured the reality gap, then
we introduce our altered version of the confusion matrix, and
last, we outline some further details of our evaluation process.

To evaluate the solution of the classical machine learning
problem, (training and evaluation on the same domain), real-
world images would not be needed. In this case, the perfor-
mance is assessed on the generated validation dataset that is
not used for training but comes from the same distribution
Ptrain(X) = Pvalid(X). The solution can be assessed by the
value of the mAP score of the model on the valid dataset, and
the capability of generalization (within the specific domain) can
be measured by comparing the performance of the model on the
training and the validation datasets, as in the following:

GML = mAPtrain −mAPvalid . (1)

To evaluate the performance of the knowledge transfer, a
manually annotated test set of real images is needed. In this
case, Pvalid(X) �= Ptest(X). We expect that the given model
performs notably worse on the test set than on the validation
and training sets. To measure the magnitude of the reality gap,
we can define it as the difference of the performance of the model
on the validation and test sets, as shown in the following:

Greality = mAPvalid −mAPtest . (2)

Furthermore, we adapt the confusion matrix measure from
the field of image classification to object detection and use it
as an additional performance measure. The adaptation works as
described as follows.

1) Adding an extra row and an extra column to the classical
confusion matrix. Thus, there are c+ 1 rows and columns,
where c is the number of classes. The additional column
represents the objects that are not predicted to any of the
classes but actually belong to one class. On the other hand,
the additional row of the matrix represents the cases when
the model predicted an object of a class in a position where
there should not be any object.

2) The values of the diagonal are the correct predictions. For
simplicity, the last element of the diagonal is zero. This
element should contain the number of objects that are not
in the images and the model rightfully did not find them,
which does not have any meaning.

3) As more than one prediction can belong to one ground-
truth object, a given ground-truth object appears in the
matrix as many times as many predictions are paired with
it. Therefore, contrary to the traditional confusion matrix,
the sum of all elements in the matrix will not necessarily be
equal to the sum of all ground-truth objects or predictions.

The adapted confusion matrix described is proven to be useful
for detecting and quantifying misclassifications which turned
out to be the primary cause of performance loss in the case of
similar classes. Examples are shown in Section VII in Figs. 14
and 20.

As presented in detail in Section VII, several training runs
were carried out to test our method. For every dataset generated,

Fig. 5. Selected industrial parts for the dataset. Their names in order of their
identifier numbers are the following: 1. L-bracket, 2. U-bracket, 3. angle bracket,
4. seat, 5. pipe clamp, 6. handle, 7. bonnet, 8. body, 9. ball, 10. cable shoe. The
letter “F” designates the camera holder frame. The green dashed lines show the
borders of the cropped images.

Fig. 6. Three-dimensional models of the selected industrial parts of the dataset.
Their names in order of their identifier numbers are the following: 1. L-bracket,
2. U-bracket, 3. angle bracket, 4. seat, 5. pipe clamp, 6. handle, 7. bonnet, 8. body,
9. ball, 10. cable shoe. Their scaling factors are different for better visualization.

three independent training sessions were conducted, resulting in
three different models (sets of weights) in order to measure the
deviance of the training process. The average performance of the
models refers to the arithmetic mean of the results of these three
models. We also use the F1 score measure, which is defined as
the harmonic mean of the precision and the recall values.

VI. DATASET

This section presents the dataset created for the validation
elaborated in detail in Section VII. Ten industrial parts were se-
lected for the dataset. Object diversity as well as object similarity
were the two major points of consideration. The former helps us
to evaluate the detection performance of the model for various
types of objects, whereas the latter is important in assessing the
classification performance of the model. In general, it is easier
to misclassify objects with similar features. Thus, this problem
can be considered to be more challenging than the detection
of less complex and fairly different shapes such as cubes and
spheres. The selected objects are depicted on Fig. 5, and their
virtual counterparts on Fig. 6. These images are samples of
X ∈ X obtained from two different P (X) probability distri-
butions. The virtual images are from the probability distribution
PS of DS = {X , PS(X)}, while the real images are from the
probability distribution PT of DT = {X , PT (X)}.

As it can be seen, on one hand, objects of different sizes,
shapes, colors, and materials were selected to increase diversity.
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Fig. 7. Similarity of the body and the bonnet objects.

On the other hand, some objects share similar characteristics,
such as circular holes. Furthermore, two parts, the bonnet (#7)
and the body (#8) were chosen because of their high level of
similarity, as shown in Fig. 7.

Constructing the dataset, 190 real images of 920 object
instances were taken with different layouts and illumination
settings. The images were captured with an Intel RealSense
D435 camera. For easy and fast image capturing, a frame was
designed that holds the camera 310 mm from the ground. A
300×210×10 mm light blue wooden base supports the frame—
this is also where the parts were placed. The images show not
only this base area but the background (tabletop) as well—this
is done on purpose. In order to have a slightly different dataset
as a reference, we also transformed the aforementioned dataset
by cropping the images to fit in the wooden base. The cropped
area is signed with dashed green lines in Fig. 5. Some examples
of cropped images are shown in Figs. 15 and 21.

The annotations for the test dataset were labeled manually and
saved in the YOLO annotation format. As it contains all the nec-
essary bounding boxes and class information, other annotation
formats can be generated from them. We emphasize that these
images of real objects were not used at any point for training
the models, except in the case of one-shot knowledge transfer.
In this case, only one real image was used. The experiment of
one-shot transfer is presented in Section VII-B.

For all images, the matching depth images are recorded as
well. The depth images are transformed in a way that each pixel
point of the RGB image can be associated with the same pixel
point of the depth image (the transformation is necessary as the
fields-of-view of the cameras for RGB and for depth images
are different). Thus, all the annotations for the RGB images are
the same for the depth images. Even though the depth images
were not used in the current research, this additional data can be
valuable for later use or for other researchers.

The test dataset is summarized in Table VI. In Group A, every
image contains only one object (except one image without any
objects). In Group B, every image contains multiple objects, but
no class is represented more than once. In Group C, spotlight
illumination is applied from one side to test the robustness of
the models to illumination settings. In Group D, cluttered scenes
are recorded. In Group E, distractor objects (cubes, cylinders,
triangular prisms, and a 3-D-printed elephant) are placed in the
scene. Finally, in Group F, in every picture, only one class is

TABLE VI
SUMMARY OF THE TEST DATASET

Fig. 8. Class distributions of the test dataset.

presented, however, unlike in group A, there are several instances
of this class in every image.

The group-wise class distributions are depicted in Fig. 8. As
it can be seen, the classes are relatively equally distributed in the
groups. Even though in the mAP metric, the mean of the classes
is calculated, thus it is less influenced by class imbalance, it is
advantageous to create an equally distributed test dataset. Obvi-
ously, for training, which can be sensitive to class imbalance, the
synthetic data is generated with a random selection of objects,
thus eliminating any notable class imbalance. The dataset can
be downloaded from the project repository:4

VII. RESULTS

In this section, we show the strengths of our sim2real object
detection method, as described in Section IV, by applying it for
the problem presented in Section VI.

A. Zero-Shot Transfer (ZST)

The best-performing zero-shot transfer model
(ZST_BEST1)5 achieved 86.32% mAP50 on the cropped
test dataset. For data generation, a 2×2 grid with fixed z
positions and a placement disturbance of ±10% of the grid
spacing was set in the horizontal directions. The simulation of

4[Online]. Available: https://git.sztaki.hu/emi/sim2real-object-detection
5ZST: zero-shot transfer; BEST: the best data generation method; index: the

index of the training session

https://git.sztaki.hu/emi/sim2real-object-detection
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Fig. 9. Two examples of synthetic images with the automatically generated
annotations. The bounding boxes are shown here for illustration purpose only.
(a) Example 1. (b) Example 2.

gravity was enabled and the objects (including distractors and
empty places) were selected with equal chance. The objects had
random textures with a probability of 0.8 and a random color
with a probability of 0.2. The camera target position was set to
the center of the grid with a fixed 45◦ field-of-view. The pitch of
the camera was randomized between −0.17 and 0.17 radians.
The width and height of the images are chosen randomly,
independently of each other. Their values lie between 640 and
1300 pixels. For postprocessing, multicolor pepper-and-salt
noise and Gaussian blur were used with the probability of 1.0
and 0.5, respectively.6

With these parameters, 4000 images were generated for the
training dataset, and 200 for the validation dataset. The evalua-
tion of the model’s performance on the training set was measured
only on the first 200 images of the training set. Two examples
of the synthetic images are shown in Fig. 9.

The precision-recall curves of the three ZST_BEST models
(from the three training sessions) are shown in Fig. 10. As both
the training and validation mAPs are close to 100%, it can be
stated that the solution of the classical machine learning problem
is satisfactory. Furthermore, observing the sim2real transfer, it
can be seen that the models not only have a relatively good per-
formance on the test data, but also have little variance. Moreover,
the models perform relatively similarly on the original and on
the cropped images which shows the robustness of the method.
The F1 score is depicted in Fig. 11. It shows that while the
performance of the model on the cropped images is not affected
by the threshold, the models work better with higher threshold
values on the original images.

The performance of the models on the different groups of the
test dataset (described in Table VI) is presented in Table VII.
The performance is relatively stable across the different scene
types. Group D, containing the most crowded images, performs
just slightly worse than the others. In the case of the original
images, group A has relatively low performance. This is due
to the fact that the model occasionally falsely identifies the
brackets of the camera holder frame (at the two sides of the

6The cutouts did not improve the performance, as shown in Section VIII-E,
thus, they were not used here.

Fig. 10. Precision-recall curves of theZST_BESTmodels. The train and valid
scores are overlapping and relatively close to the perfect 1.0 values.

Fig. 11. F1 scores of the ZST_BEST models.

TABLE VII
mAP50 SCORES OF THE ZST_BEST MODELS IN THE DIFFERENT

TEST GROUPS
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TABLE VIII
mAP50 SCORES OF THE ZST_BEST MODELS FOR THE DIFFERENT CLASSES

Fig. 12. Average mAP50 scores of the ZST_BEST models in the different
classes.

camera holder frame which is displayed in Fig. 5, marked with
letter “F”) as L-brackets—this is not surprising as these parts
look similar. As group A has the lowest number of objects, this
phenomenon has the most impact on results in this case. The
cropped images, as shown in Fig. 5, do not contain this part of
the image.

Furthermore, the performance of the models for the different
classes is worth investigating. The data are presented in Ta-
ble VIII and the average results are shown in Fig. 12. Looking
at the dataset of cropped images (green), it can be seen that
6 out of 10 classes perform above 92%, one class is relatively
close to them with 87.94% AP50, two classes have worse results
with 69.54% and 67.18%AP50, and one class—the bonnet—has
significantly worse performance with 30.72%AP50. Otherwise,
the performance on the validation dataset is close to 100% for
all classes. The findings indicate that the performance loss is
not caused by the unsuccessful solution of the classical machine
learning problem, but by the existence of the reality gap. As
most of the classes have relatively good APs, the bad classes are
outweighed by them in the mAP calculation.

In order to investigate the aforementioned problem, the class-
wise precision-recall graph of ZST_BEST1 is shown in Fig. 13.

Fig. 13. Class precision-recall curves of the ZST_BEST1 model on the
cropped images.

Fig. 14. Confusion matrix of the ZST_BEST1 model on the cropped images
with the threshold set to 0.8.

As it can be seen, the bonnet, the L-bracket, and the seat are the
worst classes consistently with Fig. 12.

The proposed confusion matrix depicted in Fig. 14 (described
in detail in Section V) is essential in finding the root causes of
the weaknesses of the models. In most cases, the objects are
detected and classified to the correct class (diagonal). However,
several instances of L-bracket and seat are not detected (36
and 49 examples) and many bonnets are classified as body
objects (62 instances). The problem with these two objects is
not surprising considering the high level of similarity of the two
objects, as shown in Fig. 7. In general, this representation of the
results not only confirms the aforementioned assumptions of
class performances but also shows the underlying reason behind
the lack of performance in their cases.

Finally, having presented the quantitative evaluation, two
examples are given for qualitative evaluation as well. Fig. 15
shows an accurate and an inaccurate example, both with the
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Fig. 15. Accurate (a) and an inaccurate (b) prediction of the ZST_BEST1
model with the threshold set to 0.8. The color-coding follows Fig. 8. (a) Accurate
example. (b) Inaccurate example.

Fig. 16. Precision-recall curves of the OST_BEST models. The training and
validation scores are overlapping and relatively close to the perfect 1.0 values.

TABLE IX
TRAINING DATASETS

threshold set to 0.8. While the model could accurately find and
classify all the parts even in the presence of distractor objects in
Fig. 15(a), it fails to detect two instances of the seat class and
assigns the bonnet object to the body class in Fig. 15(b).

B. One-Shot Transfer (OST)

Even though the best zero-shot transfer achieved 86.32%
mAP50, it had some difficulties with four classes. With one-shot
transfer, we could overcome these difficulties. The hyperparam-
eters of data generation remained the same as it was described in
the previous zero-shot transfer example. The difference between
the two approaches lies in the data used to train the model, which
is shown in Table IX.

Fig. 17. F1 scores of the OST_BEST models.

TABLE X
mAP50 SCORES OF THE OST_BEST MODELS IN THE DIFFERENT

TEST GROUPS

The OST_BEST3 model achieved 97.38% mAP50 on the
cropped images, while the OST_BEST1 model had 97.04%
mAP50 on the original images. These results are significantly
better than the results with zero-shot transfer. The precision-
recall curves are shown in Fig. 16, and the F1 scores are shown
in Fig. 17. The mAP scores are close to optimal and there is only
an insignificant deviation between the different training sessions.
TheF1 score is also relatively high and flat in all cases, indicating
that the models are not sensitive to different thresholds.

The performance on the different types of test images is
presented in Table X. In general, the models work well, above
94% mAP50 in each case. The crowded scenes (group D) have
slightly worse performance on average, but the difference is not
significant.

Furthermore, the mAP scores of the different classes are pre-
sented in Table XI and shown in Fig. 18. All classes perform well,
the worst-performing class with the original images being the
L-bracket with 92.62% mAP50. The precision-recall curves of
the OST_BEST3 for the different classes are depicted in Fig. 19.
Compared to the zero-shot approach, the curves are shifted
toward the top-right corner which demonstrates better perfor-
mance. The proposed confusion matrix of the OST_BEST3 with
the threshold set to 0.8 is shown in Fig. 20. Almost all the values
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TABLE XI
mAP50 SCORES OF OST_BEST MODELS FOR THE DIFFERENT CLASSES

Fig. 18. Average mAP50 scores of the OST_BEST models in the different
classes.

Fig. 19. Class precision-recall curves of the OST_BEST3 model on the
cropped images.

Fig. 20. Confusion matrix of the OST_BEST3 model on the cropped images
with the threshold set to 0.8.

Fig. 21. Accurate (a) and an inaccurate (b) prediction of the OST_BEST3
model with the threshold set to 0.8. The color-coding follows Fig. 8. (a) Accurate
example. (b) Inaccurate example.

are in the diagonal, meaning that they are good predictions.
However, some instances of L-bracket, U-bracket, and cable
shoe were not found by the model. The number of false negative
examples can be decreased by lowering the threshold at the
expense of possible false positive examples.

For qualitative evaluation, Fig. 21 shows an accurate predic-
tion and an inaccurate solution. In the latter case, the distractor
objects resembling a body object in main characteristics could
mislead the model, implying that the model learned an overly
general representation of the object. As the quantitative results
show, the vast majority of examples is accurate.

VIII. ABLATION STUDY

In this section, the ablation study of the method is presented,
focusing on the different elements of the domain randomization
methods, the training data size, and the object detection model.

A. Seed

In general, the initial random seed of stochastic algorithms can
significantly influence their performance. This phenomenon is
unpleasant as it makes the algorithms unpredictable. We aim to
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TABLE XII
mAP50 SCORES OF ZST_BEST MODELS WITH DIFFERENT SEEDS

TABLE XIII
mAP50 SCORES OF DIFFERENT ZST MODELS. -T: WITHOUT TEXTURE, -PP:

WITHOUT POSTPROCESSING, -TPP: WITHOUT POSTPROCESSING AND

TEXTURE

measure the influence of the seed of our domain randomization
method in the case of the ZST_BEST models. It is important to
note that we do not use the same random seed for the training
and for the domain randomization method. Table XII shows
different seeds (with two equal seeds for reference), with 3
independent training sessions each. In these experiments, we
showed that the magnitude of the deviation of the results due to
the stochastic training process of the neural network and due to
the different seeds of the randomized data generation methods
are comparable. Thus, our randomized data generation method
is not less robust to a given seed than the stochastic training
method itself.

B. Texture and Postprocessing

Two important factors in our domain randomization method
are the random textures of the objects and the postprocessing
method. We have generated datasets without these factors. The
results are summarized in Table XIII and the results on the
original images are shown in Fig. 22. Both the added texture
and the postprocessing methods contribute significantly to the
performance. Without the added texture, the performance drops
to 63.50% and 74.71% mAP50 in the case of the original and
the cropped images. Without postprocessing, the performance is
only 55.87% and 60.42% mAP50, respectively. Finally, the per-
formance decreases drastically achieving 10.83% and 13.81%
mAP50 without the two methods. These experiments show how
essential these types of domain randomization methods are. As
the average performance of the model on the validation dataset
is 99.84% mAP50, according to (2), the reality gap shrinks, in
case of the original images, on average from 89.01% (-TPP) to
16.68% mAP50 (BEST).

Fig. 22. Results of the ablation study on the original images (ZST models).
Model without added textures (-T), without postprocessing methods (-PP), and
without both (-TPP).

TABLE XIV
mAP50 SCORES OF ZST_BEST MODELS WITH DIFFERENT DATA SIZES

C. Data Size

The size of the training dataset is a key attribute of any
machine learning problem. In general, the more data are used
in the training, the better its distribution will match the real
probability distribution. Nevertheless, this phenomenon does not
necessarily apply to the case of knowledge transfer. The results
of the performance of the ZST_BEST models for different
training data sizes are presented in Table XIV. It is important
to note that for the case of 8000 images, the training time was
doubled from 5000 to 10 000 iterations. Even though increasing
the training data size from 1000 to 4000 allows the model to
gain notable performance, doubling the data size from 4000 to
8000 only causes marginal improvement.

D. Gravity, Positional Disturbance, and Bounding-Box
Calculation

In this part of the ablation study, the effect of simulated
gravity, the effect of random disturbance around the grid po-
sitions, and the effect of replacing the all-point bounding box
calculation with the 8-point bounding box calculation (described
in Section IV-B4) are measured. The findings are summarized
in Table XV. All of the aforementioned factors have a relevant
effect on the performance. In the case of cropped images,
on average, gravity brings 11.01% mAP50, the randomness
of object positions contributes 14.22% mAP50, and the tight
all-point bounding box calculation method is responsible for



1240 IEEE TRANSACTIONS ON ROBOTICS, VOL. 39, NO. 2, APRIL 2023

TABLE XV
mAP50 SCORES OF ZST MODELS WITHOUT DIFFERENT FACTORS. -G: NO

GRAVITY, -R: NO RANDOMNESS IN GRID POSITIONS AND NO GRAVITY, 8P:
8-POINT BOUNDING BOX CALCULATION

TABLE XVI
mAP50 SCORES OF ZST MODELS WITH DIFFERENT CUTOUTS AT THE

POSTPROCESSING METHODS

a 41.76% mAP50 performance gain. In the case of bounding
box calculation, the performance drops with the less tight BBs,
implying two reasons. First, the ground-truth BBs are tight, thus
computing the IOU50 with less tight BBs may result in many
discarded matches. Second, in the crowded images, the BBs are
too extensive, thus, they could significantly overlap each other
which may confuse the model.

E. Cutouts

Some additional experiments were conducted with different
types of cutouts at the postprocessing phase of data generation
presented in Table XVI. In these experiments, four types of
cutouts were considered: rectangles, partly transparent rectan-
gles, circles, and lines. The number of cutouts and the bounds of
the randomized sizes of the cutouts varied over the experiments.
The results show that none of the cases could achieve a better
performance than the ZST_BEST model which does not have
this type of domain randomization. Nevertheless, a more thor-
ough evaluation of the effect of different cutouts can be subject
to further research.

F. Faster R-CNN

To test the performance of the data generation process in
the case of a two-stage object detection model, we trained the
R101-FPN version of the faster R-CNN [6] model using the De-
tectron2 [66] framework and Pytorch [67]. This model uses the
ResNet-101 [61] model with the feature pyramid network [68]
backbone. The results are shown in Table XVII. Even though
the performance of the model falls behind YOLOv4, it could

TABLE XVII
mAP50 SCORES OF R101-FPN FASTER R-CNN MODEL

be increased with a more exhaustive hyperparameter search.
Moreover, the Darknet framework uses extra data augmentation
for training which we did not reproduce for the Detectron2
framework. It is important to note that here, too, considerable
performance improvement is achieved by having one real image
for training.

The training of the faster R-CNN model was approximately
four times faster than in the case of YOLOv4. On the other
hand, inference time was around ten times slower with 2 FPS. In
conclusion, YOLOv4 outperformed the faster R-CNN approach
in performance and in inference time which are the two most
relevant factors.

IX. ROBOTIC APPLICATION

Object detection can be utilized in many ways. Examples are
robotic grasping or pick-and-place applications where the robot
needs to detect different workpieces and grasp them or move
them to specific locations.

In this section, a real-world robotic implementation of our
method is presented. The application can serve as proof of con-
cept built upon our previous work [69], where we proposed a 5 C
model-based [70] system architecture for visual-servo-guided
cyber-physical robotic assembly cells. Relying on the object
detection model, the parameters of grasping (micro plan) can
be computed.

The robotic system consists of a six-DoF collaborative robot
arm equipped with a digital depth camera, a force sensor, and
a two-finger gripper. The task of the robot is to detect scattered
workpieces (center points and bounding box information), as
well as predict grasping poses. The sensors and actuators of the
robot and the sim2real computer vision module are connected
in a robot control framework based on ROS [71]. The setup is
depicted in Fig. 23, while the software components of the robot
control framework are shown in Fig. 24

For robotic applications, every component of the system must
work reliably an in real time. In order to evaluate the sim2real
computer vision module in a new case, three new industrial
parts were used, as depicted in Fig. 23. The data generation
and training process went without any problems. Thus, within
13 h, the new model was ready to use. As a qualitative evaluation,
the robot was programmed to follow a path over the workpieces
while streaming the camera data. On a GeForce RTX 3060 GPU,
our computer vision model ran with 20 FPS and constantly
localized and classified the objects perfectly with more than
98% confidence most of the time, even in significantly different
illumination settings and in the presence of distractor objects.

For grasping the workpieces, the grasping pose needs to be
estimated and transformed to the robot coordinate system. For
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Fig. 23. Setup of the robotic application.

Fig. 24. Information flow in the robotic application. The computer vision
module, which is the main topic of this article, is highlighted in orange. In this
application, the force sensor was not used (marked with the dashed line). The
following software resources were used: [72], [73], [74], [75], [76].

estimating the orientation we used principal component analysis
on the detected and cropped bounding boxes of the objects,
and a standard camera calibration method was applied for the
transformation.

This use case was presented in an exhibition7 and the imple-
mentation of the ROS-based robot control system is available
at8:

X. CONCLUSION

The article presented our sim2real domain randomization
method for object detection. As our general aim is to facili-
tate the trend of new-generation intelligent manufacturing with
adaptive robotic applications, our solution needed to be capable
of differentiating similar classes using only one real example
for training and working in real time. According to our best
knowledge, this was the first work thus far that mutually satisfied
these constraints in this domain.

As recent works on transfer learning did not concentrate
on validation for objects similar to each other, we addressed
this phenomenon by creating a dataset with 190 real annotated
images of 920 objects of ten classes of industrial workpieces. The
dataset was publicly available and could serve as a benchmark
for industrial object detection models.

7Source: https://youtu.be/6PhaXW1m9Xw
8[Online]. Available: https://git.sztaki.hu/emi/robot_control_framework

We introduced a novel type of confusion matrix tailored to
object detection. It had proven to be useful for finding the root
cause of performance loss.

The results presented in the article validated the strengths
of our approach. We achieved 86.32% mAP50 in the case of
zero-shot transfer, while with one-shot transfer, the best model
scored 97.38% mAP50 on the test set. With these experiments,
we also demonstrated how to diminish the performance loss
caused by similar classes by introducing only one image from
the target domain. Even though it was hard to compare solutions
to different problems, we believed that these results were better
than the ones in the literature considering the complexity of the
problem and the size of the synthetic and real training datasets.

In a thorough ablation study, we showed that adding
random texture and our postprocessing domain randomization
methods were crucial parts of the process. We also found that
simulating gravity, random initial placement, and the all-point
bounding box calculating method contributed significantly to
the performance.

As a proof of concept, we showed that our model works
reliably and in real time in a robotic pick-and-place application.

Both the sim2real data generation and training module, and
the robot control framework could be used as a freely available,
out-of-the-box solution to industrial problems.

In the future, we aim to further improve the performance of
the zero-shot learning method. We are also interested in working
with point cloud data, exploring the field of adversarial training,
and extending our method to be able to predict end-to-end
grasping poses as well.
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