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Abstract—Recent advancements in Software-Defined Network-
ing (SDN) have facilitated its deployment across diverse network
types, including edge networks. Given the broad applicability of
SDN and the complexity of large-scale environments, establishing
a comprehensive real-world test environment is both challenging
and expensive. To circumvent these obstacles, software-based
simulations are typically employed to validate solutions prior
to real-world deployment. However, these simulations often do
not incorporate real-time hardware data, limiting their realism.
This paper introduces a novel hybrid SDN simulation testbed
that integrates real hardware data within a Mininet-emulated
network, addressing this limitation. To demonstrate the efficacy
of our hybrid testbed, we present a specific scenario involving the
dynamic allocation of edge resources to various client requests
through a machine learning approach. This scenario focuses on
detecting LiDAR spoofing attacks within automotive systems.
Additionally, our hybrid testbed facilitates the generation and
replication of new datasets for tailored scenarios, enhancing
research capabilities in more intricate contexts.

Index Terms—Hybrid SDN Simulation, Mininet, Network
Testbed Design, Software-Defined Networking , Edge Computing

I. INTRODUCTION

The integration of SDN into diverse environments, such
as edge networks [1], necessitates the creation of robust
testing environments. These environments validate SDN-based
system proposals before deployment in real-world scenarios.
However, the challenge lies in emulating large-scale networks,
which are both complex and costly to replicate physically for
testing purposes. Consequently, the use of dedicated software
simulators has become a preferred testing approach [2]. Within
the SDN framework, it is crucial for a simulator to support
scenario implementation across all SDN architectural layers:
the data plane, control plane, and application plane. The data
plane involves devices like desktop computers or edge devices
that forward network traffic and connect to switches. The
control plane manages these devices, setting the operational
rules, while the applications plane encompasses end-user ap-

plications that utilize the data from the underlying layers.
This paper focuses on designing a simulation testbed tailored
to the diverse applicability domains of SDN architecture.
Our proposed testbed is a hybrid environment that integrates
software-generated and real-time traffic captured using actual
hardware components. This approach not only enhances the
realism of the simulations but also supports the analysis of
traffic patterns and volumes in a controlled setting, which
is critical for preparing network deployments in production
environments. Mininet, a widely used network emulator in
SDN research [3], forms the basis of our simulation im-
plementations. The hybrid nature of the testbed, combining
Mininet-based solutions with real hardware data, is crucial for
replicating large-scale network behaviors, thereby providing
significant value to network research [4].
The key contributions of this research are detailed below:

• Development of a hybrid simulation testbed that merges
simulated and real-time data to produce realistic network
simulations.

• Addressing the varied nature of SDN deployment envi-
ronments through a testbed design that emphasizes scal-
ability, parallel computation, and portability, enhancing
the quality and relevance of experimental outcomes.

• Technical elaboration and practical application of hybrid
SDN simulations in a real-world scenario, specifically the
dynamic allocation of edge resources using a machine
learning approach to detect LiDAR spoofing attacks in
automotive systems.

This paper also introduces new possibilities for generating
and replicating specific data sets from real-time sensor data,
thereby expanding the available research resources and con-
tributing to the scientific community’s collective knowledge.
The structure of this paper is organized as follows: Section 2
presents a review of the literature relevant to our work.
Section 3 describes the tools employed in our Testbed, specif-
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ically focusing on Resource Allocation and Shadow Analyzer.
Section 4 details the various components of our Testbed setup,
including Hardware Resources, the Virtualized Environment,
and the Client-Controller-Resource Workflow. Section 5 and
subsequent subsections provide a baseline analysis conducted
locally on a single device without networking, assess the
performance of our proposed Testbed, particularly in terms of
communication delays, and further evaluate our edge nodes.
The paper concludes with a summary and future research
directions in Section 6.

II. RELATED WORK

Mininet is a useful tool for emulating various parts of a
network, such as hosts and switches. It offers a simple solution
for creating, modifying, and rolling out new topologies via
script, which enables rapid development at low cost. Addi-
tionally, it provides built-in commands that allow users to
test network functionality, including standard options like the
ability to ping hosts and generate network traffic using tools
like iperf to simulate network floods or other traffic patterns.
However, it has limitations concerning easy scalability and
simultaneous deployment on multiple machines [5], [6]. Com-
NetsEmu offers a container-based extension to the existing
Mininet. It removes the CPU limitations of traditional Mininet
hosts by employing fully customizable containers, resulting in
a nested virtualization architecture. The introduction of these
containers enables users to run more specialized tasks on hosts.
Since ComNetsEmu is built upon Mininet, it inherits the same
limitations, such as being restricted to emulating networks
on a single host [7]. To address this limitation, Wette et al.
[8] expanded the existing Mininet solution to Maxinet, with
the goal of emulating large datacenter networks with several
thousand nodes. This was achieved by running the emulation
on multiple physical machines connected through GRE tunnels
[9]. By leveraging the advantages of Maxinet, it was possible
to emulate large-scale datacenter behavior with over 3600 in-
dividual nodes using just 12 physical machines. Distrinet also
employs a distributed approach by implementing Mininet over
multiple hosts while maintaining full compatibility with the
known Mininet API. This distribution across multiple physical
machines is achieved through automatic cloud provisioning
and tunneling over VXLAN [10]. Furthermore, it offers the
possibility of vLink limitations to simulate more realistic
bandwidth and delay [11]. To enable a better simulation of
real hardware and not just the replay of previously recorded
logs, Buzura et al. [12] proposed a hybrid solution using
real sensor data in the emulation of a Mininet network to
provide a more realistic simulation environment. This solution
does not incorporate real network hardware into a Mininet
network. Tools like Mininet or Maxinet only focus on an
emulated approach and do not offer a hybrid solution to
incorporate real hardware as a host into a simulation/testbed.
Windisch et al. [13] proposed a hybrid solution by letting
a master coordinator generate an intermediate representation
layer. Worker coordinators can then autonomously convert this

layer into deployment scripts, albeit with a large overhead, to
enable the deployment of different topologies.

III. RESOURCE ALLOCATION AND SHADOW ANALYZER:
TOOLS FOR DEMONSTRATING THE TESTBED

FUNCTIONALITY

In the context of Edge Computing (EC), our previous
research introduced innovative technologies to address the
complexities of resource management and security in dynamic
environments. In this paper, these technologies are utilized to
demonstrate the functionality of our newly developed testbed,
which provides a real hardware environment for testing and
validation. First, we proposed a reinforcement learning-based
framework for resource allocation, which dynamically assigns
resources to tasks, optimizing service delays and balancing
resource utilization. Unlike conventional methods that rely
on static data and centralized control, this framework utilizes
a hierarchical organization of AI controllers that learn and
adapt through interaction with the environment. This approach
allows for a more flexible and responsive system, capable
of adjusting to changes such as device mobility and varying
task requirements. Next, we developed the Shadow Analyzer,
a technology critical for enhancing the safety and efficiency
of modern transportation systems via EC. This tool plays a
pivotal role in Vehicle-to-Thing communication, particularly
in managing emergency road scenarios and improving traffic
safety through advanced vehicle detection and tracking meth-
ods. By processing data at the edge, the Shadow Analyzer
minimizes latency and enhances real-time responses. Further-
more, it incorporates neural network-based object shadow
verification to tackle security threats such as LiDAR spoofing
attacks, ensuring the reliability and integrity of autonomous
vehicles. Both technologies, developed previously, are utilized
in this paper to showcase the functionality of our testbed,
which was specifically designed to test these solutions in a
real hardware environment. This testbed provides a practical
platform for evaluating and demonstrating the performance
and effectiveness of our EC solutions in addressing key
challenges in resource management and vehicular safety.

IV. TESTBED SETUP FOR RESOURCE ALLOCATION
VALIDATION

In this study, we illustrate the capabilities of our experimen-
tal testbed through a resource management scenario, leverag-
ing a hybrid configuration. Our testbed integrates a Mininet
environment to emulate client behaviors, a virtualized SDN
controller based on the Ryu platform, and various hardware
resources interconnected within the network (see Figure 1).

A. Hardware Resources

Our primary objective was to perform a variety of compu-
tational tasks ranging from basic arithmetic to complex auto-
motive applications, such as the detection of Lidar spoofing
attacks. To provide a realistic representation, we employed
two distinct computational platforms with unique capabilities.
The first platform was the Raspberry Pi 3 B+, a Single Board



Fig. 1. Testbed components

Computer (SBC) featuring a Broadcom BCM2837B0, Cortex-
A53 64-bit SoC @ 1.4 GHz, and 1 GB of RAM. Noteworthy
for its compact size and energy efficiency, this platform ex-
emplifies less powerful computational resources. Conversely,
the Nvidia Jetson Nano represented a more robust computa-
tional resource. It is equipped with an ARM® Cortex®-A57
processor, a 128-core Maxwell GPU that supports CUDA,
and 4 GB of RAM. Notably, it maintains a size and power
consumption similar to that of the Raspberry Pi 3 B+. CUDA,
an API by NVIDIA, facilitates the offloading of computational
tasks to the GPU, allowing for significantly faster processing
compared to traditional CPU computations. To illustrate these
differences, we analyzed comparative performance data. The
Shadow Analyzer software, when operated solely on the Rasp-
berry Pi’s CPU, required approximately 390 ms to complete
a specific task (as shown in Figure 2). In stark contrast, the
Jetson Nano, utilizing its CUDA-enabled GPU, completed the
same task in just 190 ms. This demonstrates the substantial
performance enhancement achievable with advanced GPU
computing.

Fig. 2. GPU vs CPU Performance.

B. Virtualized Environments

In the virtualized environment described, we achieve a
comprehensive mapping of the network using Mininet. This
mapping includes network nodes/switches, distinct network
pathways, and clients that exclusively request hardware re-
sources, as well as interfaces that bridge real and virtual-
ized hardware. Dedicated physical network ports are directly
connected to specific virtualized switches, forming a bridge
between the simulated network and the actual hardware. The
network is orchestrated by an SDN controller that utilizes
Ryu [14]. Our proposed resource allocation strategy has been
integrated into this controller. Figure 3, visualized using the
Mininet Topology Visualizer, depicts a representative setup
with two clients and four resources. The network employs a
straightforward tree topology; the first layer features a central
main switch (msw0), while the second layer splits into two
switches. One switch connects to resources (rsw0), and the
other to the virtualized clients (csw0). Although there is
potential for connections to virtualized resources, this hybrid
setup primarily focuses on hardware resources. The depicted
resources, each connected via a four-port network card, with
each port mapped to a specific port on rsw0, are tangible.
In this scenario, Jetson Nanos are utilized for rs1 and rs3,
while Raspberry Pi 3s are used for rs2 and rs4. The SDN
Controller, based on Ryu and not shown in the figure, is
an OpenFlow Controller that manages the entire network,
including switches, network routes, and other components.

Fig. 3. Visual Representation of a Hybrid Virtual-Physical Network with SDN
Control and Direct Hardware Resource Mapping.

C. SDN-Based Resource Allocation and Client Request Flow

Figure 4 illustrates the flow of a client request and its
corresponding response. Initially, the client issues a request,
which is then directed to the resource allocation module oper-
ating on the SDN controller. Within the controller, a predictive
analysis is conducted to determine the most suitable resource
to address the request. Subsequently, the request is relayed to
the identified resource for processing. The processed response
is then channeled back to the resource allocation module,



which subsequently forwards it to the originating client. A
notable advantage of this indirect communication method, as
compared to direct communication, is that the client remains
unaware of specific resource parameters such as suitability,
utilization, and IP address. All requisite information resides
centrally within the resource allocation module. Therefore, it
is sufficient for the client to direct its inquiry to the SDN
controller.

Fig. 4. Client-Controller-Resource Workflow.

V. EVALUATION

To evaluate the efficacy of our testbed, we examined various
configurations.

A. Performance Benchmarking Using a Single Local Device

The primary configuration involved using a single local
device. This scenario represents cases where the prediction of
LiDAR spoofing attacks is executed directly on the dedicated
hardware of the vehicle. This configuration serves as a bench-
mark for comparison with other measurements. To emulate
this scenario, a Jetson device was employed locally as the
dedicated hardware for the task. Table I presents the average
prediction time for a single image. We conducted ten test runs,
each encompassing 1,000 images. The average prediction time
for each run was calculated, with the overall mean across all
runs presented in the table as the reference value.

B. Remote Device Evaluation at the Edge and its Communi-
cation Delays

In this phase of our evaluation, we adopted a methodology
similar to that described previously, with a key modification
concerning the location of the device. Unlike the initial
experiment where the device was local and integrated into
the vehicle, in this phase, the device is positioned remotely

TABLE I
AVERAGE PREDICTION TIME FOR LIDAR SPOOFING ATTACK DETECTION

ON JETSON DEVICE

Round Time (ms)

1 191,792
2 190,510
3 190,554
4 191,215
5 190,108
6 190,277
7 190,050
8 189,924
9 189,786

10 190,611

Average 190,483

at the edge. This configuration involved direct client interac-
tions with a single remote resource, bypassing the resource
allocation framework. This approach could lead to increased
communication delays. The data in Table II show that the
average response time under these conditions is slightly higher
compared to the local setup. It is important to note that these
experiments were conducted in a controlled laboratory envi-
ronment, which may not fully represent the communication
latency experienced in real-world applications.

TABLE II
AVERAGE PREDICTION TIME FOR LIDAR SPOOFING ATTACK DETECTION

ON REMOTE JETSON DEVICE

Round Average Time per Image in
ms

1 190,277
2 190,050
3 189,924
4 189,786
5 191,190
6 190,611
7 190,678
8 191,297
9 191,067

10 192,141

Average 190,702

C. Resource Allocation Between Jetson and Raspberry Pi

In this section, we investigate the role of mediation in
the resource allocation framework by utilizing two distinct
edge-located resources: a Jetson and a Raspberry Pi. These
devices were chosen to represent the varied computational
capacities available at the edge. Table III presents the results
from ten iterations, with each iteration processing 1,000 im-
ages, in alignment with the testing methodology discussed
in previous sections. Columns two and three of Table III



display the distribution of images between the two devices
in each iteration. The data shows that the Jetson, being
the more powerful device, is preferentially selected by the
framework over the Raspberry Pi. On average, about 70% of
all images are processed by the Jetson, as depicted in Figure 5.
This strategy of allocation significantly enhances the overall
processing efficiency. As indicated in the fourth column of
Table III, the average processing time per image improved
by 11.79% relative to the baseline established in the initial
test. The final column provides details on the average time
taken by the resource allocation framework in each iteration
to determine the optimal resource for the current task. The
minimal time recorded indicates that its impact on the total
processing duration is negligible.

TABLE III
DISTRIBUTION OF IMAGES AND PROCESSING TIME ACROSS 2 EDGE

DEVICES

Round Jetson 1 Raspberry
Pi

Time/Image
(ms)

Pred.
Time
(ms)

1 709 291 160,823 8,949
2 688 312 183,993 8,825
3 697 303 174,706 8,413
4 676 324 161,024 8,475
5 689 311 160,879 9,223
6 709 291 160,831 8,943
7 723 277 160,804 8,874
8 804 196 161,123 9,398
9 701 299 167,923 8,845
10 793 207 188,211 9,101

Average 718.9 281.1 168,032 8,905

Fig. 5. Distribution of Images Between Jetson and Raspberry Pi.

D. Image Distribution and Processing Time with Four Edge-
located Resources

In this section, we extend our examination from the prior
experiment by including four edge-based computing devices:
two NVIDIA Jetsons and two Raspberry Pis. Our goal is to
evaluate how the increase in available resources influences the
distribution of image processing tasks among these devices and
the average image processing time, ultimately impacting the
overall processing duration. The results from ten iterations,
each processing 1,000 images, are presented in Table IV.
This testing approach is consistent with methodologies applied
in previous sections. Columns two through five of Table IV
illustrate how images are allocated across the four devices in
each iteration. Notably, the data indicates a distinct preference
within the framework for allocating approximately 62% of
all images to the Jetsons. This allocation pattern is further
depicted in Figure 6. The sixth column of Table IV shows a
49.94% improvement in the average processing time per image
compared to the baseline established in the initial experiment,
and it is 43.25% more efficient than the prior experiment that
utilized only two resources. The last column provides insights
into the average time required by the resource allocation
framework to determine the optimal resource for processing
each image in each iteration.

TABLE IV
DISTRIBUTION OF IMAGES AND PROCESSING TIME ACROSS 4 EDGE

DEVICES

Round Jet. 1 RPI 1 Jet. 2 RPI 2 Avg.
Time
(ms)

Pred.
Time
(ms)

1 290 158 364 188 100,450 14,638
2 272 175 341 212 93,119 14,710
3 263 165 369 203 91,599 14,617
4 279 143 367 211 93,820 14,822
5 239 187 366 208 93,706 16,071
6 269 168 356 207 93,131 14,809
7 266 181 323 230 100,129 14,403
8 284 186 341 189 98,939 14,695
9 267 163 357 213 94,179 14,893

10 288 151 350 211 94,531 14,734

Average 271.7 167.7 353.4 207.2 95,360 14,839

VI. CONCLUSION AND FUTURE WORK

This paper has presented a comprehensive exploration of our
hybrid SDN simulation testbed, which successfully integrates
real-time hardware into a Mininet-emulated network. This
integration is crucial for adding realism and depth to network
simulations, which are essential in the face of the increasing
complexity and broad applicability of SDN across various
network types, especially in edge computing scenarios. Our
testbed not only meets the challenge of creating a realistic
emulation environment that can facilitate the study of SDN
but also expands the capabilities for real-world applications.



Fig. 6. Distribution of Images Between Jetsons and Raspberry Pis.

Through extensive testing using scenarios that involve dynamic
resource allocation to counter LiDAR spoofing attacks in au-
tomotive systems, our testbed has proven effective. It demon-
strates significant adaptability in managing diverse computing
resources at the edge, an essential feature given the critical
nature of the automotive applications tested. The resource
allocation framework integrated within the SDN controller has
shown a high level of efficiency in utilizing the available
computational resources. This efficiency is highlighted by
the system’s ability to optimize task completion times across
different computational platforms, from less powerful devices
like Raspberry Pi 3 B+ to more robust systems such as the
Nvidia Jetson Nano. Furthermore, the testbed’s scalability,
parallel computation capabilities, and portability align seam-
lessly with the design goals initially set for this project. The
successful deployment and performance of the testbed validate
our approach and provide a solid foundation for future re-
search. This setup not only supports ongoing improvements in
network management and attack mitigation strategies but also
contributes valuable insights into the operational dynamics
of edge computing environments. The implications of this
study are vast, offering numerous avenues for future work.
For instance, further research could explore the integration
of additional types of edge devices or expand the testbed’s
capabilities to include more complex network scenarios and
larger datasets. These enhancements could lead to even more
sophisticated solutions to network management and security
challenges in various domains beyond automotive systems.
In conclusion, the development and validation of this hybrid
SDN simulation testbed mark a significant step forward in
the field of network research, particularly in the context of
edge computing. It stands as a testament to the potential of
combining traditional emulation techniques with real-time data
to create more accurate, reliable, and flexible network testing
environments.
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