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Abstract

In an effort to minimise the carbon footprint of building structures, a range of prediction
tools and methods have been recently proposed, so to enable design practitioners evaluating
how their design choices ultimately affect the carbon embodied in their designs. Such tools
are most often targeted for use at the early stage of the design process, that is when explo-
ration of alternative design options is usually undertaken, hence room for potential carbon
reductions is greatest and at no extra cost of redesign. The overarching methodology behind
existing tools predominantly relies on idealised models to characterise the structural system,
usually employing closed-form design equations and/or numerical Finite Element to gener-
ate an inventory of material quantity data (that is ultimately required for embodied carbon
estimates). Despite the very high level of complexity achieved by some models, the absence
of any empirical reference with ‘as-built’ inventory data of material quantities leaves room
for doubt on how accurate such models really are in capturing the complexities and inherent
variability of the population of real building structures such models aim to represent. To
bypass this limitation, a data-driven probabilistic graphical model is proposed here as alter-
native to existing approaches. A Bayesian Network was developed and tested as a proof of
concept, trained on a dataset of 133 data-points of real building structures, leveraging on six
design variables (at most) to fully characterize the entire design space of early design options.
Despite the very small set of ‘explanatory’ design variables, the model exhibited a 73% accu-
racy (mean average absolute prediction error of 27%) when predicting the embodied carbon
on a test sample of unseen real building structures. The study ultimately demonstrates the
viability of adopting a probabilistic (data-driven) approach for such an inference task as an
inherently robust alternative to data-blind models currently proposed in literature.
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1. Introduction1

Building construction has been amply recognised as a major contributor to atmospheric2

green house gases (GHG) emissions [1] thus representing a major concern for it being a leading3

contributor to the climate crisis. Over the past decades, efforts from research, industry and4
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policymakers have primarily focused attention on reducing GHG emissions occurring during5

the operational stage of a building life-cycle. As a result, buildings have become increasingly6

more efficient to operate, thus leading in more recent times to a emphasis shift on the growing7

significance of embodied carbon impacts, which increasingly constitute a larger proportion8

of the overall life-cycle impacts attributable to buildings [2].9

Among the various subsystems of a building, the structural system often accounts for10

the highest amount of embodied carbon impacts due to its substantial contribution to the11

overall building mass [3]. Improving design, with a focus on enhanced efficiency and more12

effective resource utilization, emerges as a promising strategy to mitigate embodied carbon13

in buildings. The importance of good design choices as early as possible during the design14

process has been amply acknowledged by design and research communities [4]. Consequently,15

a plethora of tools, methods, and strategies have been proposed for adoption by structural16

design practitioners.17

While it is out of this study’s scope to provide a comprehensive appraisal of all individual18

contributions reporting tools/findings on early design stage estimation of material quantities19

and/or associated carbon emissions in building structures —the reader is referred to recent20

work of Fang et al [5] for an up-to-date review— a high-level categorisation around two main21

general threads may be attempted in here, namely: data-driven investigations and synthetic22

numerical models.23

With data-driven investigations we intend here the thread of studies aimed at character-24

ising the embodied carbon of building structures by leveraging on inventory data of material25

quantities collected from case studies of real buildings [6, 7, 8, 9].26

Although faithful to ground-truth information of ‘as-built’ material quantities, such ap-27

proaches are inevitably based on a limited number of surveyed cases, therefore making hard28

to extrapolate their findings and conclusions beyond the specificity of the individual context29

being analysed. Notwithstanding the accumulation of ground-truth data and the qualitative30

insights they provide to a growing body of literature, the inherent limitedness of the analysed31

samples prevents a generalisation of the quantitative findings therein, and hence for them to32

be used as a prediction tool in other design contexts.33

On a somehow opposite side, a perhaps more prolific thread of research studies is materi-34

alising. Primarily aimed at answering the same overarching question of how embodied carbon35

is later impacted by early design choices, such studies tackle the question by leveraging on36

a different approach to field data collection, that is, generating synthetic data of material37

quantities (and hence carbon) using a numerical model simulation of the structural design38

process. The underpinning implicit assumption justifying the sound validity of generating39

synthetic data to use for investigation is that any relevant feature of the built manufact can40

be traced back to a certain point along the design (and construction) process, and since41

building structures (unlike naturally occurring phenomena) are the result of a human pro-42

cess, this very process can be simulated with a reasonably high level of fidelity by informing43

the simulation model with knowledge of how building structures are designed in practice.44

The range of research works in literature has grown over the last few years, both in45

complexity and scope. A wide range of studies employing synthetic numerical models of the46

structural design process to derive inventory of material quantities can be found. Studies may47

be focused to specific building types, e.g. to tall buildings [10, 11] or have scope narrowed to48

a sub-system of the whole structure, e.g. the super-structure [12], the floor slabs [13, 14, 15],49
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single structural components such as beams [16, 17], or they only look at a certain material50

or construction technologies such as reinforced concrete [18], steel [19] or mass timber [20]51

or compare across all three such alternatives [21, 22]. Increasingly more complex models can52

be found in recent studies, expanding the modeling scope to both below- and above-ground53

parts of the structure, thus including foundations [23] and lateral load resisting system [10]54

as well as extending the model to other variables of interest other than embodied carbon, e.g.55

to operational carbon [24] and construction cost [23], and also going beyond the (frequent)56

modeling assumption of cuboid building shapes [23, 25].57

The clear advantage of using a numerical model to generate synthetic material inventory58

data, is because of the possibility it entails to generate (theoretically unlimited) as many59

data as needed to characterise the statistical distributions of material quantities and re-60

lated embodied carbon, hence enabling uncertainty quantification of results. In addition to61

bypassing the data-scarcity issue, a second advantage of relying on numerical models gener-62

ating synthetic data is the possibility to tailor the model boundaries to a specific sub-domain63

of interest of the design process, or expanding the domain to account for as many variables of64

interest as possible —as evidenced by the above-mentioned research works— without having65

to worry about data availability and collection in the first place.66

1.1. Why probabilities67

While synthetic numerical modelling approaches provide a mean for assessing in a quan-68

tifiable way the influence of design variables (choices) on embodied carbon, the accuracy of69

their results is accepted insofar one is also accepting the model being an accurate represen-70

tation of the real design (and construction) process being modelled. This is simply because,71

unlike statistical data-driven approaches, numerical models bear no connection with empiri-72

cal data measurements of the variables they aim to predict, namely material quantities (and73

embodied carbon by proxy). Roughly put, to ‘trust’ the results one must first have ‘faith’ in74

the model assumptions.75

A scientifically rigorous way to assess any kind of model is indeed by comparing its output76

with experimental results. Translated to our specific context, this would involve assessing77

the numerical model uncertainty (and hence its accuracy) by benchmarking the syntheti-78

cally generated data against ground-truth field data such as ‘as-built’ material quantities79

—something done very seldom within the existing literature of early stage carbon prediction80

tools of building structures. What is often being assessed is instead the model sensitivity of81

results to the assumption of various model’s parameters, that is: evaluating how the choice of82

assigning different values to (uncertain) variables in the model —either randomly drawn from83

a weighted distribution (often uniform) or a finite set of values— it is affecting the predicted84

material quantities and embodied carbon results, effectively moving from a deterministic85

model to a stochastic one.86

Albeit some of the more sophisticated model frameworks described in the above-referenced87

studies adopt a stochastic approach to quantify the effect of parameters’ uncertainty, with88

statistical distributions of materials and carbon being outputted instead of a single numerical89

value (as in a purely deterministic model), relations between variables remain essentially90

deterministic in nature, defined ‘a priori’ by the modeller, often using hard-coded sets of91

rules to describe how variables relate to each other in the model.92
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In a probabilistic model on the other hand, relations between variables are encoded by93

statistical frequency patterns learned directly from the collected data. Relations between94

variable are thus not defined in a deterministic fashion, tailored by the modeller, but prob-95

ability distribution are used instead, learned from ground-truth data, therefore enabling the96

model to ‘capture’ both the interaction between variables in the real data-generating pro-97

cess as well as external influences from latent variables that are not explicitly modelled but98

‘present’ in the collected data nonetheless.99

To provide a simplified example of the conceptual and methodological differences between100

a probabilistic framework and the deterministic/stochastic approach often found in litera-101

ture: the material intensity X of all structural members in a population of gravity frames102

is inevitably modelled as a function of some other variables, among which, the grid spans103

Y , and building type Z (a variable dictating the design floor loads). Drawing upon expert104

knowledge of the structural design process, such a functional relation X = f(Y, Z) is mod-105

elled either using a set of closed-form mathematical equations or a numerical method (e.g.106

Finite Elements); in both cases the aim being to ‘mimicking’ the logical process of designing107

the structural frame as followed by practitioners in a real structural design setting. While108

such a functional relation may be pre-determined at large by the set of existing ‘hard’ rules109

a practitioner must follow by when it comes to design structural frames —i.e. as per require-110

ments set out in design/construction standards and regulations in primis— there will always111

be other factors affecting the material intensity X which are not explicitly captured by the112

rule-based model. Empirical survey studies have for instance highlighted behavioural factors113

playing a major role on how building structures are designed in practice —e.g. the practi-114

tioners’ tendency to over-engineering [26, 27, 28], or the clients’ tendency to over-specify floor115

loads requirements [29]. On a more fundamental level, there is a practical impossibility to116

explicitly model the multidimensional space, inherent heterogeneity and context-specificity117

of the real and ‘wider’ population of building structures. As such, any rule-based numerical118

modeling approach demands simplifying assumptions to be made, which is not a negative119

per se, insofar the impact of such simplifications on the accuracy of the output prediction120

is somehow benchmarked against ground-truth data, so to assure the model is wrong, yet121

useful.1 However this is very seldom the case in scientific literature of early stage carbon122

prediction tools of building structures.123

A probabilistic framework enables to bypass such a methodological limitation in that124

relations between variables are learned directly from collected ground truth data. Returning125

on the gravity frame example: the relation between material intensity X as a function of grid126

span Y and building type Z is expressed in terms of probability distributions:127

f(Y, Z) := P (X|Y, Z) (1)

that is, expressing the probability of material intensity X given that we know the grid span128

Y = y and building type Z = z returns a distribution of probabilities for X instead of a129

single, uniquely determined value x.130

Of course the likely reason why no attempts to train a probabilistic inference model from131

field data can be found in literature to date is because of the lack of a sufficiently large dataset132

1“All models are wrong, but some are useful” is a famous aphorism coined by the British statistician
George Box.
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of material quantities of real building structures. Such a dataset was finally released by the133

UK structural design firm Price & Meyers and made publicly available on their website [30]134

as part of the their commitment to the Climate and Biodiversity Emergency Declaration.135

Arguably, there exist a wide range of machine learning algorithms purposefully designed136

for prediction tasks, among which deep artificial neural networks (ANN) are standing out as137

perhaps the most important breakthrough in AI of recent years [31]. Yet, ANNs remain es-138

sentially opaque black-boxes, and hence they may be preferred as long as predictive accuracy139

is the main priority (e.g. over explainability). Conversely, probabilistic models maintain the140

same explicit representation of rule-based models on how variables relate to each other, as141

shown in Eq. (1) therefore making them easier to interpret.142

Figure 1: A simplified Bayesian Network example.

2. Proof of concept143

To provide a tangible example of how the probabilistic approach can be successfully lever-144

aged upon, the following sections describe the development and implementation of a Bayesian145

Network (BN) specifically designed as a decision support tool for inferring how (early) design146

choices influence the embodied carbon of building structures. Bayesian Networks are a par-147

ticular instance of the more general AI class of probabilistic graphical models [32], enabling148

to represent knowledge of a given domain (along with its uncertainty) via a directed acyclic149

graph (DAG). Each node in the graph corresponds to a random variable of the system being150

modelled, whereas links connecting pairs of variables represent the probability distributions151

of the variable being connected (child) conditional to the set of connecting variables (parents).152

Such distributions can be stored in a tabular format when dealing with discrete variables.153

In this case, a BN is therefore fully defined by a set of conditional probability tables (CPTs)154

and a corresponding DAG.155

Such a graphical representation, with nodes representing variables and links representing156

their probabilistic dependencies, it is a common feature of all probabilistic graphical models.157

BNs differentiate in that causal relationships between variable pairs are explicitly represented158

via directed links (e.g. unlike for Markov Random Fields) thus making them a more suit-159

able option when modelling systems where these cause-effect relations are either entirely or160

partially understood, or can be elicited from domain experts.161
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BNs can be viewed as a ‘device’ encoding knowledge about a process or system in a162

compact representation form. To use an example the reader will be familiar with, the graph163

in Figure 1-a shows a simplified BN model of the deflection process of a structural beam,164

defined by a total of six X variables whose values x were generated by repeatedly perform-165

ing a number of experimental tests on beams with different spans, Young modulus, section166

geometry and material density. In the absence of any ‘prior’ knowledge enabling us to rule167

out an existing dependency2 between pairs of variables (i.e. as shown in Figure 1-b) the full168

joint probability distribution of the model would equate to the incremental product of each169

variable’s probability distribution conditional on every other variable (chain rule):170

P (x1, ..., x6) =
n=6∏
i=1

P (xi|x1, ...xi−1) (2)

Conversely, expert knowledge tells us that Young modulus and span length are two random171

variables independent from each other, hence allowing us to rule out the existence of a link172

(statistical dependency) between the two —as well as between section geometry and mat.173

density, for that matter. This translates into a factorisation of the full joint where probability174

distributions of each variable are conditional on its parents only [33]:175

P (x1, ..., x6) =
n=6∏
i=1

P (xi|parents(Xi)) (3)

which greatly reduces the number of instantiation entries (rows) in the conditional probability176

table of each variable. The advantage of having a sparser graph with fewer links is therefore177

that a more compact representation of the full joint probability distribution of all variables178

involved it is achieved, which is what enables compression of knowledge in Bayesian Networks179

—a key features of intelligent systems [34].180

2.1. Data source and preprocessing181

In order to learn the CPT for each variable in the Bayesian Network (also called model182

parameters), a training dataset of existing building structures is required. The publicly183

available dataset released by the Price & Meyers design firm (P&M) was employed for this184

proof of concept.185

The latest dataset release [30] now in its 3rd edition, comprises more than 400 building186

structure data-points, however it was decided to use a previous yet smaller dataset version [35]187

as this latter is also reporting material quantities in addition to embodied carbon values. Out188

of the 275 individual building structure data-points contained in the older dataset version,189

only 78 were initially selected for training as they reported ‘as-built’ material quantities of190

new builds (hence excluding retrofit projects). This assured the model be trained on highly191

accurate material data measurements instead of design estimates.192

However a preliminary inspection of this high quality data-subset soon revealed the num-193

ber of as-built data-points being insufficient to cover for all the joint events expected to be194

2In probability theory, two events (variables) are dependent when the outcome (value) of one event
influences the outcome of the other event.
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observed to fill the conditional probability tables. A joint event refers to the occurrence195

in the dataset of one or more variables taking on a certain assignment value, e.g. given a196

child variable X with parents Y and Z respectively taking assignment values x, y and z, the197

CPT’s entry value P (x|y, z) is obtained as a ratio between the observations’ count of the198

event {x ∧ y ∧ z} and the event’s count of {y ∧ z}:199

P (x|y, z) = P (x, y, z)

P (y, z)
=

count(x, y, z)

count(y, z)
(4)

The absence of event {y ∧ z} in the training dataset would result in a zero-count value for200

count(y, z) in Eq. (4) therefore yielding an undefined conditional probability for P (x|y, z).201

Three mitigation measures were undertaken to prevent this:202

– The initial high quality dataset of as-built data-points was further integrated with an203

additional 55 data-points reporting estimated material quantities, broken down accord-204

ing to the following RIBA Plan of Work stages [36]: 29 stage-5; 23 stage-4; 1 stage-3205

and 2 stage-2 data-points, thus totalling up to 133 individual building project in the206

final training data-set. The resulting decrement in data quality was ameliorated by the207

bulk of additional data-points reporting material quantities estimated at RIBA stage-5,208

that is the construction stage, i.e. when only minor discrepancies are expected between209

estimated and as-built quantities of materials.210

– A range reduction was applied to some variables. For categorical variables this implied211

collapsing two values together into a single value, such as for the Basement variable,212

having values {Full-footprint; Partial-footprint; None} in the original dataset mapped213

to {True; False}, thus reducing its range from 3 to 2. For continuous variables such as214

material quantities the value range (theoretically infinite) was reduced via discretisa-215

tion. Particular attention was paid in calibrating the number of bins of each variable,216

and hence their width: while a smaller bin-width mitigates information loss due to217

discretisation, empty bins would occur below a certain threshold, thus resulting in218

unobserved events when computing CPT entries (Eq. (4)).219

– Two dummy variables were added to the model to map the six-value range of Super-220

structure type into three-value ranges. Specifically, each of the six types of superstruc-221

ture systems were classified according to their self-weight per unit of floor area into222

three ordinal values, namely: high, medium and low weight. Similarly, the six super-223

structure types were also allocated three categorical values indicating where (most of)224

concrete is located within its sub-components. A summary of how Superstructure type225

is mapped to the two dummy variables is provided in Table 1.226

The full list of variables in the final training dataset is provided in Table 2 along with the227

corresponding value ranges and values.228

2.2. Bayesian Network: model set-up229

The DAG shown in Figure 2 (alongside Table A.1 in Appendix A.1) provides an overview230

of the probabilistic dependencies among variables encoded in the Bayesian Network. A parent231
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Superstructure unit-
weight – 3 val.(s)

Superstructure type – 6 val.(s) Concrete elements – 3 val.(s)

high RC-frame Frame&Floors
high Masonry&Concrete Floors
medium Masonry&Timber None
medium Steel-frame&Precast/Composite Floors
low Steel-Frame&CLT None
low Timber-Frame(Glulam&CLT) None

Table 1: Mapping values between the variable Superstructure type and variables Superstructure unit-weight
and Concrete elements. This latter variable indicates where (most of) concrete is located within the super-
structure. The variable Superstructure unit-weight is instead a qualitative (ordinal) measure of the super-
structure’s self-weight per unit of floor area.

variable in the DAG is connected with a directed link (arrow) to a child variable, thus implying232

a probabilistic influence between the two, such for instance between the variables Basement233

and Concrete qty. (B → C). For these two, we have that a greater overall quantity of234

concrete is a more likely outcome when Basement = true instead of = false. This can be235

mathematically stated as inequality equation between the conditional probabilities of C=high236

given B :237

P (C = high|B = true) > P (C = high|B = false) (5)

An ‘ancestor’ instead is a third variable which also influences the child variable but238

it does indirectly so, mediated by the parent. For example, the variable Superstructure239

unit-weight (S∗∗) has an indirect influence on Concrete qty. mediated through the variable240

Foundations type (S∗∗ → F → C). As for the B → C link, the explanation is rooted in241

domain’s knowledge: a heavyweight superstructure, e.g. RC-frame, demands an increase242

of the foundations’ bearing capacity, hence increasing the likelihood of a certain type of243

foundation (e.g. piles instead of pads) which adds up to the odds for Concrete qty.=high.244

Formally:245

P (F = pile-caps|S∗∗ = high) > P (F = pile-caps|S∗∗ = low);

P (C = high|F = piles) > P (C = high|F = pads)
(6)

Following the same line of reasoning for the opposite outcome, Concrete=low becomes246

more likely for the event S∗∗ = low. The aim in here is to infer the conditional probability247

distribution of Concrete qty., and other materials, given a set of evidence variables such as248

Superstructure type. A detailed description is provided in subsection 2.3.249

2.2.1. Selecting variables250

A general question in designing Bayesian Networks is whether richer models are always251

to be preferred to models with fewer variables. Inclusion of any new variable requires first252

to establish the variable ‘relevance’ to the model, that is, establishing whether the variable253

‘interacts’ with others in the model and the statistical dependencies involved. For Bayesian254

Networks these interactions are explicitly represented though the DAG. To this end, some255

of the variables reported in the original P&M dataset were preliminary discharged as they256

were either deemed not causally relevant, or they were found to bear no association (lack of257

correlation) with material quantities and/or with all other variables in the graph.258
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Variable Symbol Type Unit Variable’s range & values
Masonry &
Blockworks qty.

M Ordinal m2/m2 5 values (bins):
(0-1.64); (1.64-3.29);...(6.59-8.24)

Steel (sections)
qty.

S Ordinal kg/m2 12 values (bins):
(0-13); (13-26);...(143-156)

Timber
(products) qty.

T Ordinal kg/m2 4 values (bins):
(0-67); (67-134);...(201-268)

Reinforcement
qty.

R Ordinal kg/m2 7 values (bins):
(0-30); (30-60); ... (180-210)

Concrete qty. C Ordinal kg/m2

18 values:
(320-451);
(451-582);
...
(2540-2604)

GIFA G Ordinal m2

16 values (bins):
(700-2000);
(2000-3300);
...
(20200-21500)

Foundations
type

F Categorical −

3 values:
Piled(Ground-Beams/Caps);
Mass(Pads/Strips);
Reinforced(Pads/Strips/Raft)

Concrete
elements

C∗ Categorical −

3 values:
Frame&Floors;
Floors;
None

Basement B Categorical −
2 values:
True;
False

Superstructure
type

S∗ Categorical −

6 values:
RC-frame;
Steel-frame&CLT;
Steel-frame&Precast/Composite;
Timber-frame(Glulam&CLT);
Masonry&Timber;
Masonry&Concrete

Superstructure
unit-weight

S∗∗ Ordinal −

3 values:
low;
medium;
high

No. storeys N Categorical −

3 values:
1-3 storeys;
4-6 storeys;
7-10 storeys

Cladding
type

C∗∗ Categorical −
2 values:
Masonry;
Other

Table 2: List of variables with corresponding ranges and values used to build the Bayesian Network for
querying probability distributions of material quantities. Note: these latter are normalised per unit of gross
internal floor area.

The attentive reader looking at Figure 2 will have noticed that other relevant variables259

influencing the probability distribution of material quantities are at play in addition to those260

considered here. The grid-span of the gravity frame for instance it’s known to affect material261

intensity of the superstructure [23, 22]. Soil type, and its bearing capacity, are also some262

others latent variables, known to influence the type of foundation design which in turn affects263

the amount of concrete required overall.264

While adding more ‘relevant’ variables generally improves the model fitting of the data265

—that is, its ability to make accurate and precise inference— as it is often the case, data266

required to represent such variables are either unavailable (as in this case) or unobservable.267
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Figure 2: Directed acyclic graph (DAG) of the Bayesian Network employed for the proof of concept: Design
information is encoded in the Network as evidence variables, whereas material quantities (normalised per
unit of gross floor area) and total embodied carbon are query variables to infer.

According to Koller and Friedman however, it is not necessary to include every variable that268

might be relevant [33] insofar positive as well as negative influences affecting the variable’s269

probabilities are accounted for. Let consider for example the variable Foundations type one270

more time: although the type of foundations may be negatively affected by whether the271

soil has a low bearing capacity, the probabilities already account for the fact that piled272

foundations may be needed despite a lightweight timber superstructure is bearing onto them273

(e.g. due to a high number of storeys, N):274

P (F = piles|N = 10) > P (F = piles|N = 3) (7)

This can be visualised in Figure 3, which shows the conditional probabilities found in275

the P&M dataset for Foundations type given No. storeys and Superstructure unit-weight,276

thus supporting the belief assumptions stated in eq. (7) and the first of eqs. (6) about the277

probability of piled foundations increasing with the number of storeys as well as with the278

type of gravity frame superstructure —e.g. there is less than 30% chance of piled foundations279
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being used in conjunction with a low unit-weight superstructure such as timber-frame. This280

goes up to approx. 75% when a RC-frame is chosen instead.281

Figure 3: (a) Conditional probability for the variable Foundations type given No.Storeys and (b) Foundations
type given Superstructure unit-weight. A trend in the data can be observed: the likelihood of piled foundations
increases with the No. of storeys as well as with the unit weight of the superstructure.

Figure 4: Point-biserial correlation (rpb) between the variables Basement and Concrete qty.. The correlation
trend is in line with existing findings [37].

2.2.2. Graph structure282

Probabilistic interactions among variables were drawn from expert domain knowledge for283

this proof of concept, and thus graphically depicted in the graph in Figure 2 with the use284

of links with pointed arrows. The arrows’ verse indicates the elicited causal effect between285

any two connected variables, e.g. for the variable pair S∗ − T , it is the designer’s choice286

of Superstructure type = Timber-frame(Glulam&CLT) that would ‘cause’ Timber (products)287

qty. to increase: S∗ → T , and not vice-versa.288

In principle there is no practical or theoretical reason preventing to connect variables289

in the graph without following considerations of causal nature, as long as correlations be-290

tween variables are captured. The supposed causal interaction Basement → Concrete qty.291
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underpinning eq. (5) implies that some statistical association (e.g. correlation) must also292

exist between the two variables —as it turns out to be the case by looking at the respective293

data plot (shown in Figure 4)— hence hinting at the possibility to learn the graph structure294

directly from the data [38]. Given however that the full space of existing graph structures295

grows super-exponentially with the number of variables [39], a brute-force approach of enu-296

merating all DAGs to find the one that best fits the available data it is only feasible for a very297

limited number of variables. In practice, when dealing with large numbers of variables with298

no prior casual knowledge of the data-generating process, two main groups of algorithms299

are usually employed to learn the graph structure directly from data [40]: score-based or300

constraint-based algorithms (as well as hybridisations of the two). In score-based methods,301

finding the graph structure is essentially treated as an optimisation problem, that is to find302

the DAG (or set of DAGs) for which a scoring metric (set in terms of goodness of fit of303

the data) is being maximised. In constraint-based methods instead, the aim is to identify304

independencies among variables from the data using appropriate statistical independence305

tests (e.g. Chi-square for categorical variables) so that only graph structures encoding such306

independencies are searched for. Given for example two random variables X and Y , a test307

for absolute independence involves checking whether the joint distribution P (X, Y ) is signif-308

icantly different3 from the distribution one would expect were X and Y indeed absolutely309

independent:310

P (X, Y ) ≊ P (X)P (Y )⇒ X ⊥⊥ Y (8)

or to test conditional independence between X and Y given a third variable Z:311

P (X|Z) ≊ P (X|Z, Y )⇒ X ⊥⊥ Y |Z (9)

To this end, the main advantage of structuring the DAG on considerations of cause-effect312

based on prior domain knowledge is that a sparser graph is obtained as opposed to linking313

together any pair of variables showing some correlation strength [33] thus achieving a more314

compact representation of the full joint probability distribution.315

The reason why correlation may appear between two variables that are not sharing any316

obvious link of causality grounded in expert knowledge it is usually because of a third con-317

founding variable causally interacting with the other two variables [41]. Here for instance a318

moderate negative correlation is observed in the data between the variables Steel(sections)319

qty. and Reinforcement qty. as shown in Figure 5-a, yet no plausible expert explanation320

of causality can be thought of between the two. However by isolating the following trail of321

interactions from the final graph:322

Reinf. qty.← Concrete elem.← Superstr. type→ Steel(sections) qty. (10)

it can be seen how the variable Superstructure type is a common cause to both Steel323

(sections) qty. and to Reinforcement qty. By controlling the data for the common-cause324

variable, the negative correlation disappears4 as shown in Figure 5-b, with steel sections325

3Based on a statistical significance level threshold value. The lower the threshold, the stricter the inde-
pendence test.

4The phenomenon is known in statistics as the “Simpson’s paradox” [42].
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Figure 5: (a) A moderate negative Pearson’s correlation (r = −0.422) is observed between two seemingly
unrelated material quantity variables: Steel (sections) qty. and Reinforcement qty.; (b) The correlation is
inverted after controlling for the confounding variable Superstructure type.

and reinforcement material intensities becoming positively correlated after controlling for326

Superstructure type. This was deemed enough indication to avoid placing a direct link in the327

graph between Steel (sections) qty. and Reinforcement qty.328

2.3. Making probabilistic queries329

The described BN set-up with trained parameters can finally be used to make probabilistic330

queries, that is, computing the posterior belief probability of a query variable Q (or more331

than one) taking on certain value q, or computing the probability distribution across the332

entire range of values of each Q. A query will usually involve some other variables in the333

model with observed assignments (so called evidence variables). With reference to Table 2334

and Figure 2, query variables are the five material quantities: Q ∈ {S,M, T,R,C} as well as335

the total embodied carbon variable CT , whereas the set of evidence variables will be a subset336

of the six design variables: E ⊆ {S∗, C∗∗, N, F,B,G}.337

2.3.1. Inferring material quantities338

The posterior probability distribution of each material variable Q conditional on a set E339

of design evidences, can be derived as a ratio between a joint and a marginal distribution:340

P (Q|E) =
P (Q,E)

P (E)
(11)

Considering for example the query P (c|s∗, n) to infer the probability of Concrete qty. = c341

given Superstructure type = s∗ and No. storeys = n as evidence, then the problem would be342

reduced to find the joint P (c, s∗, n) and marginal P (s∗, n):343

P (c|s∗, n) = P (c, s∗, n)

P (s∗, n)
(12)

both of which could, in theory, be derived from the full joint distribution of all variables in344

the model by ‘summing out’ (marginalising) all the other variables that are not queries nor345

evidence.346
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Such an approach would clearly requires the full joint probability table to be explicitly347

available. Enumeration of all the entries of the full joint table could in theory be performed348

via Eq (3). In reality, expanding the full joint to answer queries it is either computationally349

inefficient or simply unfeasible due to the exponential blow up of entries in the full joint350

table as the number of variables increases. For a small sized model like the one in here351

—comprising of 13 variables with a total of 84 value states (excluding embodied carbon352

variables)— a table with 940’584’960 entry rows would be required to explicitly represent353

the full joint distribution.354

A more computationally efficient approach that reduces both the number of entry val-355

ues to store, as well as the required arithmetical operations, it is the Variable Elimination356

algorithm, which was adopted here to perform inference queries for all material quantity vari-357

ables. Implementation details of how to compute the example query in Eq (12) via Variable358

Elimination algorithm can be found in Appendix A.2.359

Both approaches of brute-force enumeration or using the Variable Elimination algorithm,360

are so-called exact inference methods in that probabilities are the direct result of a finite361

set of arithmetical operations. In situations where exact inference becomes computationally362

intractable, e.g. due to the model size and/or the graph complexity, approximate methods are363

employed instead to reconstruct the queried distribution [33], thus obtaining an approximated364

estimation of the probability estimate that gradually improves as sampling proceeds. A365

Montecarlo-based approximate method was used here to infer total embodied carbon from366

the material quantity distributions obtained via Variable Elimination, as described in the367

following subsection.368

2.3.2. Inferring embodied carbon369

For each material quantity variable Q in the P&M dataset used here to build the training370

dataset, a corresponding embodied carbon variable CQ covering life cycle stages A1-A5 [43]371

was also provided (see DAG in Figure 2). As common in industry practice, the values cQ372

of these embodied carbon variables CQ were obtained by multiplying each material quantity373

Q = q with a relevant carbon coefficient vQ, that is, a multiplier estimated using life cycle374

assessment methodology (LCA) thus expressing the global warming potential in kgCO2e per375

declared unit of material — e.g. unit of mass for Steel (section) qty. or unit of wall area for376

Masonry & Blockworks qty.:377

cQ[kgCO2e ] = q[kgmat.] · vQ[kgCO2e/kgmat.];

cQ[kgCO2e ] = q[m2
mat.] · vQ[kgCO2e/m

2
mat.]

(13)

Established the existence of this linear proportionality relation, cQ ∝ q, there is no intrinsic378

uncertainty as such about the embodied carbon of each material reported in the dataset (cQ)379

since their probability distribution is effectively matching the distribution of the correspond-380

ing material quantity:381

P (CQ = cQ|Q = q) = P (Q = q|E) (14)

where the assignment values cQ in Eq.(14) matching each probability entry table of P (CQ|Q)382

can be derived straightforwardly via Eq. (13). According to the authors of the P&M dataset,383

the original carbon coefficients vQ used to build the dataset were drawn from the ICE database384

[44] however the actual values for each material for each data-point were not explicitly re-385

ported, therefore they were back-calculated here for the purpose of this proof of concept by386
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performing a linear regression of all the {cQ, q} value pairs in the original dataset (see Ap-387

pendix A.3). Arguably, a more holistic approach to account for carbon intensities embodied388

in each material would be through a dedicated probabilistic model [45]. This is especially389

true if considering the degree of uncertainty surrounding carbon coefficients of construction390

materials [46, 47]. While superior, such an approach would entail integrating the proposed391

(probabilistic) model to infer material quantities with a probabilistic assessment models of392

each material’s life cycle, thus requiring LCA domain expertise and a data collection of ma-393

terials’ processes and flows for model training: two kind of resources not always available to394

structural design firms. On the other hand, structural designers can more comfortably rely395

for their embodied carbon assessments on an ever-increasing number of county/region-specific396

databases of pre-compiled single-valued carbon multipliers and on a proliferation of product-397

specific EPDs5 issued by materials’ manufacturers —a single-valued approach this that is also398

endorsed by professional bodies [49]. Notwithstanding the higher prediction accuracy that399

could be achieved by accounting for the variability of carbon coefficients, the single-valued400

approach adopted here is ultimately instrumental to enable a comparison between predicted401

embodied carbon and the corresponding ‘true’ value in the P&M dataset (section 3).402

Having obtained (a probability distribution of) the embodied carbon contribution of each403

material variable via Eq (14), the probability distribution of total embodied carbon, CT ,404

conditional on these variables is:405

P (CT |C1, ..., CQ, ..., C5) where Q ∈ {S,M, T,R,C} (15)

and it can be computed via Montecarlo sampling. Specifically, five population samples of406

cQ values are randomly drawn (one for each variable CQ) using as probability weighting the407

previously found distributions P (CQ|Q). Values of the five populations so obtained are then408

combined together into a single population c of total embodied carbon values cT :409

cT =
n=5∑
Q=1

cQ (16)

The discrete probability distribution (histogram) of total embodied carbon CT in Eq. (15)410

is then constructed by inspecting the frequency of occurrence of cQ values in the population411

dataset c generated via Eq. (16):412

P (CT = cT ) =
count(cT )

|c|
(17)

As such, the end-to-end process of querying the total embodied carbon probability dis-413

tribution P (CT |E) given one, more than one, or no design variables as evidence, it is carried414

out by first inferring distributions of material quantities P (Q|E) via Variable Elimination415

and then applying Eqs. (13) to (17).416

5Environmental Product Declarations [48].
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3. Numerical results417

The described probabilistic framework for material (quantities) intensities and resulting418

embodied carbon of building structures has been implemented into a computer application419

using Python programming language and it was used to generate all the numerical results420

described in this section. Implementation of the Variable Elimination algorithm, required for421

exact inference of material quantities, relies upon the pgmpy library by Ankan and Textor422

[50]. To enable repeatability of results, a repository containing all datasets and the Python423

source codebase is made available online [51].424

Figure 6: The inferred probability distribution of total embodied carbon CT becomes more accurate and
precise as evidence updates. The gap in accuracy between predicted (most likely) carbon value, cmode,
and true value, ctrue, is narrowing as more design information is cumulatively provided for each query
update as follows: (a) No design information; (b) No. storeys = between 1 and 3; (c) Foundations type
= Mass(Pads/Strips); (d) Superstructure type = Timber-Frame(Glulam&CLT); (e) Building size (GIFA) =
3390 m2; (f) Basement = false.

3.1. Accuracy and precision425

In order to visualise how prediction accuracy of the probabilistic model improves with426

updating evidence, Figure 6 shows probability distributions (gamma-fitted histograms) of427

total embodied carbon, P (CT |E), obtained by running a series of queries with an increasingly428

larger set E of design evidence variables, starting with no evidence at all: E = {}. Every time429

a design variable is added to the evidence set, its assignment value is matching the design430

value of a reference individual data-point picked from the training dataset. A reference design431
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data-point with a low embodied carbon value, CT = ctrue = 136.4 kgCO2e/m
2 (dashed line432

in Figure 6) was chosen as it lies far from the mode (most likely value: cmode) of carbon433

distribution initially inferred with no evidence at all: P (CT ). A low probability for ctrue434

is inferred by this initial query (Figure 6-a), yet as the carbon probability updates with435

more evidence (design) variables, the distance between true carbon value and inferred mode436

value narrows down, i.e. prediction accuracy improves. Of note, the accuracy distance437

∥cmode−ctrue∥may not reduce incrementally with each new piece of evidence because (all other438

things being equal) a carbon increase may actually be a more likely outcome depending on439

the evidence value being assigned —such a sensitivity of prediction accuracy to the evidence440

ordering can be visualised in Figure 7. Nonetheless a clear trend in improved prediction441

accuracy can be observed: with reference to Figure 6, the initial deviation between true442

value and inferred value without prior evidence ∥cmode − ctrue∥ = 277 kgCO2e/m
2 narrows443

down to 72 kgCO2e/m
2 when the belief probability of carbon is fully updated with values of444

five design variables. The probability distribution given Cladding is not shown in Figure 6445

for the sake of formatting the Figure with six subplots instead of seven.446

It is worth remarking that the ‘true’ embodied carbon value of the reference design data-447

point may not be an accurate representation of the real built project in that it was derived448

using single-valued carbon coefficients (see section 2.3.2) which provide an average estimate of449

carbon embodied in declared units of material. Nonetheless, as we aimed here at evidencing450

how prediction accuracy is improving with additional knowledge (evidence) of building design451

variables being fed to the probabilistic model, the closeness of prediction to the ‘true’ carbon452

value would improve regardless of the carbon coefficients being used insofar such design453

variables and materials carbon coefficients are independent (e.g. the number of storeys bears454

no influence on the energy mix supplied to manufacture steel sections, or vice-versa).455

In addition to accuracy, precision also improves with updating evidence. With reference456

to Figure 6, the 95% confidence interval around the mean of the probability distribution457

(CI95%) is around 465 kgCO2e/m2 for P (CT ) i.e. when no design information is given. This458

reduces by half to 232 kgCO2e/m2 for P (CT |N,F, S∗, G,B) i.e. when design information on459

five design variables is provided. A graphical overview of the probability update of material460

quantities can be found in Appendix A.4.461

3.2. Model testing462

In order to asses the model’s extent to generalise on new data, the inference exercise463

previously described in subsection 3.1 was performed on a sample dataset of unseen building464

design data-points. This testing data-set was assembled by randomly selecting six design465

data-points from the preprocessed P&M dataset. All six design variables N,F, S∗, G,B and466

C∗∗ were considered this time for evidence (i.e including Cladding type) hence yielding to467

26 = 64 individual queries per single data-point, that is a total of 384 inference queries. To468

get a quantitative indication of how prediction accuracy improves with number of evidence469

variables, the resulting absolute percentage errors (∥cmode − ctrue∥/ctrue) were clustered to-470

gether based on the number of evidence variables being provided for querying, hence going471

from no evidence: |E| = 0, to the full evidence set: |E| = 6. The mean absolute percentage472

error (MAPE) of each cluster is shown in Figure 8-a. Here it can be seen how the same trend473

in accuracy improvement —that was previously observed on a single data-point picked form474

the training dataset— it is also holding on a sample of unseen data. Specifically, the mean475
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Figure 7: Sensitivity of prediction accuracy to the ordering of evidence (design) variables available for query-
ing: (a) Hasse diagram [52] showing all possible evidence variables’ orderings, starting with no evidence on the
far left, E = {}, to ‘full’ evidence on the far right, E = {N,F, S∗, G,B}; (b) Estimation error ∥cmode− ctrue∥
for each evidence variables set, represented as a node in the Hasse diagram. The bolt line indicates the
ordering of evidence variable sets, E, followed to generate the query results shown in Figure 6.

absolute prediction error of total embodied carbon reduces from about 43 % when no design476

evidence is given, down to circa 27 % given information for all six design variables. Notably,477

the spread of prediction error also tends to narrow down with increasing design information,478

as shown in Figure 8-b, where the amount of variation of the prediction error is reported in479

terms of its standard deviation.480

3.3. Remarks and discussion481

Whilst a prediction accuracy of 73 % might seem unimpressive at a first look, it is rather482

remarkable that it has been achieved by using as few as six variables to characterise the483

entire space of design features, covering for the whole building structure, both above- and484

below-ground. In the best knowledge of the authors, this is the first study of an early485

stage design tool with such a wide prediction scope that is also benchmarked for accuracy486
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Figure 8: (a) Reduction trend of the mean absolute percentage error (MAPE) of predicted total embodied
carbon for a sample population of unseen building design data-points; (b) Corresponding standard deviations
of the absolute percentage errors.

against as-built material quantities. It is also worth to remind, the main aim of this proof of487

concept has been primarily set to showcase the untapped potential of employing probabilistic488

graphical models as an effective early design tool for inferring material quantities (and hence489

embodied carbon) of whole-building structures. Existing research works reporting findings on490

(or describing tools for) characterisation of material/carbon intensities are ‘static’ in nature,491

whereas the level of accuracy of a probabilistic data-driven model is scalable, hence only492

limited by the volume of data-points it is being trained on and number of relevant design493

variables it is accounting for.494

Furthermore the described Bayesian Network framework can be straightforwardly applied495

to solve the inverse problem of inferring design parameters given a target carbon intensity,496

e.g. inferring the mostly likely number of storeys or superstructure type, or any other variable497

of design, setting a certain embodied carbon target value for the evidence variable (so called498

diagnostic modality in the relevant AI literature). In other words, by simply swapping the499

sets of query and evidence variables would suffice for using the exact same BN architecture500

as a generative design tool instead of an inference tool.501

Lastly, as suggested by one of the reviewers, the described predictive framework could502

be used to develop predictive benchmarks of building material quantities, to be used for503

setting material efficiency (and whole life carbon) policy thresholds, albeit a coordinated504

effort would be preliminary required in order to collect and curate training datasets that are505

representative of the whole (e.g. county-wise) building design population.506

4. Study limitations507

Having showcased the untapped potential of probabilistic models to the specific prediction508

task of inferring material quantities and related embodied carbon in building structures, the509
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main practical barrier for larger and more powerful models remains of course the availability510

of ground truth data required to train the model parameters. Despite the existing calls for511

more collaborative efforts to build shared repositories [53, 54], design firms are historically512

reluctant in open sourcing their in-house databases of past construction projects (with some513

rare and laudable exceptions such as Price & Meyers). Climate change is however a global514

crisis affecting us all, which can only be tackled effectively with concentrated joint efforts515

from all stakeholders involved.516

5. Conclusions517

Due to the major impact of building construction on climate change, recent research efforts518

have been focused to identify strategies and tools to inform and help design practitioners519

understanding (and hence mitigating) how their early design choices impact the embodied520

carbon of their service product, namely, building structures.521

Such an effort has resulted in most (if not all) approaches, drawn from existing rele-522

vant literature on the subject, primarily focused on modeling the structural design process523

in a deterministic fashion, often leveraging on closed-form equations or numerical (Finite524

Element informed) models to generate inventories of material quantity data from which a525

metric of embodied carbon can then be estimated. While advantageous on many aspects,526

such methodological approaches relying on synthetically generated sets of data are rarely527

benchmarked for accuracy of prediction against ground truth field data of ‘as-built’ material528

quantities, hence leaving potential room for doubt regarding their ability to properly capture529

the complexities involved in the design and construction process of building structures, which530

is essential in order to provide design practitioners with a tool able to accurately predict the531

carbon eventually embodied in the built manufact.532

Thanks to the release in 2022 of a relatively large dataset of real structural building533

projects by the UK firm Price & Meyers, it was possible here to investigate the feasibility534

of employing a probabilistic graphical model trained directly on collected material quantity535

data (mostly of which were from ‘as built’ measurements), therefore enabling to infer how536

early design choices influence the embodied carbon of building structures accounting in a537

natively robust and automated way for the inherent variability and heterogeneity of the538

target population being modelled.539

This was achieved by building, running and testing a proof-of-concept Bayesian Network540

model employing a total of six ‘explanatory’ design variables to represent the full set of541

characteristic features usually considered at early design stage, namely: (I) The type of542

superstructure, (II) number of storeys, (III) type of cladding, (IV) the gross internal floor area543

(as a proxy of building size), (V) the type of foundation design and (VI) the presence/absence544

of a basement.545

Despite the ‘coarseness’ of the model (relying on just six design variables, at most) when546

tested on a sample of unseen data-points, it was able to score a mean average absolute predic-547

tion error of 27 %, meaning that it was able to infer real quantities of all structural materials548

in the whole structure (both above- and below-ground) and carbon embodied therein with a549

prediction accuracy of 73 %, which is a rather remarkable result if considering that as fewer550

as six explanatory variables were used for evidence. Above all, introducing a ready-to-use551

tool for predicting material quantities and embodied carbon was a secondary objective of this552
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study, with the primary aim being instead to showcasing the feasibility of approaching the553

problem with a probabilistic method of inference, so to bypass the inherent model fragility554

of deterministic rule-based methodologies.555
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Appendix A.716

Appendix A.1. Parent-child relationships among variables717

Variable’s parent(s) → Variable → Variable’s child(ren)
Cladding type;
Superstructure type

Masonry & Blockworks qty. None

Superstructure type Steel (sections) qty. None
Superstructure type Timber (products) qty. None
Concrete elements;
Foundations type

Reinforcement qty. None

Foundations type;
Concrete elements;
Basement

Concrete qty. None

No. storeys;
Superstructure unit-weight

Foundations type
Concrete type;
Reinforcement qty.

Superstructure type Superstructure unit-weight Foundations type
Superstructure type Concrete elem. Reinforcement qty.
None Basement Concrete

None Superstructure type

Masonry & Blockworks qty.;
Timber (products) qty.;
Steel (sections) qty.;
Concrete elem.;
Superstructure unit-weight

None No. storeys Superstructure unit-weight
None Cladding Masonry&Blockworks qty.

None GIFA

Masonry & Blockworks qty.;
Timber (products) qty.;
Steel (sections) qty.;
Concrete elem.;
Superstructure unit-weight

Table A.1: Probabilistic dependencies encoded in the Directed Acyclic Graph shown in Figure 2.
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Appendix A.2. Variable elimination718

Variable Elimination is an algorithm to perform exact inference in probabilistic graph-719

ical models such as Bayesian Networks, first formalised by Zhang and Poole [55]. Consid-720

ering the specific problem at hand: given a conditional probability query P (Q|E), with721

E ⊆ {S∗, C∗∗, N, F,B,G} a subset of evidence variables (i.e. design choices) and Q ∈722

{S, T,R,C,M} a material quantity variable, the Variable Elimination algorithm involves an723

alternation of ‘joining’ factors ϕ (also termed potentials) and ‘summing out’ (or marginalise)724

variables. The initial factors are the CPTs encoding the Bayesian Network; with ref. to the725

variables’ symbols in Table 2, initial factors are:726

P (S∗);P (C∗∗);P (N);P (B);P (G);P (T |S∗, G);P (S|S∗, G);P (S∗∗|S∗);

P (C∗|S∗);P (F |N,S∗∗);P (R|C∗, F,G);P (C|C∗, F, B,G);P (M |S∗, C∗∗, G)
(A.1)

Assuming the query P (C|s∗, n) to infer the probability distribution of Concrete qty. given727

Superstructure type = s∗ and No. storeys = n as evidence, the relevant (unobserved) vari-728

ables in the network are eliminated following a certain ordering, e.g for variables ordering729

B,F,C∗, S∗∗, R and G, the operations’ order is:730

1. join ϕ(B) and ϕ(C), then sum out B:731

P (C,B|C∗, F,G) = P (C|C∗, F, B,G)P (B)

ϕ1 =P (C|C∗, F,G) =
∑
B

P (C,B|C∗, F,G) (A.2)

2. join ϕ1, ϕ(F ) and ϕ(R), then sum out F :732

P (C,F,R|C∗, n, S∗∗, G) = P (C|C∗, F,G)P (F |n, S∗∗)P (R|C∗, F )

ϕ2 =P (C,R|C∗, n, S∗∗, G) =
∑
F

P (C,F,R|C∗, n, S∗∗, G) (A.3)

3. join ϕ2 and ϕ(C∗), then sum out C∗:733

P (C,R,C∗|n, S∗∗, s∗, G) = P (C,R|C∗, n, S∗∗, G)P (C∗|s∗)

ϕ3 =P (C,R|n, S∗∗, s∗, G) =
∑
C∗

P (C,R,C∗|n, S∗∗, s∗, G) (A.4)

4. join ϕ3 and ϕ(S∗∗), then sum out S∗∗:734

P (C,R, S∗∗|n, s∗, G) = P (C,R|n, S∗∗, s∗, G)P (S∗∗|s∗)

ϕ4 =P (C,R|n, s∗, G) =
∑
S∗∗

P (C,R, S∗∗|n, S∗, G) (A.5)

5. join ϕ4 and ϕ(G), then sum out G:735

P (C,R,G|n, s∗) = P (C,R|n, s∗, G)P (G)

ϕ5 =P (C,R|n, s∗) =
∑
G

P (C,R,G|n, s∗) (A.6)
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6. sum out R out of ϕ5:736

P (C|n, s∗) =
∑
R

P (C,R|n, s∗) (A.7)

Note how not all unobserved variables need to be eliminated. A variable is irrelevant for737

elimination if it is not an ancestor of the query variable or evidence variables, i.e. (T, S, C∗∗
738

and M for the above query). Worth also of note: the elimination ordering has an impact739

on the algorithm’s complexity, and while computing the optimal ordering that minimises the740

amount of arithmetic operations is an NP-hard problem, there are fairly efficient heuristics741

that can be used, such as Min-fill, that is, picking the variable at each elimination round742

that generates the smallest factor.743
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Appendix A.3. Embodied carbon coefficients744

Figure A.1 shows the linear regression coefficients vQ between material quantity values q,745

and corresponding embodied carbon values cQ of data-points drawn from the P&M dataset:746

cQ = vQq (A.8)

These slope coefficients represent the equivalent carbon factors vQ of structural materi-747

als, from cradle to practical completion: v
(A1−A5)
Q = v

(A1−A3)
Q + v

(A4−A5)
Q and were used in748

Eq.(13) here to derive the probability distribution of ‘upfront’ embodied carbon, P (CQ|Q), for749

each material variable Q. Values are: vSteel(Sections)=1.5981; vReinf.=2.1293; vConcrete=0.1298;750

vTimber(Prod.)=0.5247; vMasonry&Blockw.=42.9874. For some materials like structural steel sec-751

tions and steel reinforcement a perfect fit was found (r2 = 1.0) whereas some variability can752

be seen for timber products and masonry & blockwork, presumably due to different (context753

specific) carbon coefficients used for different building project data-points reported in the754

dataset.755

Figure A.1: Linear regression between material quantity variables and corresponding embodied carbon vari-
ables in the P&M dataset for life cycle stages A1-A5.
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Appendix A.4. Probability distributions of material quantities756

Figure A.2: Probability distributions of material quantities Q for the carbon queries shown in Figure 6. The
top row shows inferred distributions given no evidence; the bottom row shows instead the same distributions
given evidence of five design variable: N,F, S∗, G and B. The true value for each material quantity, qtrue, is
reported at the top of each column. Note: ticks values on the horizontal axes indicate the mid-value of the
bins —ranges for each bin are reported in Table 2.
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