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Abstract—The advancement of sophisticated communication
technologies and robust computing systems has unlocked op-
portunities for new applications across various domains. While
these applications promise enhanced convenience and improved
living standards, they also raise a critical concern regarding the
trade-off between convenience and environmental sustainability.
This paper addresses this concern by investigating sustainable
resource management, employing a digital twin approach to
minimise CO> emissions in edge computing systems. Specifically,
our aim is to reduce the amount of CO> emissions by optimising
the allocation of computing and communication resources. This
includes optimising transmit power, adjusting the clock speed
for task processing, and making optimal decisions regarding
task offloading. To tackle this complex optimisation problem,
we employ an iteratively alternating optimisation algorithm.
Through extensive simulations, we illustrate the efficacy of our
proposed solution in not only mitigating CO> emissions but
also optimising resource allocation, thereby contributing to both
environmental sustainability and technological efficiency.

I. INTRODUCTION

Unlike traditional methods that often involve sending data
to distant data centers for processing, mobile edge computing
(MEC) brings the computing power closer to where the data
is generated [1]. This proximity results in faster processing
times and quicker responses, making MEC particularly well-
suited for applications that require immediate action, such as in
factories, transportation systems, and immersive technologies
[2], [3]. However, alongside its immense promise, MEC also
presents technical challenges that warrant careful consideration
and innovative solutions [4]. These challenges span various
aspects of MEC implementation, including but not limited
to, efficient resource management, seamless integration with
existing infrastructure, and ensuring robust security protocols
to safeguard sensitive data [5]. Among these challenges,
the optimal design of joint communication and computing
resource allocation stands out as a primary research focus [6]—
[9].

In [6], a scheme for joint task offloading and resource allo-
cation aimed at minimising total processing delay in Internet
of vehicle (IoV) systems was proposed. The scheme optimised
task scheduling, channel allocation, and computing resource
allocation for the vehicles, aiming to enhance overall system
efficiency. Additionally, a solution for distributed resource
optimisation was introduced in [7] to address fairness-aware
latency minimisation among users in MEC systems assisted

by digital twin (DT) technology, which optimised various
communication and computation variables, such as transmit
power, bandwidth allocation, task offloading portions, and
processing rates of user equipment, through both centralised
and distributed optimisation approaches. Furthermore, the DT
approach was also employed in [8] to model the computing
capacity of physical MEC systems. An iterative algorithm was
developed to optimise transmit power of IoT devices, user
association, intelligent task offloading, and estimated CPU
processing rates. Similarly, in [9], a DT framework for IoT
networks was proposed, with unmanned aerial vehicles (UAVs)
serving as flying MEC servers. These UAVs support on-the-
fly task offloading, addressing end-to-end latency minimisation
challenges. Overall, the research focus on resource allocation
in MEC systems has garnered attention due to various techni-
cal challenges. However, there are still open issues to explore
in these areas, including understanding the environmental
impact of communication and computing systems, managing
the trade-offs between system budget, computing capacity,
quality-of-service (QoS), quality-of-experience (QoE), and re-
ducing the carbon footprint released into the environment.

In the realm of sustainable computing, an emerging focus
lies in the development of carbon-aware edge computing
systems. These studies are dedicated to devising efficient
solutions aimed at optimising resource management and min-
imising carbon footprint [10]-[14]. For instance, a sustainable
resource management framework proposed in [10] leveraged
deep reinforcement learning (DRL) models to reduce energy
consumption and CO- emissions. Similarly, in [11], an optimal
task scheduling and offloading solution was introduced to
diminish carbon footprint within the realm of edge computing,
employing a graph-based reformulation to tackle a mixed in-
teger linear programming problem. Moreover, research delves
into more intricate issues such as the joint machine learning
(ML) task offloading and carbon emission rights purchas-
ing problem, as discussed in [12]. Here, the two-timescale
Lyapunov optimisation technique was utilised for optimal
decision-making. Similarly, [13] proposed a DRL-based edge
computing management strategy aimed at minimising long-
term operational costs and promoting low-carbon edge com-
puting. Furthermore, [14] presented a Lyapunov optimisation-
based solution to reduce carbon emissions in computation-
intensive tasks within queuing-aware network models. Overall,



sustainable edge computing represents a significant research
direction with direct implications for a global issue — reduc-
ing carbon footprint in advanced computing systems. Recent
efforts in this area have been directed towards optimal designs
of resource allocation solutions to minimise CO5 emissions
effectively.

Drawing from the preceding discussions, this paper presents
a CO, emission-aware edge computing model, integrating DT
technology. The primary aim is to minimise the maximum
potential release of COy emissions during the execution of
computational tasks. The formulated problem accounts for
crucial attributes inherent to MEC-based systems, including
transmit power, clock speed of physical devices, energy budget
of ToT devices, and task delay tolerance. Addressing this
complex challenge is achieved through the implementation
of an efficient alternating optimisation algorithm. Subsequent
section presents the system model and the formulation of the
optimisation problem.

II. SYSTEM MODEL AND PROBLEM FORMULATION
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Fig. 1: An illustration of the MEC-based Internet of things
systems.

In this paper, we consider a single base station, which
is equipped with multiple antennas (L > 0) and associated
with an edge server to process the ofloaded tasks from IoT
devices. There are M single-antena IoT devices in the system
denoted by the set of M = {1,..., M }. An illustration of the
considered system model is displayed as Fig. 1. A computa-
tional task generated at the m-th IoT device is modelled as
Jm = (Sm, Crm, D2, where S,, is the size of the task, C,,
is the required CPU cycles to process the task, and D} is
the delay tolerance of the task. Due to limitations in terms
of computing capacity and energy budget of constrained IoT
devices, the m-th IoT device has to decide whether to offload
the task to MEC or not, which is modelled as a binary variable
am = {0,1}. Specially, when «,, = 1, the computation task
is ofloaded to the MEC; otherwise, it is processed locally at
the m-th IoT devices.

A. Representations of DT-enabled Edge Computing Systems

DT has recently emerged as a promising technology to
harness the potential of MEC systems, garnering significant
attention from researchers in the field [8], [15], [16]. DT
can be effectively utilised in MEC-based systems by virtually
representing the computing capacity of physical devices, such
as IoT devices and edge servers, enabling optimal decision-
making for efficient control and management. In this paper,
we adopt the assumption that DT is leveraged to compre-
hensively control and manage the entire physical system.
To achieve this, the DT-enabled edge server is modelled as
follows: DTy = (f2, %, o), where fO (cycles/second) is
the estimated clock speed of the edge server at DT, fo is the
deviation between the estimate and the real value of MEC’s
clock speed.

Regarding the m-th IoT device, its DT model is given by
DT,, = (fm, fm,pm,am), where f,, fm are the estimated
and the deviation value of the clock speed of the IoT device,
respectively. We assume that the necessary infrastructure is
fully implemented to facilitate real-time interactions between
the DT model and the physical system for data collection and
remote control [17].

B. Wireless Transmission Model

Wireless connections between the base station (BS) and the
m-th ToT device are established to facilitate communication.
The channel vector h,, € CL*! represents the connection
between the BS and the m-th IoT device and is expressed
as h,, = \/ﬂflm, where g,, encompasses the large-scale
channel coefficient, accounting for factors like pathloss and
shadowing, while h,,, follows a small-scale fading distribution
of CN(0,I). The received signal vector at the BS is repre-
sented as an L x 1 matrix, expressed as

M
Y=Y hpny/Dmsm + 1y (1)
m=1
Here, p,, denotes the transmission power of the m-th de-
vice, s,, represents the zero-mean and unit-variance Gaus-
sian information message from the m-th IoT device, and
n; ~ CN(0,NoI.) signifies the additive white Gaussian
noise (AWGN) encountered during data transmission, where
Ny denotes the noise power. As a result, the transmission rate
(bit/s) of wireless transmissions is calculated as

pm||hm||2 >

_— 2
Z,.(p) + No @

Rm(p) =B logQ <1 +
H 2
where Z,,(p) = Zﬁim % is the interference power.
Then, the transmission delay (seconds) for task offloading
from the m-th IoT device to the edge server is calculated as

amS77L

Dix(p) = R’

3

C. Processing Delay Models

The processing delay of the computational task at the m-
th IoT device is determined by the offloading decision, the



required CPU cycles of the task, and the actual clock speed
of the IoT device. This delay can be expressed as:
DigT(am,fm):w' 4)
f’"l, + fm
Similarly, the processing delay of the task offloaded to the
edge server is expressed as

am, Cm
DMEC (qp,, f2) = : (5)

I
Consequently, the end-to-end (e2e) delay of the offloaded
task from the m-th IoT device consists of the local processing
delay, wireless transmission delay, and the edge processing
delay, defined as

Dm(a’"H P, f) = Dif,’,T(am, fm) + D::l((p) + D%Ec(ama fgl) (6)
D. Energy Consumption Models

To execute local processing and task offloading through
wireless connections, IoT devices consume energy for these
operations. Hence, the total energy consumption (measured in
joules) of the m-th IoT device comprises the energy expended
on local processing (E;F) and the wireless transmission (E7),
expressed as:

E’m(am7p7 f) = Efrg(am7 fm) + Efnm(a"“p)

_ _ 2 pmamSm
=0m(1 — am)Ci(fin) +7Rm(p) )

where 6, is the parameter for computation energy consump-
tion of the m-th IoT (Watt.s?/cycle?).

Similarly, the energy consumption for computation at the
MEC is given by

E’V(')Vl(am7f) = Qoamcm(fgl)Q, (¥

where 6 is the parameter for computation energy consumption
of the MEC server.

(N

E. CO9 Emissions Model

As IoT devices and edge servers actively participate in
computing and communication tasks, the energy expended
during these operations translates into CO2 emissions, con-
tributing to environmental impact. The environmental impact
of computing and communication technologies is multifaceted,
encompassing not only the direct emissions from energy usage
but also the indirect impacts stemming from manufacturing,
infrastructure, and electronic waste. Deriving the carbon emis-
sion amount involves navigating through various complex
processes, yet a broad estimation can be attained by [10].

&m (@ D) = NCtE | B0, . £) + Ef, (@, )], ©)

where &, is carbon emission (kg COs), C1g is carbon intensity
of electricity (kgCOo/kWh), and 1 = 2.77778¢~7 used to
convert energy consumption unit from Joule to kWh. The
amount of Cig differs across regions, and for the purposes
of this paper, it stands at 182 gCO2/kWh for the London area
[10].

F. The Optimisation Problem

This paper focuses on minimising the maximum potential
CO, emissions associated with processing computational tasks
within the network, taking into account specified delay require-
ments, energy constraints for IoT devices, and the computing
capacity of the edge server. Consequently, the optimisation
problem addressed in this study is formulated as follows.

min max{&,(a, p,f)}, (10a)
a,p,f Vm

s.t. Dy (@, p, £) < DI2* Vm (10b)

E,(am,p,f) < EN? VYm, (10c)

Ry (p) > B2 Ym, (10d)
M

> amfh < Faax, (10e)
m=1

am € {0,1},Ym. (10f)

As outlined in (10), constraint (10b) represents the delay
requirement for each computational task. Constraints (10c) and
(10e) define the energy budget allocated to IoT devices and the
computing capacity available at the edge server, respectively.
The quality of service (QoS) requirement for the wireless
transmission link is specified in constraint (10d). Lastly, con-
straint (10f) pertains to the binary decision regarding task
offloading.

III. PROPOSED SOLUTIONS

The problem (10) is evidently a mixed-integer nonlinear
programming (MINLP) problem, posing significant computa-
tional challenges for direct solution. Compounding the com-
plexity are the strong coupling between binary and continuous
variables, exemplified by E,,(am,p,f), Tm(am,p,f), and
non-convex constraints such as (10b) and (10c). To address
these complexities, we introduce an alternating optimisation
approach tailored to tackle this challenging problem [18]. In
order to solve the problem (10) with the alternating approach,
we consider three subproblems, including optimal transmit
power control, optimal the estimated clock speed, and optimal
task offloading decisions. The subsequent subsections detail
the development of our proposed solution.

A. Optimal Transmit Power Control

To begin, we address the optimal transmit power problem.
In order to find the most efficient power control for wireless
transmissions from the m-th IoT devices to the BS, we
establish the following optimisation problem.

min max{fm(a(i),p, f(i))}, (11a)
plf®,a® ¥Vm

s.t. Dy, (o) p £0)) < Dmax (11b)

Ep (@) p, £0)) < EmaX vy, (11c)

R, (p) > R2™ ¥m, (11d)

As we can see from (11), the objective function and
constraints (11b), (11b), (11b) are non-convex. Therefore, we
process these constraints by convexifying the transmission rate



function, the delay and the energy expressions. Firstly, we
address the non-convex transmission rate function because it is
the main component of transmission latency as well as energy
computation of communucations. To do this, we apply the
following inequality [19]:

n(1+5)>u—2 —wy, (12)

Yy T
where u = ln(1—|—§> +2:5 >0, v = % > 0, and
w= (Hy)_ > 0. with > 0,y >, and (Z,7) are the feasible
point of (z,y) into (2) with 2 = pp,|[hm|[2 Z = &) |[hu||2,

y = Zn(p) + No, and § = Z,,(p?) + Ny. As a results, the
transmission rate R,,(p) can be approximated as follows

Ry (p) > % [u— % —wy] £ RY(PY), 13
where
. <1+ Pl 1B | ) L 2
Zn(PD) +No | p& lhl|2 + T (p®) + No
(P I 1)*
P B2+ T () + No
P [ |2

W B2 + L (p®) + No) (T (pD) + No)

Consequently, the constraint (11d) is now equivalent to the
following constraint
R (pW) > Rmin vy 4, (14)
To deal with (11b), we introduce variables r = {7, }vm >
1/ Rg,i)(p(i)). At the i-th iteration, the constraint (11b) can be
expressed as follows.
(@) (@)
1 - m Cm m C’ﬂl
((4)0571 + o SmTm + Ooz)iAO Dfﬂnax’
m = fm" =1

m m m

(15)

which is a convex constraint under the variables of p.
Similarly, we apply the introduced variables r to approxi-

mate E,, (o) PF )) in (10c) as follows.

O (1 — o),

However, (16) is still not a convex constraint. Therefore, we
apply the following inequality to convexify (16).

(FSN2 4 prrmald) S, < ERa - (16)

(17

By substituting x = p,,, T = pgn),y =Tm,Y = rfn), we can

equivalently express (16) as the following convex constraint.

B (@, p,£0) = 0,,(1 — al))Con (£5))?
() i) (i)
OémSm T'm m max
+ = (mpiﬁp(i)rﬁ”) Emx (18)
DPm rm

Consequently, we have successfully transformed the prob-
lem (11) into a convex problem to solve at the i-th iteration

as follows.

i (#) (@)
p|fr(%171r;m n\}ax{g (@@ p, £}, (19a)
s.t. (15),(18),(14), (19b)

where fm (o p, £f0)) = E,(,i)(am,p,f)nCIE. The problem
is now can be solved efficiently with the well known CVX
package.

B. Clock Speed Optimisation

The second subproblem solved in the alternating-based
solution is the clock speed optimisation problem. In this sub-
problem, we solve for the optimal adjusting of the computing
resource of the IoT devices and the edge server to execute the
computational tasks. Given (p(?, (")), this subproblem finds
the optimal clock speed, (i.e., f). The optimisation problem is
expressed as follows.

min max{fm(a(i), p, )}, (20a)
flp,a® Vm

s.t. Dy (@, p@ ) < DRy (20b)

Epn(a®,p®,£) < B, vm, (20¢)

(10e), (10f). (20d)

As observed in problem (20), the energy consumption expres-
sion is quadratic in terms of f, while the e2e delay expression
is a combination of reciprocal functions involving the variables
f. Consequently, problem (20) is a convex program with
respect to the variables (f,,, f%,¥m), rendering it solvable
using the CVX package.

C. Task Offloading Decisions Optimisation

Lastly, the optimisation of task offloading decisions ad-
dressed. Given p(®,f()  this subproblem aims to identify
the optimal task offloading decisions, represented by «. The
optimisation problem can be expressed as follows.

min  max{&n,(a, p@, £O)}, (21a)
alp® £® Vm
s.t. Dy (o, p@, £0)) < DBy, (21b)
B, ( O p@ ) < Emax vy, (21c)
Z am I < Finax, (21d)
m=1
(10f). (21e)

This problem poses a mixed-integer (binary) programming
challenge, known for its computational complexity. Fortu-
nately, the MOSEK solver integrated into CVX is adept at
handling such problems efficiently. Hence, we can determine
optimal task offloading decisions by solving (21) with the
given (p(®, £()) parameters at the i-th iteration.

D. Proposed Alternating-based Algorithm

Building upon the aforementioned progress, we introduce
an alternating-based optimisation algorithm designed to tackle
(10), as outlined in Algorithm 1. The algorithm commences



with an initialisation step, during which initial feasible points
are derived using the formulations of the subproblems (19),
(20), and (21). The sequence of the solving procedure is
outlined as follows. First, the algorithm computes the optimal
transmit power given the current values of the clock speed
and offloading variables. Next, the clock speed optimisation
is performed using the new transmit power solutions and the
current offloading decisions. Finally, the algorithm determines
the offloading decisions before commencing the next iteration.
To ensure the feasibility of this initialization, we implement
a validating function to verify that all constraints are satisfied
with the selected parameters and initial points prior to the
commencement of the first iteration.

Algorithm 1 : Proposed Algorithm for Solving (10).

1: Initialisation: Set 7 = 1, maximum number of iteration,
Inax; generate the initial feasible points, and choose the
initial parameters for (10).

2: while (not Convergence or i < Ijyax) do

Solve (19) with the given (), a(*) for the next optimal
solutions of the transmit power variables;

4:  Solve (20) with the given p¥, a(¥ for the next optimal

solutions of the clock speed variables;

s Solve (21) with the given p(*), f(*) for the next optimal

solutions of the offloading decision variables;

6: end while

7: Solution: optimal solutions of {p*, f*, a*}.

IV. SIMULATION RESULTS AND DISCUSSIONS
A. Simulation Setting

For simulations, we consider a small-scale IoT network,
where all IoT devices are randomly distributed in a space
of 100 m x 100 m. There are totally 6 devices connecting
to the BS in the network. The large-scale fading for the
wireless transmission from the m-th IoT device to the BS
is modelled as g,,; = 10PM(dm)/10" where PL(d,) =
—35.3 — 37.6log;y dmk [19]. The single-sided noise spectral
density is set to —174 dBm/Hz [19]. The task size is set to 1
MB and the delay tolerance of the task is set to 2 seconds. The
maximum required CPU cycles of the task is set in the range
of [1500,2000]. Other parameters are provided in Table I
The simulations were conducted in MATLAB and the convex
programs were solved by the CVX package [20].

TABLE I: Simulation Parameters [8], [13], [19].

Parameters ‘ Value
Number of antennas L=38
Maximum transmit power Pra* =23 dBm
System bandwidth B =10 MHz

Maximum IoT clock speed
Computing capacity of edge server
Minimum data rate

Maximum energy consumption
Effective capacitance coefficient
Carbon intensity of electricity

R =2 GHz

e =10 GHz

R™n = 1 Mbps

Emax = 1 Joule

O = 10727 Watt.s3/cycle?
C[E =182 g COQ/kWh

B. Numerical Results and Discussions

In this subsection, we present the numerical results of the
simulations to demonstrate the convergence pattern of the
proposed algorithm and highlight the superior of the proposed
solution in minimising the amount of COs emissions.

The worst-case of CO, emission amount (mg)

4 5 6 7 8 9 10
Iteration index

Fig. 2: Convergence pattern of Algorithm 1.

1) Convergence pattern of the proposed algorithm: To
illustrate the convergence pattern of the proposed iterative
algorithm, we monitor the worst-case COy emissions among
User Equipments (UEs) over the duration of its execution. As
depicted in Figure 2, Algorithm 1 demonstrates its effective-
ness in minimising COy emissions, achieving a reduction of
nearly 30 times in emissions after just 10 iterations. Notably,
a significant reduction in emissions occurs after the initial
iteration. This phenomenon can be attributed to the algorithm’s
ability to initiate optimisation from points that are considerably
distant from the optimal solutions. Consequently, there is
ample room for improvement during the first iteration. From
the fifth iteration onwards, there is a gradual decrease in COq
emissions until convergence is reached. This observed trend
underscores the algorithm’s iterative refinement process, where
adjustments are made iteratively to approach the optimal solu-
tion. This convergence behaviour emphasises the algorithm’s
potential to significantly enhance the sustainability of edge
computing systems by efficiently managing resource allocation
to minimise carbon emissions.

2) Effectiveness of the proposed solution: To highlight the
efficacy of the proposed solution, we conduct a comparison
between the results obtained from Algorithm 1 and those
derived from a non-optimal benchmark scheme. Illustrated
in Figure 3, our findings underscore the superior perfor-
mance of the proposed solution in minimising CO5 emissions.
Specifically, under identical simulation conditions, the results
obtained from Algorithm 1 exhibit a remarkable reduction,
with COy emissions amounting to less than 10 milligrams.
This substantial improvement can be attributed to the holistic
optimisation approach employed by Algorithm 1, which jointly
addresses parameters such as transmit power, clock speeds
of both IoT devices and edge servers, and task offloading
decisions. Furthermore, Figure 3 also sheds light on the
relationship between the number of CPU cycles required to
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Fig. 3: Effectiveness of the proposed solution in minimising
the amount of CO, emission.

execute a task and the resultant CO, emissions. Evidently,
tasks demanding higher CPU cycles correspond to increased
CO, emissions, highlighting the direct impact of computa-
tional intensity on environmental footprint. Moreover, our
comparison in Figure 3 also illustrates the influence of DT
estimation accuracy on the achieved results. Notably, the more
precise the DT estimation of clock speeds, the lower the CO2
emissions recorded. This observation indicates the pivotal role
of accurate DT models and latency estimation in optimising
resource allocation strategies and minimising environmental
impact.

V. CONCLUSION

In summary, this paper has examined sustainable resource
management within edge computing systems, employing the
DT approach. The main objective has been to reduce COq2
emissions in common MEC-aided IoT scenarios by optimising
several factors, such as the IoT device transmit power, the
DT estimated clock speeds, and the task offloading decisions.
To tackle the complex challenge, the alternating optimisa-
tion algorithm was carefully developed. Through extensive
simulations, the effectiveness of the proposed solution has
been validated, demonstrating significant reductions in COg
emissions and optimised resource allocation. This confirmation
highlights the potential of the DT-based approach to enhance
sustainability within edge computing environments. Looking
forward, there is an exciting opportunity for further research,
particularly in developing practical machine learning solutions
tailored for large-scale networks. By leveraging advanced
algorithms and data-driven approaches, future efforts can aim
to meet the evolving needs of modern computing systems
while minimising their environmental impact.
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