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Abstract—The dramatic increase in the number of smart
services and their diversity poses a significant challenge in
Internet of Things (IoT) networks: heterogeneity. This causes
significant quality of service (QoS) degradation in IoT networks.
In addition, the constraints of IoT devices in terms of computa-
tional capability and energy resources add extra complexity to
this. However, the current studies remain insufficient to solve this
problem due to the lack of cognitive action recommendations.
Therefore, we propose a Q-learning-based Cognitive Service
Management framework called Q-CSM. In this framework, we
first design an IoT Agent Manager to handle the heterogeneity
in data formats. After that, we design a Q-learning-based rec-
ommendation engine to optimize the devices’ lifetime according
to the predicted QoS behaviour of the changing IoT network
scenarios. We apply the proposed cognitive management to a
smart city scenario consisting of three specific services: wind
turbines, solar panels, and transportation systems. We note that
our proposed cognitive method achieves 38.7% faster response
time to the dynamical IoT changes in topology. Furthermore,
the proposed framework achieves 19.8% longer lifetime on
average for constrained IoT devices thanks to its Q-learning-
based cognitive decision capability. In addition, we explore
the most successive learning rate value in the Q-learning run
through the exploration and exploitation phases.

Index Terms—internet of things, heterogeneity, quality of
service, reinforcement learning, cognitive management

I. INTRODUCTION

In recent years, the integration of Internet of Things (IoT)
technologies into urban infrastructures has revolutionized the
concept of smart cities. IoT sensors, characterized by their
small compute footprint and described as constrained nodes,
play a pivotal role in this transformation [1]. These sensors
are constrained by limited computational power, storage, and
energy resources, which pose significant challenges in terms
of the complexity of tasks that the devices can handle [2]. This
emphasizes the necessity for intelligent and resource-efficient
management solutions in constrained networks where devices
must operate persistently and autonomously by serving the
desired Quality of Service (QoS) levels [3].

According to RFC7228 [4], IoT devices are categorized
into three distinct types of constrained sensors. When these
types are present in a single network, it becomes a heteroge-
neous IoT sensor network in the environment. At this point,
this heterogeneity introduces significant complexities in the

deployment and management of real-world smart cities due
to its specific requirements [5]. In this study, we deal with
the heterogeneity problem from two perspectives:

• Heterogeneity in terms of IoT devices: Divergent types
of IoT devices draw a picture of different hardware
and software at the backend. These differences require
several types of communication protocol implementation
depending on their connection types [6]. In addition to
this, different configuration methods should be leveraged
at this scenario.

• Heterogeneity in terms of QoS: The functionality of
the IoT sensors varies from simple sensing to high-
processing devices. While some IoT nodes perform
monitoring tasks, others might require high-definition
information. Such a vast variation in the requirements
of IoT nodes translates to significantly different QoS
expectations for IoT networks.

II. STATE OF THE ART

Dynamic conditions in heterogeneous IoT networks pose a
significant challenge to communication quality. For this rea-
son, the current literature covers this problem from a resource-
aware service [7] perspective. [8] proposes context-aware
connectivity and processing optimization in IoT networks.
In this study, the joint optimization of energy consumption
and response time is considered by the Reinforcement Learn-
ing (RL) algorithm. Furthermore, [9] and [10] introduce a
protocol-adaptive Software Defined Networks (SDN)-based
solution for the dynamic network conditions in smart city
applications. Similarly, [11] and [12] introduce an RL-based
solution for the resource allocation and communication de-
lay problems in IoT networks. Also, a fog-layered service
management scheme is designed for IoT-based smart cities
in [13]. As IoT applications have several resource constraints
and are sensitive to latency and dynamical changes, the QoS
level of these services is affected by these [14]. For instance,
[15] performs context-aware fog computing for an effec-
tive load-balancing scheme. With this, the study leverages
context-sharing, context-migration, and live service migration
strategies based on the prediction algorithms. Furthermore,
advanced AI models are integrated into smart city applications



TABLE I
PROPOSED Q-CSM FRAMEWORK AND CURRENT STATE OF THE ART STUDIES

Literature Heterogeneity QoS-aware Intelligence Prediction method Cognitive actions
[8], [9], [10], [11], [12] ✓ ✓ ✓ RL -
[13], [15] ✓ - ✓ - -
[16], [17] ✓ - ✓ GAN -
[18] ✓ ✓ - - -
Our work ✓ ✓ ✓ Q-Learning ✓

to ease QoS management. For instance, [16] introduces the
application of generative adversarial networks (GANs) to
smart city applications to generate synthetic data. Another
study, [17], focuses on service quality from an infrastructural
perspective to meet the desired quality levels. Besides, the
autonomic applications term for IoT is presented in [18]
by surveying the quality metrics for IoT networks. This
study focuses on real-time diagnostics of heterogeneous IoT
applications and making them quality-aware.

As summarized above, several efforts have been made
to address the communication latency and QoS challenges
stemming from the heterogeneity of IoT networks. Although
some of them apply AI methods to serve intelligence in
management, they only utilize the algorithms to predict the
resource usage rate and possible faults on the network.
None of them covers exploring the IoT topology to learn its
behaviour as a whole and create autonomous actions, which
stand as a cognitive management framework. Therefore, our
research is situated around the research question, “How can
we maintain multiple classes of IoT devices within a single
smart city network and meet the particular QoS requirements
by optimizing the service response time and increasing the IoT
devices’ lifetime?” To hit this, we propose a Q-learning-based
Cognitive Service Management framework, called as Q-CSM.
In Q-CSM, we model three distinct layers to manage the
heterogeneity problem efficiently. We first consider the con-
strained IoT device classes and form and adaptation layer to
manage the constrained classes within the single IoT topology.
Afterwards, we perform a Q-learning algorithm to produce
optimized actions regarding the lifetime of IoT devices and
desired QoS levels. Our main goal is to dynamically configure
IoT device communication to meet QoS requirements in
changing IoT network scenarios. The main contributions of
this study are summarized below:

• We design an IoT Agent Manager within the Adaptation
Layer to transform all data types to a single data format
and thus serve as a multi-tenant gateway in heteroge-
neous IoT networks.

• We design a Q-learning-based recommendation engine
to optimize the devices’ lifetime by serving device
management according to the predicted QoS behaviour
of the changing IoT network scenarios.

• We apply the proposed cognitive management on a smart
city scenario consisting of three specific services: wind
turbines, solar panels, and transportation system.

The remainder of the article is organized as follows:
Section III explains the proposed cognitive service manage-
ment framework. Section IV is devoted to the performance
evaluation of the proposed model. Finally, Section V finalizes
the paper.

III. Q-CSM: COGNITIVE SERVICE MANAGEMENT
FRAMEWORK

As given in Fig. 1, our proposed cognitive management
framework consists of three layers; Sensor Layer, Adaptation
Layer and Management Layer. The details of these layers are
explained in below sections.

A. Sensor Layer

This layer consists of deployed IoT sensors for smart
city scenarios. To cover the heterogeneity problem form
IoT devices perspective, we assume that the IoT sensors in
this layer embody all types of constrained device classes
with the battery-powered feature. The specifications for these
constrained device classes are explained below:

• Class 0: This class is strictly constrained in terms of
memory and processing capabilities. For example, the
maximum data size to be supported

• Class 1: This class is quite constrained regarding the
code space and processing capabilities.

• Class 2: This class is less constrained compared to Class
0 and Class 1. Also, this class is capable of supporting
protocol stacks utilized in servers.

B. Adaptation Layer

This layer collects sensor data and serves as a proxy
between the sensor layer and the management layer. IoT
application layer protocols run on constrained nodes with a
small compute footprint [19]. As Message Queuing Teleme-
try Transport (MQTT), Constrained Application Protocol
(CoAP), and Hypertext Transfer Protocol (HTTP) are mainly
utilized within the application layer of IoT protocol stack, we
assume three of them are implemented within the IoT agents.
As given in Fig. 2, IoT Agent Manager comprises three sub-
modules, which are explained below:

• Message Handler: Messages coming from IoT agents
first arrive here. As the IoT Device Manager implements
MQTT, HTTP and CoAP, both Transport Control Proto-
col (TCP and User Datagram Protocol (UDP) are utilized
in the transport layer regardless of the wireless protocol



in the lower layers. After that, collected data in the form
of JSON and CBOR is sent to the next module.

• Proxy: It stands between the message handler and data
pool and behaves as a tunnel. The main role of this mod-
ule is to translate the data formats to JavaScript Object
Notation (JSON) to be processed within the management
layer. Namely, this module transforms all the CBOR data
types into JSON format. The translation process consists
of encoding and decoding of multiplexers.

• Data Pool: The data flowing through the proxy come to
this module. Data pool stores the collected application
data from all IoT agents in the form of JSON. This
is because, the IoT network data is collected via the
management interfaces of the management layer in this
format.

C. Management Layer
The main role of this layer is to perform an intelligent

management of different services within a single IoT network.
For this, first the data is collected from the adaptation layer
via its management interfaces. Afterwards, it is sent to the
running datastore, where all the records at the time interval
[t− x, t] are stored. Here, t is in seconds, and x is the user-
changeable parameter depending on the application scenario
and the capacity of the utilized database. Conversely, the
candidate datastore holds the recommended actions that are
outputted by the Q-learning algorithm.

One of the main steps of this layer is to perform QoS
prioritization regarding the smart city services. As a single,
smart city network comprises several different services [20],
thus they compromise to different QoS requirements depend-
ing on their service target. Therefore, service dependent KPIs

TABLE II
CONSIDERED SMART CITY SCENARIOS AND RESPECTIVE KPIS

No. Scenario KPI Specs Protocol
1 Wind Turbine delay ≤ 300ms, loss rate ≤ 10% CoAP
2 Solar Panel delay ≤ 300ms, loss rate ≤ 10% HTTP
3 Transportation delay ≤ 100ms, loss rate ≤ 5% MQTT

[21] along with the sensor asset set are considered to form
the QoS levels of the smart city services. In Table I, we give
three specific smart city scenarios that we consider and define
their communication requirements with the utilized protocol
at the application layer. We process the QoS class formation
by considering the total number of active IoT devices in the
running environment. Therefore, we calculate each of the QoS
densities as,

α(Qi) =

∑
m Oi

VQi

(1)

where
1 ≤ i ≤ 2 , 1 ≤ m ≤ n

In this formula, α(Qi) is the ith QoS class density, Oi is
the total number of active IoT devices, and VQi

implies the
number of active IoT devices waiting in the related queue
to take service from the IoT Manager. Also, i is the number
of QoS classes, and m is the total streamed number of IoT
devices. Also, we adapt the Q-Learning to create actions.
We map the Q-learning components into our smart city IoT
topology by considering that there is one master node for
each of the smart city service, and this master is an agent.
Also, we consider each QoS class change to be a state within

Management interfaces

monitoring and 
diagnostic data 

Running
Datastore

control and

configuration 

data flow

Sensor
Layer

Adaptation
Layer

Candidate
Datastore

Management
Layer

QoS
Prioritization

sensor
asset set 

Service
dependent KPIs

latency < 1ms 
protocol : CoAP 

... 

operational
asset set

per cycle
communication 

metrics  

service
requests

QoS classes

real-time 

service req.s

Cognitive Service Provisioning

predicted data flow

running data flow 

IoT Agent
Manager

wind turbine

solar panel

transportation

Q-Table
a1

..

..
at  = [Si, QoSi] s1

web server

REST

Fig. 1. Proposed cognitive service management framework.



the IoT scenario. The agent performs action by exploring the
optimum QoS class for the smart service and obtains a reward
for this. Therefore, our cognitive engine is represented as six
tuples; {E,Ag, S,A, p,R}. We explain the major elements of
this system below.

IoT Agent
JSON over MQTT

IoT Agent
JSON over HTTP

IoT Agent
CBOR over CoAP

...

provision/ configuration

IoT Agent Manager

ProxyMessage 
Handler

Data
Pool

1 2 3

Fig. 2. Design of IoT Device Manager.

• Environment, E: The smart city network consisting of
n number of IoT sensors forms an environment for
Q-learning. The smart city network consists of three
services: wind turbines, solar panels and transportation.

• Agent, Ag: Each service in the smart city network has a
master node to behave as an agent. The agent is capable
of exploring the simulated environment for learning
phase.

• State, S: The state space represents the total number of
QoS classes depending on the defined service specific
KPIs and utilized application layer protocol.

• Action, A: Action set states which smart city service
should be served with which QoS class depending on
the real-time service requests, historical records, and the
operational asset set.

• Probability, p: Represents the probability of transition to
the new state. In our approach, it stands for the proba-
bility of transitioning from one QoS class to another.

• Reward, R: The agents accept a reward for each QoS
class change in which the requested KPIs are optimized
considering the whole smart city network.

• Q Function: The algorithm updates the Q values by using
the equation which we adapt from Bellman Equation:
Qt+1(S,A) = Q(.)+α(R+γmaxA′ Q(S′, A′)−Q(.)),
where Q(.) function stands for Qt(S,A). In this formula,
the A′ is the action that could be taken at state S′. Also,
γ is a discount factor showing the significance of next
states with learning rate, α.

• Policy, π: We utilize the ϵ-greedy action selection mecha-
nism by randomly choosing the exploration and exploita-
tion states. Therefore, the agent takes a random action
at a given time with the probability of ϵ or (1 −ϵ).

As seen in Alg.1, Q-CSM takes the number of smart city
services, number of active IoT devices, KPI specifications,
sensor asset set, operational asset set, and service request
information as inputs and produces QoS classes, QoS class

density values, and optimized actions to increase the average
lifetime of IoT devices. In line-1, the density of the QoS
classes is initialized before starting the first run of the
algorithm. When the number of active IoT devices increase
in the topology, the density calculation function reruns to get
the current topology information (lines 2-4). After that, the
management layer starts to function by performing the Q-
learning in line-5. The Q-learning is performed by taking
an action with the ϵ-greedy approach and Q-table is updated
according to the reward function results (lines 7-9). In the last
step, the optimum action set is applied as the output of the
autonomous recommendation engine (line-12).

Algorithm 1 Q-CSM Algorithm
Require: Number of smart city services (1-to-3), number of

active IoT devices (m), KPI specifications, sensor asset
set, operational asset set, service requests

Ensure: QoS classes, QoS class density values, optimized
actions to increase the average lifetime of IoT devices

1: Initialize Qi, Oi;
2: foreach change in m
3: Calculate α(Qi)
4: end
5: foreach episode
6: Take action, a
7: Observe reward R, and state, S′

8: Update Q-table
9: Qt+1 ← Q(.) + α(R+ γmaxA′ Q′ −Q(.))

10: Decide next action, a′ with policy, π
11: Update a ← a′, S ← S′

12: Update action set, At+1 ← At

13: end

IV. PERFORMANCE RESULTS

In this part, we investigate the performance of our proposed
framework in terms of (i) the efficiency in the Adaptation
Layer by observing the response time of the IoT Agent
manager according to the increasing number of active IoT
sensors within the smart city network, (ii) the efficiency in
the Management Layer by observing the lifetime of IoT
devices with the changing QoS levels and (iii) the cumulative
reward value of the Q-learning algorithm in exploration and
exploitation phases against changing learning rates. In our
simulation, we work on 2 different smart city networks to
increase the heterogeneity of the topology: 2-service and
3-service smart city scenarios. Here, the 2-service scenario
refers to any two of the smart city services given in Table II
are implemented together within the same smart city network.
On the contrary, in the 3-service scenario, all three services
are applied within the single smart city network. We utilize
these networks with one of the traditional methods [9] in the
current literature, as well as the proposed Q-CSM method.

Experimental Setup: We create a dynamic smart city sce-
nario with three smart services by using Python and the MAT-
LAB R2023a©. To communicate with the dynamic scenario,



TABLE III
SIMULATION PARAMETERS

Parameters Values

Number of smart city services {2, 3}
Number of IoT sensors {10, 50, 98, 150}
Number of episodes 10000
Learning rate {0.7, 0.07, 0.007}
Discount factor 0.99
Batch size {32, 128, 256}
Update policy Epsilon-greedy
Confidence interval 95%

we implement IoT application layer protocols MQTT, CoAP
and HTTP in Python scripts. The simulation parameters are
given in Table III.

Fig. 3. Response time comparison of IoT Agent Manager with the increasing
number of active IoT devices.

We first explore the efficiency of the Adaptation Layer in
Q-CSM. For this, we run 2-service and 3-service smart city
scenarios, starting with the ten active IoT sensors within both.
In addition, we assume that the city services utilize different
IoT data protocols. For instance, if the wind turbine service
works based on CoAP, then the other service(s) should not be
based on CoAP; it should implement MQTT or HTTP. With
this constraint, we maintain IoT data format heterogeneity
to test the IoT Agent Manager. After that, by increasing this
number up to hundred and fifty, we measure the response time
of the IoT Agent Manager in ms while performing identical
queries to the agent. Our recorded results are given in Fig. 3.
According to the results, we note that our proposed Q-CSM
framework responds to the queries by 38.7% faster in the 2-
service scenario. Even this fast response reaches ∼ 50% levels
in the 3-service scenario. As seen from the indicated circles
in Fig. 3, the proposed Q-CSM method is not significantly
affected by the heterogeneity level; the response times of the
IoT Agent Manager are close to each other even when the
number of sensors reaches high values. On the other hand, as
in the traditional method, there is no data type conversion for
the different IoT data protocols; this increases response time
when the heterogeneity of the topology increases.

In the performance investigation of the Management Layer,
we observe the average lifetime of IoT devices depending

on the two QoS classes: delay-sensitive and delay-tolerant.
For this, we use the same 2-service and 3-service smart city
networks with fifty active IoT sensors within the topology.
Here, we assume the maximum value for the lifetime of
IoT devices is 10 years, which decreases in proportion to
the requested data. We run both methods separately for
a twenty-minute simulation time and record the remaining
battery values. After that, we form average lifetime values by
performing normalization. As seen from Fig. 4, the average
lifetime value is unaffected by the number of services for
both the traditional method and Q-CSM. However, with the
same service scenario and the QoS class, the proposed Q-
CSM results in a 19.8% longer lifetime for the sensors. The
main reason for this is the capability of Q-CSM to make
decisions by considering the optimized lifetime depending
on the desired IoT QoS classes. In addition, as we utilize
Q-learning within the Q-CSM, we enhance the quality of
decisions via the exploration and exploitation phases in the
algorithm.

Fig. 4. The average lifetime comparison of the IoT sensors against different
QoS classes.

Furthermore, we investigate the performance of the Q-
learning algorithm by tracking the cumulative reward value. In
this circumstance, we observe the training process consisting
of exploration and exploitation phases. In addition, we run the
algorithm for three different learning rates. In the exploration
phase, the agent takes any action to discover new features
regarding the environment. Conversely, in exploitation, the
agent takes actions based on the knowledge gained. Based on
these, we observe the training process against the episodes
performed. In implementing Q-learning, we first deactivate
the exploitation phase to increase the knowledge gained
within the first 10% of the episodes. That’s why the cu-
mulative reward value cannot reach its maximum value. We
indicate this case with a zoomed circle in Fig. 5. Furthermore,
we change the learning rates and rerun the simıulation. During
the three iterations with changing learning rates, we note the
following results: the learning rate equal to 0.07 converges
to the highest reward value. Conversely, the learning rates
0.7 and 0.007 also converge to a reward value but cannot



result in the maximized value. The main reason is that
lower learning rates can sometimes improve generalization
to unseen scenarios.

Fig. 5. Cumulative reward value of Q-learning with changing learning rates
during the simulation.

V. CONCLUSION

Intelligent and resource-efficient solutions are required to
combat the heterogeneity challenge in IoT networks. With
this motivation, we introduce a Q-learning-based Cognitive
Service Management (Q-CSM) framework in this study. We
first design an IoT Agent Manager to perform as a proxy
for different data formats in IoT data protocols. Then, we
implement Q-learning algorithm to produce insightful actions
that meet the QoS requirements of each IoT network service.
For this, we consider real-time service requests and per-cycle
communication metrics, such as maximum delay and worst-
case loss rate, as inputs to the cognitive module. We test our
proposed framework on a smart city application consisting
of three distinct services. Our simulation results show that
Q-CSM achieves better in terms of minimizing the response
time and maximizing the lifetime of the IoT sensors.
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southbound interface in sdns: Utilizing support vector machines for
openflow packet classification,” in 2023 IEEE 28th International Work-
shop on Computer Aided Modeling and Design of Communication Links
and Networks (CAMAD), 2023, pp. 258–263.

[11] I. Chakour, C. Daoui, M. Baslam, B. Sainz-De-Abajo, and B. Garcia-
Zapirain, “Strategic bandwidth allocation for qos in iot gateway: Pre-
dicting future needs based on iot device habits,” IEEE Access, vol. 12,
pp. 6590–6603, 2024.

[12] L. V. Cakir, K. Duran, C. Thomson, M. Broadbent, and B. Canberk,
“Ai in energy digital twining: A reinforcement learning-based adaptive
digital twin model for green cities,” arXiv preprint arXiv:2401.16449,
2024.

[13] K. H. K. Reddy, R. S. Goswami, A. K. Luhach, P. Chatterjee, M. Al-
numay, and D. S. Roy, “Eflsm:- an intelligent resource manager for
fog layer service management in smart cities,” IEEE Transactions on
Consumer Electronics, vol. 70, no. 1, pp. 2281–2289, 2024.

[14] K. Duran, B. Karanlik, and B. Canberk, “Graph theoretical approach
for automated ip lifecycle management in telco networks,” Wiley Int J
Network Mgmt, vol. 31, no. 4, e2138, 2021.

[15] W.-B. Sun, J. Xie, X. Yang, L. Wang, and W.-X. Meng, “Efficient com-
putation offloading and resource allocation scheme for opportunistic
access fog-cloud computing networks,” IEEE Transactions on Cognitive
Communications and Networking, vol. 9, no. 2, pp. 521–533, 2023.

[16] C. Pandey, V. Tiwari, A. L. Imoize, C.-T. Li, C.-C. Lee, and D. S. Roy,
“5gt-gan: Enhancing data augmentation for 5g-enabled mobile edge
computing in smart cities,” IEEE Access, vol. 11, pp. 120 983–120 996,
2023.

[17] D. Wu, M. Sun, P. Zhang, Y. Tu, Z. Yang, and R. Wang, “Personalized
secure demand-oriented data service toward edge-cloud collaborative
iot,” IEEE Internet of Things Journal, vol. 10, no. 1, pp. 378–390,
2023.

[18] K. Fizza, A. Banerjee, P. P. Jayaraman, N. Auluck, R. Ranjan, K. Mitra,
and D. Georgakopoulos, “A survey on evaluating the quality of auto-
nomic internet of things applications,” IEEE Communications Surveys
Tutorials, vol. 25, no. 1, pp. 567–590, 2023.

[19] K. Duran, M. Özdem, T. Hoang, T. Q. Duong, and B. Canberk, “Age
of twin (aot): A new digital twin qualifier for 6g ecosystem,” IEEE
Internet of Things Magazine, vol. 6, no. 4, pp. 138–143, 2023.

[20] E. Ak, K. Duran, O. A. Dobre, T. Q. Duong, and B. Canberk, “T6conf:
Digital twin networking framework for ipv6-enabled net-zero smart
cities,” IEEE Communications Magazine, vol. 61, no. 3, pp. 36–42,
2023.

[21] E. Ak and B. Canberk, “Fsc: Two-scale ai-driven fair sensitivity control
for 802.11ax networks,” in GLOBECOM 2020 - 2020 IEEE Global
Communications Conference, 2020, pp. 1–6.


