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A B S T R A C T

Forensic analysts are often tasked with analysing large volumes of data in modern investigations, and frequently 
make use of hashing technologies to identify previously encountered images. Perceptual hashes, which seek to 
model the semantic (visual) content of images, are typically compared by way of Normalised Hamming Distance, 
counting the ratio of bits which differ between two hashes. However, this global measure of difference may 
overlook structural information, such as the position and relative clustering of these differences. This paper 
investigates the relationship between localised/positional changes in an image and the extent to which this 
information is encoded in various perceptual hashes. Our findings indicate that the relative position of bits in the 
hash does encode useful information. Consequently, we prototype and evaluate three alternative perceptual 
hashing distance metrics: Normalised Convolution Distance, Hatched Matrix Distance, and 2-D Ngram Cosine 
Distance. Results demonstrate that there is room for improvement over Hamming Distance. In particular, the 
worst-case image mirroring transform for DCT-based hashes can be completely mitigated without needing to 
change the mechanism for generating the hash. Indeed, perceived hash weaknesses may actually be deficits in the 
distance metric being used, and large-scale providers could potentially benefit from modifying their approach.

1. Introduction

As long as the Internet and World Wide Web have existed, criminals 
have exploited them for nefarious purposes. In the Digital Forensics 
context, this often relates to the distribution of Child Sexual Abuse 
Material (CSAM). Forensic analysts in many countries have been back-
logged for some time (Beebe, 2009), but recent advances in generative 
AI may fuel a new wave of large-scale CSAM proliferation (Thiel et al., 
2023). While in the early stages, the Internet Watch Foundation docu-
ments (Internet Watch Foundation, 2024) a month-on-month increase 
for AI CSAM reports for 2024.

One mechanism for keeping on top of the deluge of CSAM related 
media is to automate the detection of previously encountered images by 
way of perceptual hashing (a form of approximate semantic hashing), 
which models the visual properties of an image. Such approaches are 
robust to many image transformations, and they typically deal well with 
compression and other common image modifications that happen as a 
matter of course. Such technologies are already deployed for both law 
enforcement and cloud-scale service providers, such as Microsoft’s 
PhotoDNA (Krawetz), and Facebook’s PDQ (Facebook).

While much effort has been spent in modelling images with various 
techniques to generate a binary hash representation of the image 
(Hadmi et al., 2012), Normalised Hamming Distance is often the only 
distance metric which is discussed and evaluated. In contrast, fields such 
as Information Retrieval have many possible similarity and matching 
mechanisms, with a clear separation of document representation and 
similarity measurement (Manning et al., 2008). While Hamming Dis-
tance performs well for this task, it is a global measure of difference 
between two binary arrays, such that positional information and nuance 
is lost. As such, we investigate the following research questions in this 
work: 

RQ1: Do spatial modifications to images produce observable pat-
terns in perceptual hash strings?
RQ2: Are these patterns able to be exploited in the hash comparison 
process to produce better classificatiohn performance than Normal-
ised Hamming Distance?

RQ1 is explored via bitwise hash analysis in Section 3, while alter-
native metrics are proposed and evaluated for RQ2 in Section 4. All code 
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used in the experiments is available on Github.1

2. Background and related work

Forensic perceptual hashing is a derivative of the field of Content- 
Based Image retrieval (CBIR) (Tyagi, 2017), which is a mature field 
dating back to the 1970s. Images can be modelled via a wide-array of 
features, such as colour histograms (Swain and Ballard, 1991), texture 
and edge histograms (Manjunath et al., 2001), or frequency domain 
statistics (Venkatesan et al., 2000). Frequency domain transforms are 
often useful as the low-frequency components are robust to various 
image modifications (Fridrich, 1999). Coarse image representations 
using mean-block colour are also used for similar reasons (Steinebach, 
2011). For digital forensic purposes, these hash representations must be 
representative of the image, but should not be reversible, or leak in-
formation about the source image, often involving some kind of quan-
tisation in order to produce a binary hash array as a final output (Hadmi 
et al., 2012).

The forensic task is to identify images which are similar or identical 
to a target hash, distinguishing these from unrelated images. This in-
volves the use of a distance metric, which is used to calculate the dif-
ference between two hashes and return a value which can be compared 
to a chosen ‘threshold’. If the distance is lower than this threshold, the 
image matches, otherwise it is considered to be an unrelated image. In 
CBIR, the relative richness of the image representation indices (not 
simply binary hash arrays), and the looser task of matching related 
content, allows for a variety of comparison approaches, such as Cosine 
Distance, Euclidean Distance, Hamming Distance, and L1/L2 Distance 
(Tyagi, 2017). In contrast, perceptual hashes are often compared using 
only the Normalised Hamming Distance (Hadmi et al., 2012), which is 
simply a ratio of the number of bits which differ between two hashes.

Selecting an appropriate distance threshold is predicated on the 
distribution of intra-image comparisons (images that should match), and 
inter-image comparisons (unrelated images) being separable (Zauner, 
2010; McKeown et al., 2024). Otherwise, if distributions overlap, any 
threshold is a trade-off of False Positives vs. False Negatives in the 
matching task. Common perceptual hashes are resistant to image 
transformations attacks such as compression, re-scaling, colour modifi-
cation, blurring, filtering etc (Zauner, 2010; Breitinger et al., 2013; 
Drmic et al., 2017; Hamadouche et al., 2021; McKeown and Buchanan, 
2023), while rotating, mirroring, cropping, and adding borders may 
cause difficulty for some hashes (Zauner, 2010; Breitinger et al., 2013; 
Drmic et al., 2017; McKeown and Buchanan, 2023), or be worst-case 
machine scenarios where inter- and intra-image distributions overlap 
completely (McKeown and Buchanan, 2023).

Prior work typically evaluates the mechanism for generating hashes 
and their response to transforms, but does not often make changes to 
how images are compared. For instance, algorithms typically have a 
weakness to certain image content (e.g., high-frequency patterns, or 
low-frequency gradients (McKeown et al., 2019)), or to particular 
transforms, such as rotation (Breitinger et al., 2013), as mentioned 
above. It is possible to pre-process images to mitigate this weakness, for 
example, mirroring the image so its darkest corner is always at the 
top-left, completely defeating mirroring attacks (Steinebach et al., 
2012), but this is rarely discussed in practice. Similarly, noting that not 
all algorithms derive equal utility from the hash-bits in a hash array, 
weights can be applied to hashes prior to calculating their Hamming 
Distance (Steinebach et al., 2012). This can improve performance, 
generally, for a particular algorithm, or potentially mitigate against 
worst-case scenario transforms such as mirroring (McKeown et al., 
2024).

Despite these modifications to the process, Normalised Hamming 
Distance is still prevalent for most algorithms, without pre-processing, 

re-weighting, or weakness mitigation being built-in to the process. 
Hamming Distance is the de-facto approach for deep-learning ap-
proaches also, however they sometimes make use of Cosine or Euclidean 
distance (Singh and Gupta, 2022). This means that the hashing algo-
rithms themselves are left to trade-off localised vs. global features, with 
a global comparison being made afterwards.

3. Spatial data encoding in perceptual hashes

A Normalised Hamming Distance of 0.25 simply indicates that an 
aggregate of 25 % of the bits are different, whether this 25 % is clustered 
at the beginning/end of the hash, or spread across it. Some images may 
be completely different, in which case, given the design of a perceptual 
hash, we would expect bits to be more or less differing completely 
arbitrarily, with a 50/50 probability of being the same by chance. 
However, for regional changes, such as cropping, adding watermarks, or 
transpositions such as rotation, there is some degree of perceived simi-
larity, or commonality, as semantic content is preserved. Therefore, if 
perceptual hashes typically encode some degree of positional informa-
tion/locality of change, it can be exploited to improve image matching 
performance, and alternatives to Hamming Distance would be entirely 
appropriate. This section describes the investigation of spatial encoding 
in perceptual hashes for RQ1, and how various image transformations 
map to changes in their respective binary hash arrays.

3.1. Approach

To detect patterns in hashes, the Hamming Distance itself is not 
useful. Instead, we must pay attention to the individual bit positions 
within each hash in order to determine how often they are correct when 
classifying matches. The counts of these correct classifications (per bit) 
can then be aggregated across all images and plotted (for a given hash/ 
transform) to determine if any transform specific patterns emerge, 
which could indicate positional data encoding.

The experiment was conducted with the following process: i) 
Generate image transforms which deliberately regionalise change; ii) 
Derive perceptual hashes; iii) Calculate Hamming Distances; iv) 
Calculate a weights vector, w. v) Visualise weight vector, w.

We make use of the PHASER (McKeown et al., 2024) perceptual 
hashing evaluation framework to implement transforms, generate 
hashes, calculate inter- and intra-distances, and provide bit-weight 
vectors. This latter functionality, and method of exploring the prob-
lem, builds on the paper describing PHASER where it was observed that 
providing weights to Hamming comparisons can improve overall 
matching performance, particularly for frequency domain Discrete 
Cosine Transform (DCT) based hashes (phash and PDQ, in this case) on 
mirror transforms (McKeown et al., 2024). The visualised weight vectors 
in those cases had a piano-like appearance, indicating that individual 
bits alternated between accurate and innacurate classiifcation contri-
butions. We take a similar approach here, but instead focus on bits which 
do not prove useful for matching (i.e., low bit-weight), as this will flag 
up any redundant/shared information we embed in the transforms (see 
Sections 3.1.2 and 3.2).

3.1.1. Selected hashing algorithms
A variety of perceptual hash functions were chosen for this work. 

Firstly, we make use of the hash implementations in the Python 
Imagehash library, selecting the ahash (Average hash), dhash (Differ-
ence Hash), dhash_vertical (Dhash in vertical mode), phash (DCT- 
based Perceptual Hash) and whash (Wavelet Hashing) algorithms. 
Additionally, to represent wider efforts in the industry, Facebook’s PDQ 
(based on phash) and Apple’s Neuralhash (Convolutional Neural 
Network) were also tested, with the latter serving as a representative 
deep-learning solution.

To some degree, a level of positional encoding is expected due to how 
the hash-bits are generated in many spatial-domain hash approaches. 1 https://github.com/AabyWan/PHASER/tree/main/paper.
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For example, with ahash, images are downscaled to 8 × 8, each pixel is 
then compared to the mean pixel value, generating a binary determi-
nation of higher/lower, resulting in a 64-bit hash array. Similarly, dhash 
compares the left and right pixel relative to each pixel, (or above and 
below for vertical mode) to generate bits.2 whash and phash behave 
slightly differently, with the reduced image size (32 × 32 for phash) first 
undergoing a frequency domain transform (Haar Wavelet and Discrete 
Cosine, respectively), with pixels being derived from a comparison with 
the median coefficient value from the resulting transform. The phash 
DCT matrix is first reduced to the top-left 8 × 8 coefficients, resulting in 
the same 64-bit hash size as the other Imagehash implementations. PDQ 
works very similarly to phash, with some modifications, but produces 
256-bit fixed-size hashes, with a diagonally flipped coefficient 
arrangement.

The spatial techniques above (ahash, dhash) should theoretically 
encode positional information as bits are derived from pixel-level 
comparisons, with the order of bits directly corresponding to the rele-
vant pixel position in the thumbnail image. As whash, phash and PDQ 
work with frequency domain coefficients, they were not expected to 
produce the same level of granularity, but they should still capture some 
relevant spatial properties. Neuralhash, however, uses a Convolutional 
Neural Network, where extracted features are more abstract, and bits are 
assigned by comparing the feature vector’s positions (Struppek et al., 
2022). In this case, spatial information is likely non-trivially recover-
able, which we expect to be the case for most deep-learning approaches.

3.1.2. Dataset and transform selection
A list of image transforms which have particular spatial properties is 

provided in Table 1. Most of the transforms are common in the 
perceptual hash evaluation literature, with border, crop, and rotate 
being shown to be relatively tricky cases. Common elements in an 
image, such as a shared border, can skew the inter-image distribution of 
unrelated images, which is potentially problematic (McKeown and 
Buchanan, 2023), but in the case here, shared information is useful for 
identifying positional encoding. Similarly, the mirroring and rotation 
transpositions move existing content (with some interpolation in the 
context of rotation as pixels are square), but ultimately preserve the 
semantic content of the image. Other transforms, such as compression or 
scaling were not included as they distribute changes across the image, 
while the focus here is on changes made to specific regions of the image.

The only transform not common in the literature is the composite 
image approach, which makes use of a fixed secondary image to embed 
in the target image for transformation. This is similar to visible logo 
watermarking, but was designed to be more apparent and take up either 
a complete quadrant (e.g., top-left) of the target, or, with less granu-
larity, simply the left, right, top, or bottom of the image. Results re-
ported here are for embedding a low-frequency colour gradiant image, 
but we found similar results for high-frequency content with blades of 
grass.

All transformations were then applied to a 20,000 image subset 
(selected via a fixed seed random sample) from the Flickr 1 Million 
dataset (MIRFLICKR Download), which was a large enough sample to 
establish patterns in the dataset.

3.2. Structural hash information

Composite images, where embedding location is controlled, are the 
simplest way to determine if positional information is preserved clearly. 
This common data provides no information to discriminate between 
images, whether they match or not. If specific bits in the hash corre-
spond to this redundant region of the image, then the weighting process 
should generate a very-low weight consistently across all images.

Fig. 1 visualises weights for these confusion matrix quadrants for the 
top-left corner image embedding transform. For 1a, representing ahash, 
we can see that there is a repeating block pattern introduced, while 1b, 
representing phash, has a less obvious pattern. Wrapping these arrays to 
square matrices makes it much easier to see why this is the case, with the 
equivalent matrices being depicted on the left of Fig. 2. In this case we 
can now see a clear top-left block for ahash, while phash presents a 
tartan-like hatched pattern.

Additional transforms are depicted in the remainder of Fig. 2, with 
the top row depicting representative samples from the spatial hashes, 
and bottom row the DCT-based hashes. PDQ and phash patterns are 
essentially the same, with PDQ containing more rows/columns overall 
and placing the low-frequency coefficient bits at the bottom-right, while 
phash contains these in the top-left. Spatial domain techniques produce 
very similar graphs overall, with dhash’s horizontal or vertical bias 
skewing the diagram occasionally. Of note, whash follows the spatial 
domain patterns, rather than those of the other frequency domain 

Table 1 
Spatial transforms used to tease out positional information encoding in hashes.

Border A white border (0.1× target height/width) around the 
edge of the image. Draws a rectangle over the edges of 
the image without extending dimensions

Crop (scaled factor) Apply a crop box aperture to cut off fractions of the 
image. In this case, 25 % of the left and top, and 10 % all 
around the image. Reduces overall image area.

Composite Image 
Embedding

Embed a fixed image, common to all targets. The image 
was scaled down to fit in the new dimensions of the target 
location, which could be a quadrant (e.g., top-left) or 
top/bottom/left/right.

Mirroring Horizontal (x-axis) and Vertical (y-axis) image 
transposition.

Rotate Rotate the image 15◦ counter-clockwise, embed black 
background in the empty-space created by a non- 
rectangular image.

Watermarking Embed a small text logo image (0.1× target height, 
minimum 40 pixels) in the bottom-right corner. No 
transparency used, black background inserted.

Fig. 1. Visualisation of weights for each bit in the hash, corresponding to their 
relative contribution to correct classification across confusion matrix quadrants, 
aggregated for all images. Values are depicted for the top-left composite image 
embedding. From top to bottom: FN, TP, FP, TN. The top two classes should 
match (positive) while the bottom classes should not (negative). Black is a 
weight of 1, white is a weight of 0.

2 To avoid the edge of the pixel matrix having no comparison, images are 9 
× 8 for horizontal and 8 × 9 for vertical mode, respectively. Comparison then 
begins with the second pixel, effectively skewing the result slightly.
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approaches (phash and PDQ). Smaller common items, such as visible 
watermarks, produce less pronounced patterns and may not have much 
impact on the hashes.

Both border and rotate transforms centralise the weight for spatial 
hashes, with corners being less important (as they move farther during 
rotation, and blend other common information in downsampling at 
border edges). These transforms are less similar for the DCT-based phash 
and PDQ, however, with a grid-like pattern appearing for borders, and a 
grid-pattern appearing for rotation, albeit with a focus on the lower- 
frequency coefficients. In the spatial domain, weight is focused away 
from cropped areas, with DCT approaches again shifting weight towards 
lower frequencies. Finally, mirroring an image on the x- or y-axis focuses 
weight in the centre of the image along the axis of reflection for spatial 
approaches, and for DCT results in either alternating vertical bars 
(mirror-x) or rows (mirror-y).

Fig. 3a expands on the DCT patterns as it is useful to visualise how it 
impacts their row/column patterns. Left/Right composites form hori-
zontal bars, while top/bottom composites form vertical bars. However, 
it should be noted that these are far less clean than those for mirroring an 
image. Together, these transforms suggest that vertical information 
should be weighted on alternating rows, with alternating columns for 
horizontal information.

While these findings are not necessarily surprising based on the de-
scriptions of the hashing techniques in Section 3.1.1, the strength of 
their effect on biasing the hash is clear. Hamming Distance glosses over 

these structural components, and at least heuristically, it would make 
sense to give a higher weight to the centre of spatial hashes, while 
paying more attention to lower-frequency coefficients and the patterns 
of rows and columns within DCT-based approaches.

As expected, the behaviour of Neuralhash differed from the spatial 
and frequency transform techniques as it takes a completely different 
approach to generating hashes. Visually, there is no clear partition for 
left/right/top/down in the hash (Fig. 3b), with weighting matrices 
resembling noise patterns, for all transforms. As such, our answer to RQ1 
appears to be that the tested ‘shallow’ approaches do indeed encode 
spatial information, while deep-learning approaches may not.

4. Exploring alternative metrics

With confirmation of spatial encoding, we now move on to RQ2 in 
order to determine if these patterns can be leveraged to improve 
matching performance beyond the locality insensitive approach taken 
by Hamming Distance. The literature did not lend itself well to this 
endeavour, however, as existing approaches such as Structural Simi-
larity Index Measure (SSIM) are intended for arrays of pixel values, and 
in testing it did not appear to have utility when comparing binary 
matrices of hashes. Similarly, some small scale experiments on other 
spatial distance metrics (Bray–Curtis, Canberra, Cosine, Euclidean, 
Manhattan, Minkowski) in the Scipy library produced almost identical 
results to Hamming Distance.

We therefore prototype new distance metrics appropriate for the 
task. The general requirement was to provide an interface that behaves 
like those already in the Scipy library: i) Inputs u and v corresponding to 
same-length binary arrays, and ii) return a normalised distance value 
between 0 and 1, where 0 is the same hash, and 1 is its inverse.

To make use of spatial properties, binary arrays are converted to 
square matrices, corresponding to the downscaled image, or, for DCT- 
based hashes, the coefficient matrix. This does mean that some arrays 
may need padding if they do not form even squares. Additionally, a 
wider goal was to produce appropriate inter-image distance distribu-
tions (Zauner, 2010; McKeown and Buchanan, 2023), with a mean/-
median of 0.5 for unrelated images. However, the superseding goal is to 
be able to separate distributions of distance values for inter-image 
comparisons and intra-image comparisons (original to transform) to 
facilitate strong matching performance.

Three approaches are considered: i) Normalised Convolution Dis-
tance, ii) a DCT-aware Hatched Matrix Distance, and iii) 2-D Ngram 
Distance.

4.1. Normalised Convolution Distance

In this context of image processing, two dimensional convolutions 
involve passing a kernel filter (usually a 3 × 3 or 5 × 5 matrix), over each 

Fig. 2. Bit-weight matrices for various hashes and transforms as calculated for True Positive matches only.

Fig. 3. True Positive bit-weight matrices for phash and Neuralhash for various 
composite embeddings.
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pixel in an image. The filter specifies weights to be applied to the 
neighbours, as well as the target pixel, accumulating the sum of the 
weighted matrix. This accumulation is transferred to a new matrix of the 
same size as the original image, where the value is placed in the same 
location as the target pixel. In image processing, with the appropriate 
filters, it can be used to detect visual features, such as edges and corners, 
which ultimately form several layers in a Convolutional Neural Network 
(CNN) (Hijazi et al., 2015), providing multiple ‘views’ of the image.

This approach provides a fast way to sum values based on regional 
information, as the kernel takes into account surrounding values in the 
matrix. In our use case, we apply the convolution to a difference matrix 
of the two input hashes, rather than the images or hashes themselves. 
The process is as follows: 

1. Reshape input arrays to matrices and generate the logical XOR 
(difference) matrix.

2. Perform a convolution on the XOR matrix
3. Sum the values in the convolution output and normalise by the 

maximum possible value

As XOR captures when the bits are different, we essentially build a 
map of the hash differences (1s). When convolving this matrix, regions 
with adjacent differences will create larger values in the output matrix 
than those with spread differences, or a smaller number of differences. 
To normalise, the matrix is divided by the maximum possible convolu-
tion sum (of an array of all 1s for the same size and filter). An example 
difference matrix and the subsequent convolution matrix are depicted in 
Fig. 4.

A variety of filter kernel sizes and values were tested. Larger filters 
take into account a larger spatial region around the target bit, while 
smaller kernels are more localised. Equally, there is a decision to be 
made with regards to the filter weights as they can either bias towards or 
against adjacent or distant values. We tested a variety of filter sizes (2 ×
2 to 6 × 6) and various combinations of weights. Filter sizes of 2, 3 and 6 
perform roughly equivalently here, while we settled on a filter matrix of 
all ones.

4.2. Hatched Matrix Distance

Noting that the DCT-based approach often creates a hatched pattern, 
it seems appropriate to treat the hash matrices for PDQ and phash in 
terms of their rows and columns. The weight patterns also appear to 
make a distinction between whether the values are in even or odd col-
umns/rows, which should also be taken into account. The process is as 
follows: 

1. Extract rows/columns from the hash, noting whether the indices are 
even or odd. Concatenate even rows, even columns, odd rows, and 
odd columns into their own respective arrays.

2. Calculate the Hamming Distance for each of the four arrays between 
each hash. (i.e., Hash A’s even row array to Hash B’s even row array, 
etc.)

3. Calculate the minimum distance between rows (i.e., min(even-
row_dist, oddrow_dist)) and columns.

4. Return the mean of the minimum row/column distances (i.e., mean 
(minrow, mincol))

By taking the minimum value for odd/even rows and columns, we 
can account for whichever of the values is dominant, with the assump-
tion that the values would not be closer by accident. The mean of row/ 
column values allows us to mediate between the two, as they are often 
both important in hatched weight patterns (as with the phash composite 
top-left case). Alternative versions which compared individual rows/ 
columns (as opposed to concatenating them together), with both Ham-
ming and Cosine distances, proved less effective overall. One limitation 
is that this approach does not necessarily account for the cases where the 
hatched pattern does not appear, where the emphasis is on the low- 
frequency coefficients, as with cropping the top and left of an image.

4.3. 2-D Ngram Cosine Distance

Normally an N-gram is a sequence of n items adjacent to one another, 
often used in Natural Language Processing (NLP) to capture a sliding 
window of n adjacent words, while adjacent bytes are used for pro-
cessing binary file data. In this case, to capture spatial information, we 
use two-dimensional N × N-grams, essentially n × n matrices of hash 
bits. The process is as follows: 

1. Reshape hash arrays to matrices, and for each matrix accumulate an 
array of n × n Ngrams. Sliding windows are overlapping, such that 
the rightmost column of the first window forms the leftmost column 
of the next.

2. For each hash, flatten the array of Ngrams.
3. Calculate the Cosine Distance between each flattened array.

N-gram sizes from 2 × 2 to 6 × 6 were tested, with a width of 2 
performing the best overall, though we did not test non-overlapping 
windows.

4.4. Evaluating matching performance

Evaluating the prototype metrics involved selecting a random 
250,000 image subset of the Flickr 1 Million Dataset and applying the 
transforms in Table 1. Some transforms (most of the Composite per-
mutations, and the 10 % all-sides crop) are omitted for brevity, with 
CropTL and CompTL referring to the Crop 25 % Top and Left, and 
Composite Top-left transforms, respectively. Mirror-y is dropped as it is 
not particularly practical as it hinders viewability in a content- 
preserving scenario.

We made use of the PHASER framework to calculate Intra- and Inter- 
image distances and the corresponding Area Under the Curve (AUC) for 
the ROC (Receiver Operating Characteristic) plot, calculated for each 
algorithm/transform/metric triplet. Less difficult transforms, such as re- 
scaling, compression and enhancement (contrast, colour, sharpness), 
were also tested, but omitted here as they are relatively trivial. Neu-
ralhash was included in the experiment even though it lacks obvious 
spatial encoding to determine if it would still benefit from different 
metrics.

Evaluation results are depicted in Table 2. The AUCs for Hamming 
Distance are presented as is, while AUCs for the prototype distance 
metrics are recorded as percentage point differences to the Hamming 
Distance for the sake of readability. This is calculated as: (AUCmetric −

AUCHamming) × 100.
A 1%pt change indicates a positive 0.01 shift in the AUC over 

Hamming Distance. It should be noted that small changes at high AUCs 
Fig. 4. Example intra-image difference and convolution matrices for ahash, 
with a filter kernel size of 3 × 3, with all ones.
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can still translate to decreasing FP and FN rates by orders of magnitude 
for a given distance threshold.

For the spatial hashes (we include whash in this category for our 
purposes), the convolution approach is often positive, with the rotate 
and composite top-left approach benefiting the most across all hashes, 
achieving uplifts of around 8%pts for both dhash variants. The border 
transform also sees an uplift for all spatial hashes, despite their already 
solid performance. The only large loss here is mirroring for dhash, 
though this already performs poorly. Interestingly, the relative benefits 
for phash and PDQ seem less-well aligned with each other here. There is 
some upside for the Neuralhash composite case, which is the worst 
transform for it in this set. However, the movement is relatively small, 
slightly less than 1%pt, leaving a lot of room for improvement.

Hatch Matrix Distance was intended for the DCT-case, and seems to 
be slightly worse across the board than Hamming Distance for spatial 
approaches. For the DCT hashes, there is essentially no downside, but 
the mirroring difficulties completely evaporate for both phash and PDQ, 
to the point that they far exceed the performance of the spatial ap-
proaches. The AUC has essentially doubled, demonstrating that the in-
formation in the hashes themselves is enough to distinguish between 
inter- and intra-image classes, despite representing a worst-case trans-
form for Hamming Distance comparisons. Neuralhash, overall, seems to 
lose out consistently here.

While the prior two metrics had little upside for Neuralhash, it seems 
to have more movement for the Ngram approach, with a 2.7%pt uplift 
on the composite embedding, at the slight expensive of other transforms. 
Generally, Ngrams are not a good trade-off for spatial approaches, 

though the rotate transform does seem to benefit across all hashes. PDQ 
only sees change in its worst-off transforms, but the changes are too 
insignificant to matter. As with the other metrics, phash sees a small 
increase on a transform it already handles fairly well, i.e., composite 
embedding.

Larger hash sizes for the Imagehash library algorithms were also 
tested, scaling from the default 64-bit to 256-bit. Generally there are a 
few cases where this has a relatively substantial impact (2–5 %pt) for 
some transforms, but they trade off large losses against another trans-
form (up to 20–40 % in some cases).

4.5. Distributions and computational complexity

The inter-score distributions of original images remains appropriate 
for all metrics (normally distributed around 0.5), with Normalised 
Convolution distance tracking the Hamming Distance distribution 
almost exactly. Ngrams sit slightly higher than the Hamming distribu-
tions at around 0.51 for most metrics, though it is a little lower for whash 
(0.49–0.50) and considerably higher for dhash_vertical (0.55). Larger 
Ngrams trend down towards 0.5. Both Ngram and Convolution distance 
metrics smooth out any spikes that Hamming Distance produces for 
certain algorithms. Due to the minimum distance comparison in 
Hatched Matrix Distance, unrelated images are slightly more similar 
than for other metrics, producing a mean/median around 0.45 for all 
algorithms. Despite this, inter- and intra-classes are still neatly separated 
allowing for discrimination between them.

For a rough complexity demonstration, timed benchmark data for 
the distance metrics are presented in Table 3. Code was written in Py-
thon, with the scipy.spatial.distance module being used for 
Hamming and Cosine distances, while convolve is from scipy. 
ndimage. The maximum value for normalisation was pre-calculated for 
Convolution Distance and passed to the function. Distances for 100,000 
random 64-bit array pairs were calculated for ten runs, with the mean 
time in seconds being reported in the table. No attempt was made to 
vectorise the base functions, and as such the array slicing operations 
used by Hatched Matrix Distance and Ngram Cosine Distance make them 
very slow in Python, putting them around 10–20× slower than Ham-
ming Distance. The Scipy implementation of convolution is likely 
reasonably efficient, but overall the Convolution Distance is still around 
4× slower than Hamming. As Hatched Matrix Distance is potentially 
very useful for DCT-based algorithms, an attempt was made to optimise 
it by pre-compiling it using the numba module, with fastdist being 
used for its Hamming calculation. This resulted in an order of magnitude 
speed-up, but it still lags behind Hamming Distance by about 1.5×.

5. Conclusion and future work

Overall, we can consider both research questions to have been 
answered clearly. For RQ1, pertaining to whether or not spatial image 
data is encoded into bit positions in perceptual hashes, Section 3.2
demonstrates that this is indeed the case for a set of popular spatial and 
frequency domain hashes, but not for the tested deep-learning model. 
The patterns and information encoded in said bit positions are essen-
tially averaged out with a global distance measure such as Hamming 
Distance. This additional information could potentially be used to 

Table 2 
Area under the ROC curve for various non-trivial transforms. Hamming Distance 
and percentage point difference vs. the Hamming AUC for: Convolution Distance 
(4 × 4 filter), Hatched Matrix Distance (Hamming), and 2 × 2gram with Cosine 
distance. Differences are highlighted with bold for >1 % and underline for 
< 1 %. 1%pt = 0.01 in the AUC.

AUC %pt Diff to Hamming

Hash Trans. Hamming Conv4_4 Hatch 2gram
ahash CropTL 0.829 0.2 0.0 − 5.4

MirrorX 0.766 − 0.3 − 2.6 − 3.6
Rotate 0.919 2.5 − 0.1 − 0.8
Border 0.971 0.7 − 0.3 0.6
CompTL 0.527 3.8 0.5 − 4.8

dhash CropTL 0.641 − 0.6 − 0.7 − 4.9
Mirr.X 0.618 − 1.1 − 3.4 1.0
Rotate 0.808 7.6 − 1.0 4.3
Border 0.995 0.4 − 0.3 0.1
CompTL 0.992 0.4 − 0.4 − 2.9

dhash vertical CropTL 0.646 − 0.4 − 0.4 − 4.3
MirrorX 0.801 − 0.1 − 2.9 − 6.5
Rotate 0.780 8.4 − 1.0 3.6
Border 0.992 0.6 − 0.4 0.2
CompTL 0.989 0.4 − 0.6 − 5.5

Neural hash CropTL 0.996 0.0 − 0.1 − 0.4
MirrorX 0.930 − 0.1 − 0.4 − 1.0
Rotate 0.988 0.0 − 0.2 − 0.4
Border 0.999 0.0 0.0 0.0
CompTL 0.844 0.9 − 0.7 2.7

PDQ CropTL 0.527 − 0.2 − 0.1 − 0.9
MirrorX 0.515 0.9 48.5 1.6
Rotate 0.502 1.7 3.0 2.7
Border 1.000 0.0 0.0 0.0
CompTL 1.000 0.0 0.0 0.0

phash CropTL 0.586 − 2.5 − 0.2 − 0.3
MirrorX 0.496 2.3 49.1 1.1
Rotate 0.675 − 0.1 1.5 − 0.9
Border 1.000 0.0 0.0 0.0
CompTL 0.944 2.4 0.6 1.3

whash CropTL 0.821 0.3 0.0 − 2.1
MirrorX 0.744 − 0.1 − 2.9 − 1.7
Rotate 0.904 3.1 − 0.2 1.1
Border 0.921 1.4 − 0.5 3.6
CompTL 0.604 4.7 0.2 − 3.4

Table 3 
Python benchmarks for 100k randomised 64-bit array pairs. Ryzen 5900x 
single-threaded, mean of 10 runs.

Metric Benchmark Time (s)

Hamming 0.79
Normalised Convolution (4 × 4) 3.41
Hatched Matrix 18.28
2gram Cosine 9.85
Optimised Hatched Matrix 1.25
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improve perceptual image matching classification performance by 
incorporating them into a locality sensitive distance metric, which was 
the focus of RQ2 (Section 4).

To explore RQ2, we propose three prototype distance metrics 
(Hatched Matrix, Normalised Convolution, and 2-D Ngram Cosine), 
modelling hashes as two-dimensional, squared, hash matrices. Providing 
a positive result for RQ2, evaluation of these metrics indicate that sig-
nificant gains can be made over Hamming Distance. In the case of 
Hatched Matrix distance for phash and PDQ, their weaknesses to mir-
roring attacks with Hamming Distance were essentially negated. This 
turned a worst-case transform into one of the best-cases, at no cost to 
other transform classes and with no change in the hashing process. 
Indeed, transforms which are poorly handled cases may be a result of a 
global distance metric, rather than being a feature of the underlying 
hash algorithm. Less strikingly, the tested convolution-based distance 
metric outperforms Hamming Distance across the board, though it does 
trade-off small losses in some transforms. The Ngram approach is less 
compelling, though it does seem to improve match performance against 
rotated images.

A one-sized fits all approach to perceptual hash comparison is 
perhaps ill advised, particularly as all tested algorithms have their own 
characteristics, though there are shared properties between them. While 
they all seem to track Hamming Distance reasonably well on aggregate, 
suggesting that it does a decent job, there is clear room for improvement. 
The solutions presented here are a first foray into accounting for these 
spatial hash properties, and while the Hatched Matrix approach pre-
sented here works well for certain hash patterns, it does not necessarily 
benefit transform patterns (such as those weighted more heavily for low- 
frequency DCT coefficients). We also do not explicitly test image content 
which causes difficulty for certain hashes, (such as gradients for block- 
mean approaches, and high-frequency patterns for DCT-transforms), 
and it is now in question whether these are indeed features of the 
hashes, or their Hamming comparisons.

Future work could look to further explore the metric space by 
focusing on the transform-weight response of specific algorithms in a 
wider sense, as it appears spatial approaches could be improved by more 
closely considering the centre of the image in many cases. DCT and other 
frequency transforms can be explored for their coefficient distributions 
as well as the higher-level hatched patterns presented here. Stand-
ardising pre-processing approaches could also be considered, though 
this would require the rebuilding of hash databases utilising the un-
derlying hash mechanism. Additionally, none of the approaches here 
consider that even in cases where a block of an image is different, not all 
bits will change, as the algorithms typically aim for any given segment of 
data to be a 50/50 distribution between 1s and 0s. As such, a probabi-
listic modelling approach may be appropriate here to take into account 
the probability of a bit flipping or staying the same by chance.

Finally, we suggest that developers of content detection software 
investigate their choice of distance metric for content detection, as their 
current approach may be sub-optimal, with content-preserving trans-
formations defeating their content moderation and detection tooling 
unnecessarily.
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