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Abstract
Generative Artificial Intelligence (GenAI) has significantly increased
the sophistication and ease of image tampering techniques, posing
challenges for digital forensics in identifying manipulated images.
A lack of dataset standardisation hinders the ability to effectively
benchmark and compare GenAI inpainting localisation techniques,
reducing their reliability in digital forensic applications. This paper
aims to address this gap by exploring the need for standardised
criteria for datasets in digital forensics for benchmarking detection
techniques through preliminary experiments.

To address the limited diversity in existing datasets, a small-
scale dataset was developed, consisting of 240 tampered images,
20 masks and 20 authentic images. This dataset includes four sub-
ject image classes (animals, objects, persons, scenery) and three
inpainting tools (GLIDE, GalaxyAI, Photoshop). The dataset was
evaluated against 13 localisation algorithms from the Image Foren-
sics MATLAB Toolbox to determine key components that should
be considered in the standardisation of testing environments.

The results show that the images in the animals and persons
categories achieved the highest F1-Scores and accuracy over the
other classes. Among tools, GLIDE inpainted images were consis-
tently shown to be the most challenging to detect, underscoring the
importance of further investigating these images. These findings
provide foundational insights for identifying a set of criteria to
establish robust testing environments, enabling the development
of reliable and accurate GenAI inpainting localisation techniques.

CCS Concepts
• Computing methodologies→ Artificial intelligence; • Ap-
plied computing→ Computer forensics.

Keywords
Digital Forensics, Artificial Intelligence (AI), Generative AI (GenAI),
AI Manipulation, Inpainting, Image Forgery Localisation

This work is licensed under a Creative Commons Attribution International
4.0 License.

DFDS 2025, Brno, Czech Republic
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1076-6/25/04
https://doi.org/10.1145/3712716.3712724

ACM Reference Format:
Matthew Thomson, Sean McKeown, Richard Macfarlane, and Petra Leimich.
2025. Exploring Dataset Diversity for GenAI Image Inpainting Localisation
in Digital Forensics. In Digital Forensics Doctoral Symposium (DFDS 2025),
April 01, 2025, Brno, Czech Republic. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3712716.3712724

1 Introduction
Image tampering has become increasingly sophisticated, posing
significant challenges to digital forensics, especially with the intro-
duction of generative artificial Intelligence (GenAI). GenAI is now
capable of creating media that appear highly realistic: impossible
for the human eye to distinguish tampered from authentic images,
and difficult to detect automatically. If undetected, such media could
lead to misinformation impacting the investigation process, lead-
ing to wrongful convictions or releasing a guilty suspect. These
challenges highlight the need for work towards robust and reliable
tampering detection and localisation methods [17, 22].

Realistic testing environments are essential to accurately evalu-
ate detection and localisationmethods.Without diverse and realistic
datasets, the accuracy and reliability of detection and localisation
methods cannot be effectively evaluated. To overcome these chal-
lenges, this study aims to identify the similarities and patterns
within subject image classes and tools that contribute to the perfor-
mance of detection and localisation techniques through a quantita-
tive evaluation. The experimentation considered the subject class
of an image, as the variation in image complexities and textures can
significantly affect performance. Additionally, the inpainting tool
utilised introduces differing image attributes due to its divergent im-
age manipulation processes. Through preliminary experimentation,
this work demonstrates how these components impact localisation
results, emphasising the importance of standardised and realistic
testing environments.

To address the challenges, we explore the following research
questions:

• RQ1: How do different image classes, such as animals, ob-
jects, persons, and scenery, affect the performance of tam-
pering localisation algorithms?

• RQ2: How do different inpainting tools, such as GLIDE,
GalaxyAI, and Photoshop, impact tampering localisation
performance?

https://orcid.org/0009-0005-6626-0993
https://orcid.org/0000-0001-7231-1682
https://orcid.org/0000-0002-5325-2872
https://orcid.org/0000-0001-9947-6831
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3712716.3712724
https://doi.org/10.1145/3712716.3712724
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712716.3712724&domain=pdf&date_stamp=2025-04-01


DFDS 2025, April 01, 2025, Brno, Czech Republic Matthew Thomson, Sean McKeown, Richard Macfarlane, and Petra Leimich

• RQ3:What additional considerations should be addressed
to establish a comprehensive set of criteria for the standardi-
sation of a realistic testing environment for digital forensics
purposes?

Our evaluation lays the foundation towards establishing standard-
ised criteria for testing environment datasets within digital foren-
sics. Developing a standardised dataset will enable consistent test-
ing, improving the reliability and applicability of GenAI image
detection and localisation techniques in forensic investigations.

2 Background and Related Work
In digital forensics, image tampering or forgery refers to the inten-
tional modification of the content to mislead the viewer. Common
image tampering techniques include copy-move and splicing ma-
nipulations [24]. However, the integration of GenAI into these
processes has significantly increased their sophistication, making
them particularly dangerous. Alongside this, image tampering is
now more accessible and requires no prior expertise, widening
its potential for use. GenAI for image manipulation can typically
be divided into two main categories: fully generated and partially
generated content. Partially AI-generated or tampered images in-
volve the use of GenAI models to enhance traditional manipulation
techniques [23]. One widely accessible and commercialised image
tampering technique is inpainting, where elements of interest, such
as people or weapons, can be removed from the scene to alter the
image’s context [23]. Malicious image tampering such as this can
be used to obscure digital evidence, posing significant challenges
for forensic investigators [25]. The ability of GenAI models to gen-
erate highly realistic and coherent background textures from object
removal makes detecting tampered regions particularly difficult.

While new detection and localisation techniques are being devel-
oped, their evaluation is often limited by the lack of standardised
criteria for testing environments. For instance, Li et al. [12] found
a substantial drop in performance when testing their transformer-
based detection technique against unseen datasets. Similarly, Patel
et al. [19] explored the use of machine-based techniques, specifi-
cally Dense CNNs, and evaluated their approach using the Deepfake
Images Detection and Reconstruction Challenge dataset. Patel et
al.’s study reported the accuracy metric ranging from 94.67% to
99.33%. However, when testing the generalisation capabilities of
the proposed model, the accuracy decreased significantly to only
77%. This highlights the importance of standardised datasets and
testing environments in determining a technique’s applicability
to digital forensics. Some techniques may perform better against
certain manipulation types or GenAI models than others and this is
hard to determine without a wide scale dataset for benchmarking.
This lack of standardisation limits the ability to assess the accuracy
and reliability of detection and localisation techniques across di-
verse scenarios. Forensic analysts often encounter highly specific
manipulation types that correspond to different image classes, such
as face swaps in social media or object removal in CCTV [16]. A
testing environment that allows for divided classes, such as persons,
objects, and scenery, would enable forensics analysts to evaluate
whether the nature of the replacement influences localisation per-
formance. Identifying these impacts allows examiners to tailor their
analysis strategies to specific content types.

Despite the number of datasets available in the field, their rele-
vance becomes outdated very quickly, with new models constantly
being developed. Furthermore, several of the datasets tend to be
for very specific problems or areas rather than providing a diverse
variety of options. Datasets such as Artifact [20] include images
from a variety of models and classes, but their exclusive focus on
art styles and the absence of options to isolate and test specific
classes limits their applicability for forensic scenarios. The Hier-
archical Fine-grained (HiFi-IFDL) dataset [8] addresses additional
manipulation types beyond just fully AI-generated or inpainting,
but omits commonly used commercial models such as Adobe Firefly,
Midjourney, DALL-E, or newer versions of Stable Diffusion. Con-
versely, datasets such as CIFAKE [5] have a large variety of classes,
but are limited by very small image resolutions of 32x32 or 64x64
compared to the typical Stable Diffusion output of 512x512.

This work aims to address such gaps by exploring the influence of
dataset components, such as a variety of image classes and tools, on
localisation performance. By identifying foundational components
that should be dictated in standardised criteria for datasets, our
work contributes to developing robust and standardised testing
environments for digital forensics applications.

3 Methodology
To evaluate the requirements for a standardised testing environ-
ment for GenAI localisation techniques, we assess the impact of
dataset components through two primary experiments. The first
experiment focuses on the influence that the image subject classes,
animals, objects, persons, and scenery, can have on the localisa-
tion performance. The second experiment evaluates the impact of
the inpainting tool used for tampering, where three tools, GLIDE,
GalaxyAI, and Adobe Photoshop, are chosen for their distinct ap-
proaches to inpainting. The focus on localisation is due to the
availability of the Image Forensics MATLAB Toolbox [28], which
contains a range of localisation algorithms. This approach allows
for the evaluation to prioritise the impact of dataset components,
rather than specific detection or localisation techniques. To conduct
these experiments, a comprehensive dataset consisting of authentic
images, tampered images, and masks, must be created, alongside
adaptations to the Image Forensics MATLAB Toolbox.

3.1 Dataset Creation
A small-scale dataset consisting of 20 authentic images with 20
corresponding edit localisation masks, each used to generate 12
tampered images (totalling 240), with the tampered content being
created using the GenAI technique of inpainting. This tampering
method alters an image by reconstructing segments to conceal
elements, often deceiving viewers [23]. The inpainting process is
displayed in Figure 1, where the cow is removed from the image.
This technique was selected due to its availability and ease of use,
alongside similarities to the traditional technique of splicing.
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Figure 1: Example of inpainting using GalaxyAI on an image
of a cow.

The authentic images were sourced from the Microsoft Com-
mon Objects in Context (MS COCO) dataset [13], which contains
90 categories of images. Four categories, animals, objects, persons
and scenery, were selected to include a variety of image options
and complexities. Within each subject class, five images were se-
lected from categories of similar classes. For example, dog, cat, bear,
chicken and cow were combined to form the “animals” class. The
four selected image subject classes represent a variety of the 90 MS
COCO categories, enabling the combination of multiple subcate-
gories to provide a more diverse evaluation.

To manipulate the images with the chosen inpainting techniques,
each authentic image was tampered with four times using the
three tools. The first method involved Adobe Firefly, which was
accessed through the desktop Adobe Photoshop application [1].
Subject masks in the images were selected using the semi-automatic
Magic Selection Tool, and the prompt “remove” was used to guide
the inpainting process. Photoshop’s GenAI tool generates three
variations per run, so the process was repeated twice to produce
sufficient outputs, with the first four results selected. The second
method used GLIDE, which was run locally using the code available
from the glide-text2im project [18]. To allow for automation, the
Jupyter notebooks contained within the project’s source code were
converted into a Python script. The script requires the input of
the authentic image, a reference mask, and the “remove” prompt.
Masks initially created from the Photoshop process were reused to
ensure consistency across tools. The third method used GalaxyAI,
an object editor and removal feature on Galaxy phones [21]. The
masks were manually drawn over the images to replicate those
used in Photoshop and GLIDE. This tool uses an erase button to
remove the selected masks, no prompt is required.

For each category, five masks corresponding to the authentic
images were created, resulting in twenty masks across the dataset.
These masks, initially created in Adobe Photoshop, were used
throughout for the tampering reference masks. The full dataset
consists of 3 tools, 4 classes, and 20 tampered images each, result-
ing in 240 tampered images total (3x4x20).

3.2 Experiment Setup
The experiments were conducted using the Image Forensics MAT-
LAB Toolbox [28], which was created primarily for splicing local-
isation. To improve upon the work presented in [28], our exper-
imentation includes images with inpainting modification rather
than splicing. The evaluation focuses on the differing performance
across classes and tools rather than each algorithm’s performance.
Additionally, the toolbox was used to allow for multiple localisation
methods to be run on the images, providing results specific to the
tampered images rather than one specific method of localisation.
The toolbox contains a total of 16 algorithms, of which 13 were

selected for this experiment as they can be directly applied without
further modifications to the code being necessary. The selected
algorithms are: ADQ1 [14], ADQ2 [3], ADQ3 [2], BLK [11], CAGI
[9], CFA1 [7], CFA3 [6], DCT [27], ELA [10], NADQ [4], NOI1 [15],
NOI4 [26], and NOI5 [29].

To adapt the toolbox, the EvaluateAlgorithm.m script was modi-
fied to allow for multiple algorithms to be passed at once, and the
ExtractMaps.m script was modified to allow for an option accom-
modating the specific mask and authentic image setup that this
experiment consisted of. Additional MATLAB scripts were created
to process the probability maps generated by the toolbox, which
represent the likelihood of pixel regions being tampered with. The
probability map output was then normalised to values between 0
and 1 across the dataset for each algorithm. The confusion matrix
values are calculated using the normalised probability map of the
corresponding images as the threshold. As shown in Table Table 1,
where TR is the Tampered Result probability map value and AR is
the Authentic Result probability map value, if the TR is more than or
equal to the AR then it is deemed as tampered with. Then the actual
mask is used to determine if this was a correct identification. Using
the authentic image as the threshold in this experiment allows for
the evaluation of differences across image classes and inpainting
tools. However, it is important to note that this approach would
not be possible in real life forensics scenarios; it is used here for
the purpose of identifying key components and artefacts of images
for the localisation of GenAI manipulation, particularly inpainting.

Table 1: Confusion Matrix value breakdown, where TR is
the Tampered Result probability map value and AR is the
Authentic Result probability map value

Mask Predicted
True Positive (TP) True TR >= AR
False Positive (FP) False TR >= AR
True Negative (TN) False TR < AR
False Negative (FN) True TR < AR

To evaluate the influence that the image classes and tools have on
localisation methods, the data in the .mat files were organised with
a MATLAB script that restructured them based on their class and
tool fields. This allowed for the evaluation metrics to be calculated
on the full dataset, as well as per class and per tool.

For the visual analysis, heatmaps were created using the MAT-
LAB imagesc function, which creates a colour map from the values.
This heatmap was saved to a pdf for all the images within each
algorithm. The probability maps passed to this function were the
binary threshold maps from the predicted function within Table 1.
Full implementation details are available on GitHub1.

3.3 Evaluation Metrics
The evaluation metrics selected for this experiment include the
confusion matrix alongside the accuracy, precision, recall and F1-
scores. The discussion will mainly focus on accuracy and F1-score
due to their relevance in digital forensics investigations. Accuracy
1https://github.com/MatthewT0/GenAI-Image-Forensics-Toolbox

https://github.com/MatthewT0/GenAI-Image-Forensics-Toolbox
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assesses the localisation methods’ ability to correctly identify tam-
pered and untampered areas, which is vital for ensuring reliability
within digital forensics investigations. Using accuracy alone can
provide misleading results, which is why the F1-score will also be
used. This addresses accuracy limitations by balancing precision
and recall, offering a robust metric for evaluating the performance
in scenarios where both false positives and false negatives carry
significant weight. This balance is crucial in digital forensics in-
vestigations, where undetected tampered images or images falsely
identified to be tampered with when they are authentic could com-
promise the integrity of a case. By combining these metrics, we
ensure a comprehensive evaluation of localisation methods.

4 Results and Discussion
The results from both experiments are displayed in three ways. A
visual heatmap shows the highlighted tampered and untampered re-
gions identified by the probability map. Secondly, a bar chart is used
to represent similarities grouped by different dataset components,
and finally a table presents all evaluation metrics for comparison
purposes. For demonstration purposes, the heatmaps from the NOI4
algorithmwere used due to having particularly strong results. These
heatmaps are the binary decision values once the normalised proba-
bility maps from the tampered image and authentic reference image
are compared. During the review process, a manual inspection of
the output heatmaps was performed to identify images that could
be detected through the human eye. These were selected based
on obvious mask detection without looking at the authentic or
tampered images.

4.1 Experiment 1: Image Classes
Experiment 1 explored the influence of the subject class on the
performance of various localisation algorithms. The dataset was
divided into four classes of animals, objects, persons, and scenery.
The probability map from the animals subject class image once
evaluated against the threshold probability map values can be seen
in Figure 2. The figure is from the same example shown in Fig-
ure 1, where the cow is removed from the image. The heatmap
highlights the detected tampered areas in yellow, where the cow is
correctly identified and the sky is incorrectly identified as tampered.
Through the visual heatmaps inspection there were notably more
identifications in the animals image class, with 32% of all visual
identifications being from this class.

Figure 2: NOI4 localisation result, where yellow is tampered.

The F1-scores across classes are illustrated as a bar chart in Fig-
ure 3, where a consistent pattern can be identified between the
animals and persons classes, achieving higher scores than objects
or scenery across most algorithms. This suggests that the localisa-
tion methods are more effective in identifying the tampered regions
within these two classes. In contrast, the objects and scenery classes
show notably lower scores averaging at around half the other two
classes’ F1-scores, at 10% compared to 20%. The consistent underper-
formance in objects and scenery categories highlights a potential
weakness in the handling of these image classes, indicating a need
for future work. The F1 scores across the evaluated categories high-
light the importance in having a diverse dataset of varying classes.
However, to better determine which image attributes in the class
cause such opposing F1-scores, a more in-depth analysis will need
to be conducted.

Figure 3: Average F1-score across algorithms, grouped by the
class.

Table 2 presents the metrics for the full dataset as the baseline
and the difference to each of the classes. The results highlight key
trends in how the localisation methods perform across various
image classes.

The objects class presents the highest TN and lowest FN results,
demonstrating that the algorithms against this class are particularly
effective in correctly identifying untampered areas within an image.
In contrast, the precision and F1-score ratios decrease substantially,
highlighting the difficulty of the classes in balancing the correct
identifications of tampered regions with incorrect untampered re-
gions. The results suggest that images within the objects class are
more likely to be classified as untampered, regardless of whether
they have been or not. Further investigation into the specific image
attributes which cause the inaccuracy in image tampering detection
must be conducted before a definitive analysis can be performed.
However, it is important to note that other factors, such as smaller
mask region, could be a result of inaccurate localisation.

On the contrary, the persons class can be seen to have the highest
precision and F1-scores, but the lowest accuracy. This demonstrates
the persons’ class strength in correctly identifying tampered re-
gions whilst struggling to identify the untampered areas correctly.
The animals and persons classes share similar patterns in their
F1-scores as previously highlighted, which is further reflected in
Table 2. Both classes show confusion matrix values that deviate
from the baseline in the same direction, increasing or decreasing
together. This suggests that the two classes share similar underlying
attributes that influence the localisation algorithms in comparable
ways.
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Table 2: Baseline metrics for the full dataset of tampered
images compared to the per-class (60 images per class) differ-
ences from the baseline. Negative values indicate a decrease
from the baseline metrics, while positive values represent
an increase from the baseline metrics.

Classes
Baseline Animals Objects Persons Scenery

TP 4.65 1.86 -2.67 3.75 -2.94
TN 55.13 -1.30 6.98 -8.98 3.30
FP 31.15 -5.03 1.28 -0.74 4.48
FN 9.06 4.47 -5.59 5.97 -4.84
Accuracy 59.79 0.56 4.31 -5.23 0.36
Precision 13.20 6.72 -7.16 8.36 -8.84
Recall 33.92 -1.44 2.48 1.92 -5.02
F1-Score 17.63 3.14 -8.22 8.16 -10.26

In summary, the results from the classes analysis highlight impor-
tant patterns in how localisation methods perform across different
image classes. This underscores the importance of a standardised
and realistic testing environment through a set of clearly defined
criteria. The similarities and patterns discovered between the per-
sons and animals classes, compared to the objects and scenery
classes, demonstrate the importance of rigorous testing to identify
the features that influence the localisation performance. Establish-
ing a set of criteria is essential for creating datasets that accurately
reflect real-world scenarios, enabling the evaluation and creation
of digital forensics techniques to overcome the rise of GenAI image
manipulation.

4.2 Experiment 2: Tools
This experiment examines the impact of differing inpainting tools
on the performance of localisation methods. The tools GLIDE,
GalaxyAI, and Adobe Photoshop were selected for this evaluation
due to their distinct approaches to tampering, which could intro-
duce varying characteristics in tampered regions. The goal of this
experiment is to determine whether the tool used affects the locali-
sation ability, highlighting the importance of tool diversity in the
creation of realistic datasets.

Across the tools utilised, a visual heatmap inspection was per-
formed where Adobe Photoshop generally showed more obvious
tampering indications, consisting of 44.62% out of identifications.
However, some occasions were identifiable due to the mask edges
being flagged as not tampered with and a large distribution of tam-
pered indications falling within the mask region. Visual examples
of manually identified tampering can be seen in Figure 4, where ex-
amples are shown of GLIDE, GalaxyAI and Photoshop respectively.
Out of the manually identified masks, the GalaxyAI masks were
more obvious to notice when they occurred due to more correct
TN pixels being identified, but there were more Adobe Photoshop
instances.

Figure 4: NOI4 visual heatmaps for the inpainting tools.

The accuracy results, as shown in Figure 5, reveal that GalaxyAI
consistently demonstrates a higher performance compared to Pho-
toshop and GLIDE’s accuracy, averaging at 63%. This suggests that
GalaxyAI tampered images have more detectable artefacts within
the images, possibly due to their built-in watermarking. Photo-
shop and GLIDE’s accuracy are generally lower across algorithms,
demonstrating that these images are harder to detect. For GLIDE,
the performance difference appears to be influenced by the lower
resolution of GLIDE tampered images compared to the other tools,
as the GLIDE code downscales the image resolution. The resolution
disparity strongly suggests a contributing factor to the decreased
localised performance. The underlying reason behind GalaxyAI’s
higher accuracy and GLIDE’s lower accuracy would require fur-
ther investigation to fully understand the contributing factors. In
the case of Photoshop, the factors being its lower accuracy remain
unclear and further experimentation would be beneficial in deter-
mining what components make these tampered images harder to
detect.

Figure 5: Average accuracy across algorithms, grouped by the
tool.

The baseline metrics for the full dataset and the difference be-
tween ratios from the baseline to the classes can be seen in Table 3.
GalaxyAI differentiates the most from the baseline, with the highest
TN, accuracy, and precision, as well as the lowest FP. These results
indicate that the localisation algorithms applied to GalaxyAI tam-
pered images were generally more effective at correctly identifying
untampered areas, averaging at 63% accuracy.
For all evaluation metrics except precision, GLIDE and Photoshop
deviate from the baseline in the same direction. This consistent
deviation in most metrics indicates similarities in the localisation
difficulty of these tools.



DFDS 2025, April 01, 2025, Brno, Czech Republic Matthew Thomson, Sean McKeown, Richard Macfarlane, and Petra Leimich

Table 3: Baseline metrics for the full dataset of tampered
images compared to the per-tool differences from the base-
line. Negative values indicate a decrease from the baseline
metrics, while positive values represent an increase from the
baseline metrics.

Tools
Baseline GLIDE GalaxyAI Photoshop

TP 4.65 0.17 -0.26 0.10
TN 55.13 -1.57 3.19 -1.62
FP 31.15 1.56 -3.18 1.63
FN 9.06 -0.15 0.26 -0.11
Accuracy 59.79 -1.41 2.93 -1.52
Precision 13.20 -0.43 1.79 0.44
Recall 33.92 1.16 -1.91 0.75
F1-Score 17.63 -0.23 -1.04 -0.45

The conducted experiment builds upon the findings from the
subject class analysis by focusing on the tools used to generate the
tampered images rather than the content itself. From this, Photo-
shop provided the highest number of human eye detections from
the output heatmaps, whilst GalaxyAI should have the most distinc-
tive heatmaps. Additionally, GalaxyAI consistently demonstrated
higher accuracy than the other two tools across algorithms, indi-
cating more identifiable attributes in these images. Furthermore,
GalaxyAI also showed the most significant deviations from the base-
line with a 3.19% increase to TN and a 3.18% decrease from FP. This
suggests that the localisation algorithms were typically producing
more non-tampered classifications within their probability maps.

5 Conclusion
Many GenAI tampering datasets do not include a variety of manipu-
lation types, classes or tools within them, creating a limited testing
environment for digital forensics. This can result in the evaluation
of detection and localisation techniques suffering from overfitting
and generalisation, leading to their performance decreasing greatly
when applied to real-world scenarios. An example of this is when
GenAI localisation techniques are used in areas that differ from its
original testing environment, such as a tampering technique that is
used for detecting the alteration of people being used on identifying
removed objects. This paper explored the need for standardised
testing environments to enhance the performance of upcoming
detection and localisation techniques being developed.

Addressing RQ1, it was found that certain classes had a higher
level of influence on the performance of the localisation algorithms
compared to others. Based upon the manual heatmap inspection,
the animals class had more notable identifications, being 31.97%
of the overall identifications. This class, along with the persons
class, illustrated key patterns, consistently scoring higher F1-score
by almost double the other classes analysed, at 20% compared to
10%. The identified similarities emphasise the importance of the
inclusion of a variety of classes within the testing environment for
digital forensics, where analysts often face a wide range of image
classes from animals to objects.

The evaluation aimed at addressing RQ2 showed that Photoshop
had the highest notable visual heatmaps, being 44% of the overall
identifications. However, the GalaxyAI manual identifications were

clearer with more correct TN values. Furthermore, GLIDE inpainted
images were the most challenging for algorithms to detect, with
consistently lower accuracy compared to GalaxyAI and Photoshop.
This highlights the need for further attribute testing on the impact
of lower resolution, which could be causing the lower accuracy for
GLIDE inpainted images.

Having a realistic dataset that can cover a range of classes and
tools will provide a robust testing environment for the development
of techniques to counteract AI-based manipulation and cover the
nature of media that forensic analysts handle. Without standardised
criteria for datasets, the detection and localisation methods being
developed cannot be accurately and rigorously tested to ensure
their reliability in forensic investigations.

Additional components that should be further investigated for
inpainting detection and localisation include the mask size, image
complexity, and image resolution. These components alongside the
underlying artefacts, such as watermarking in GalaxyAI, highlight
the requirements for establishing a comprehensive set of criteria as
raised in RQ3.

6 Future Work
The work conducted was performed at a small-scale level, and while
it provided preliminary results and patterns, a larger dataset is nec-
essary to validate these and establish the criteria for standardisation
of datasets. Expanding the dataset would facilitate an extensive and
comprehensive analysis of image attributes and dataset compo-
nents.

Although a manual visual inspection of the heatmaps was con-
ducted, future experimentation could include automating this pro-
cess by analysing the pixel distribution of identified tampered areas,
minimising any implication of human error. Furthermore, the anal-
ysis was conducted using a single threshold option, specifically the
authentic image probability map. Whilst the data collected from
the authentic image as the threshold provided interesting results,
this is not feasible in real-world examples where the authentic
image and prior knowledge are unknown. Therefore, additional
threshold tests to determine if blind localisation is possible would
be beneficial in improving forensic applicability. Further analysis
into an error percentage margin around the threshold value should
be investigated to determine if the threshold is suitable.

Lastly, additional testing on the localisation abilities of further
file types, such as PNGS and WEBPs, would be invaluable in de-
termining the various formats required for a diverse dataset. The
MATLAB toolbox was specifically created for JPG images, although
some algorithms allow for PNGs. However, MATLAB lacks official
support for WEBP image format, so alternative solutions would
be required to address this. File type testing may include various
conversion approaches, including converting each of the three afore-
mentioned file types into every other type to assess whether the
direction of image conversion impacts the outcomes. Additionally,
comparing double-compressed JPG images and WEBP images may
provide insight to determine whether any additional components
of the images are being identified from the localisation algorithms.
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