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et: N-window Extended Frequency Transformer for
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A B S T R A C T
Advancements in prediction of human motion sequences are critical for enabling online virtual
reality (VR) users to dance and move in ways that accurately mirror real-world actions,
delivering a more immersive and connected experience. However, latency in networked motion
tracking remains a significant challenge, disrupting engagement and necessitating predictive
solutions to achieve real-time synchronization of remote motions. To address this issue, we
propose a novel approach leveraging a synthetically generated dataset based on supervised foot
anchor placement timings for rhythmic motions, ensuring periodicity and reducing prediction
errors. Our model integrates a discrete cosine transform (DCT) to encode motion, refine high-
frequency components, and smooth motion sequences, mitigating jittery artifacts. Additionally,
we introduce a feed-forward attention mechanism designed to learn from N-window pairs of
3D key-point pose histories for precise future motion prediction. Quantitative and qualitative
evaluations on the Human3.6M dataset highlight significant improvements in mean per joint
position error (MPJPE) metrics, demonstrating the superiority of our technique over state-of-
the-art approaches. We further introduce novel result pose visualizations through the use of
generative AI methods.

ction
ds of virtual reality (VR) and computer vision, real-time tracking is crucial for recovering accurate 3D
man joint pose data is commonly captured using multi-camera or single-camera setups integrated with
to obtain depth information and directly recover pose key points and joint orientations. Nevertheless,
h as limited sensor range, occlusion, and latency persist in tracking 3D pose data. In order to improve

d engagement in patterned motion scenarios, there is a high demand for techniques that minimize latency
ng motion tracking through motion prediction.
ning techniques have significantly advanced the domain of human motion prediction [5] [10]. Among
nt neural networks (RNNs) have become particularly popular for predicting sequential human pose data
wever, when it comes to long-term horizons and periodic motions, RNNs often struggle due to their
ectively capture long-term history, which is essential for forecasting periodic motion actions. To address
, recent approaches have incorporated encoders [22] to better represent historical information.
introduces a multi-window extended frequency attention-based human motion prediction technique that
tically generated periodic data based on re-timed foot anchor placements, as illustrated in figure 2. Our

tivated by the observation that humans tend to repeat their motions in actions such as dancing to music
ate this, we focus on the context of rhythmic motion prediction, where we demonstrate the effectiveness
h by re-timing Human3.6m [18] to match these rhythmic patterns. We present results based on analyzing
ation from significant bones, such as the feet, over a fixed-length period.

y previous works [24], we represent each sub-sequence of foot anchors in the trajectory space using a
ne Transform (DCT).
troduce our dual-windowed extended frequency motion attention as weights for DCT-encoded motion
to a future motion estimate. To encode spatial dependencies between joints, we combine the motion
the last observed matching period, using the result as input to a graph convolutional network (GCN)

eriment, as shown in figure 5, demonstrates that our approach outperforms state-of-the-art methods in
short-term periodic motion prediction on the Human3.6M walking and walking together datasets. Our
DeFT-Net [1] developed upon insights from Mao et al [23], specifically improving 3D pose motion
known periodicity based on foot anchor placements.
ing authors
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NeFT-Net

-Net stable diffusion walking sequence visualization. Note: We apply the positive prompt "A walking human"
ap image on the left (a) with different seeds to achieve (b), (c), and (d)

.

rize, the main contributions of this paper are:
ed motion with supervised foot anchor information of periodic cycles, such as walking, for the defined
of rhythmic motion prediction.

oved overall mean per joint position error (MPJPE) results compared to state-of-the-art methods in exper-
n the Human3.6M dataset for forecasting short and long-term motions by introducing MultiWindowDCT

n aligned on a best fit period of each motion sequence.
gy for photorealistic visualization of human body motion sequences by employing the use of stable
n on depth maps as shown in figure 1.
source version of our code implementation https://github.com/CarouselDancing/NeFT-net

Work
otion prediction relates to a variety of research areas like Computer Vision and Machine learning (ML),
ing future movements is essential for applications in computer graphics and virtual reality. Section 2.1
ious traditional techniques employed in the task of motion style synthesis and prediction. Section 2.2
recurrent neural networks (RNN) has been adopted over the years for sequence-to-sequence 3D human

tion. Section 2.3 highlights the uniqueness of the attention-based approach compared to other approaches
diction.
onal Approaches

by the inherent probabilistic nature of periodic human motion, early methods such as Boltzmann
Hidden Markov Models (HMMs) [29] [4] have been widely used to predict motion sequences. Style
echniques are also frequently applied to synthesize motion, often driven by scripts, 2D video inputs, or
w choreography for virtual motion capture. While these methods offer robust solutions, they lack the

nd precision needed for capturing both short-term and long-term dependencies, particularly in dynamic
ance and rhythmic walking sequences. Other advancements have introduced probabilistic models that
motion databases and low-dimensional representations [27]. These methods utilize implicit empirical

nd efficient binary tree-based search to approximate the true distribution of human motion. By structuring
fficiently, they allow for realistic motion synthesis and robust tracking within Bayesian frameworks,
th adaptability and precision challenges.
ent Neural Networks (RNN) Approaches
e grown in prominence for 3D human motion prediction tasks [9]. The encoder-decoder model (ERD),
d by Fragkiadaki et. al [12], incorporates Long Short-Term Memory (LSTM) cells in the latent space for
ion dynamics. The work of Jain et al. [19] leverages a spatio-temporal graph skeleton, utilizing RNNs as
t al.: Preprint submitted to Elsevier Page 2 of 11
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NeFT-Net

l kinematic chain joint dependencies. Aksan et al [3] replace dense output layers in the RNN architecture
l prediction layers to explicitly model joint dependencies that follow a kinematic chain. In the works of
14], a separate denoising auto-encoder is trained to correct noisy outputs. All these techniques suffer
pture long-range motion history trajectories.
RNN-based methods have historically struggled with capturing long-term motion history, leading to
predicting prolonged sequences. In response, Martinez et. al [25] introduced a sequence-to-sequence
hitecture incorporating an input-to-output skip connection, which mitigates some of the inherent bias
e model with its own predictions. Despite improved results over earlier pose-based models [19], the
between ground truth and predicted frames persisted.
s this, Pavllo et al [26] adapted the teacher-forcing technique, allowing the model to gradually learn
outputs, further enhancing prediction accuracy. Additionally, Chiu et al [9] introduced a hierarchical
hat operates across multiple time scales to better capture motion variability over different time spans.
adversarial training methods proposed by Gui et al. [15] enable the generation of smoother motion
rk of Hernandez et al [17], human motion forecasting was framed as a tensor imputation problem,
e adversarial networks (GANs) adapted for long-term prediction. Although these techniques resulted
erformance, the use of adversarial networks introduces challenges in training, such as instability due to
l nature of the generator-discriminator dynamics, difficulty in achieving convergence, and sensitivity to
ers, particularly when applied to periodic datasets requiring precise foot anchor encoding.
Recurrent Models
drawbacks of RNNs, several works have employed the use of feed-forward networks as an alternative
4] The work of Butepage et. al [5] introduced a fully connected feed forward to process the recent history
ating techniques to encode temporal historical information via convolution and exploiting the kinematic
spatial information. Li et. al [22] suggest a convolutional sequence-to sequence model (CNN) processing
onal pose matrix whose column represent the pose at every time step. The model was employed to extract
prior from long-term motion history of frames, which, in conjunction with more recent motion history,

n input to an auto regressive network for future pose prediction. While more effective than RNN-based
he manually selected size of the convolutional windows highly influences the temporal encoding of
nces. To address this, Aksan et. al [2] introduced a spati-temporal transformer encompassing a fully
e approach to model temporal dependencies given the recursive nature of human motion. Cai et. al
transformer architecture on the DCT coefficients extracted from the seed sequence and make joint

ogressively by following a kinematic tree. Similarly, Mao et. al [24] encodes joint sequence via DCT
ph convolutional network (GCN) to capture/learn inter-joint dependencies. Since the GCN operates on
ows of poses to produce an output, the pose forecast are limited to a predetermined length. To address
cted DCT coefficients from shorter sub-sequences in a sliding window fashion aggregated with a 1D

k. Guinot et al [16] introduced a stacked-attention mechanism utilizing synthetic IMU data to improve
endency handling in dance motion prediction. This method addresses the limitations of traditional RNNs
ng motion dynamics into the frequency domain using discrete cosine transform (DCT), which better
oral information.
is related to these approaches, but differs in two aspects. First, we introduce windowed inputs of a time-
sed on foot anchor pose information to the DCT windowed input so our model can learn periodic motions
ong term history in the frequency domain. We then introduce an N-window extended frequency model
n motion periodicity.

Overview
ique introduces a unique approach to improving human motion prediction by incorporating periodic
adapting a multi-window of poses 𝑍𝑖. Each 𝑍𝑖 consists of three concatenated slices 𝑆𝑖, 𝑆𝑖+𝑝+offset,
set from the motion history 𝑆1 = [𝑠1, 𝑠2, 𝑠3,… , 𝑠𝑁 ]. Here, 𝑝 represents the period, and offset allows
djusting the relative positions of these slices. This technique captures long-term temporal dependencies
ifferent periods within human motion data, thus enhancing our model’s ability to forecast future poses
performance. As shown in figure 2, we synthesize 3D pose data by interpolating frames containing
t al.: Preprint submitted to Elsevier Page 3 of 11
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NeFT-Net

nchor information from natural walking sequences in the Human3.6M dataset. We apply spherical
for pose rotations and linear interpolation for pose translations to ensure smooth periodic motions. Since
orecasting from past sequences is the main goal, our method parallels approaches that utilize Discrete
orm (DCT) to encode motion, suppress high frequencies, and smooth jittery motions as seen in prior
. To adapt the attention model to periodic motion cycles, we fold pose tensors to learn smooth motion
ur model utilizes window slices of encoded periodic motion. For instance, if the first window captures
otion, the second window integrates the immediate history, and the third slice looks two steps further
ee-slice stack model enables more robust short- and long-term motion forecasting.

eleton-grid comparison of the fixed DCT motions from the HistRepeatDCT method [23] and our re-timed
extended DCT motions for test subject 5 walking synchronized with right foot anchor placements. The fixed
equence is shown as right leg purple/left leg green, and our multi-window extended re-timed DCT motions
d/left leg blue skeleton. Note: The red circles represent foot placement re-timed frames and purple circles
cements from start to end of the original sequence.

chor Frame Interpolation
l is to learn from periodic walking sequence motions and forecast future pose motions, similar to Cao et
on frame annotations based on the right foot placement at every 𝑛𝑡ℎ frame. For periodic actions, such as
alking together, linear interpolation is applied to the root joint for smooth transitions between frames.
n 1, we compute a weighted average between the translation vectors of two key frames, 𝑝1 and 𝑝2. The
actor 𝑡 ∈ [0, 1] controls the degree of blending between these frames. When 𝑡 = 0, the result is entirely
𝑡 = 1, the result is 𝑝2. For intermediate values of 𝑡, the linear interpolation (lerp) computes a gradual
een the two translation vectors, creating smooth transitions in position between frames.

lerp(𝑝1, 𝑝2, 𝑡) = (1 − 𝑡)𝑝1 + 𝑡𝑝2 (1)
n to translation interpolation, we also handle rotational changes between frames. Unlike translations,
more complex and require spherical interpolation to compute smooth rotational transitions. Drawing
ine’s spherical linear interpolation approximation [20], we define a spherical path between the rotations
rotations from the rotation vectors of two consecutive frames.

n 2, we perform spherical linear interpolation (slerp) between two quaternions, 𝑞1 and 𝑞2, which represent
o keyframes. The angle 𝜃 is the shortest angle between the two quaternions, and 𝑡 ∈ [0, 1] is the

factor. The sine terms ensure that the interpolation follows the shortest path on the spherical surface,
sitioning between the two rotations. When 𝑡 = 0, the result is the first rotation 𝑞1, and when 𝑡 = 1, the
his method provides a constant-speed rotational interpolation, crucial for preserving the natural flow of
.

slerp(𝑞 , 𝑞 , 𝑡) = sin((1 − 𝑡)𝜃)
𝑞 + sin(𝑡𝜃)

𝑞 (2)
1 2 sin(𝜃) 1 sin(𝜃) 2

t al.: Preprint submitted to Elsevier Page 4 of 11
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NeFT-Net

ne both interpolation techniques to achieve periodic dataset-based foot anchor frame placements and
uences in an encoded DCT fashion to our multi-window frequency transformer. This method allows our
and forecast future motion patterns from periodic sequences efficiently with fewer errors.

indow Frequency Attention
window attention presents a novel approach to addressing the complexities of human motion forecasting,

periodic actions such as walking. As natural human motion contains short-term and long-term
which can be difficult to capture using traditional forecasting models, we address these challenges by

multiple temporal windows representing different segments of the motion history, an adaptive weighting
nd frequency-domain transformation. Through the use of the Discrete Cosine Transform (DCT) [8] and
utional Networks (GCNs) [11], our model is more robust to temporal and spatial dependencies present
an motion.

view of NeFT-Net. Our re-timed DCT input poses are shown within the solid red boxes with the multi-window
ry, and the predicted poses are shown within dotted green boxes. The last observed poses are initially used
every consecutive poses in the history (key), we compute an attention score to weigh the multi-window
ts (values) of the corresponding sub-sequence. The weighted sum of such values is then concatenated with
cients of the last observed sub-sequence to predict the future. This comprises the transformer model of

owDCT.

dea behind our model is the use of N=three temporal windows, each representing a different portion of
tory: Current Window, Dual Window, Nth-Past temporal Window. This segmentation allows the model
nt for motion patterns over time. The introduction of learnable weights enables the model to dynamically
tive importance of each window. We compute the deltas, or differences, between adjacent windows to
n changes over time:

Δ𝑐𝑝 = 𝐗𝑐 − 𝐗𝑝 (3)
Δ𝑝𝑑 = 𝐗𝑝 − 𝐗𝑑 (4)

odel applies learnable weights 𝛼𝑐 , 𝛼𝑝, and 𝛼𝑑 to adaptively weight the different temporal windows:
𝐗weighted = 𝛼𝑐𝐗𝑐 + 𝛼𝑝𝐗𝑝 + 𝛼𝑑𝐗𝑑 (5)

ive weighting ensures that the model remains flexible, especially when the nature of the motion changes
t al.: Preprint submitted to Elsevier Page 5 of 11
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NeFT-Net

Walking Walking Together

Frame No. 1 3 5 8 9 10

HistRep[23] 5.68 17.28 27.62 40.31 43.69 46.81
DeFT-Net[1] 5.45 16.78 26.50 38.41 41.69 44.78

Ours 5.31 16.23 25.48 37.04 40.75 43.54

line setting MPJPE Batch evaluation results for test Subject 5 comparison on our re-timed interpolated vs
Repeats Itself DCT [23] method with Human3.6m datasets for predicting human motion at various frames

alking and walking together.

Domain Transformation (DCT)
n to our N-window temporal representation, the model leverages the frequency domain through the
e transform (DCT) to handle periodic motion patterns. DCT transforms the motion data from the time
frequency domain, which is particularly useful for periodic actions like walking, where repeating patterns
T is defined as:

𝐗DCT(𝑘) =
𝑁−1∑
𝑛=0

𝐗(𝑛) cos
[ 𝜋
𝑁

(
𝑛 + 1

2

)
𝑘
]

(6)

sents the frequency index and 𝑁 is the length of the sequence. Applying DCT to the weighted windows
𝐗DCT-weighted = DCT(𝐗weighted) (7)

the same principle in our Multi-windowDCT approach, where the DCT is applied to sequences from the
and 𝑛-past temporal windows. This transformation emphasizes the dominant frequencies in the motion
sing high-frequency noise, leading to smoother and more accurate predictions.

echanism
on mechanism is employed to weigh the importance of different frames in the motion sequence, enabling
focus on the most relevant information. The general attention-weighted representation of the motion
ven by:

𝐗attention =
𝑇∑
𝑡=1

𝛼𝑡𝐱𝑡 (8)

he normalized attention weights for each frame 𝐱𝑡, computed as:

𝛼𝑡 =
exp(𝑎𝑡)∑𝑇
𝑖=1 exp(𝑎𝑖)

, 𝑎𝑡 = softmax(𝐪⊤𝐤𝑡) (9)

ents the query (the current motion), and 𝐤𝑡 represents the key (motion history).
orate contributions from multiple temporal windows in our 𝑛-windowDCT approach, the attention
extended to weigh both individual frames within each window and the windows themselves. The 𝑛-
ntion-weighted representation is given by:

𝐗weighted =
𝑛∑
𝑖=1

𝛼𝑖
𝑇∑
𝑡=1

𝛽(𝑖)𝑡 𝐱(𝑖)𝑡 (10)

ntion weight for the 𝑖th temporal window.
t al.: Preprint submitted to Elsevier Page 6 of 11
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NeFT-Net

ention weight for the 𝑡th frame in the 𝑖th window, normalized over frames within that window.
e 𝑡th frame in the 𝑖th temporal window.
ndowDCT attention ensures both per-frame and per-window relevances are captured, aligning with the
certain frames within each temporal window may carry more importance for the prediction task. As

Figure 4, transitioning from HisRepDCT to OurDualwindow yields an average 10% improvement in
with a further 12% gain beyond Dual to N-windows. However, the observed trend suggests diminishing
indows of observations would yield only approximately 6.7% total improvement beyond the 3-window
e memory and processing overhead of tracking multiple windows, the 3-window configuration stands

st practical and effective choice. Similarly diminishing returns are reflected in MPJPE, reinforcing this
en performance and efficiency.

(a) Loss Function (b) MPJPE
ining loss (a) and MPJPE(b) over 50 epochs for HisRepFixedDCT, DualWindowDCT, and our N-
windows).

T and Final Prediction
ying the GCN, we transform the output back to the time domain using the Inverse DCT (IDCT):

𝐗pred = IDCT(𝐗GCN) (11)
the final predicted motion sequence, incorporating both temporal and spatial dependencies.
t al.: Preprint submitted to Elsevier Page 7 of 11
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1: Multi-Window Frequency Attention Algorithm
tion sequence 𝐱𝑡 for 𝑡 = 1,… , 𝑇
redicted motion sequence 𝐗pred
nt the Motion History into 𝑛 Temporal Windows
o 𝑛 do
t 𝑖-th window 𝐗𝑤𝑖

= {𝐱𝑇−∑𝑖
𝑗=1 𝑤𝑗+1

,… , 𝐱𝑇−∑𝑖−1
𝑗=1 𝑤𝑗

};
te Per-Frame Attention Weights Within Each Window
o 𝑛 do
1 to 𝑇 do

mpute 𝛽(𝑖)𝑡 for frames in window 𝑖 using query-key attention;
Attention Mechanism to Each Frame and Window

o 𝑛 do
ute 𝐗attention

𝑤𝑖
=
∑𝑇

𝑡=1 𝛽
(𝑖)
𝑡 𝐱(𝑖)𝑡 ;

weighted windows: 𝐗weighted =
∑𝑛

𝑖=1 𝛼𝑖𝐗
attention
𝑤𝑖

;
form to Frequency Domain Using DCT
𝐗weighted to the frequency domain;
Spatial Dependencies Using GCN

nt relationships using GCN: 𝐗GCN;
form Back to Time Domain Using IDCT
𝐗GCN back to the time domain: 𝐗pred;

red

left to right, a plot visualization of the Mean Per Joint Position Error (MPJPE) across 72 frames for
story Repeats Itself DCT, multi-window extended DCT, and 𝑛-window DCT encoded motion sequences.
vertical lines start and end of the foot placement cycle.

Net with Depth Maps for Motion Attention Visualization
l recent development arises where Stable Diffusion can be enhanced with ControlNet [30] to provide

l over image generation. ControlNet allows for the incorporation of additional conditions, such as human
h maps, to guide the generation process. This capability is particularly useful for visualizing motion, as
an capture the spatial relationships between different body parts and their environment. ComfyUI 1, a
able Diffusion interface, provides a user-friendly environment for composing images with this approach.

b.com/comfyanonymous/ComfyUI

t al.: Preprint submitted to Elsevier Page 8 of 11
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NeFT-Net

on leveraging depth maps rendered from Blender as a guiding input to ControlNet, enabling precise
epictions of both ground truth and predicted motions. By combining depth-based conditioning with
power of stable diffusion, this approach bridges the gap between data-driven motion prediction and its

sual representation, as shown in Figure 6, offering a unique perspective on how AI can translate abstract
to vivid, interpretable renders.

technique is to use depth maps as the control input for ControlNet as seen in Figure 1. By feeding a
epth maps extracted from a video or generated from a simulated environment into ControlNet, we can
ration of a corresponding sequence of images that visualize the motion depicted in the depth maps. This

rs several potential advantages:
ed Realism: The generative AI imagery is effortlessly realistic. Our prompting approach simply described
e of dress and context of walking, marching, etc. in a graphical depiction. Some orientation terms for
e, from left to right assisted the success rate of more oriented diagrammatic results, but weren’t as
ial as combining all pose frames side-by-side in producing coherent outcomes.
Control: ControlNet’s ability to precisely control the generation process allows for fine-tuning the
ation based on the depth information. Our experiments supplying an alternative 2D bone hierarchy stick
tation directly to ControlNet proved to be far less controllable than the more information rich depth
tation.
isualizations: The combination of ControlNet and depth maps opens up possibilities for creating novel

tract visualizations of motion.
ze the motion of walking of our attention mechanism, we used Blender to generate depth maps of a
el at different stages of the walking cycle. These depth maps can then be used as input to ControlNet,
xt prompts describing the desired motion, to generate images that accurately depict the character’s
he prompting strategy used in this study was deliberately minimal, primarily to maintain consistent
d scene composition(e.g., "person walking forward, side view, consistent lightning"). This simplicity
ra alignment across various frames but limited the generative detail in body articulation, clothing
scene interaction.

s shown in Figure 1 were generated together in a combined single diffusion pass, with depth maps
to reinforce temporal coherence across the motion sequence. This batch conditioning approach helped
onsistency of lightening, background, and carbon appearance, which are often challenges in frame-by-
ion.

left to right: (a) NeFT-Net predicted keypoints, visualized alongside ground truth (GT) motion sequences
en outlines. (b) The predicted keypoints are aligned and retargeted, starting with BVH format (left) and
an SMPL-X mesh (right) using Rokoko Studio and Blender (c) Depth maps (top) are refined using stable
oduce photorealistic rendered motion sequences (bottom)
.

t al.: Preprint submitted to Elsevier Page 9 of 11
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 re-timed motion with supervised foot anchor information of periodic 
es, such as walking, for the defined use case of rhythmic motion 
iction
n improved overall mean per joint position error (MPJPE) results 
pared to state-of-the-art methods in experiments on the Human3.6M 
set for forecasting short and long-term motions by introducing 

tiWindowDCT attention aligned on a best fit period of each motion 
uence.
 strategy for photorealistic visualization of human body motion 

uences by employing the use of stable diffusion on depth maps
n open-source version of our code implementation available at 
s://github.com/CarouselDancing/NeFT-net
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