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Abstract: Hybrid renewable-hydrogen energy systems offer a promising solution for 
meeting the globe’s energy transition and carbon neutrality goals. This paper presents a 
new multi-objective dynamic system model for the optimal sizing and simulation of hy-
brid PV-H2 energy systems within grid-connected buildings. The model integrates a Par-
ticle Swarm Optimisation (PSO) algorithm that enables minimising both the levelised cost 
of energy (LCOE) and the building carbon footprint with a dynamic model that considers 
the real-world behaviour of the system components. Previous studies have often over-
looked the electrochemical dynamics of electrolysers and fuel cells under transient condi-
tions from intermittent renewables and varying loads, leading to the oversizing of com-
ponents. The proposed model improves sizing accuracy, avoiding unnecessary costs and 
space. The multi-objective model is compared to a single-objective PSO-based model that 
minimises the LCOE solely to assess its effectiveness. Both models were applied to a case 
study within Robert Gordon University in Aberdeen, UK. Results showed that minimis-
ing only the LCOE leads to a system with a 1000 kW PV, 932 kW electrolyser, 22.7 kg H2 
storage tank, and 242 kW fuel cell, with an LCOE of 0.366 £/kWh and 40% grid depend-
ency. The multi-objective model, which minimises both the LCOE and the building car-
bon footprint, results in a system with a 3187.8 kW PV, 1000 kW electrolyser, 106.1 kg H2 
storage tank, and 250 kW fuel cell, reducing grid dependency to 33.33% with an LCOE of 
0.5188 £/kWh. 

Keywords: hybrid renewable-hydrogen energy systems; optimal sizing model; particle 
swarm optimisation; levelised cost of energy; carbon footprint; cost-optimisation  
function; cost- and footprint-optimisation function 
 

1. Introduction 
Hybrid renewable-hydrogen energy systems (HRHESs) are systems which integrate 

hydrogen energy storage (HES) with renewable sources to allow an energy storage me-
dium for the excess from renewable production in the form of a clean fuel that can be used 
later when needed during no renewable inputs or deficit production. This stored green 
hydrogen (H2) can be either used in a fuel cell to supply the load demand with electrical 
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energy when needed or can be used directly as a fuel for heating purposes or fuelling 
vehicles [1]. The accurate sizing, energy management, and real-world simulation of such 
a dynamic hybrid system within grid-integrated buildings represent key challenges for its 
wider deployment. In this context, researchers have developed single-objective optimisa-
tion models [2–6] that allow for the optimal sizing and energy management of standalone 
or grid-connected HRHESs while aiming for only cost minimisation. However, in their 
models, they did not consider the dynamic behaviour of the electrolyser in response to 
the varying renewable energy input or the dynamic behaviour of the fuel cell in response 
to the dynamic availability of H2 in the storage tank. Further research routes have devel-
oped multi-objective optimisation models for grid-integrated HRHESs while aiming for 
various aspects in their optimisation. Gharibi et al. [7] developed a model that allows for 
the optimal sizing and power exchange of a grid-connected hybrid system combining a 
diesel generator, PV arrays, and fuel cell, while aiming for the optimisation of cost, relia-
bility, and renewability. However, their system modelling has notable limitations since 
the electrolyser was modelled using a fixed molar flow rate for H2 production, which fails 
to capture dynamic performance changes under variable operating conditions due to fluc-
tuating renewable inputs. Additionally, their fuel cell model does not incorporate electro-
chemical losses, such as activation, ohmic, or concentration losses, which are critical for 
accurately predicting the system efficiency and output power. Abdelshafy et al. [8] devel-
oped a model that allows for the optimal sizing of a grid-connected desalination power 
plant powered from hybrid renewables, including PV, wind, a battery, HES, and a diesel 
backup, while aiming to minimise costs and carbon emissions. However, their system 
modelling reflects oversimplifications given that the electrolyser and fuel cell models re-
lied on fixed efficiency assumptions, neglecting real-time performance variations due to 
fluctuating renewable inputs, storage levels, electrochemical losses, and varying load de-
mands. Fonseca et al. [9,10] developed a multi-criteria optimisation model that allows for 
the optimal design of a distributed energy system incorporating PV panels, a battery, and 
HES while aiming for optimisation of costs, carbon emissions, and sustainability aspects. 
However, again, their modelling assumed constant efficiencies for energy conversion 
units, including the electrolyser and fuel cell, throughout their operation. Furthermore, 
key aspects such as the faraday efficiency and irreversible losses were completely over-
looked, limiting the model’s ability to predict the actual H2 production and consumption 
rates under real-world scenarios, as well as the energy losses and the overall system effi-
ciency. More recently published studies have advanced the integration of hybrid hydro-
gen batteries within renewable energy microgrids. D. Yousri et al. [11] introduced an in-
tegrated energy management system for the optimal scheduling of a hybrid hydrogen 
battery storage system within a microgrid setup while aiming to minimise the electricity 
and battery degradation costs, the customers’ discomfort, and the peak-to-average ratio. 
The authors incorporated a detailed electrolyser model into their multi-objective optimi-
sation considering the electrochemical characterisation of the electrolyser cell and the Far-
aday efficiency. Similarly, B. Modu et al. [12] adopted the same electrolyser cell model for 
the optimal sizing of a renewable energy microgrid with a hybrid hydrogen and battery 
storage system while aiming to minimise the annualised system cost and the LCOE. How-
ever, both studies relied on a simplistic fuel cell model, treating fuel cell efficiency as a 
constant parameter and failing to account for voltage losses, real-time dynamics, and load-
following behaviour. Further studies have explored the capacity optimisation of hybrid 
energy storage systems involving HES and batteries within grid-connected integrated en-
ergy systems. C. Li et al. [13] proposed a multi-objective optimisation framework for op-
timising the capacity of a hybrid energy storage system integrating HES with batteries 
under multiple source-load conditions while aiming to minimise the LCOE and the idle 
rate of the hybrid energy storage system. While the proposed framework robustly 
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integrated various scenarios accounting for variability in renewable generation and load 
demand, the H2 storage system modelling relied on fixed conversion ratios for both the 
electrolyser and fuel cell. In a similar study [14], Lin et al. developed a two-stage decision-
making framework for optimising the capacity of multiple storage schemes comprising 
HES and batteries while aiming to optimise the LCOE, the power abandonment rate, and 
the self-sufficiency rate. Although the study introduced life models for HES and batteries 
and leveraged their complementary characteristics, it exhibited recurring limitations, in-
cluding the reliance on static efficiency values for the electrolyser and fuel cell, highlight-
ing limited exploration of transient dynamics under real-world scenarios. 

In summary, based on the conducted review, a considerable research effort has been 
done in this area; however, they tended to focus on modelling the energy management 
among the hybrid system components with less focus on their real-world dynamics. The 
optimisation of hybrid system sizing highly depends on the mathematical models used 
for the hybrid system components. The previously presented research often relied on us-
ing simplistic hybrid system modelling, which lacked the consideration of the electro-
chemical dynamic behaviour of electrolysers and fuel cell systems under transient varia-
tions imposed by intermittent renewables as well as load changes. This therefore repre-
sents a key deviation from finding a real-world optimal sizing solution. Therefore, it is 
essential to use dynamic mathematical models that represent real-world H2 production 
by electrolysers and real-world H2 consumption by fuel cells to allow for accurately sizing 
the storage capacity required, thereby avoiding the oversizing associated with additional 
costs and space requirements. 

This paper addresses this gap in the knowledge by developing a multi-objective dy-
namic system model for optimally sizing hybrid PV-H2 energy systems. In the developed 
model, a PSO algorithm is integrated within a novel precise dynamic hybrid system model 
that takes into consideration the electrochemical losses occurring under the influence of 
transient load variations and their impact on the output of electrolysers and fuel cell sys-
tems. Unlike existing models in the literature research, this dynamic model uniquely cap-
tures the variations in the electrolyser’s Faraday efficiency each hour based on changes in 
the PV surplus power fed to the electrolyser and accordingly quantifies the corresponding 
rate of H2 production. In this way, the dynamic model avoids constant efficiency assump-
tions or fixed molar flow rates, thus accounting for the impact of real-world performance 
variations on the quantity of H2 produced. Additionally, modelling of hourly variations 
in the fuel cell irreversible losses, including activation, ohmic, and concentration losses 
based on fluctuations in the H2 storage levels, is inclusively integrated into the model. This 
aspect therefore reflects a variable fuel cell efficiency, thus greatly enhancing the model’s 
ability to predict the actual H2 consumption levels and the fuel cell output power genera-
tion. The multi-objective optimisation is performed with respect to two objectives: mini-
mising the LCOE as well as minimising the building carbon footprint. To enable envision-
ing the impact of using the multiple optimisation criteria on the hybrid system’s concep-
tual design, a single-objective optimal sizing model was firstly developed for minimising 
the LCOE, and then the multi-objective optimal sizing model was developed for simulta-
neously minimising both the LCOE and the building carbon footprint. Results from both 
models are presented and critically analysed with an in-depth discussion. The key inno-
vations and contributions of this paper can be summarised as follows: 

• Developing a detailed dynamic hybrid system model that integrates hourly varia-
tions in electrolyser Faraday efficiency and fuel cell irreversible losses, avoiding static 
efficiency assumptions and enabling accurate representation of H₂ production and 
consumption under real-world conditions. 

• Integrating a PSO algorithm with the detailed dynamic hybrid system model to op-
timise the hybrid system sizing from both economic and environmental perspectives. 
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This integration improves sizing accuracy, avoiding oversizing of the system compo-
nents associated with unnecessary costs and space. 

• Conducting reflective comparative analysis of both the developed single-objective 
and multi-objective optimal sizing models via implementing them on the same case 
study building within the Robert Gordon University (RGU) campus in Aberdeen to 
enable visualising the difference in the system sizing and simulation. 

2. The Proposed Hybrid PV-H2 Energy System 
The proposed hybrid PV-H2 energy system consists of a solar photovoltaic (PV) sys-

tem, a water electrolyser, a pressurised H2 storage tank, and a fuel cell. The energy man-
agement mechanism adopted in the developed system model is designed to ensure that 
the building’s energy needs are primarily met with green energy; therefore, the solar PV 
system and the fuel cell represent the main power sources serving the building’s energy 
demands. When sunlight is available, the building’s demands are mainly supplied by the 
PV system via an inverter, while any solar energy excess is used to produce green H2 using 
the electrolyser. It should be noted that the market available electrolysers [15,16] are typ-
ically equipped with power supply units featuring built-in rectifiers to convert the AC 
voltage supply into DC input current. Thus, the electrolyser considered in this study is 
assumed to have an embedded rectifier to align with the design of commercial electrolys-
ers. The produced H2 is stored as pressurised gas in a tank for later use by the fuel cell. 
When sunlight is limited or unavailable, the stored H2 is used to power the fuel cell to 
cover any remaining energy demand. If the PV system and fuel cell cannot fully meet the 
building’s demand with green energy, then the utility grid is allowed to serve the demand 
that is unmet by the green energy supply (i.e., PV system or fuel cell). Therefore, no battery 
banks are considered in this configuration to reduce the system costs and complexity, 
since the hybrid system is grid-connected, and the utility grid provides a backup power 
when the hybrid system is insufficient to meet the load demand. Any non-utilised excess 
in PV energy is sold back to the grid to generate additional revenue. Figure 1 illustrates 
the proposed hybrid PV-H2 energy system with the implemented energy management 
mechanism. 

 

Figure 1. Schematic diagram of the proposed hybrid PV-H2 energy system [17]. 
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3. Dynamic Modelling of Subsystems 
The dynamic modelling of subsystems presented in this paper builds up on method-

ologies established in our previous research work [18]. Broadly, the dynamic system 
model has the following main features: 

• It is an hourly time-dependent model that considers the hourly variations in PV pro-
duction and in load consumption over a one-year time interval. 

• It is a transient dynamic model that captures the changes in the electrochemical per-
formance characteristics of the electrolyser and fuel cell under real-world operating 
conditions. 

• All components’ sizes are treated as continuous variables which are iteratively opti-
mised each algorithmic cycle. 

• The inverters’ efficiencies are considered to be fixed. 
To maintain succinctness in this paper, a concise overview of the key equations rep-

resenting each subsystem is presented in the following subsections. The full explanation 
of the mathematical background is provided in our prior publication [18]. 

3.1. Modelling of PV System 

In the PV system model, the hourly net power generated from the PV is determined 
based on the PV inverter efficiency, the PV size, and the environmental conditions of solar 
insolation and temperature, as given by Equation (1): 𝑃௧(𝑡) = 𝜂௩  . 𝑃. 𝐺(𝑡)𝐺ௌ் [1 + 𝐾௧(𝑇(𝑡) + (𝑁𝑂𝐶𝑇 − 𝑇ேை்). 𝐺ௌ்𝐺ேை் − 𝑇ௌ்)] (1)

where 𝑃௧(𝑡)  is the hourly net power generated from the PV system; 𝜂௩   is the effi-
ciency of the PV inverter; 𝑃 is the size of the PV system; 𝐺(𝑡) is the hourly solar inso-
lation; 𝐺ௌ்  and 𝑇ௌ்  are the solar insolation and PV cell temperature at standard test 
conditions, respectively; 𝑇(𝑡) is the hourly ambient temperature; 𝑁𝑂𝐶𝑇 is the nominal 
operating cell temperature; 𝐺ேை் and 𝑇ேை் are the solar insolation and ambient tem-
perature which define the 𝑁𝑂𝐶𝑇, respectively; and 𝐾௧ is the temperature coefficient of 
power. 

3.2. Modelling of Electrolyser 

The electrolyser model simulates the H2 production by converting solar power excess 
into chemical energy. This incorporates the hourly determination of Faraday efficiency, 
which reflects the fraction of current being used for producing H2 from the total current 
supplied to the electrolyser. In the electrolysis of water, a fraction of the overall current is 
lost in producing unwanted reactions, which is known as ‘parasitic currents’. At low cur-
rent densities, parasitic currents constitute a larger fraction of the overall current because 
the current supplied is low, meaning less current is being used for splitting the water into 
H2 and oxygen (O2), and therefore less Faraday efficiency. In contrast, at higher current 
densities, the fraction of parasitic currents from the overall current diminishes because the 
current supplied is very high, thus improving Faraday efficiency. Therefore, the magni-
tude of current supplied to the electrolyser subsystem determines the Faraday efficiency, 
which changes with the hourly solar power excess. This is modelled using an approxi-
mated empirical formula given by Equation (2) depicting how Faraday efficiency dynam-
ically behaves with varying current densities. 𝜂ி(𝑡) = (𝑖(𝑡) 𝐴⁄ )ଶ𝑓ଵ + (𝑖(𝑡) 𝐴⁄ )ଶ  𝑓ଶ (2)
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where 𝜂ி(𝑡) is the hourly Faraday efficiency of the electrolyser, 𝑖(𝑡) is the hourly cur-
rent supplied to the electrolyser cell (A), 𝐴 is the area of the electrode (m2), and 𝑓ଵ and 𝑓ଶ are Faraday efficiency parameters. 

The relationship between the current supplied to the electrolyser cell, the stack de-
sign, and the Faraday efficiency is then used to estimate H2 production rates and thus the 
hourly amount of H2 generated by the electrolyser, as given by Equation (3). By dynami-
cally adjusting the H2 output in response to hourly changes in Faraday efficiency, the elec-
trolyser model accounts for the impact of hourly parasitic current loss on the amount of 
H2 produced, reflecting real-world electrolyser behaviour under intermittent renewable 
energy input. 𝑚ுଶ(𝑡) = 𝜂ி(𝑡) 𝑛 𝑖(𝑡)2𝐹 . 𝑀. 𝑁௦(𝑡). 3600 (3)

where 𝑚ுଶ(𝑡) is the hourly amount of H2 generated by the electrolyser (kg), 𝑛 is the 
number of electrolyser cells connected in a series to assemble the electrolyser stack, 𝑁௦(𝑡) 
is the hourly number of operational electrolyser stacks connected in parallel to assemble 
the whole electrolyser subsystem, 𝑀 is the H2 molar mass (kg/mol.), and 𝐹 is the Fara-
day constant (C/mol.). 

The model also adheres to the electrolyser operational constraints, restricting the 
power supplied to the electrolyser subsystem from the available solar power excess to 
only its rated input power in case the former exceeds the latter, where any remainder in 
solar power excess is sold to the utility grid as ruled by the following equations: 𝑃(𝑡) = ൜∆𝑃(𝑡),    ∆𝑃(𝑡)  ≤ 𝑃 𝑃,       ∆𝑃(𝑡) > 𝑃  (4)

𝑃௫(𝑡) = ∆𝑃(𝑡) − 𝑃(𝑡),   ∆𝑃(𝑡) > 𝑃 (5)∆𝑃(𝑡) = 𝑃௧(𝑡) − 𝑃(𝑡) (6)

where 𝑃(𝑡)  is the hourly power supplied to the electrolyser subsystem, ∆𝑃(𝑡)  is the 
hourly solar power excess, 𝑃 is the size of the electrolyser (rated power input to electro-
lyser), 𝑃௫(𝑡) is the hourly non-utilised solar power excess sold to the grid, and 𝑃(𝑡) is 
the hourly load demand. 

3.3. Modelling of H2 Storage Tank 

The H2 storage tank model dynamically updates the hourly level of H2 in the storage 
tank by adding to it the hourly amount of H2 produced by the electrolyser and deducting 
from it the hourly amount of H2 consumed by the fuel cell, as given by Equation (7). 𝑇ுଶ(𝑡) = 𝑇ுଶ(𝑡 − 1) + 𝑚ுଶ(𝑡) − 𝑚ுଶ(𝑡) (7)

where 𝑇ுଶ(𝑡) is the hourly H2 storage tank level (kg) and 𝑚ுଶ(𝑡) is the hourly amount 
of H2 consumed by the fuel cell (kg). 

3.4. Modelling of Fuel Cell 

The fuel cell model simulates two outputs: the fuel cell electrical output power and 
H2 consumption based on variations in the H2 storage tank levels and in load demand. 
The molar flow rate of H2 consumption per fuel cell stack is firstly determined based on 
the currently available H2 storage tank level. This is then used to quantify the hourly fuel 
cell current using Faraday’s law linking the current drawn from the fuel cell stack to the 
stack design and the molar flow rate of H2 consumption per stack as follows: 𝑛ுଶ⦁ (𝑡) = 𝑛. 𝑖(𝑡)2𝐹  (8)
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where 𝑛ுଶ⦁ (𝑡) is the molar flow rate of H2 consumption per fuel cell stack (mol/s), 𝑛 is 
the number of fuel cells connected in a series to assemble the fuel cell stack, and 𝑖(𝑡) is 
the hourly fuel cell current (A). 

The electrochemical performance characteristics of the fuel cell are fetched from the 
stack voltage model, given by Equations (9)–(13), which enables calculating the hourly 
deviation in the actual cell voltage from its ideal value due to irreversible losses, including 
activation, ohmic, and concentration losses as a function from the fuel cell current. The 
model dynamically updates these losses based on operational conditions (i.e., change in 
hourly fuel cell current), ensuring accurate representation of the fuel cell performance un-
der transient variations. 𝑣(𝑡) = 𝑣௩ − 𝑣(𝑡) − 𝑣(𝑡) − 𝑣(𝑡) (9)

𝑣௩ = 1.229 − 0.85 × 10ିଷ(𝑇 − 298.15) + 4.3085 × 10ିହ𝑇 [ln(𝑃ுଶ) + 12 𝑙𝑛(𝑃ைଶ)] (10) 

𝑣(𝑡) = −[𝜉ଵ + 𝜉ଶ𝑇 + 𝜉ଷ𝑇 𝑙𝑛(𝐶ைଶ) + 𝜉ସ𝑇 𝑙𝑛 ቀ𝑖(𝑡)ቁ] (11) 

𝑣(𝑡) = 𝑖(𝑡)[ 𝜌ெ(𝑡) 𝐿𝐴 + 𝑅] (12) 

𝑣(𝑡) = −𝛽 𝑙𝑛 (1 − ቆ 𝑖(𝑡)𝐴. 𝑗௫ቇ) (13) 

where 𝑣(𝑡) is the hourly actual fuel cell voltage; 𝑣௩ is the reversible cell voltage; 𝑣(𝑡) 
is the hourly activation loss; 𝑣(𝑡) is the hourly ohmic loss; 𝑣(𝑡) is the hourly concentra-
tion loss; 𝑇 is the fuel cell temperature (ºK); 𝑃ுଶ and 𝑃ைଶ are the partial pressures of H2 
and O2 gases (Pa), respectively; 𝜉ଵ, 𝜉ଶ, 𝜉ଷ, 𝜉ସ  are parametric coefficients of the fuel cell; 𝐶ைଶ 
is the O2 concentration at the catalytic interface of the cathode (mol/C3); 𝜌ெ(𝑡)  is the 
hourly membrane resistivity (Ω.cm); 𝐴 is the membrane active area (cm2); 𝐿 is the mem-
brane thickness (cm); 𝑅 is the resistive coefficient (Ω); 𝛽 is the parametric coefficient (v); 
and 𝑗௫ is the maximum current density (A/cm2). 

The consequent actual fuel cell output power of the whole subsystem is then com-
puted using the actual fuel cell voltage, current, and the subsystem design as given in 
Equation (14). This value of output power, in turn, is used to calculate the equivalent AC 
fuel cell output power that can be delivered through the inverter by means of the fuel cell 
inverter efficiency, as given by Equation (15). 𝑃௨௧(𝑡) = 𝑣(𝑡). 𝑛. 𝑖(𝑡). 𝑁 (14)𝑃(𝑡) = 𝑃௨௧(𝑡). 𝜂௩  (15)

where 𝑃௨௧(𝑡) is the hourly output voltage across the fuel cell subsystem, 𝑁 is the max-
imum number of fuel cell stacks connected in parallel to assemble the whole fuel cell sub-
system, 𝑃(𝑡) is the hourly equivalent AC fuel cell output power that can be delivered 
through the inverter, and 𝜂௩  is the efficiency of the fuel cell inverter. 

To account for the load-following behaviour, the hourly equivalent AC fuel cell out-
put power delivered through the inverter is adjusted to only meet the unmet load demand 
from the PV system while not exceeding the capacity it could deliver, as given by Equation 
(16). In case the unmet load demand surpasses the AC equivalent fuel cell output power, 
the remainder will be supplied from the utility grid, as given by Equation (17). 𝑃(𝑡) = ቊ 𝑃௨(𝑡), 𝑃௨(𝑡) ≤ 𝑃(𝑡)𝑃(𝑡), 𝑃௨(𝑡) > 𝑃(𝑡) (16)
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𝑃ௗ(𝑡) = 𝑃௨(𝑡) − 𝑃(𝑡),      𝑃௨(𝑡) > 𝑃(𝑡) (17)𝑃௨(𝑡) = 𝑃(𝑡) − 𝑃௧(𝑡) (18)

where 𝑃௨(𝑡) is the hourly unmet load demand from the PV system and 𝑃ௗ(𝑡) is the 
hourly power imported from the utility grid. 

Finally, the hourly number of active fuel cell stacks connected in parallel to assemble 
the fuel cell subsystem for delivering this AC equivalent output power is computed using 
Equation (19), which is then used to calculate the hourly amount of H2 to be consumed by 
the fuel cell using Equation (20). 𝑁(𝑡) = 𝑃(𝑡)𝜂௩ . 𝑣(𝑡). 𝑛. 𝑖(𝑡)  (19)

𝑚ுଶ(𝑡) = 𝑛ுଶ⦁ (𝑡). 𝑀. 𝑁(𝑡). 3600 (20)

where 𝑁(𝑡) is the hourly number of operational fuel cell stacks connected in parallel to 
assemble the fuel cell subsystem for delivering the corresponding AC equivalent output 
power. 

4. Formulating the Objective Functions and Constraints for the  
Optimal Sizing of Hybrid PV-H2 Energy Systems 

In the optimal sizing of hybrid renewable energy systems, the formulation of objec-
tive function depends on the design goals, which could be technical, economic, or envi-
ronmental goals. In terms of technical goals, the reliability of the energy system is the main 
concern. A hybrid energy system is reliable when it is capable of providing enough power 
supply to a load demand over a certain period [19]. Referring to the proposed hybrid PV-
H2 energy system, the system reliability is considered through the energy balancing mech-
anism, which is set to enforce feeding the load demand by the green energy supply, and 
only the load demand that is unmet by the green energy supply is fed from the utility 
grid. With the technical aspect already considered, the objective function for optimising 
the proposed hybrid PV-H2 energy system sizing is therefore formulated to consider the 
economic and environmental aspects. The nature of the objective function depends on the 
scope of the investors (i.e., whether their focus is financial benefits and/or environmental 
outcomes). To allow for meeting different decision-making aims, both single-objective 
and multi-objective optimisation functions are considered in this paper to allow for sepa-
rate and simultaneous minimisation of the system costs and carbon footprint. 

4.1. Formulating Single-Objective Cost-Optimisation Function for Optimally Sizing Hybrid  
PV-H2 Energy Systems from an Economic Perspective 

When optimally sizing the proposed hybrid PV-H2 energy system from an economic 
perspective, the main objective is to minimise the LCOE of the total energy consumed, 
which is given by Equation (21). The decision variables are the sizes of the system compo-
nents, which include the PV system size, electrolyser size, H2 storage tank size, and fuel 
cell size. The objective is to determine the optimal hybrid system sizing that can minimise 
the LCOE of the total energy consumed. 

𝐿𝐶𝑂𝐸 = 𝐶𝑅𝐹. ∑ 𝑁𝑃𝐶ேୀଵ + 𝐶ௗ − 𝑅௦∑ 𝑃଼௧ୀଵ (𝑡)  
(21)

𝐶𝑅𝐹 = 𝑖(1 + 𝑖)ே(1 + 𝑖)ே − 1 (22)
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where 𝐿𝐶𝑂𝐸 is the levelised cost of energy (£/kWh), 𝑁𝑃𝐶 is the net present costs of com-
ponent (j) in (£), 𝑗 represents each individual component in the hybrid system, 𝑁 is the 
total number of hybrid system components, 𝐶ௗ is the cost of grid import (£), 𝑅௦ is 
the revenue from selling non-utilised solar energy excess to the grid (£), 𝑃(𝑡) is the hourly 
building load demand, 𝐶𝑅𝐹 is the capital recovery factor [4,5,7], 𝑖 is the real interest rate, 
and 𝑁 is the project lifetime. 

To enable calculating the LCOE as given by Equation (21), a detailed ‘Cost Model’ 
was developed for calculating the net present cost of the hybrid system components. The 
NPC of each individual hybrid system component is given by Equations (23)–(28) [8] and 
considers several factors; this includes the component’s capital cost, the component’s op-
eration and maintenance costs over the project’s lifetime, the component’s replacement 
cost if the component’s lifespan is shorter than the project’s lifetime, and the component’s 
salvage value. The latter denotes the revenue generated from the component’s remaining 
lifespan at the end of the project lifetime. Therefore, the NPC of each individual hybrid 
system component is the sum of the component’s capital cost, operation and maintenance 
costs, and replacement cost minus the component’s salvage value. 

𝑁𝑃𝐶 = 𝐶. 𝑃 + 𝐶ைெ. 𝑃.  1(1 + 𝑖)ே
ୀଵ + 𝐶௧  − 𝐶௦௩  (23)

𝐶௧  = ⎩⎨
⎧ 0, 𝐿 ≥ 𝑁𝐶. 𝑃.  1(1 + 𝑖)ೕ∗

ೕ
ୀଵ , 𝐿 < 𝑁 

(24)

𝑟 = 𝑖𝑛𝑡 ቆ𝑁𝐿ቇ (25)

𝐶௦௩ = 𝐶௧ . 𝑅𝑗   (26)

𝑅 = 𝐿 − (𝑁 − 𝐷) (27)𝐷 = 𝐿. 𝑟 (28)

where 𝐶 and 𝐶ைெ are the capital cost and the operation and maintenance cost of com-
ponent (j) per unit rating (£/kW), respectively; 𝑃 is the size of component (j) (kW); 𝐶௧  
is the total replacement cost of component (j) (£); 𝐶௦௩ is the salvage value of component 
(j) (£); 𝐶  is the replacement cost of component (j) per unit rating (£/kW); 𝐿  is the 
lifespan of component (j) (yr.); 𝑟 is the number of replacements of component (j) over the 
project lifetime rounded down to nearest integer; 𝑅 is the remaining lifespan of compo-
nent (j) at the end of the project lifetime (yr.); and 𝐷 is the duration of replacement of 
component (j) (yr.). 

The cost of importing electricity from the utility grid and the revenue generated from 
selling non-utilised solar energy excess to the utility grid are determined using Equations 
(29) and (30). 

𝐶ௗ =  𝑡଼
௧ୀଵ (𝑡). 𝑃ௗ(𝑡) 

(29)

𝑅௦ = 𝑡.  𝑃௫(𝑡)଼௧ୀଵ  (30)
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where 𝑡(t) is the hourly tariff rate of electricity purchased from the utility grid consid-
ering variable day/night tariff rates, 𝑡 is the tariff rate of grid feed-in electricity, 𝑃ௗ(𝑡) 
is the power imported from the utility grid at time step (t), and 𝑃௫(𝑡) is the non-utilised 
solar power excess at time step (t). 

4.2. Formulating a Multi-Objective Cost and Footprint Optimisation Function for Optimally 
Sizing Hybrid PV-H2 Energy Systems from Both Economic and Environmental Perspectives 

A key controversial issue in designing hybrid renewable energy systems is achieving 
the lowest CO2 emissions at the lowest cost. For optimally sizing the proposed hybrid PV-
H2 energy system from both economic and environmental perspectives, the first objective 
is to minimise the LCOE of the total energy consumed, as emphasised in Section 3.1, while 
the second objective is to minimise the carbon footprint of the building considered. This 
can be measured in terms of the amount of CO2 emissions eliminated upon integrating 
the proposed hybrid system within the building considered. The more CO2 emissions are 
eliminated, the more environmentally friendly the building is. Instead of maximising the 
eliminated CO2 emissions, the CO2 emissions can be minimised through reducing the grid 
energy import requirements (i.e., minimise dependency on the utility grid). Therefore, the 
grid dependency ratio (GDR), which is defined as the fraction of load demand that is 
served from the utility grid over the total load demand, is set as the second objective func-
tion to be minimised. Equation (31) is used to calculate the system’s GDR, which is pro-
portional to the CO2 emissions associated with the grid energy import requirements; 
therefore, minimising this factor will consequently minimise the building’s carbon foot-
print. 𝐺𝐷𝑅 =  ∑ 𝑃ௗ(𝑡)଼௧ୀଵ∑ 𝑃଼௧ୀ (𝑡)  (31)

where 𝐺𝐷𝑅 is the grid dependency ratio and 𝑃(𝑡) is the building load demand at time 
step (t). 

The multi-objective cost and footprint optimisation function proposed for optimising 
the sizing of the hybrid PV-H2 energy system from both economic and environmental per-
spectives simultaneously minimise the LCOE of the total energy consumed as the eco-
nomic metric and the building’s GDR as the environmental metric. The overall objective 
function is constructed considering the weighted sum method, which allows for assigning 
each objective a weighting factor based on its relative importance (i.e., priority) for the 
decision maker [20]. 

The decision variables remain the sizes of the PV system, electrolyser, H2 storage 
tank, and fuel cell; however, the objective is to determine the optimal hybrid system sizing 
that can simultaneously minimise the LCOE along with the building’s GDR. 

Both the single-objective and multi-objective functions are subject to the inequality 
constraint given by Equation (32). This constraint represents the boundary limitations of 
each decision variable (i.e., each individual component in the hybrid system) from which 
the range of feasible solutions is encountered [4,5,7,8]. 𝑃  ≤ 𝑃 ≤ 𝑃 ௫ (32)

where 𝑃  , 𝑃 ௫  are, respectively, the minimum and maximum boundary sizes of 
component (j). This constraint applies for each of the four decision variables (i.e., the PV 
system size, electrolyser size, H2 storage tank size, and fuel cell size). 
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5. Development of Both the Single-Objective and Multi-Objective  
Optimal Sizing Models 

In this research work, the PSO algorithm is used with both the single-objective and 
multi-objective optimisation functions detailed earlier in Section 4. To allow the optimal 
sizing of the hybrid PV-H2 energy system while considering the real-world dynamics of 
its individual components, the PSO algorithm is integrated with the dynamic system mod-
elling emphasised in Section 3 and elaborated in earlier research work [18]. The following 
subsection provides a brief overview of the PSO algorithm implemented in this study. 

5.1. The PSO Algorithm 

The PSO algorithm is inspired by the animal behaviour of creatures such as birds or 
fish searching for food or corn by adjusting their positions and velocities within a search 
space [21]. These animals move as a ‘swarm’, which stands for the irregular movement of 
individuals in a search space. Each partner in the swarm is called a ‘particle’ [8]. The par-
ticles in the swarm update their positions and velocities using Equations (33) and (34) [22], 
based on both their personal experiences and their neighbourhood experiences, towards 
the global optimal solution. 𝑉ାଵ = 𝑤 ∙ 𝑉 + 𝑐ଵ ∙ 𝑟𝑎𝑛𝑑ଵ ∙ 𝑃௦௧  + 𝑐ଶ ∙ 𝑟𝑎𝑛𝑑ଶ ∙ ൫𝐺௦௧ − 𝑋൯ (33)𝑋ାଵ = 𝑋 + 𝑉ାଵ (34)

𝑤 = (𝑤௫ −  𝑤)𝑘௫ ∗ 𝑘   (35)

where  𝑖  is the number of particles in the swarm; 𝑘 is the iteration number; 𝑉 is the 
velocity of particle (𝑖) at iteration (𝑘); 𝑃௦௧   is the best position for particle (𝑖) based on its 
personal experience at iteration (𝑘), referred as personal best; 𝐺௦௧  is the best position 
achieved by the entire particles in the swarm at iteration (𝑘), referred as global best; 𝑋 is 
the position of particle (𝑖) at iteration (𝑘); 𝑐ଵ, 𝑐ଶ are acceleration constants controlling the 
movement of particles towards 𝑃௦௧    and 𝐺௦௧  ; 𝑟𝑎𝑛𝑑ଵ , 𝑟𝑎𝑛𝑑ଶ  are random numbers 
ranging from (0–1); 𝑤  is the inertia weight factor; 𝑤 , 𝑤௫  are the minimum and 
maximum inertia weights; and 𝑘௫ is the maximum number of iterations. 

For optimally sizing the hybrid PV-H2 energy system either from an economic per-
spective, or from both economic and environmental perspectives, each particle’s position 
is represented by a specific configuration of the hybrid system’s sizing consisting of the 
following four decision variables: the PV system size, the electrolyser size, the H2 storage 
tank size, and the fuel cell size. 

5.2. Rationale of Selecting the PSO Algorithm 

While the PSO algorithm is traditionally recognised for its effectiveness in solving 
single-objective optimisation problems, this study further extends its application, in con-
junction with the weighted sum method, for multi-objective optimisation tasks. The 
weighted sum method aggregates multiple objectives into one scalar composite function 
by assigning each objective a weighting factor based on its relative importance for the 
decision maker. Compared to traditional pareto-dominance-based algorithms (i.e., Non-
dominated Sorting Genetic Algorithm (NSGA-II), Non-dominated Sorting Whale Optimi-
sation Algorithm (NSWOA), etc.), this approach allows for reducing the computational 
burden, providing faster convergence while still achieving a balance between conflicting 
objectives. Moreover, it leverages the PSO strengths in exploring high-dimensional search 
spaces while maintaining simplicity and adaptability to both single-objective and multi-
objective optimisation tasks. However, a key limitation of the weighted sum method is 
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that it relies on pre-determined weighting factors, which require multiple runs to capture 
a broader range of trade-offs. In contrast, pareto-dominance-based algorithms inherently 
explore diverse trade-offs; however, they are computationally intensive and less straight-
forward to implement, particularly for dynamic systems with high-dimensional search 
spaces. Table 1 summarises the comparison between the implemented PSO in conjunction 
with the weighted sum method and the traditional pareto-dominance-based algorithms. 

Table 1. Comparison of the implemented PSO algorithm versus traditional pareto-dominance based 
algorithms. 

Criteria The implemented PSO in conjunction
with the weighted sum method 

Pareto-dominance-based algorithms
(i.e., NSGA II, NSWOA, etc.) 

Handling objectives 
Aggregates multiple objectives into a
single composite function using pre-de-
fined weighting factors 

Treats each objective separately and
evaluates solutions based on pareto
dominance 

Pareto-front solution 

‑ Provides a single optimal solu-
tion per single run 

‑ Requires multiple runs to pro-
duce a pareto-front set of solu-
tions 

Produces a pareto front of diverse trade-
off solutions in a single run 

Ease of implementation 
Simple and straightforward to imple-
ment 

More complex due to multi-objective
sorting and diversity maintenance
mechanisms 

Computational burden Less computational burden High computational burden 
Convergence speed Faster convergence Slower convergence 
Diversity Limited diversity High diversity 

5.3. Integrating the PSO Algorithm with the Dynamic Hybrid PV-H2 Energy System Model for 
Optimising the Hybrid System Sizing from Both Economic and Environmental Perspectives 

Both the single-objective and multi-objective optimal sizing models are developed by 
implementing the PSO algorithm on the dynamic model of real-world hybrid PV-H2 en-
ergy systems provided in Section 3. The following steps were performed to minimise the 
single-objective or the multi-objective optimisation functions: 

Step 1: Filtration of the Initial Particles’ Positions. 
Before beginning to minimise the relevant objective function, the initial search space 

is subject to a filtration process so that at least 40% of the building’s load demand is met 
by clean energy (i.e., PV system or fuel cell). This baseline is chosen to prioritise sustaina-
bility and decarbonisation goals, allowing for a balance between environmental and eco-
nomic feasibility. From an environmental perspective, the 40% threshold ensures that a 
significant contribution from clean energy sources is satisfied, reducing the reliance on the 
electricity grid and, therefore, lowering carbon emissions. From an economic perspective, 
the 40% threshold avoids too challenging or restrictive constraints that would require sig-
nificantly larger PV or H2 storage capacities, making the system impractical or excessively 
expensive. Thus, starting with a moderate threshold allows for the optimisation algorithm 
to explore configurations which strike a balance between affordability and sustainability. 
While the global optimal solution might not necessarily depend on the initial generation, 
this filtration process shifts the focus of the searching space towards configurations fa-
vouring cleaner energy. By filtering the initial generation in this manner, the updated par-
ticles are guided towards solutions that align with sustainability goals, setting the scene 
for the optimisation process to further increase the clean energy supply. An initial config-
uration of the hybrid system sizing is generated from the range of feasible solutions then 
this initial configuration is tested by applying to it the precise dynamic hybrid system 
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model described in Section 3 to determine the portion of the load demand supplied by 
clean energy. If this portion is 40% or more, the configuration is accepted as the initial 
generation. If not, the system sizing is repeatedly re-generated until at least 40% of the 
load demand is covered by clean energy. 

Step 2: Identification of Personal Best and Global Best of Filtered Initial Positions. 
The relevant objective function is then computed for each filtered particle’s position 

and evaluated to determine the particle’s personal best (𝑃௦௧  ) and the global best posi-
tion (𝐺௦௧ ), which are then used to update the filtered initial particles’ positions and ve-
locities using (33) and (34), respectively. 

Step 3: Application of Position Control on Updated Particles’ Positions. 
To ensure that the updated values of the hybrid system sizing configuration (i.e., each 

decision variable in 𝑋) remain within their predefined minimum and maximum limits, 
a position control mechanism is applied as follows: if the updated decision variable lies 
between these boundaries, then the updated value of this variable is retained, while if the 
updated decision variable exceeds its boundaries, it reverts to its value from the previous 
iteration. 

Step 4: Identification of Personal Best and Global Best of Updated Particles’ Posi-
tions. 

The relevant objective function is computed for each updated particle’s position 
through re-applying to it the precise dynamic hybrid system model detailed in Section 3. 
The computed objective function for each updated particle’s position is then evaluated to 
update the particle’s personal best (𝑃௦௧  ) and global best position (𝐺௦௧ ). 

Step 5: Update Particles’ Positions and Velocities. 
Equations (33) and (34) are used to update the particles’ positions and velocities using 

the updated values of 𝑃௦௧   and 𝐺௦௧ . 
Step 6: Check the Algorithm Closing Condition. 
If the iteration loop is exhausted, then it terminates. Otherwise, steps 3 to 6 are re-

peated. It should be noted that the maximum number of iterations must be large enough 
to allow for the global optimal solutions to stabilise over a series of consecutive iterations, 
indicating that the solution converges to the global optimal or near-optimal solution. This 
can be demonstrated through the convergence of a fitness function plot which will be dis-
cussed later in Section 6.2. 

6. Applying the Developed Single-Objective and Multi-Objective  
Optimal Sizing Models: Case Study of Robert Gordon University  
Campus Building in Scotland 

Both the single- and multi-objective optimal sizing models were applied to a grid-
connected case study building within the RGU campus in Aberdeen, Scotland, to enable 
supporting the university’s carbon reduction initiative with the aim of significantly reduc-
ing its emissions from energy and consumables. The case study grid-connected building 
selected was the Riverside Building (RB), which covers three schools and a learning cen-
tre. With the help of RGU Estates, the data for the building’s energy consumption were 
carefully collected on an hourly basis throughout a one-year timescale and used in the 
developed models to enable optimising the sizing of the hybrid PV-H2 energy system 
components to meet the single- or the multiple-objective optimisation criteria depending 
on the choice of the decision maker. 

6.1. Data Collection 

The hourly data collected for the building’s energy consumption is as shown in Fig-
ure 2a. The building’s yearly energy consumption is 1487 MWh, the building’s average 
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hourly power consumption is 170 kW, and the building’s peak hourly power consump-
tion is 274 kW. The hourly data of atmospheric conditions at the building location (Aber-
deen city) are as shown in Figure 2b. These include the hourly data for solar insolation 
and ambient temperature at the building location, which were collected from PVGIS web 
interface. 

Table 2 includes all the data required to run both the developed single-objective and 
multi-objective optimal sizing models. These include the cost parameters required to com-
pute the net present cost of each hybrid system component, with per-unit cost parameters 
derived from market data in [7], the lifetimes of the hybrid system components [4,7,23], 
the project lifetime, and the real interest rate considered in this study. Table 3 shows the 
tariff rates for purchasing electricity from the utility grid and the grid feed-in tariff rates. 
It should be noted that the data collected for the grid tariff rates and grid feed-in tariff 
rates were based on the electricity prices of the RGU’s UK energy provider for North Scot-
land considering day and night tariffs [24], while the grid feed-in tariff corresponds to the 
Smart Export Guarantee (SEG) export rate from the same energy provider [25]. The pa-
rameters used for the precise dynamic modelling of the electrolyser, H2 storage tank, and 
fuel cell can be found in [18]. 

 

Figure 2. (a) The hourly data collected for the RB’s energy consumption over a one-year timescale 
and (b) the hourly data collected for the solar insolation and the ambient temperature at the building 
location (Aberdeen City) over a one-year timescale. * The load data presented in this study corre-
spond to the RB at the RGU campus, which has distinct characteristics compared to other buildings 
analysed in previous studies at the same campus. 

Table 2. Data required for running both the single-objective and multi-objective optimal sizing mod-
els [17]. 

Parameter Description Value 𝐶 Capital cost of PV system per unit rating 1440 £/kW 𝐶ைெ Operation and maintenance cost of PV system per unit rating 28.8 £/kW 𝐶 Replacement cost of PV system per unit rating 1440 £/kW 𝐿 Lifetime of PV system 20 years 𝐶 Capital cost of electrolyser per unit rating 1600 £/kW 
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𝐶ைெ Operation and maintenance cost of electrolyser per unit rating 32 £/kW 𝐶 Replacement cost of electrolyser per unit rating 1200 £/kW 𝐿 Lifetime of electrolyser 15 years 𝐶ு் Capital cost of H2 storage tank per unit rating 528 £/kg 𝐶ுை்ெ Operation and maintenance cost of H2 tank per unit rating 10.56 £/kg 𝐶ு் Replacement cost of H2 storage tank per unit rating 528 £/kg 𝐿ு் Lifetime of H2 storage tank 20 years 𝐶ி Capital cost of fuel cell per unit rating 2400 £/kW 𝐶ிைெ Operation and maintenance cost of fuel cell per unit rating 48 £/kW 𝐶ி Replacement cost of fuel cell per unit rating 2000 £/kW 𝐿ி Lifetime of fuel cell  50,000 h 𝐶௩ଵ , 𝐶௩ଶ  Capital cost of PV inverter and fuel cell inverter per unit rating, 
respectively 80 £/kW 𝐶௩ଵைெ , 𝐶௩ଶைெ  Operation and maintenance cost of PV inverter and fuel cell in-

verter per unit rating, respectively 1.60 £/kW 𝐶௩ଵ , 𝐶௩ଶ  Replacement cost of PV inverter and fuel cell inverter per unit 
rating, respectively 80 £/kW 𝐿௩ଵ,𝐿௩ଶ Lifetime of PV inverter and fuel cell inverter, respectively 15 years 𝑁 Project lifetime 20 years 𝑖 Real interest rate 8% 

Table 3. Tariff rates of grid electricity purchase and grid feed-in electricity based on prices of RGU’s 
UK energy provider [17]. 

Parameter Description Value 𝑡 Tariff rate for grid electricity pur-
chase 

Day rate (7.00—12.00 am): 0.4598 £/kWh 
Night rate (12.00–7.00 am): 0.1420 £/kWh 𝑡 Tariff rate of grid feed-in electricity 0.056 £/kWh 

6.2. Results and Discussions 

The PSO algorithm was applied to the RB using a population size of 20 particles and 
a maximum number of iterations of 50. Table 4 shows the optimal sizing results of the 
hybrid PV-H2 energy system suited for the RB using both the single-objective optimal siz-
ing model for minimising the LCOE and the multi-objective optimal sizing model for sim-
ultaneously minimising the LCOE along with the building’s carbon footprint. From Table 
4, it can be seen that when using the single-objective optimal sizing model for minimising 
the LCOE, the optimal hybrid system sizing was found to be a 1000 kW PV system, 932 
kW electrolyser, 22.7 kg pressurised H2 storage tank, and 242 kW fuel cell. The LCOE cor-
responding to this optimal hybrid system sizing was found to be 0.366 £/kWh, while the 
corresponding building’s GDR was found to be 40%. On the other hand, when using the 
multi-objective optimal sizing model for simultaneously minimising both the LCOE and 
the building’s carbon footprint, the optimal hybrid system sizing was found to be a 3187.8 
kW PV system, 1000 kW electrolyser, 106.1 kg H2 storage tank, and 250 kW fuel cell sys-
tem. The LCOE corresponding to this optimal hybrid system sizing was found to be 0.5188 
£/kWh, while the building’s GDR was reduced to 33.33%. Compared to the results ob-
tained from the single-objective optimal sizing model, it can be seen that the LCOE was 
quite higher when using the multi-objective optimal sizing model to enable minimising 
the GDR in addition to minimising the LCOE. The higher LCOE is because of the higher 
capacities of hybrid system components needed to allow for increasing the clean energy 
supply to achieve a lower grid dependency of 33.33% (i.e., 66.67% of the total annual load 
demand has to be fed by the clean energy supply). 
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Figure 3 shows the convergence of the fitness function obtained from the single-ob-
jective optimal sizing model for minimising the LCOE. As can be seen from Figure 3, the 
LCOE dropped from about 0.405 £/kWh at the filtered initial hybrid system sizing to 0.366 
£/kWh at the optimal hybrid system sizing, thus achieving about a 9.6% reduction in the 
LCOE after almost 20 iterations (i.e., meaning the solution converges after about 20 itera-
tions). Figure 4 illustrates the pareto-front characteristic of the multi-objective optimal siz-
ing model, showing a trade-off between the LCOE and the building’s GDR. It is obvious 
from the chart that decreasing the building’s GDR is associated with an increase in the 
LCOE and vice versa. 

Table 4. Results of both the developed single-objective and multi-objective optimal sizing models 
for RB. 

Parameter Single-Objective Optimal 
Sizing Model’s Results 

Multi-Objective Optimal 
Sizing Model’s Results 

PV system size (kW) 1000 3187.8 
Electrolyser size (kW) 932 1000 
H2 storage tank size (kg) 22.7 106.1 
Fuel cell system size (kW) 242 250 
LCOE (£/kWh) 0.366 0.5188 
GDR (%) 40% 33.33% 

 

Figure 3. Convergence of fitness function of the single-objective optimal sizing model. 
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Figure 4. Pareto-front characteristic of the multi-objective optimal sizing model. 

Figure 5 shows the monthly PV energy production obtained from the optimal hybrid 
system sizing when using the single-objective optimal sizing model. From Figure 5, the 
total annual PV energy production was found to be 876.28 MWh when using the single-
objective optimal sizing model, out of which 536.4 MWh were fed to the building load 
demand, while the remainder (i.e., 339.8 MWh) was harnessed by the electrolyser. It is 
further noted that no PV energy excess was sold to the utility grid when using the single-
objective optimal sizing model, meaning the annual PV energy production was fully uti-
lised for feeding the building load demand and the electrolyser to generate green H2. 

 

Figure 5. Monthly PV energy production obtained from the optimal hybrid system sizing when 
using the single-objective optimal sizing model. 

Figure 6 shows the monthly PV energy production obtained from the optimal hybrid 
system sizing when using the multi-objective optimal sizing model. From Figure 6, the 
total annual PV energy production was found to be 2793.45 MWh when using the multi-
objective optimal sizing model, out of which 709.81 MWh was fed to the building load 
demand, 1726.5 MWh was harnessed by the electrolyser, and the remainder of non-uti-
lised PV energy excess was sold to the utility grid (i.e., about 357.13 MWh). Compared to 
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the results of the single-objective optimal sizing model, the annual PV energy production 
greatly increased when using the multi-objective optimal sizing model given that a higher 
capacity of the PV system was obtained, as listed in Table 4. It can be seen that in the multi-
objective optimisation, the PSO algorithm increased the capacity of the PV system to ena-
ble a greater clean energy supply and to allow for harnessing more PV surplus by the 
electrolyser and thus increasing the H2 availability for fuel cell consumption. When using 
the multi-objective optimal sizing model, it can be seen that about 61.8% from annual PV 
production was harnessed by the electrolyser (i.e., 1726.5 MWh out of 2793.45 MWh), 
while when using the single-objective optimisation algorithm, only 38.7% from annual PV 
production was harnessed by the electrolyser (i.e., 339.8 MWh out of 876.28 MWh). In 
terms of the PV energy excess sold to the utility grid, it can be seen that the multi-objective 
optimisation allowed for about 12.7% of the annual PV energy production to be sold to 
the utility grid as a result of the higher PV system capacity, thus increasing the revenue 
from selling the non-utilised PV energy excess and allowing for maintaining the system’s 
LCOE at a reasonable value. 

 

Figure 6. Monthly PV energy production obtained from the optimal hybrid system sizing when 
using the multi-objective optimal sizing model. 

Figure 7 compares the monthly H2 production by the electrolyser obtained from the 
optimal hybrid system sizing when using the single-objective optimal sizing model versus 
that obtained when using the multi-objective optimal sizing model. Compared to the sin-
gle-objective optimisation, the total annual H2 production by the electrolyser was notice-
ably increased when using the multi-objective optimisation algorithm given that more PV 
surplus power became available for green H2 generation (10,290 kg of H2 was produced 
by the electrolyser annually from the PV surplus production when using the multi-objec-
tive optimisation algorithm, while only 1823.5 kg of H2 was produced when using the 
single-objective optimisation algorithm). 
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Figure 7. Monthly H2 production obtained from the optimal hybrid system sizing when using the 
single-objective optimal sizing model versus that obtained when using the multi-objective optimal 
sizing model. 

Figure 8 compares the monthly fuel cell energy production obtained from the optimal 
hybrid system sizing when using the single-objective optimal sizing model versus that 
obtained when using the multi-objective optimal sizing model. From Figure 8, the annual 
energy production by the fuel cell system increased from 50.98 MWh when using the sin-
gle-objective optimisation to 281.73 MWh when using the multi-objective optimisation 
given that more H2 became available for fuel cell consumption. Indeed, the percentage of 
annual load demand served by the fuel cell soared from about 3.4% when using the single-
objective optimisation to about 18.94% when using the multi-objective optimisation, thus 
reducing the load dependency on the grid supply and accordingly reducing the environ-
mental impact. 

 

Figure 8. Monthly fuel cell energy production obtained from the optimal hybrid system sizing when 
using the single-objective optimal sizing model versus that obtained when using the multi-objective 
optimal sizing model. 

Figure 9 compares the monthly grid energy import obtained from the optimal hybrid 
system sizing when using the single-objective optimal sizing model versus that obtained 
when using the multi-objective optimal sizing model. The annual energy imported from 
the utility grid decreased from about 900 MWh when using the single-objective optimal 
sizing model to 495.8 MWh when using the multi-objective optimal sizing model. It is 
worth stating that the load’s grid dependency decreased from about 40% when using the 
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single-objective optimisation to 33.33% when using the multi-objective optimisation, 
meaning that about 66.7% of CO2 emissions could be eliminated upon applying the multi-
objective optimisation technique. 

 

Figure 9. Monthly grid energy import obtained from the optimal hybrid system sizing when using 
the single-objective optimal sizing model versus that obtained when using the multi-objective opti-
mal sizing model. 

7. Conclusions 
In this paper, single-objective and multi-objective optimisation dynamic system 

models were developed to enable the real-world modelling and the optimal sizing of a 
hybrid PV-H2 energy system within grid-connected buildings from either an economic 
perspective only or from economic and environmental perspectives. Both models were 
developed by implementing the PSO algorithm on the precise dynamic system model that 
takes into consideration the real-world electrochemical dynamic behaviour of the individ-
ual hybrid system components. The results obtained from the single-objective sizing op-
timisation model attained an economically feasible optimal hybrid system sizing (1000 
kW PV system, 932 kW electrolyser, 22.7 kg H2 storage tank, and 242 kW fuel cell system) 
with a LCOE of 0.366 £/kWh and a grid dependency maintained at 40%. On the other 
hand, the results obtained from the multi-objective optimisation model realised a more 
environmentally friendly hybrid system sizing (3187.8 kW PV system, 1000 kW electro-
lyser, 106.1 kg H2 storage tank, and 250 kW fuel cell system) with a lower grid dependency 
of 33.33% while holding the LCOE at a slightly higher reasonable value of 0.5188 £/kWh. 
The analysis of the results obtained from the application of both the single-objective and 
multi-objective models on the same case study building enabled for envisioning the im-
pact of the optimisation criteria on the conceptual design of the hybrid system. 

Further research work should look into optimising the sizing of hybrid renewable-
hydrogen energy systems from other perspectives (like maximising the turn around effi-
ciency of the H2 energy conversion to electricity or minimising other sustainability criteria 
like the water consumption of the electrolyser). It is also recommended to investigate 
other options for green H2 usage (so instead of converting it back to electricity, it might be 
more efficient to use it directly for heating purposes or for fuelling vehicles within the 
building). 
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