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Abstract
Raf kinase enzymes are often dysregulated in melanoma. While sorafenib demonstrates strong activity against wild-type 
B-Raf, it fails to effectively inhibit the mutated form of B-Raf. In this study, sorafenib served as a lead compound for the 
development of new derivatives designed to enhance inhibitory activity across multiple Raf isoforms (pan-Raf inhibitors). 
Novel naphthalene-based diarylamide derivatives were subsequently designed, synthesized, and evaluated for their biologi-
cal activity against various Raf kinase isoforms and the melanoma A375 cell line. Among these, compound 9a, containing 
a difluoromethoxy group, demonstrated strong inhibitory activity across B-RafWT, B-RafV600E, and c-Raf. Additionally, 
it induced G2/M phase arrest and triggered dose-dependent apoptosis, effectively suppressing both cell proliferation and 
survival. Compound 9a also exhibited high selectivity for Raf isoforms with minimal off-target effects, underscoring its 
specificity and therapeutic potential for Raf-driven malignancies.
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Introduction

Cancer is a malignant condition characterized by uncon-
trolled cell growth and proliferation, resulting from muta-
tions or overexpression in critical biological targets within 
the human body (Ammar et al. 2018; Abdel-Maksoud et al. 

2021). MAPK signalling cascade is one of signalling path-
ways within the human cell, from cell membrane to nucleus 
(Wellbrock et al. 2004; Buchstaller et al. 2011). It has been 
reported that MAPK signalling cascade is significantly 
related to the progression of a variety of human cancers 
(Ammar et al. 2020; Zhao et al. 2022). MAPK signalling 
pathway consists of Ras/Raf/MEK/ERK signal transduction 
cascade that plays an important role in a number of cellular 
activities such as cell growth, cell proliferation, cell sur-
vival, and other biological aspects that contribute to cellular 
behaviour (Pritchard et al. 1995; Weber et al. 2000; Mina-
moto et al. 2000; Yuen et al. 2002; El-Damasy et al. 2020). 
The vital roles of these biological cellular components make 
MAPK signalling pathway an attractive biological target in 
treating human cancers (Weber et al. 2000; El-Damasy et al. 
2020).

Raf protein kinases (A-Raf, B-Raf, and c-Raf) interact 
significantly with Ras to activate MAPK signalling pathway 
(Weber et al. 2000; Yuen et al. 2002; Buchstaller et al. 2011). 
In addition, it has been reported that B-Raf isoform binds 
and activates c-Raf in a RAS-dependant manner that reflects 
the key role of B-Raf within the MAPK signalling pathway 
(Garnett et al. 2005; Rushworth et al. 2006; Buchstaller et al. 
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2011). Following Raf activation in response to external stim-
uli (Chiloeches and Marais 2002), the signalling cascade is 
triggered, and downstream regulators (MEK and ERK) are 
sequentially phosphorylated and activated to regulate the 
cellular biological activities (Kolch 2000; Li et al. 2009; 
Zhan et al. 2012). Therefore, the inhibition of MAPK signal-
ling pathway at the level of Raf protein kinases is expected 
to be an effective and promising therapeutic strategy to 
treat human cancers driven through this signalling cascade 
(El-Damasy et al. 2020). It has been reported that B-Raf 
kinase mutation (V600E) in skin is a critical step in prompt-
ing melanoma disease (Pollock et al. 2003). In the V600E 
single-point mutation, a glutamic acid residue replaces the 
valine residue at position 600. The replacement of a small, 
non-polar valine residue with a larger, negatively charged 
glutamic acid causes a conformational change in the ATP 
active site of the kinase domain, mimicking the phosphoryla-
tion of the activation segment. This mutation causes a con-
formational shift from the inactive state (wild-type B-RAF) 
to the active state (V600E BRAF). Consequently, it results in 
the constitutive activation of B-RAF kinase activity, bypass-
ing upstream signals and leading to the continuous activa-
tion of downstream proteins (MEK/ERK). V600E mutation 
in the kinase domain of B-Raf protein accounted for 66% 
of melanoma, 40–70% of papillary thyroid carcinoma, 12% 
of colon carcinomas, and 14% of liver cancers (Yuen et al. 
2002, ET et al. 2003, El-Damasy et al. 2020). The significant 
effects of Raf protein kinases on cellular activities, together 
with high prevalence of mutation in melanoma, make Raf an 
attractive biological target for treatment of human melanoma 
disease (Ammar et al. 2018; El-Damasy et al. 2020).

Targeting the oncogenic protein kinases has been 
reported to be an effective therapeutic strategy to treat 

cancer diseases (Bhullar et al. 2018; Lee et al. 2021). By 
early 2024, the Food and Drug Administration (FDA) 
has approved a total of fifty-nine small molecule kinase 
inhibitors (SMKIs) for treating oncology-related condi-
tions (Roskoski 2024). It was reported that the design and 
development of new drugs targeting Raf kinases showed 
paradoxical activation of MAPK signalling cascade fol-
lowing Raf inhibition (Zhao et al. 2022). In addition, the 
first reported pan-Raf inhibitor BAY43-996 (Sorafenib 
1), showed weak efficacy in patients with B-Raf muta-
tion (V600E)-based melanoma (Smith et al. 2001; Khire 
et al. 2004; Ramurthy et al. 2008). It was suggested that 
sorafenib showed an additional mechanism of action in 
targeting melanoma through inhibition of VEGFR kinase 
domain (Wilhelm et al. 2004; Eisen et al. 2006; Ramur-
thy et al. 2008; Zhan et al. 2012; El-Damasy et al. 2020). 
Moreover, selective B-Raf (V600E) inhibitors (Vemu-
rafenib 2 and Dabrafenib 3, Fig. 1) showed significant 
clinical response in metastatic melanoma with oncogenic 
B-Raf mutation (V600E) (Ali et al. 2022). However, these 
FDA drugs (2 and 3) failed to afford sustained tumour 
remission in cancers with wild B-Raf protein kinase (WT) 
(Zhao et al. 2022). In addition, these first-generation Raf 
inhibitors showed a number of adverse events such as the 
development of cutaneous cell tumour, keratoacanthomas 
and acquired resistance (Shaw et  al. 2014). Acquired 
resistance significantly reduces the effectiveness of these 
inhibitors, restricting their therapeutic benefits to a limited 
period of six to nine months. (Rajakulendran et al. 2009; 
Shaw et al. 2014; Agianian and Gavathiotis 2018). As a 
result, the development of next-generation small molecule 
kinase inhibitors (SMKIs), through targeting pan-Raf 
protein kinases (targeting all Raf isoforms), has attracted 

Fig. 1   The reported Raf inhibi-
tors
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great interests from both pharmaceutical industry and aca-
demia (Yang et al. 2015; Wang et al. 2017).

This inspired us to develop novel pan-Raf inhibitors with 
enhanced activity across multiple Raf isoforms, includ-
ing mutated B-Raf and c-Raf. Sorafenib was selected as a 
lead compound for molecular development to elucidate the 
Structure-Activity Relationship (SAR) of newly designed 
sorafenib-based derivatives. Strategic structural modifica-
tions were implemented to optimize its inhibitory activity 
across the Raf kinase isoforms. In 2011, Buchstaller research 
group implemented structural modifications to sorafenib to 
improve its activity against B-Raf kinase (Fig. 1; compound 
4, and Fig. 2B) (Buchstaller et al. 2011). They applied struc-
ture rigidification to the distal pyridine ring of sorafenib and 
replaced it with isoquinoline ring. The central phenyl ring 
was replaced by a flexible ethyl linker between the distal 
isoquinoline ring and the urea motif. In addition, they have 
decorated the terminal phenyl ring with different lipophilic 
substituents to study the effect of hydrophobic interaction 
with the target protein. However, they retained the N-methyl 
amide group (hinge binding motif) and urea-based linker 
(H-bonding-forming group) together with the extended con-
formation. This approach identified compound 4 as the most 

potent in their series, with an IC50 value of 80 nM against 
the Raf kinase enzyme.

Accordingly, our rational design was inspired by the 
sequential drug development strategies applied to sorafenib 
and the drug-like candidate developed by the Buchstaller 
group (Fig. 2 and Table 1). Our newly designed compounds 
retained the stretched conformation of sorafenib and con-
served the characteristic terminal N-methyl amide group. 
We replaced the central phenyl ring with a more rigid and 
bulkier naphthalene ring. This central aromatic structure has 
been established as a key scaffold in several small-molecule 
kinase inhibitors (Harmange et al. 2008). Naphthalene core 
may also afford π staking interaction with the key amino 
acid residue within the inner hydrophobic pocket (Phe545). 
The urea-based linker was replaced with an amide group 
to investigate the potential of this new chemical geometry 
within the HBD/HBA segment to form hydrogen bonds 
with the key amino acid residues in the α-helix (Glu501 and 
Asp594). Additionally, we expanded our study to investigate 
the SAR by substituting the terminal phenyl ring to target the 
induced-fit pocket. Various substituents were introduced to 
the terminal phenyl ring to evaluate their impact on interac-
tions within the hydrophobic pocket.

Fig. 2   The rational design of the development of a new series of sorafenib-related derivatives. A the structural feature of sorafenib as a lead 
compound in this current study; B the general structure of developed compounds by Buchstaller group in 2011; C the proposed structural feature 
of the newly designed compounds by our research group. Where the fused six-membered ring, naphthalene, was incorporated as a central core 
scaffold in the designed compounds; HBD/HBA urea group was replaced with amide group with different chemical geometry; the distal phenyl 
ring was decorated with different non-polar groups; the terminal N-methyl amide group was retained in the newly designed series
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Materials and methods

Chemistry

The general protocols used for chemical synthesis, struc-
ture elucidation, and purity assessment of the synthesized 
compounds followed previously reported methods (Al-
Sanea et al. 2015; Park et al. 2017; Elkamhawy et al. 2020; 
Elsherbeny et al. 2021). In brief, all solvents and reagents 
were used without any additional purification. The 1H NMR 
data were obtained using a Varian 400 MHz spectrometer 
(Varian Medical Systems, Inc., Palo Alto, CA, USA) and 
measured in parts per million (ppm) for chemical shifts and 
in Hz for coupling constants. High-resolution electrospray 
ionization mass spectrometry (HR-ESIMS) data were ana-
lyzed using a JMS-700 mass spectrometer or HR-ESIMS 
data obtained via a G2 QTOF mass spectrometer (Waters 
Corporation, Milford, MA, USA). Reaction progress was 
monitored using TLC on silica plates with a thickness of 
0.25 mm from E. Merck and silica gel 60 F254. The purity 
of the final compounds was confirmed using reverse-phase 
high-performance liquid chromatography (Biotage, Uppsala, 
Sweden) equipped with a UV detector set at 254 nm. The 
mobile phases used were H2O containing 0.05% trifluoro-
acetic acid and CH3CN. HPLC used an YMC Hydrosphere 
C18 (HS-302) column with a diameter of 4.6 mm and a 
length of 150 mm, with a flow rate of 1.0 mL/min.

Synthesis of the intermediate naphthamides 7a–i

The intermediate compounds 7a–i were synthesized as 
reported (Elkamhawy et al. 2024).

Synthesis of the final compounds 9a–i

In a round-bottom flask containing 5  mL of dimethyl 
sulfoxide (DMSO), an amount of 0.13 g (0.9 mmol) of 
4-chloro-N-methylpicolinamide (8) and cesium carbon-
ate (Cs2CO3, 0.58 g, 1.8 mmol, 3 equiv) were dissolved at 
room temperature. After stirring for 15 min, the appropri-
ate naphthamide intermediate (7a–i, 1.13 mmol, 0.6 equiv) 
was added. The reaction mixture was then stirred for 12 h at 
110 °C. After completion of the reaction, the mixture was 
allowed to cool to rt. The excess solvent was then evapo-
rated, and the residue was partitioned between water and 
EtOAc. Anhydrous magnesium sulfate was added to the wet 
organic layer and the resulting solid was removed by filtra-
tion. The filtrate was then evaporated under reduced pressure 
and the solid was washed with n-hexane and purified using 
flash column chromatography (EtOAc/n-hex: 1/1) to obtain 
the final product.

4‑((5‑((3‑(Difluoromethoxy)phenyl)carbamoyl)
naphthalen‑2‑yl)oxy)‑N‑methylpicolinamide (9a)

Off-white solid. Yield: 80.5%. Mp: 150.3–151.2 °C. 1H 
NMR (400  MHz, DMSO-d6) δ 10.83 (s, 1H), 8.80 (s, 
1H), 8.57 (d, J = 5.7 Hz, 1H), 8.32 (d, J = 9.1 Hz, 1H), 
8.12 (d, J = 8.6 Hz, 1H), 7.90 (s, 1H), 7.83–7.76 (m, 2H), 
7.72–7.59 (m, 2H), 7.54–7.39 (m, 3H), 7.31–7.22 (m, 
1H), 6.95 (d, J = 7.3 Hz, 1H), 2.78 (d, J = 4.7 Hz, 3H). 13C 
NMR (100 MHz, DMSO-d6) δ 167.71, 165.80, 164.17, 
153.05, 151.61, 151.02, 141.12, 135.03, 134.73, 130.59, 
130.42, 128.60, 127.89, 126.65, 125.95, 122.05, 119.41, 
118.39, 116.91, 116.85, 115.06, 114.24, 110.78, 109.76, 
26.44. HRMS (ESI) m/z calc. for C25H20F2N3O4 [M + H]+ 
464.1422, found 464.1455. Purity: 97.32% (as determined 
by RP-HPLC, Rt = 17.5 min).

4‑((5‑((4‑Isopropylphenyl)carbamoyl)
naphthalen‑2‑yl)oxy)‑N‑methylpicolinamide (9b)

Off-white solid. Yield: 85.6%. Mp: 160.3–161.7 °C. 1H 
NMR (400 MHz, DMSO-d6) δ 10.55 (s, 1H), 8.84–8.75 
(m, 1H), 8.56 (d, J = 5.8 Hz, 1H), 8.31 (d, J = 9.0 Hz, 1H), 
8.09 (d, J = 8.3 Hz, 1H), 7.89 (d, J = 2.3 Hz, 1H), 7.80–7.65 
(m, 4H), 7.52–7.42 (m, 2H), 7.33–7.17 (m, 3H), 2.78 
(d, J = 4.9 Hz, 3H), 1.21 (d, J = 6.9 Hz, 6H). 13C NMR 
(100 MHz, DMSO-d6) δ 167.28, 165.83, 164.18, 153.05, 
151.68, 151.02, 144.38, 137.41, 135.55, 134.72, 130.09, 
128.71, 128.00, 126.86, 126.68, 125.74, 121.90, 120.47, 

Table 1   Chemical structures and the isolated yields of compounds 
9a–i 

 

Compound R1 R2 R3 Yield%

9a

 

H H 80.5

9b H

 

H 85.6

9c H I H 90.1
9d F OMe H 92.3
9e F

 

H 95.6

9f H F H 76.3
9g Me Me H 87.8
9h Me H Br 94.3
9i Cl OMe H 82.1
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118.35, 115.04, 109.76, 33.39, 26.44, 24.41. HRMS 
(ESI) m/z calc. for C27H26N3O3 [M + H]+ 440.1974, found 
440.1965. Purity: 98.37% (as determined by RP-HPLC, 
Rt = 20.0 min).

4‑((5‑((4‑Iodophenyl)carbamoyl)naphthalen‑2‑yl)
oxy)‑N‑methylpicolinamide (9c)

Yellow solid. Yield: 90.1%. Mp: 134.0–134.5  °C. 1H 
NMR (400 MHz, DMSO-d6) δ 10.74 (s, 1H), 8.79 (s, 1H), 
8.56 (d, J = 5.3 Hz, 1H), 8.30 (d, J = 9.2 Hz, 1H), 8.11 (d, 
J = 8.2 Hz, 1H), 7.90 (d, J = 2.3 Hz, 1H), 7.83–7.62 (m, 5H), 
7.52–7.42 (m, 2H), 7.30–7.23 (m, 1H), 2.78 (d, J = 4.9 Hz, 
3H). 13C NMR (100 MHz, DMSO-d6) δ 167.57, 165.80, 
164.17, 153.05, 151.73, 151.03, 150.45, 139.48, 137.85, 
135.10, 134.72, 130.37, 128.61, 127.89, 126.65, 125.93, 
122.52, 122.23, 122.02, 118.38, 115.06, 109.76, 87.83, 
26.45. HRMS (ESI) m/z calc. for C24H18IN3O3 [M + H]+ 
524.0393, found 524.0475. Purity: 94.49% (as determined 
by RP-HPLC, Rt = 19.0 min).

4‑((5‑((3‑Fluoro‑4‑methoxyphenyl)carbamoyl)
naphthalen‑2‑yl)oxy)‑N‑methylpicolinamide (9d)

Off-white solid. Yield: 92.3%. Mp: 198.3–199.2 °C. 1H 
NMR (400  MHz, DMSO-d6) δ 10.65 (s, 1H), 8.80 (d, 
J = 5.0 Hz, 1H), 8.56 (d, J = 5.6 Hz, 1H), 8.32 (d, J = 9.0 Hz, 
1H), 8.10 (d, J = 8.6 Hz, 1H), 7.92–7.86 (m, 1H), 7.83–7.74 
(m, 2H), 7.71–7.64 (m, 1H), 7.54–7.42 (m, 3H), 7.30–7.14 
(m, 2H), 3.84 (s, 3H), 2.78 (d, J = 4.9 Hz, 3H). 13C NMR 
(100 MHz, DMSO-d6) δ 167.25, 165.80, 164.17, 153.04, 
151.72, 151.01, 135.16, 134.73, 130.29, 128.69, 127.93, 
126.64, 125.85, 121.97, 118.36, 116.35, 115.04, 114.56, 
109.76, 108.65, 56.69, 26.44. HRMS (ESI) m/z calc. for 
C25H21FN3O4 [M + H]+ 446.1516, found 446.1512. Purity: 
98.02% (as determined by RP-HPLC, Rt = 15.2 min).

4‑((5‑((3‑Fluoro‑4‑morpholinophenyl)carbamoyl)
naphthalen‑2‑yl)oxy)‑N‑methylpicolinamide (9e)

Off-white solid. Yield: 95.6%. Mp: 177.5–179.2 °C. 1H 
NMR (400  MHz, DMSO-d6) δ 10.67 (s, 1H), 8.80 (d, 
J = 4.9 Hz, 1H), 8.56 (d, J = 5.6 Hz, 1H), 8.31 (d, J = 9.3 Hz, 
1H), 8.10 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 2.5 Hz, 1H), 
7.80–7.63 (m, 3H), 7.53–7.41 (m, 3H), 7.27 (dd, J = 5.5, 
2.7 Hz, 1H), 7.07 (t, J = 9.4 Hz, 1H), 3.79–3.70 (m, 3H), 
3.03–2.95 (m, 3H), 2.78 (d, J = 4.9 Hz, 2H), 2.54 (s, 3H). 
13C NMR (100 MHz, DMSO-d6) δ 167.27, 165.81, 164.17, 
156.07, 153.65, 153.04, 151.71, 151.03, 136.11, 135.17, 
134.67, 130.30, 128.67, 127.93, 126.66, 125.86, 121.98, 
119.59, 118.37, 116.42, 115.05, 109.75, 108.72, 108.46, 
66.64, 51.24, 51.21, 26.45. HRMS (ESI) m/z calc. for 

C28H26FN4O4 [M + H]+ 501.1938, found 501.1931. Purity: 
99.01% (as determined by RP-HPLC, Rt = 14.6 min).

4‑((5‑((4‑Fluorophenyl)carbamoyl)naphthalen‑2‑yl)
oxy)‑N‑methylpicolinamide (9f)

White solid. Yield: 76.3%. Mp: 157.3–157.8 °C. 1H NMR 
(400 MHz, DMSO-d6) δ 10.69 (s, 1H), 8.85–8.75 (m, 1H), 
8.56 (d, J = 5.5 Hz, 1H), 8.32 (d, J = 9.2 Hz, 1H), 8.10 (d, 
J = 8.2 Hz, 1H), 7.92–7.75 (m, 3H), 7.72–7.63 (m, 1H), 
7.47 (dd, J = 19.9, 7.0 Hz, 2H), 7.31–7.17 (m, 2H), 2.78 (d, 
J = 4.8 Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 167.36, 
165.81, 164.17, 153.04, 151.70, 151.02, 136.01, 135.24, 
134.73, 130.26, 128.67, 127.94, 126.67, 125.86, 122.18, 
122.10, 121.98, 118.39, 115.87, 115.65, 115.05, 109.74, 
26.45. HRMS (ESI) m/z calc. for C24H19FN3O3 [M + H]+ 
416.4140, found 416.1406. Purity: 98.07% (as determined 
by RP-HPLC, Rt = 15.4 min).

4‑((5‑((3,4‑Dimethylphenyl)carbamoyl)
naphthalen‑2‑yl)oxy)‑N‑methylpicolinamide (9 g)

Off-white solid. Yield: 87.8%. Mp: 112.2–113.5 °C. 1H 
NMR (400 MHz, DMSO-d6) δ 10.47 (s, 1H), 8.83–8.76 
(m, 1H), 8.56 (d, J = 5.8 Hz, 1H), 8.31 (d, J = 9.1 Hz, 1H), 
8.09 (d, J = 8.6 Hz, 1H), 7.89 (d, J = 2.2 Hz, 1H), 7.79–7.85 
(m, 1H), 7.70–7.57 (m, 2H), 7.56–7.41 (m, 3H), 7.30–7.23 
(m, 1H), 7.12 (d, J = 8.2 Hz, 1H), 2.78 (d, J = 4.9 Hz, 3H), 
2.22 (d, J = 9.9 Hz, 6H). 13C NMR (100 MHz, DMSO-d6) 
δ 167.23, 165.83, 164.17, 153.03, 151.65, 151.03, 137.37, 
136.74, 135.61, 134.71, 131.99, 129.99, 128.70, 128.00, 
126.69, 125.70, 121.89, 121.59, 118.36, 117.93, 115.03, 
109.73, 26.45, 20.10, 19.29. HRMS (ESI) m/z calc. for 
C26H24N3O3 [M + H]+ 426.1818, found 426.1820. Purity: 
99.52% (as determined by RP-HPLC, Rt = 17.4 min).

4‑((5‑((3‑Bromo‑5‑methylphenyl)carbamoyl)
naphthalen‑2‑yl)oxy)‑N‑methylpicolinamide (9 h)

Yellow solid. Yield: 94.3%. Mp: 132.9–133.7 °C. 1H NMR 
(400 MHz, DMSO-d6) δ 10.72 (s, 1H), 8.83–8.77 (m, 1H), 
8.57 (d, J = 5.6 Hz, 1H), 8.31 (d, J = 9.3 Hz, 1H), 8.11 (d, 
J = 8.3 Hz, 1H), 7.97–7.88 (m, 2H), 7.79 (d, J = 6.7 Hz, 
1H), 7.71–7.64 (m, 1H), 7.59 (s, 1H), 7.53–7.43 (m, 
2H), 7.30–7.25 (m, 1H), 7.18 (s, 1H), 2.78 (d, J = 4.8 Hz, 
3H), 2.32 (s, 3H). 13C NMR (100  MHz, DMSO-d6) δ 
167.67, 165.79, 164.16, 153.04, 151.74, 151.03, 141.03, 
140.94, 134.99, 134.72, 130.43, 128.62, 127.88, 127.37, 
126.65, 125.94, 122.04, 121.78, 119.91, 119.68, 118.39, 
115.06, 109.75, 26.45, 21.32. HRMS (ESI) m/z calc. for 
C25H21BrN3O3 [M + H]+ 490.0766, found 490.0769. Purity: 
97.34% (as determined by RP-HPLC, Rt = 19.8 min).
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4‑((5‑((3‑Chloro‑4‑methoxyphenyl)carbamoyl)
naphthalen‑2‑yl)oxy)‑N‑methylpicolinamide (9i)

Yellow solid. Yield: 82.1%. Mp: 202.0–202.4 °C. 1H NMR 
(400 MHz, DMSO-d6) δ 10.61 (s, 1H), 8.83–8.73 (m, 1H), 
8.55 (d, J = 5.6 Hz, 1H), 8.31 (d, J = 8.9 Hz, 1H), 8.08 (d, 
J = 7.9 Hz, 1H), 7.98 (d, J = 2.8 Hz, 1H), 7.88 (d, J = 2.4 Hz, 
1H), 7.77 (d, J = 6.8 Hz, 1H), 7.69–7.61 (m, 2H), 7.51–7.41 
(m, 2H), 7.28–7.21 (m, 1H), 7.17 (d, J = 9.0 Hz, 1H), 3.84 (s, 
3H), 2.77 (d, J = 4.9 Hz, 3H). 13C NMR (100 MHz, DMSO-
d6) δ 167.26, 165.81, 164.17, 153.03, 151.71, 151.35, 
151.03, 135.12, 134.73, 133.32, 130.31, 128.71, 127.93, 
126.66, 125.88, 121.98, 121.06, 120.26, 118.37, 115.05, 
113.38, 109.75, 56.68, 26.45. HRMS (ESI) m/z calc. for 
C25H21ClN3O4 [M + H]+ 462.1221, found 462.1219. Purity: 
98.49% (as determined by RP-HPLC, Rt = 15.4 min).

Biological evaluation

In vitro biochemical kinase assay

The in vitro kinase inhibitory assays (both one-point and 
ten-point assays) were performed at Reaction Biology Co. 
(Malvern, PA, USA). Kinase HotSpot service was used for 
screening the tested derivatives. The experiment protocol 
is previously described in detail (Elkamhawy et al. 2016).

In vitro cytotoxic activity

Melanoma skin cancer cell line (A375) of American Type 
Culture Collection (ATCC) was obtained from Korean Cell 
Line Bank (KCLB). The A375 cells were cultured in Dul-
becco’s modified eagle’s medium (DMEM) (GenDepot) sup-
plemented with 1% penicillin–streptomycin and 10% fetal 
bovine serum (FBS). The cells were maintained at 37 °C 
in a 5% CO2 with a 95% humid atmosphere. MTT assay, 
analysis of the cell cycle distribution, apoptosis analysis, and 
statistical analysis were carried out following known stand-
ard protocols adopted by our team earlier (Son et al. 2023).

In silico molecular simulation

The molecular docking simulation of the designed deriva-
tives (9a–i) and the standard compounds (1 and 4) was per-
formed using Molecular Graphics Laboratory (MGL) Tools 
software suite 1.5.7 (Sanner lab, Centre for Computational 
Structural Biology, Scripps Research Institute) (Elkamhawy 
et al. 2024). The molecular docking protocol was conducted 
through the following steps:

Ligand preparation

The chemical structures of the tested compounds (1, 4, and 
9a–i) were built using MarvinSketch 22.11 software and 
optimized by Discovery Studio 2021 software using Drei-
ding-like forcefield (Hahn 1995). Gasteiger charges were 
applied to merge the non-polar hydrogens using AutoDock 
Tools 1.5.6.

Protein preparation

The X-ray structure of both the wild-type B-Raf kinase 
domain (PDB ID: 1UWH) (Wan et al. 2004) and the mutated 
B-Raf kinase domain (PDB ID: 4FK3) (Tsai et al. 2008) 
were downloaded from the RCSB protein databank (Elkam-
hawy et al. 2024). Reference ligands, water molecules, and 
any additional chains were removed, keeping one kinase 
domain only. The hydrogen atoms and Asn/Gln/His flips 
were assigned using Molprobity. AD4 parameters and 
Gasteiger charges were assigned to the protein atoms using 
AutoDock Tools 1.5.6.

Molecular docking protocol validation

Molecular docking calculations were performed using Auto-
Dock4 using ten runs of generic algorism (GA) at the ATP 
binding site coordinates (B-RafWT; x = 75.15, y = 44.83, 
z = 65.03 and B-RafV600E; x = −1.99, y = 50.20, z = 20.15). 
The docking protocol was validated through running initial 
docking experiments (pre-docking) for the reference ligands 
and calculating the RMSD values. The molecular docking 
of the designed compounds (9a–i) and standard compounds 
(1 and 4) was conducted and the most stable conformers 
were identified.

Molecular docking analysis

The docking poses of the tested compounds were visual-
ized and analysed using Discovery Studio software 2021 to 
identify the binding interactions between the docked ligands 
and the key amino acid residues at the ATP binding site of 
both B-Raf isoforms.

Results

Chemistry

As shown in Scheme 1, the chemical synthetic procedure 
of the intermediate amide derivatives 7a–i was carried out 
via coupling the commercially available 6-hydroxy-1-naph-
thoic acid (5) with different anilines (6a–i) in the presence of 
N,N-diisopropylethylamine (DIPEA) and propylphosphonic 
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anhydride (T3P) in tetrahydrofuran solvent (THF) at room 
temperature (rt = 25 °C) for 12 h. The free phenolic OH 
group in compounds 7a–i was then allowed to be reacted 
with 4-chloro-N-methylpicolinamide (8) in the presence of 
Cs2CO3 in DMSO at 110 °C for 12 h to afford the final target 
compounds 9a–i (Table 1).

Biological evaluation

In vitro kinase assay

To evaluate the new structural design of our compounds 
(9a–i), the biochemical activity was evaluated against Raf 
kinase enzymes (B-RafWT, B-RafV600E, and c-Raf) in one-
point dose (10 μM) at duplicate mode using ATP concen-
tration 10 μM. The results are presented in Table 2 and 
expressed in % inhibition. The results demonstrated that 
the majority of the compounds exhibited strong inhibition, 
exceeding 90%, across Raf kinases. In addition, the new 
structural mapping (Fig. 2) can suggest the potential bind-
ing into the ATP binding site in a competitive manner with 
ATP molecules. Notably, the newly introduced lipophilic 
groups at the distal phenyl ring (F, Cl, Me, OMe, OCHF2, 
and isopropyl) are expected to have a crucial role in binding 
interactions within the ATP binding site. Among the tested 
derivatives, compound 9e, showed weak inhibition to the 
tested Raf kinases (% inhibition: 24.93–76.30%).

In vitro cytotoxic activity

The synthesized compounds (9a–i) were tested in the cel-
lular level against the human melanoma cell line (A375) 
to determine the IC50 values using sorafenib as standard 
(Table 3). Most of tested compounds showed potent cyto-
toxic activities against melanoma cell lines compared to that 
of sorafenib. The results revealed that the tested compounds 
showed sufficient lipophilicity for the cellular conduction. 
Moreover, compounds 9a–d and 9f showed more cytotoxic 
activities against melanoma cell line (0.12–0.67 μM) com-
pared to that of the standard (0.92 μM). In addition, com-
pounds 9 g–i, with dual substitutions at distal phenyl ring 
(diMe, Me/Br, and Cl/OMe, respectively), showed moderate 
cytotoxic activities compared to that of the standard. The 
mono-substitution at the distal phenyl ring of the designed 
compounds was found to be optimal for the inhibitory profile 
against melanoma cell line. Interestingly, compound 9d with 
disubstituted phenyl ring (F/Me) showed potent cytotoxic 
activity (0.54 μM). It was expected that the small-sized F 
group would retain the cytotoxic activity as that of potent 
series with mono-substitution (9a–c and 9f). On the other 
hand, compound 9e (with a bulky and polar morpholine 
group) exhibited weak cytotoxic activity against melanoma 
cell line (A375) compared to that of sorafenib. Both results 
of the biochemical assays and cytotoxic evaluation of com-
pound 9e revealed that the introduction of bulky and/or 
polar groups at the distal phenyl ring is not favoured for the 
desired inhibitory profile.

Scheme 1   Reagents and conditions: a) T3P, DIPEA, THF, rt, 12 h; b) Cs2CO3, DMSO, 110 °C, 12 h

Table 2   % inhibition values of the tested compounds at 10  µM 
against B-RafWT, B-RafV600E and c-Raf kinase enzymes

Compound In vitro protein kinase inhibition values (%)

B-RafWT B-RafV600E c-Raf

9a 99.43 100.00 99.80
9b 98.41 98.40 99.74
9c 92.74 88.59 98.88
9d 97.41 98.16 99.57
9e 42.06 24.93 76.30
9f 74.69 75.80 96.48
9g 99.34 100.00 99.84
9h 99.61 100.00 99.77
9i 99.67 100.00 99.64

Table 3   IC50 values (μM) of the tested compounds (9a–i) and stand-
ard (sorafenib) against human melanoma cell line (A375)

Compound IC50 values (μM) Compound IC50 values (μM)

9a 0.12 ± 0.013 9f 0.44 ± 0.008
9b 0.17 ± 0.012 9g 1.42 ± 0.013
9c 0.67 ± 0.017 9h 1.67 ± 0.032
9d 0.54 ± 0.019 9i 1.75 ± 0.021
9e 4.46 ± 0.024 Sorafenib 0.92 ± 0.018



157Discovery of novel naphthalene‑based diarylamides as pan‑Raf kinase inhibitors with promising…

Dose‑dependent kinase assay

A further dose-dependent assay was conducted for the most 
active compound (9a), evaluated through biochemical and 
cellular assays, to determine its IC50 values against the three 
Raf kinase isoforms, using sorafenib as the standard refer-
ence. Compound 9a was tested in 10-dose IC50 mode with a 
threefold serial dilution starting at 20 μM at ATP concentra-
tion 10 μM (Table 4). The results revealed that compound 
9a exhibited potent IC50 values against the three isoforms 
in nanomolar level. Interestingly, it also exhibited expanded 
inhibition to the mutated B-Raf kinase (V600E) in contrast 
to sorafenib that did not show the same inhibitory profile 
over the mutated isoform.

Kinase selectivity assay

To evaluate the selectivity profile of the designed com-
pounds, compound 9a (the most active compound among 
the tested series) was tested for its kinase inhibitory profile 
against a set of different kinases (related to the same signal-
ling pathway) in one-point dose (10 μM) at duplicate mode 
using ATP concentration 10 μM. The results are summarized 
in Table 5 in % inhibition. It is not surprising for compound 
9a to show potent inhibition against FGFR1 (86.23%). This 
cross-inhibition was suggested because of the structural 
similarity between our newly designed compounds (9a–i) 
and sorafenib (reported to inhibit FGFR1) (Wilhelm et al. 
2006). No significant inhibition was observed over the other 
tested kinases. From the cytotoxicity assay, it is suggested 
that the dual inhibition of pan-Raf kinases and FGFR1 has a 
promising biological profile in treating melanoma.

Cell cycle analysis of compound 9a on melanoma 
cell line A375

The advancement of the cell cycle is accountable for regu-
lating regular cell growth and multiplication. DNA dam-
age may lead to either programmed cell death (apoptosis) 
or DNA repair. The cells' condition is assessed at distinct 
checkpoints, acting as control points to ensure accurate 
cell division. Key checkpoints in the cell cycle comprise 
G1 (restriction), S (metaphase), and G2/M, where the sta-
tus of the cells is carefully examined (Soliman et al. 2019). 
The purpose of anticancer drugs is to interrupt cell divi-
sion precisely at these checkpoints. Administering power-
ful cytotoxic agents, utilized as anticancer treatments, can 
pinpoint the phase in the cell cycle where apoptosis takes 
place. Accordingly, the most potent compound in our new 
series, 9a, was selected for investigating its effects on the 
cell cycle profile and apoptosis. A375 cells were treated with 
compound 9a at its IC50. The comparison data in Table 6 
and Fig. 3 indicate that compound 9a (Test 2) arrested the 
cell cycle of A375 cells at the S phase by 71.83% (Fig. 3). 
In addition, the cell population in G1 and G2/M phases 
decreased after treatment (Test 2) compared to negative 
control (Test 1). The comparison data showed the control 
sample has arrested the cell cycle at G0/G1 phases while 

Table 4   IC50 values of most active compound (9a) against B-RafWT, 
B-RafV600E and c-Raf kinase enzymes (nM) using Sorafenib as stand-
ard

Compound IC50 values (nM)

B-RafWT B-RafV600E c-Raf

Sorafenib (1) 22.01 38.22 6.13
9a 49.74 18.05 2.86

Table 5   Protein kinase screening of most active compound (9a) 
against MAPK signalling cascade-related kinases (% inhibition)

Kinase % inhibition values 
of compound 9a 
(%)

ALK 8.23
B-RafWT 99.43
B-RafV600E 100
c-Raf 99.8
ERK2/MAPK1 0
FGFR1 86.23
mTOR/FRAP1 0
ROS/ROS1 0
TRKB 17.27

Table 6   The effect of 
compound 9a and Sorafenib on 
the different phases of cell cycle

Melanoma cells-A375

9a Sorafenib Control

Conc (cells/mL) Percent Conc (cells/mL) Percent Conc (cells/mL) Percent

G0/G1 phase 1.16 × 10E4 18.92% 8.02 × 10E3 34.08% 4.95 × 10E4 58.27%
S phase 4.39 × 10E4 71.83% 1.18 × 10E4 49.72% 2.12 × 10E4 24.88%
G2/M phase 3.95 × 10E3 6.45% 3.16 × 10E3 13.41% 1.31 × 10E4 15.46%
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9a treated sample has arrested it at S phase as indicated by 
higher number of counts (%) in these phases of both cell 
cycle studies. In contrast, sorafenib showed a different pat-
tern, with a higher proportion of cells arrested in the G0/G1 
phase (34.08%) and fewer in the S phase (49.72%), suggest-
ing that sorafenib primarily disrupts cell growth earlier in the 
cell cycle. Additionally, sorafenib had a more pronounced 
effect in the G2/M phase (13.41%) compared to 9a (6.45%), 
indicating its role in affecting cell division at the mitotic 
phase. Overall, compound the ability of compound 9a to 
arrest the cell cycle on S phase suggests it is more effective 
at inhibiting melanoma cell proliferation, particularly at the 
DNA replication stage, while sorafenib targets earlier phases 
of the cell cycle, showing a different mechanism of action.

Apoptosis analysis of compound 9a on melanoma 
cell line A375

PE-conjugated Annexin V maintains its strong binding to 
phosphatidylserine (PS), serving as a sensitive marker for 
flow cytometric assessment of apoptotic cells. The staining 
with PE Annexin V precedes the loss of membrane integrity 
observed in the later phases of cell death, whether induced 
by apoptotic or necrotic processes. Therefore, PE Annexin 
V staining is commonly employed alongside a vital dye like 
propidium iodide (PI) or DAPI. This combination allows 
researchers to distinguish early apoptotic cells (DAPI nega-
tive, PE Annexin V positive) from viable cells with intact 
membranes, which exclude DAPI. In contrast, the mem-
branes of dead or damaged cells become permeable to DAPI. 
Monitoring apoptosis over time reveals a progression of 
cells transitioning from PE Annexin V and DAPI negative 
(viable with no apparent apoptosis) to PE Annexin V posi-
tive and DAPI negative (indicative of early apoptosis), and 
ultimately to PE Annexin V and DAPI positive (representing 

end-stage apoptosis and cell death). The sequential move-
ment of cells through these stages serves as an indicative 
pattern of apoptosis.

For a more appropriate investigation of cell death, the 
compound-treated cells and control A375 cells were stained 
with PE-Annexin V and DAPI. The cellular fluorescence 
analysis was then carried out using ADAMII LS (Figs. 4 
and 5). A kind of controlled cell death known as apoptosis 
may be identified with the use of Annexin V and the DAPI 
reagent. These two fluorophores are used in the dot plot and 
image data to identify early and late apoptotic cells. The 
findings of the dot plot analysis showed that a significant 
percentage of compound 9a-treated A375 cells experienced 
early apoptosis (9.11%) (Fig. 4B) as compared to sorafenib 
(4.03%) (Fig. 4C), whereas some cells notably advanced to 
the late apoptosis phase. We discovered that most of the 
cancer cells in the control groups (about 84.21%) were alive 
(Figs. 4A, 5). Similarly, greater fluorescence of DAPI and 
Annexin V effectively separated compound 9a-treated cells 
from control in the fluorescence images for A375 (Fig. 5) 
cells, which support the dot plot findings. As a result, 
when compound 9a was applied at dosages close to its IC50 
value, it damaged more A375 cells than the standard drug 
(sorafenib). The cell cycle and apoptotic studies' findings 
indicate that compound 9a has exceptional anticancer capa-
bilities that make it a promising candidate for chemotherapy.

In silico molecular simulation

To identify the possible binding interactions and the bind-
ing modes of the newly designed compounds, molecular 
docking simulation of the designed compounds (9a–i) was 
conducted into the ATP binding site of both wild-type B-Raf 
kinase domain (PDB ID: 1UWH) (Wan et al. 2004) and the 
mutated B-Raf kinase domain (PDB ID: 4FK3) (Tsai et al. 

Fig. 3   The effect of inhibitors on the phases of the cell cycle, compound 9a and Sorafenib compared with control in A375 cells
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2008) using compounds 1 and 4 as standards (Table 7, Fig. 6 
and Fig. 7). The most stable conformers of the tested com-
pounds (9a–i) were selected among the generated conform-
ers to explore, examine, and analyse the docking results and 
to discuss the possible binding interactions with the key 
amino acid residues within the ATP binding site. The dock-
ing results revealed that both standard compounds (1 and 4) 
exhibited the conserved binding pose into the ATP binding 
site of the wild-type B-Raf kinase domain (N-methyl amide 
group oriented at the hinge region; Cys532, Fig. 6A) with 
binding scores of −10.73 and −10.87 kcal/mol, respectively. 
However, these compounds (1 and 4) failed to show the same 
binding pose into the ATP binding site of the mutated B-Raf 

kinase domain (binding score = −8.19 and −8.34  kcal/
mol, respectively). Where, they were flipped in such a way 
that the distal phenyl ring with non-polar substituents was 
anchored into the hinge area rather than the default binding 
motif, N-methyl amide group, and showed weak interactions 
with the key amino acid residues at that region (Figs. 6B and 
7B). These docking results are aligned and matched with 
the limited inhibitory profile of sorafeni b over the mutated-
B-Raf-based melanoma. On the other hand, the docking 
results of the newly designed compounds revealed that the 
new amide linker, between central naphthalene core-scaffold 
and the distal phenyl ring, favoured being oriented near the 
hinge region and bound with the key amino acid residues 

Fig. 4   Dot plots showing apoptosis analysis of A375 cells (A, B, C) induced by compound 9a along with A negative and C positive controls

Fig. 5   Intracellular fluorescence images of A375 cell line treated with 9a for 24  h. Bright-field images, fluorescence images (DAPI:4′,6-
diamidino-2-phenylindole, RF: red fluorescence), and merged images were assigned to the A375 Melanoma cancer cells with control (without 
any compound treatment), 9a treated and Sorafenib treated, respectively showing apoptotic cells
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there (Cys532) across the wild-type and the mutated B-Raf 
kinase domains (Fig. 6C showed compound 9i as a repre-
sentative example of the newly designed derivatives) with 
binding score range of −9.73 −18.74 kcal/mol for B-RafWT 
and −8.11 −10.11 kcal/mol for B-RafV600E (Table 7). It was 
suggested that the 3D geometry of the amide linker of the 
newly designed derivatives, in contrast to the urea linker in 
both standard compounds (1 and 4), allows these compounds 
(9a–i) to fit, link, and bind with key amino acid residues at 
the hinge region in the ATP binding site. Moreover, the new 
binding mode of the tested compounds did not show the 
extended conformation, in contrast to that of compounds 1 
and 4. The binding of the amide linker into the hinge area 
led to the bent of the distal phenyl ring (with non-polar sub-
stituents) to be shifted to the upper surface of binding site 
(9i, Fig. 6D). It was surprising to find that the most active 
compound among the tested derivatives (9a) showed the 
extended conformation into the ATP binding site of both 
wild-type and the mutated B-Raf kinase domains. Addition-
ally, it showed better binding scores than that of sorafenib 
into both the wild B-Raf and the mutated B-Raf kinase ATP 
active sites (9a, −10.49 and −9.32 kcal/mol; sorafenib, 
−10.73 and −8.19 kcal/mol in both wild B-Raf and V600E 
B-Raf, respectively). The terminal difluoromethoxy group 
showed a strong interaction with the hinge regions of kinase 
domain of both isoforms (Figs. 6E, F and 7).  

Discussion

Vemurafenib and dabrafenib are FDA-approved drugs that 
target melanoma disease (Ali et al. 2022). However, acquired 
drug resistance is reported within six months from initiation 

of the drug therapy due to overexpression of other Raf iso-
forms (Rajakulendran et al. 2009; Shaw et al. 2014; Agi-
anian and Gavathiotis 2018). Using sorafenib as a lead com-
pound (Eisen et al. 2006), we developed a novel series (9a–i) 
designed to demonstrate an enhanced inhibitory profile 
across the Raf isoforms. We have conducted some structural 
modifications based on the chemical structures of sorafenib 
and compound 4 (Buchstaller et al. 2011). Naphthalene, a 
cytotoxic aromatic moiety that exhibits extensive biological 
activities, making it a valuable scaffold in drug discovery for 
various pathophysiological conditions, including anticancer, 
antimicrobial, and anti-inflammatory therapies (Makar et al. 
2019) was suited as a central core scaffold in the designed 
compounds. The urea linker was replaced with an amide 
group, which is integral to many biomolecules and numerous 
clinically approved drugs, serving as a cornerstone in drug 
design (Kumari et al. 2020). Finally, the distal phenyl ring 
was substituted with different non-polar groups.

The in vitro kinase assay plays a critical role in evalu-
ating the potency and selectivity of compounds, providing 
key insights into their potential as kinase inhibitors (Li et al. 
2024). For this study, the in vitro kinase inhibition assays, 
including both one-point and ten-point evaluations, were 
conducted using the Kinase HotSpot service offered by 
Reaction Biology Co. (Malvern, PA, USA) to screen com-
pounds 9a–i. In particular, the assay was employed to assess 
the inhibitory potency of the newly synthesized compounds 
against Raf isoforms, including B-RafWT, B-RafV600E, and 
c-Raf as previously reported (Elkamhawy et al. 2016; Park 
et al. 2017). As shown in the results, it was suggested that 
the bulky and polar morpholine group introduced at posi-
tion 4 in this derivative (9e) is not suitable at that position. 
A potential clash between the bulky morpholine ring and 
key amino acid residues in the binding pocket is anticipated, 
which could hinder the optimal fitting of compound 9e into 
the ATP binding site. Consequently, this may reduce its 
competitive potential against ATP molecules at the binding 
site. In contrast, compound 9b, featuring an isopropyl sub-
stitution at position 4, demonstrated potent inhibition against 
the tested Raf kinases. This suggests that the isopropyl group 
possesses an optimal size, making it a suitable modifica-
tion for incorporation into the designed compounds without 
compromising their inhibition profile.

The drug discovery process is costly and requires compre-
hensive early-stage evaluation of drug candidates’ biological 
activity, toxicity, and mechanisms. Cell-based assays, with 
advantages like automation and predictability, are vital tools 
despite challenges (Michelini et al. 2010). Therefore, in vitro 
cytotoxic assay was performed against human melanoma 
cell line (A375). Most of the tested compounds showed sig-
nificant inhibition across the Raf isoforms. However, com-
pound 9e (morpholine-containing compound) showed weak 
inhibition through the in vitro kinase assay and cytotoxic 

Table 7   The binding scores (kcal/mol) of the synthesized compounds 
(9a–i) into the ATP binding site of kinase domain of both wild-type 
B-Raf (B-RafWT) and mutated isoform (B-RafV600E) using Sorafenib 
(1) and compound 4 as references

Compound Binding score (kcal/mol)

B-RafWT B-RafV600E

Sorafenib −10.73 −8.19
4 −10.87 −8.34
9a −10.49 −9.32
9b −10.73 −8.14
9c −10.34 −9.21
9d −10.54 −8.23
9e −9.77 −8.11
9f −9.73 −8.13
9g −10.01 −8.34
9h −10.39 −8.79
9i −10.74 −10.11
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evaluation. The bulky and polar morpholine group is not tol-
erated in the designed series. Compound 9a (difluorometh-
oxy group-containing compound) showed the most potent 
results across the in vitro assays. This newly introduced 
difluoromethoxy group at the distal phenyl ring (position 

3) is proposed to enhance inhibitory activity by increasing 
affinity for the ATP binding site. While sorafenib contains a 
chemically similar trifluoromethyl group (CF3), it does not 
exhibit the same inhibitory profile against mutated B-Raf 
kinase as compound 9a. The additional hydrogen atom in 

Fig. 6   The in silico molecular docking simulation results. A the 3D interaction of compound 4 into B-RafWT active site showing terminal 
N-methyl amide group anchored towards the hinge region; B the 3D interaction of compound 4 into B-RafV600E showing the flipped conforma-
tion where the N-methyl amide group directed away from the hinge region; C the general structure of the newly designed compounds (Com-
pound 9i is shown here as a representative example) bound to the key amino acid residues at the hinge region (Cys532) showing strong H-bond 
interactions with the amide linker rather than the terminal N-methyl amide group. The bent conformation is identified in the designed series; D 
the 3D interaction of compound 9i into B-RafWT active site showing the amide linker anchored towards the hinge region; E and F the 3D interac-
tion of most active compound (9a) into B-RafWT and B-RafV600E active sites, respectively showing the substituted phenyl ring anchored towards 
hinge region where the difluoromethoxy group bound to the Cys532 amino acid residue with extended conformation
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the difluoromethoxy group, combined with the oxygen atom 
spacer in compound 9a, is believed to facilitate enhanced 
hydrogen-bond interactions (HBD and HBA, respectively) 
with key amino acid residues within the binding pocket 
of the mutated B-Raf kinase. Furthermore, compound 9a 
demonstrated a broad inhibitory profile across all three Raf 
isoforms. These findings suggest that the structural modifi-
cation significantly improved inhibitory activity compared to 
both sorafenib and compound 4 developed by the Buchstaller 
group. Additionally, the difluoromethoxy group is hypoth-
esized to enhance the pharmacokinetic profile by shielding 
the molecule from metabolism at its most vulnerable sites 
(Me).

Molecular docking is a valuable tool for explaining the 
activity of biomolecules, defining molecular determinants 
for interaction with drug targets, and designing more effi-
cient drug candidates (Gagic et al. 2019). In silico molecu-
lar docking simulations were performed on the tested com-
pounds against both wild-type and mutated B-Raf kinase 
domains to explore their potential binding interactions, 
using sorafenib and compound 4 as reference standards. The 
newly designed compounds exhibited novel binding modes 
across both B-Raf isoforms, with the amide linker form-
ing hydrogen bond interactions with the hinge region. This 
behavior contrasts with sorafenib and compound 4, which 
formed hydrogen bonds with the hinge region of wild-type 
B-Raf via their terminal N-methyl amide groups (Buch-
staller et al. 2011). Compound 9a also showed a unique 
binding interaction, where it was stabilized through an 
extended conformation into the ATP binding site of both 
wild-type and mutated B-Raf kinase domains. In particu-
lar, the terminal difluoromethoxy group at the distal phe-
nyl ring showed strong interaction with the key amino acid 

residues at the hinge regions. This key binding mode can 
justify the potent activity of compound 9a against the A375 
melanoma cell line (IC50 = 0.12 μM) compared to that of 
sorafenib (IC50 = 0.92 μM). The docking results indicated 
that the hinge region preferentially interacts with the newly 
introduced terminal difluoromethoxy group in compound 
9a, stabilizing the extended conformation more effectively 
than the inner amide linker, which exhibited a less stable 
bent conformation. Furthermore, the difluoromethoxy group 
displayed essential chemical features for binding to key 
amino acid residues at the hinge region of both wild-type 
and mutated B-Raf kinase domains.

In conclusion, our findings demonstrate that the struc-
tural modifications of sorafenib, particularly the introduc-
tion of the difluoromethoxy group in compound 9a, signifi-
cantly enhanced its inhibitory activity across Raf isoforms, 
including mutated B-Raf and c-Raf. Compound 9a exhibited 
superior potency in both kinase and cytotoxic assays, with a 
broad inhibitory profile and enhanced binding interactions 
at the ATP site, facilitated by the newly designed amide 
linker and terminal modifications. Meanwhile, future stud-
ies are suggested to explore a broader range of substituents 
to build on our findings, our results establish compound 9a 
as a highly promising candidate for targeting Raf-driven 
malignancies, highlighting its superior potency and selec-
tivity across Raf isoforms.
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